disk-io.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. static struct extent_io_ops btree_extent_io_ops;
  48. static void end_workqueue_fn(struct btrfs_work *work);
  49. static void free_fs_root(struct btrfs_root *root);
  50. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  51. int read_only);
  52. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  53. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  54. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  55. struct btrfs_root *root);
  56. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  57. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  59. struct extent_io_tree *dirty_pages,
  60. int mark);
  61. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  62. struct extent_io_tree *pinned_extents);
  63. /*
  64. * end_io_wq structs are used to do processing in task context when an IO is
  65. * complete. This is used during reads to verify checksums, and it is used
  66. * by writes to insert metadata for new file extents after IO is complete.
  67. */
  68. struct end_io_wq {
  69. struct bio *bio;
  70. bio_end_io_t *end_io;
  71. void *private;
  72. struct btrfs_fs_info *info;
  73. int error;
  74. int metadata;
  75. struct list_head list;
  76. struct btrfs_work work;
  77. };
  78. /*
  79. * async submit bios are used to offload expensive checksumming
  80. * onto the worker threads. They checksum file and metadata bios
  81. * just before they are sent down the IO stack.
  82. */
  83. struct async_submit_bio {
  84. struct inode *inode;
  85. struct bio *bio;
  86. struct list_head list;
  87. extent_submit_bio_hook_t *submit_bio_start;
  88. extent_submit_bio_hook_t *submit_bio_done;
  89. int rw;
  90. int mirror_num;
  91. unsigned long bio_flags;
  92. /*
  93. * bio_offset is optional, can be used if the pages in the bio
  94. * can't tell us where in the file the bio should go
  95. */
  96. u64 bio_offset;
  97. struct btrfs_work work;
  98. int error;
  99. };
  100. /*
  101. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  102. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  103. * the level the eb occupies in the tree.
  104. *
  105. * Different roots are used for different purposes and may nest inside each
  106. * other and they require separate keysets. As lockdep keys should be
  107. * static, assign keysets according to the purpose of the root as indicated
  108. * by btrfs_root->objectid. This ensures that all special purpose roots
  109. * have separate keysets.
  110. *
  111. * Lock-nesting across peer nodes is always done with the immediate parent
  112. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  113. * subclass to avoid triggering lockdep warning in such cases.
  114. *
  115. * The key is set by the readpage_end_io_hook after the buffer has passed
  116. * csum validation but before the pages are unlocked. It is also set by
  117. * btrfs_init_new_buffer on freshly allocated blocks.
  118. *
  119. * We also add a check to make sure the highest level of the tree is the
  120. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  121. * needs update as well.
  122. */
  123. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  124. # if BTRFS_MAX_LEVEL != 8
  125. # error
  126. # endif
  127. static struct btrfs_lockdep_keyset {
  128. u64 id; /* root objectid */
  129. const char *name_stem; /* lock name stem */
  130. char names[BTRFS_MAX_LEVEL + 1][20];
  131. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  132. } btrfs_lockdep_keysets[] = {
  133. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  134. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  135. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  136. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  137. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  138. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  139. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  140. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  141. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  142. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  143. { .id = 0, .name_stem = "tree" },
  144. };
  145. void __init btrfs_init_lockdep(void)
  146. {
  147. int i, j;
  148. /* initialize lockdep class names */
  149. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  150. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  151. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  152. snprintf(ks->names[j], sizeof(ks->names[j]),
  153. "btrfs-%s-%02d", ks->name_stem, j);
  154. }
  155. }
  156. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  157. int level)
  158. {
  159. struct btrfs_lockdep_keyset *ks;
  160. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  161. /* find the matching keyset, id 0 is the default entry */
  162. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  163. if (ks->id == objectid)
  164. break;
  165. lockdep_set_class_and_name(&eb->lock,
  166. &ks->keys[level], ks->names[level]);
  167. }
  168. #endif
  169. /*
  170. * extents on the btree inode are pretty simple, there's one extent
  171. * that covers the entire device
  172. */
  173. static struct extent_map *btree_get_extent(struct inode *inode,
  174. struct page *page, size_t pg_offset, u64 start, u64 len,
  175. int create)
  176. {
  177. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  178. struct extent_map *em;
  179. int ret;
  180. read_lock(&em_tree->lock);
  181. em = lookup_extent_mapping(em_tree, start, len);
  182. if (em) {
  183. em->bdev =
  184. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  185. read_unlock(&em_tree->lock);
  186. goto out;
  187. }
  188. read_unlock(&em_tree->lock);
  189. em = alloc_extent_map();
  190. if (!em) {
  191. em = ERR_PTR(-ENOMEM);
  192. goto out;
  193. }
  194. em->start = 0;
  195. em->len = (u64)-1;
  196. em->block_len = (u64)-1;
  197. em->block_start = 0;
  198. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  199. write_lock(&em_tree->lock);
  200. ret = add_extent_mapping(em_tree, em);
  201. if (ret == -EEXIST) {
  202. u64 failed_start = em->start;
  203. u64 failed_len = em->len;
  204. free_extent_map(em);
  205. em = lookup_extent_mapping(em_tree, start, len);
  206. if (em) {
  207. ret = 0;
  208. } else {
  209. em = lookup_extent_mapping(em_tree, failed_start,
  210. failed_len);
  211. ret = -EIO;
  212. }
  213. } else if (ret) {
  214. free_extent_map(em);
  215. em = NULL;
  216. }
  217. write_unlock(&em_tree->lock);
  218. if (ret)
  219. em = ERR_PTR(ret);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id,
  279. (unsigned long long)buf->start, val, found,
  280. btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. (unsigned long long)eb->start,
  318. (unsigned long long)parent_transid,
  319. (unsigned long long)btrfs_header_generation(eb));
  320. ret = 1;
  321. clear_extent_buffer_uptodate(eb);
  322. out:
  323. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state, GFP_NOFS);
  325. return ret;
  326. }
  327. /*
  328. * helper to read a given tree block, doing retries as required when
  329. * the checksums don't match and we have alternate mirrors to try.
  330. */
  331. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  332. struct extent_buffer *eb,
  333. u64 start, u64 parent_transid)
  334. {
  335. struct extent_io_tree *io_tree;
  336. int failed = 0;
  337. int ret;
  338. int num_copies = 0;
  339. int mirror_num = 0;
  340. int failed_mirror = 0;
  341. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  342. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  343. while (1) {
  344. ret = read_extent_buffer_pages(io_tree, eb, start,
  345. WAIT_COMPLETE,
  346. btree_get_extent, mirror_num);
  347. if (!ret && !verify_parent_transid(io_tree, eb,
  348. parent_transid, 0))
  349. break;
  350. /*
  351. * This buffer's crc is fine, but its contents are corrupted, so
  352. * there is no reason to read the other copies, they won't be
  353. * any less wrong.
  354. */
  355. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  356. break;
  357. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  358. eb->start, eb->len);
  359. if (num_copies == 1)
  360. break;
  361. if (!failed_mirror) {
  362. failed = 1;
  363. failed_mirror = eb->read_mirror;
  364. }
  365. mirror_num++;
  366. if (mirror_num == failed_mirror)
  367. mirror_num++;
  368. if (mirror_num > num_copies)
  369. break;
  370. }
  371. if (failed && !ret)
  372. repair_eb_io_failure(root, eb, failed_mirror);
  373. return ret;
  374. }
  375. /*
  376. * checksum a dirty tree block before IO. This has extra checks to make sure
  377. * we only fill in the checksum field in the first page of a multi-page block
  378. */
  379. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  380. {
  381. struct extent_io_tree *tree;
  382. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  383. u64 found_start;
  384. struct extent_buffer *eb;
  385. tree = &BTRFS_I(page->mapping->host)->io_tree;
  386. eb = (struct extent_buffer *)page->private;
  387. if (page != eb->pages[0])
  388. return 0;
  389. found_start = btrfs_header_bytenr(eb);
  390. if (found_start != start) {
  391. WARN_ON(1);
  392. return 0;
  393. }
  394. if (eb->pages[0] != page) {
  395. WARN_ON(1);
  396. return 0;
  397. }
  398. if (!PageUptodate(page)) {
  399. WARN_ON(1);
  400. return 0;
  401. }
  402. csum_tree_block(root, eb, 0);
  403. return 0;
  404. }
  405. static int check_tree_block_fsid(struct btrfs_root *root,
  406. struct extent_buffer *eb)
  407. {
  408. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  409. u8 fsid[BTRFS_UUID_SIZE];
  410. int ret = 1;
  411. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  412. BTRFS_FSID_SIZE);
  413. while (fs_devices) {
  414. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  415. ret = 0;
  416. break;
  417. }
  418. fs_devices = fs_devices->seed;
  419. }
  420. return ret;
  421. }
  422. #define CORRUPT(reason, eb, root, slot) \
  423. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  424. "root=%llu, slot=%d\n", reason, \
  425. (unsigned long long)btrfs_header_bytenr(eb), \
  426. (unsigned long long)root->objectid, slot)
  427. static noinline int check_leaf(struct btrfs_root *root,
  428. struct extent_buffer *leaf)
  429. {
  430. struct btrfs_key key;
  431. struct btrfs_key leaf_key;
  432. u32 nritems = btrfs_header_nritems(leaf);
  433. int slot;
  434. if (nritems == 0)
  435. return 0;
  436. /* Check the 0 item */
  437. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  438. BTRFS_LEAF_DATA_SIZE(root)) {
  439. CORRUPT("invalid item offset size pair", leaf, root, 0);
  440. return -EIO;
  441. }
  442. /*
  443. * Check to make sure each items keys are in the correct order and their
  444. * offsets make sense. We only have to loop through nritems-1 because
  445. * we check the current slot against the next slot, which verifies the
  446. * next slot's offset+size makes sense and that the current's slot
  447. * offset is correct.
  448. */
  449. for (slot = 0; slot < nritems - 1; slot++) {
  450. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  451. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  452. /* Make sure the keys are in the right order */
  453. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  454. CORRUPT("bad key order", leaf, root, slot);
  455. return -EIO;
  456. }
  457. /*
  458. * Make sure the offset and ends are right, remember that the
  459. * item data starts at the end of the leaf and grows towards the
  460. * front.
  461. */
  462. if (btrfs_item_offset_nr(leaf, slot) !=
  463. btrfs_item_end_nr(leaf, slot + 1)) {
  464. CORRUPT("slot offset bad", leaf, root, slot);
  465. return -EIO;
  466. }
  467. /*
  468. * Check to make sure that we don't point outside of the leaf,
  469. * just incase all the items are consistent to eachother, but
  470. * all point outside of the leaf.
  471. */
  472. if (btrfs_item_end_nr(leaf, slot) >
  473. BTRFS_LEAF_DATA_SIZE(root)) {
  474. CORRUPT("slot end outside of leaf", leaf, root, slot);
  475. return -EIO;
  476. }
  477. }
  478. return 0;
  479. }
  480. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  481. struct page *page, int max_walk)
  482. {
  483. struct extent_buffer *eb;
  484. u64 start = page_offset(page);
  485. u64 target = start;
  486. u64 min_start;
  487. if (start < max_walk)
  488. min_start = 0;
  489. else
  490. min_start = start - max_walk;
  491. while (start >= min_start) {
  492. eb = find_extent_buffer(tree, start, 0);
  493. if (eb) {
  494. /*
  495. * we found an extent buffer and it contains our page
  496. * horray!
  497. */
  498. if (eb->start <= target &&
  499. eb->start + eb->len > target)
  500. return eb;
  501. /* we found an extent buffer that wasn't for us */
  502. free_extent_buffer(eb);
  503. return NULL;
  504. }
  505. if (start == 0)
  506. break;
  507. start -= PAGE_CACHE_SIZE;
  508. }
  509. return NULL;
  510. }
  511. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  512. struct extent_state *state, int mirror)
  513. {
  514. struct extent_io_tree *tree;
  515. u64 found_start;
  516. int found_level;
  517. struct extent_buffer *eb;
  518. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  519. int ret = 0;
  520. int reads_done;
  521. if (!page->private)
  522. goto out;
  523. tree = &BTRFS_I(page->mapping->host)->io_tree;
  524. eb = (struct extent_buffer *)page->private;
  525. /* the pending IO might have been the only thing that kept this buffer
  526. * in memory. Make sure we have a ref for all this other checks
  527. */
  528. extent_buffer_get(eb);
  529. reads_done = atomic_dec_and_test(&eb->io_pages);
  530. if (!reads_done)
  531. goto err;
  532. eb->read_mirror = mirror;
  533. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  534. ret = -EIO;
  535. goto err;
  536. }
  537. found_start = btrfs_header_bytenr(eb);
  538. if (found_start != eb->start) {
  539. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  540. "%llu %llu\n",
  541. (unsigned long long)found_start,
  542. (unsigned long long)eb->start);
  543. ret = -EIO;
  544. goto err;
  545. }
  546. if (check_tree_block_fsid(root, eb)) {
  547. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  548. (unsigned long long)eb->start);
  549. ret = -EIO;
  550. goto err;
  551. }
  552. found_level = btrfs_header_level(eb);
  553. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  554. eb, found_level);
  555. ret = csum_tree_block(root, eb, 1);
  556. if (ret) {
  557. ret = -EIO;
  558. goto err;
  559. }
  560. /*
  561. * If this is a leaf block and it is corrupt, set the corrupt bit so
  562. * that we don't try and read the other copies of this block, just
  563. * return -EIO.
  564. */
  565. if (found_level == 0 && check_leaf(root, eb)) {
  566. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  567. ret = -EIO;
  568. }
  569. if (!ret)
  570. set_extent_buffer_uptodate(eb);
  571. err:
  572. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  573. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  574. btree_readahead_hook(root, eb, eb->start, ret);
  575. }
  576. if (ret)
  577. clear_extent_buffer_uptodate(eb);
  578. free_extent_buffer(eb);
  579. out:
  580. return ret;
  581. }
  582. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  583. {
  584. struct extent_buffer *eb;
  585. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  586. eb = (struct extent_buffer *)page->private;
  587. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  588. eb->read_mirror = failed_mirror;
  589. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  590. btree_readahead_hook(root, eb, eb->start, -EIO);
  591. return -EIO; /* we fixed nothing */
  592. }
  593. static void end_workqueue_bio(struct bio *bio, int err)
  594. {
  595. struct end_io_wq *end_io_wq = bio->bi_private;
  596. struct btrfs_fs_info *fs_info;
  597. fs_info = end_io_wq->info;
  598. end_io_wq->error = err;
  599. end_io_wq->work.func = end_workqueue_fn;
  600. end_io_wq->work.flags = 0;
  601. if (bio->bi_rw & REQ_WRITE) {
  602. if (end_io_wq->metadata == 1)
  603. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  604. &end_io_wq->work);
  605. else if (end_io_wq->metadata == 2)
  606. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  607. &end_io_wq->work);
  608. else
  609. btrfs_queue_worker(&fs_info->endio_write_workers,
  610. &end_io_wq->work);
  611. } else {
  612. if (end_io_wq->metadata)
  613. btrfs_queue_worker(&fs_info->endio_meta_workers,
  614. &end_io_wq->work);
  615. else
  616. btrfs_queue_worker(&fs_info->endio_workers,
  617. &end_io_wq->work);
  618. }
  619. }
  620. /*
  621. * For the metadata arg you want
  622. *
  623. * 0 - if data
  624. * 1 - if normal metadta
  625. * 2 - if writing to the free space cache area
  626. */
  627. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  628. int metadata)
  629. {
  630. struct end_io_wq *end_io_wq;
  631. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  632. if (!end_io_wq)
  633. return -ENOMEM;
  634. end_io_wq->private = bio->bi_private;
  635. end_io_wq->end_io = bio->bi_end_io;
  636. end_io_wq->info = info;
  637. end_io_wq->error = 0;
  638. end_io_wq->bio = bio;
  639. end_io_wq->metadata = metadata;
  640. bio->bi_private = end_io_wq;
  641. bio->bi_end_io = end_workqueue_bio;
  642. return 0;
  643. }
  644. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  645. {
  646. unsigned long limit = min_t(unsigned long,
  647. info->workers.max_workers,
  648. info->fs_devices->open_devices);
  649. return 256 * limit;
  650. }
  651. static void run_one_async_start(struct btrfs_work *work)
  652. {
  653. struct async_submit_bio *async;
  654. int ret;
  655. async = container_of(work, struct async_submit_bio, work);
  656. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  657. async->mirror_num, async->bio_flags,
  658. async->bio_offset);
  659. if (ret)
  660. async->error = ret;
  661. }
  662. static void run_one_async_done(struct btrfs_work *work)
  663. {
  664. struct btrfs_fs_info *fs_info;
  665. struct async_submit_bio *async;
  666. int limit;
  667. async = container_of(work, struct async_submit_bio, work);
  668. fs_info = BTRFS_I(async->inode)->root->fs_info;
  669. limit = btrfs_async_submit_limit(fs_info);
  670. limit = limit * 2 / 3;
  671. atomic_dec(&fs_info->nr_async_submits);
  672. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  673. waitqueue_active(&fs_info->async_submit_wait))
  674. wake_up(&fs_info->async_submit_wait);
  675. /* If an error occured we just want to clean up the bio and move on */
  676. if (async->error) {
  677. bio_endio(async->bio, async->error);
  678. return;
  679. }
  680. async->submit_bio_done(async->inode, async->rw, async->bio,
  681. async->mirror_num, async->bio_flags,
  682. async->bio_offset);
  683. }
  684. static void run_one_async_free(struct btrfs_work *work)
  685. {
  686. struct async_submit_bio *async;
  687. async = container_of(work, struct async_submit_bio, work);
  688. kfree(async);
  689. }
  690. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  691. int rw, struct bio *bio, int mirror_num,
  692. unsigned long bio_flags,
  693. u64 bio_offset,
  694. extent_submit_bio_hook_t *submit_bio_start,
  695. extent_submit_bio_hook_t *submit_bio_done)
  696. {
  697. struct async_submit_bio *async;
  698. async = kmalloc(sizeof(*async), GFP_NOFS);
  699. if (!async)
  700. return -ENOMEM;
  701. async->inode = inode;
  702. async->rw = rw;
  703. async->bio = bio;
  704. async->mirror_num = mirror_num;
  705. async->submit_bio_start = submit_bio_start;
  706. async->submit_bio_done = submit_bio_done;
  707. async->work.func = run_one_async_start;
  708. async->work.ordered_func = run_one_async_done;
  709. async->work.ordered_free = run_one_async_free;
  710. async->work.flags = 0;
  711. async->bio_flags = bio_flags;
  712. async->bio_offset = bio_offset;
  713. async->error = 0;
  714. atomic_inc(&fs_info->nr_async_submits);
  715. if (rw & REQ_SYNC)
  716. btrfs_set_work_high_prio(&async->work);
  717. btrfs_queue_worker(&fs_info->workers, &async->work);
  718. while (atomic_read(&fs_info->async_submit_draining) &&
  719. atomic_read(&fs_info->nr_async_submits)) {
  720. wait_event(fs_info->async_submit_wait,
  721. (atomic_read(&fs_info->nr_async_submits) == 0));
  722. }
  723. return 0;
  724. }
  725. static int btree_csum_one_bio(struct bio *bio)
  726. {
  727. struct bio_vec *bvec = bio->bi_io_vec;
  728. int bio_index = 0;
  729. struct btrfs_root *root;
  730. int ret = 0;
  731. WARN_ON(bio->bi_vcnt <= 0);
  732. while (bio_index < bio->bi_vcnt) {
  733. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  734. ret = csum_dirty_buffer(root, bvec->bv_page);
  735. if (ret)
  736. break;
  737. bio_index++;
  738. bvec++;
  739. }
  740. return ret;
  741. }
  742. static int __btree_submit_bio_start(struct inode *inode, int rw,
  743. struct bio *bio, int mirror_num,
  744. unsigned long bio_flags,
  745. u64 bio_offset)
  746. {
  747. /*
  748. * when we're called for a write, we're already in the async
  749. * submission context. Just jump into btrfs_map_bio
  750. */
  751. return btree_csum_one_bio(bio);
  752. }
  753. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  754. int mirror_num, unsigned long bio_flags,
  755. u64 bio_offset)
  756. {
  757. /*
  758. * when we're called for a write, we're already in the async
  759. * submission context. Just jump into btrfs_map_bio
  760. */
  761. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  762. }
  763. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  764. int mirror_num, unsigned long bio_flags,
  765. u64 bio_offset)
  766. {
  767. int ret;
  768. if (!(rw & REQ_WRITE)) {
  769. /*
  770. * called for a read, do the setup so that checksum validation
  771. * can happen in the async kernel threads
  772. */
  773. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  774. bio, 1);
  775. if (ret)
  776. return ret;
  777. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  778. mirror_num, 0);
  779. }
  780. /*
  781. * kthread helpers are used to submit writes so that checksumming
  782. * can happen in parallel across all CPUs
  783. */
  784. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  785. inode, rw, bio, mirror_num, 0,
  786. bio_offset,
  787. __btree_submit_bio_start,
  788. __btree_submit_bio_done);
  789. }
  790. #ifdef CONFIG_MIGRATION
  791. static int btree_migratepage(struct address_space *mapping,
  792. struct page *newpage, struct page *page,
  793. enum migrate_mode mode)
  794. {
  795. /*
  796. * we can't safely write a btree page from here,
  797. * we haven't done the locking hook
  798. */
  799. if (PageDirty(page))
  800. return -EAGAIN;
  801. /*
  802. * Buffers may be managed in a filesystem specific way.
  803. * We must have no buffers or drop them.
  804. */
  805. if (page_has_private(page) &&
  806. !try_to_release_page(page, GFP_KERNEL))
  807. return -EAGAIN;
  808. return migrate_page(mapping, newpage, page, mode);
  809. }
  810. #endif
  811. static int btree_writepages(struct address_space *mapping,
  812. struct writeback_control *wbc)
  813. {
  814. struct extent_io_tree *tree;
  815. tree = &BTRFS_I(mapping->host)->io_tree;
  816. if (wbc->sync_mode == WB_SYNC_NONE) {
  817. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  818. u64 num_dirty;
  819. unsigned long thresh = 32 * 1024 * 1024;
  820. if (wbc->for_kupdate)
  821. return 0;
  822. /* this is a bit racy, but that's ok */
  823. num_dirty = root->fs_info->dirty_metadata_bytes;
  824. if (num_dirty < thresh)
  825. return 0;
  826. }
  827. return btree_write_cache_pages(mapping, wbc);
  828. }
  829. static int btree_readpage(struct file *file, struct page *page)
  830. {
  831. struct extent_io_tree *tree;
  832. tree = &BTRFS_I(page->mapping->host)->io_tree;
  833. return extent_read_full_page(tree, page, btree_get_extent, 0);
  834. }
  835. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  836. {
  837. if (PageWriteback(page) || PageDirty(page))
  838. return 0;
  839. /*
  840. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  841. * slab allocation from alloc_extent_state down the callchain where
  842. * it'd hit a BUG_ON as those flags are not allowed.
  843. */
  844. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  845. return try_release_extent_buffer(page, gfp_flags);
  846. }
  847. static void btree_invalidatepage(struct page *page, unsigned long offset)
  848. {
  849. struct extent_io_tree *tree;
  850. tree = &BTRFS_I(page->mapping->host)->io_tree;
  851. extent_invalidatepage(tree, page, offset);
  852. btree_releasepage(page, GFP_NOFS);
  853. if (PagePrivate(page)) {
  854. printk(KERN_WARNING "btrfs warning page private not zero "
  855. "on page %llu\n", (unsigned long long)page_offset(page));
  856. ClearPagePrivate(page);
  857. set_page_private(page, 0);
  858. page_cache_release(page);
  859. }
  860. }
  861. static int btree_set_page_dirty(struct page *page)
  862. {
  863. struct extent_buffer *eb;
  864. BUG_ON(!PagePrivate(page));
  865. eb = (struct extent_buffer *)page->private;
  866. BUG_ON(!eb);
  867. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  868. BUG_ON(!atomic_read(&eb->refs));
  869. btrfs_assert_tree_locked(eb);
  870. return __set_page_dirty_nobuffers(page);
  871. }
  872. static const struct address_space_operations btree_aops = {
  873. .readpage = btree_readpage,
  874. .writepages = btree_writepages,
  875. .releasepage = btree_releasepage,
  876. .invalidatepage = btree_invalidatepage,
  877. #ifdef CONFIG_MIGRATION
  878. .migratepage = btree_migratepage,
  879. #endif
  880. .set_page_dirty = btree_set_page_dirty,
  881. };
  882. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  883. u64 parent_transid)
  884. {
  885. struct extent_buffer *buf = NULL;
  886. struct inode *btree_inode = root->fs_info->btree_inode;
  887. int ret = 0;
  888. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  889. if (!buf)
  890. return 0;
  891. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  892. buf, 0, WAIT_NONE, btree_get_extent, 0);
  893. free_extent_buffer(buf);
  894. return ret;
  895. }
  896. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  897. int mirror_num, struct extent_buffer **eb)
  898. {
  899. struct extent_buffer *buf = NULL;
  900. struct inode *btree_inode = root->fs_info->btree_inode;
  901. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  902. int ret;
  903. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  904. if (!buf)
  905. return 0;
  906. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  907. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  908. btree_get_extent, mirror_num);
  909. if (ret) {
  910. free_extent_buffer(buf);
  911. return ret;
  912. }
  913. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  914. free_extent_buffer(buf);
  915. return -EIO;
  916. } else if (extent_buffer_uptodate(buf)) {
  917. *eb = buf;
  918. } else {
  919. free_extent_buffer(buf);
  920. }
  921. return 0;
  922. }
  923. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  924. u64 bytenr, u32 blocksize)
  925. {
  926. struct inode *btree_inode = root->fs_info->btree_inode;
  927. struct extent_buffer *eb;
  928. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  929. bytenr, blocksize);
  930. return eb;
  931. }
  932. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  933. u64 bytenr, u32 blocksize)
  934. {
  935. struct inode *btree_inode = root->fs_info->btree_inode;
  936. struct extent_buffer *eb;
  937. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  938. bytenr, blocksize);
  939. return eb;
  940. }
  941. int btrfs_write_tree_block(struct extent_buffer *buf)
  942. {
  943. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  944. buf->start + buf->len - 1);
  945. }
  946. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  947. {
  948. return filemap_fdatawait_range(buf->pages[0]->mapping,
  949. buf->start, buf->start + buf->len - 1);
  950. }
  951. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  952. u32 blocksize, u64 parent_transid)
  953. {
  954. struct extent_buffer *buf = NULL;
  955. int ret;
  956. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  957. if (!buf)
  958. return NULL;
  959. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  960. return buf;
  961. }
  962. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  963. struct extent_buffer *buf)
  964. {
  965. if (btrfs_header_generation(buf) ==
  966. root->fs_info->running_transaction->transid) {
  967. btrfs_assert_tree_locked(buf);
  968. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  969. spin_lock(&root->fs_info->delalloc_lock);
  970. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  971. root->fs_info->dirty_metadata_bytes -= buf->len;
  972. else {
  973. spin_unlock(&root->fs_info->delalloc_lock);
  974. btrfs_panic(root->fs_info, -EOVERFLOW,
  975. "Can't clear %lu bytes from "
  976. " dirty_mdatadata_bytes (%lu)",
  977. buf->len,
  978. root->fs_info->dirty_metadata_bytes);
  979. }
  980. spin_unlock(&root->fs_info->delalloc_lock);
  981. }
  982. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  983. btrfs_set_lock_blocking(buf);
  984. clear_extent_buffer_dirty(buf);
  985. }
  986. }
  987. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  988. u32 stripesize, struct btrfs_root *root,
  989. struct btrfs_fs_info *fs_info,
  990. u64 objectid)
  991. {
  992. root->node = NULL;
  993. root->commit_root = NULL;
  994. root->sectorsize = sectorsize;
  995. root->nodesize = nodesize;
  996. root->leafsize = leafsize;
  997. root->stripesize = stripesize;
  998. root->ref_cows = 0;
  999. root->track_dirty = 0;
  1000. root->in_radix = 0;
  1001. root->orphan_item_inserted = 0;
  1002. root->orphan_cleanup_state = 0;
  1003. root->objectid = objectid;
  1004. root->last_trans = 0;
  1005. root->highest_objectid = 0;
  1006. root->name = NULL;
  1007. root->inode_tree = RB_ROOT;
  1008. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1009. root->block_rsv = NULL;
  1010. root->orphan_block_rsv = NULL;
  1011. INIT_LIST_HEAD(&root->dirty_list);
  1012. INIT_LIST_HEAD(&root->root_list);
  1013. spin_lock_init(&root->orphan_lock);
  1014. spin_lock_init(&root->inode_lock);
  1015. spin_lock_init(&root->accounting_lock);
  1016. mutex_init(&root->objectid_mutex);
  1017. mutex_init(&root->log_mutex);
  1018. init_waitqueue_head(&root->log_writer_wait);
  1019. init_waitqueue_head(&root->log_commit_wait[0]);
  1020. init_waitqueue_head(&root->log_commit_wait[1]);
  1021. atomic_set(&root->log_commit[0], 0);
  1022. atomic_set(&root->log_commit[1], 0);
  1023. atomic_set(&root->log_writers, 0);
  1024. atomic_set(&root->orphan_inodes, 0);
  1025. root->log_batch = 0;
  1026. root->log_transid = 0;
  1027. root->last_log_commit = 0;
  1028. extent_io_tree_init(&root->dirty_log_pages,
  1029. fs_info->btree_inode->i_mapping);
  1030. memset(&root->root_key, 0, sizeof(root->root_key));
  1031. memset(&root->root_item, 0, sizeof(root->root_item));
  1032. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1033. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1034. root->defrag_trans_start = fs_info->generation;
  1035. init_completion(&root->kobj_unregister);
  1036. root->defrag_running = 0;
  1037. root->root_key.objectid = objectid;
  1038. root->anon_dev = 0;
  1039. spin_lock_init(&root->root_times_lock);
  1040. }
  1041. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1042. struct btrfs_fs_info *fs_info,
  1043. u64 objectid,
  1044. struct btrfs_root *root)
  1045. {
  1046. int ret;
  1047. u32 blocksize;
  1048. u64 generation;
  1049. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1050. tree_root->sectorsize, tree_root->stripesize,
  1051. root, fs_info, objectid);
  1052. ret = btrfs_find_last_root(tree_root, objectid,
  1053. &root->root_item, &root->root_key);
  1054. if (ret > 0)
  1055. return -ENOENT;
  1056. else if (ret < 0)
  1057. return ret;
  1058. generation = btrfs_root_generation(&root->root_item);
  1059. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1060. root->commit_root = NULL;
  1061. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1062. blocksize, generation);
  1063. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1064. free_extent_buffer(root->node);
  1065. root->node = NULL;
  1066. return -EIO;
  1067. }
  1068. root->commit_root = btrfs_root_node(root);
  1069. return 0;
  1070. }
  1071. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1072. {
  1073. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1074. if (root)
  1075. root->fs_info = fs_info;
  1076. return root;
  1077. }
  1078. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1079. struct btrfs_fs_info *fs_info)
  1080. {
  1081. struct btrfs_root *root;
  1082. struct btrfs_root *tree_root = fs_info->tree_root;
  1083. struct extent_buffer *leaf;
  1084. root = btrfs_alloc_root(fs_info);
  1085. if (!root)
  1086. return ERR_PTR(-ENOMEM);
  1087. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1088. tree_root->sectorsize, tree_root->stripesize,
  1089. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1090. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1091. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1092. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1093. /*
  1094. * log trees do not get reference counted because they go away
  1095. * before a real commit is actually done. They do store pointers
  1096. * to file data extents, and those reference counts still get
  1097. * updated (along with back refs to the log tree).
  1098. */
  1099. root->ref_cows = 0;
  1100. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1101. BTRFS_TREE_LOG_OBJECTID, NULL,
  1102. 0, 0, 0);
  1103. if (IS_ERR(leaf)) {
  1104. kfree(root);
  1105. return ERR_CAST(leaf);
  1106. }
  1107. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1108. btrfs_set_header_bytenr(leaf, leaf->start);
  1109. btrfs_set_header_generation(leaf, trans->transid);
  1110. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1111. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1112. root->node = leaf;
  1113. write_extent_buffer(root->node, root->fs_info->fsid,
  1114. (unsigned long)btrfs_header_fsid(root->node),
  1115. BTRFS_FSID_SIZE);
  1116. btrfs_mark_buffer_dirty(root->node);
  1117. btrfs_tree_unlock(root->node);
  1118. return root;
  1119. }
  1120. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1121. struct btrfs_fs_info *fs_info)
  1122. {
  1123. struct btrfs_root *log_root;
  1124. log_root = alloc_log_tree(trans, fs_info);
  1125. if (IS_ERR(log_root))
  1126. return PTR_ERR(log_root);
  1127. WARN_ON(fs_info->log_root_tree);
  1128. fs_info->log_root_tree = log_root;
  1129. return 0;
  1130. }
  1131. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1132. struct btrfs_root *root)
  1133. {
  1134. struct btrfs_root *log_root;
  1135. struct btrfs_inode_item *inode_item;
  1136. log_root = alloc_log_tree(trans, root->fs_info);
  1137. if (IS_ERR(log_root))
  1138. return PTR_ERR(log_root);
  1139. log_root->last_trans = trans->transid;
  1140. log_root->root_key.offset = root->root_key.objectid;
  1141. inode_item = &log_root->root_item.inode;
  1142. inode_item->generation = cpu_to_le64(1);
  1143. inode_item->size = cpu_to_le64(3);
  1144. inode_item->nlink = cpu_to_le32(1);
  1145. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1146. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1147. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1148. WARN_ON(root->log_root);
  1149. root->log_root = log_root;
  1150. root->log_transid = 0;
  1151. root->last_log_commit = 0;
  1152. return 0;
  1153. }
  1154. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1155. struct btrfs_key *location)
  1156. {
  1157. struct btrfs_root *root;
  1158. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1159. struct btrfs_path *path;
  1160. struct extent_buffer *l;
  1161. u64 generation;
  1162. u32 blocksize;
  1163. int ret = 0;
  1164. int slot;
  1165. root = btrfs_alloc_root(fs_info);
  1166. if (!root)
  1167. return ERR_PTR(-ENOMEM);
  1168. if (location->offset == (u64)-1) {
  1169. ret = find_and_setup_root(tree_root, fs_info,
  1170. location->objectid, root);
  1171. if (ret) {
  1172. kfree(root);
  1173. return ERR_PTR(ret);
  1174. }
  1175. goto out;
  1176. }
  1177. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1178. tree_root->sectorsize, tree_root->stripesize,
  1179. root, fs_info, location->objectid);
  1180. path = btrfs_alloc_path();
  1181. if (!path) {
  1182. kfree(root);
  1183. return ERR_PTR(-ENOMEM);
  1184. }
  1185. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1186. if (ret == 0) {
  1187. l = path->nodes[0];
  1188. slot = path->slots[0];
  1189. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1190. memcpy(&root->root_key, location, sizeof(*location));
  1191. }
  1192. btrfs_free_path(path);
  1193. if (ret) {
  1194. kfree(root);
  1195. if (ret > 0)
  1196. ret = -ENOENT;
  1197. return ERR_PTR(ret);
  1198. }
  1199. generation = btrfs_root_generation(&root->root_item);
  1200. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1201. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1202. blocksize, generation);
  1203. root->commit_root = btrfs_root_node(root);
  1204. BUG_ON(!root->node); /* -ENOMEM */
  1205. out:
  1206. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1207. root->ref_cows = 1;
  1208. btrfs_check_and_init_root_item(&root->root_item);
  1209. }
  1210. return root;
  1211. }
  1212. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1213. struct btrfs_key *location)
  1214. {
  1215. struct btrfs_root *root;
  1216. int ret;
  1217. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1218. return fs_info->tree_root;
  1219. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1220. return fs_info->extent_root;
  1221. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1222. return fs_info->chunk_root;
  1223. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1224. return fs_info->dev_root;
  1225. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1226. return fs_info->csum_root;
  1227. again:
  1228. spin_lock(&fs_info->fs_roots_radix_lock);
  1229. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1230. (unsigned long)location->objectid);
  1231. spin_unlock(&fs_info->fs_roots_radix_lock);
  1232. if (root)
  1233. return root;
  1234. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1235. if (IS_ERR(root))
  1236. return root;
  1237. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1238. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1239. GFP_NOFS);
  1240. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1241. ret = -ENOMEM;
  1242. goto fail;
  1243. }
  1244. btrfs_init_free_ino_ctl(root);
  1245. mutex_init(&root->fs_commit_mutex);
  1246. spin_lock_init(&root->cache_lock);
  1247. init_waitqueue_head(&root->cache_wait);
  1248. ret = get_anon_bdev(&root->anon_dev);
  1249. if (ret)
  1250. goto fail;
  1251. if (btrfs_root_refs(&root->root_item) == 0) {
  1252. ret = -ENOENT;
  1253. goto fail;
  1254. }
  1255. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1256. if (ret < 0)
  1257. goto fail;
  1258. if (ret == 0)
  1259. root->orphan_item_inserted = 1;
  1260. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1261. if (ret)
  1262. goto fail;
  1263. spin_lock(&fs_info->fs_roots_radix_lock);
  1264. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1265. (unsigned long)root->root_key.objectid,
  1266. root);
  1267. if (ret == 0)
  1268. root->in_radix = 1;
  1269. spin_unlock(&fs_info->fs_roots_radix_lock);
  1270. radix_tree_preload_end();
  1271. if (ret) {
  1272. if (ret == -EEXIST) {
  1273. free_fs_root(root);
  1274. goto again;
  1275. }
  1276. goto fail;
  1277. }
  1278. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1279. root->root_key.objectid);
  1280. WARN_ON(ret);
  1281. return root;
  1282. fail:
  1283. free_fs_root(root);
  1284. return ERR_PTR(ret);
  1285. }
  1286. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1287. {
  1288. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1289. int ret = 0;
  1290. struct btrfs_device *device;
  1291. struct backing_dev_info *bdi;
  1292. rcu_read_lock();
  1293. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1294. if (!device->bdev)
  1295. continue;
  1296. bdi = blk_get_backing_dev_info(device->bdev);
  1297. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1298. ret = 1;
  1299. break;
  1300. }
  1301. }
  1302. rcu_read_unlock();
  1303. return ret;
  1304. }
  1305. /*
  1306. * If this fails, caller must call bdi_destroy() to get rid of the
  1307. * bdi again.
  1308. */
  1309. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1310. {
  1311. int err;
  1312. bdi->capabilities = BDI_CAP_MAP_COPY;
  1313. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1314. if (err)
  1315. return err;
  1316. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1317. bdi->congested_fn = btrfs_congested_fn;
  1318. bdi->congested_data = info;
  1319. return 0;
  1320. }
  1321. /*
  1322. * called by the kthread helper functions to finally call the bio end_io
  1323. * functions. This is where read checksum verification actually happens
  1324. */
  1325. static void end_workqueue_fn(struct btrfs_work *work)
  1326. {
  1327. struct bio *bio;
  1328. struct end_io_wq *end_io_wq;
  1329. struct btrfs_fs_info *fs_info;
  1330. int error;
  1331. end_io_wq = container_of(work, struct end_io_wq, work);
  1332. bio = end_io_wq->bio;
  1333. fs_info = end_io_wq->info;
  1334. error = end_io_wq->error;
  1335. bio->bi_private = end_io_wq->private;
  1336. bio->bi_end_io = end_io_wq->end_io;
  1337. kfree(end_io_wq);
  1338. bio_endio(bio, error);
  1339. }
  1340. static int cleaner_kthread(void *arg)
  1341. {
  1342. struct btrfs_root *root = arg;
  1343. do {
  1344. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1345. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1346. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1347. btrfs_run_delayed_iputs(root);
  1348. btrfs_clean_old_snapshots(root);
  1349. mutex_unlock(&root->fs_info->cleaner_mutex);
  1350. btrfs_run_defrag_inodes(root->fs_info);
  1351. }
  1352. if (!try_to_freeze()) {
  1353. set_current_state(TASK_INTERRUPTIBLE);
  1354. if (!kthread_should_stop())
  1355. schedule();
  1356. __set_current_state(TASK_RUNNING);
  1357. }
  1358. } while (!kthread_should_stop());
  1359. return 0;
  1360. }
  1361. static int transaction_kthread(void *arg)
  1362. {
  1363. struct btrfs_root *root = arg;
  1364. struct btrfs_trans_handle *trans;
  1365. struct btrfs_transaction *cur;
  1366. u64 transid;
  1367. unsigned long now;
  1368. unsigned long delay;
  1369. bool cannot_commit;
  1370. do {
  1371. cannot_commit = false;
  1372. delay = HZ * 30;
  1373. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1374. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1375. spin_lock(&root->fs_info->trans_lock);
  1376. cur = root->fs_info->running_transaction;
  1377. if (!cur) {
  1378. spin_unlock(&root->fs_info->trans_lock);
  1379. goto sleep;
  1380. }
  1381. now = get_seconds();
  1382. if (!cur->blocked &&
  1383. (now < cur->start_time || now - cur->start_time < 30)) {
  1384. spin_unlock(&root->fs_info->trans_lock);
  1385. delay = HZ * 5;
  1386. goto sleep;
  1387. }
  1388. transid = cur->transid;
  1389. spin_unlock(&root->fs_info->trans_lock);
  1390. /* If the file system is aborted, this will always fail. */
  1391. trans = btrfs_join_transaction(root);
  1392. if (IS_ERR(trans)) {
  1393. cannot_commit = true;
  1394. goto sleep;
  1395. }
  1396. if (transid == trans->transid) {
  1397. btrfs_commit_transaction(trans, root);
  1398. } else {
  1399. btrfs_end_transaction(trans, root);
  1400. }
  1401. sleep:
  1402. wake_up_process(root->fs_info->cleaner_kthread);
  1403. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1404. if (!try_to_freeze()) {
  1405. set_current_state(TASK_INTERRUPTIBLE);
  1406. if (!kthread_should_stop() &&
  1407. (!btrfs_transaction_blocked(root->fs_info) ||
  1408. cannot_commit))
  1409. schedule_timeout(delay);
  1410. __set_current_state(TASK_RUNNING);
  1411. }
  1412. } while (!kthread_should_stop());
  1413. return 0;
  1414. }
  1415. /*
  1416. * this will find the highest generation in the array of
  1417. * root backups. The index of the highest array is returned,
  1418. * or -1 if we can't find anything.
  1419. *
  1420. * We check to make sure the array is valid by comparing the
  1421. * generation of the latest root in the array with the generation
  1422. * in the super block. If they don't match we pitch it.
  1423. */
  1424. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1425. {
  1426. u64 cur;
  1427. int newest_index = -1;
  1428. struct btrfs_root_backup *root_backup;
  1429. int i;
  1430. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1431. root_backup = info->super_copy->super_roots + i;
  1432. cur = btrfs_backup_tree_root_gen(root_backup);
  1433. if (cur == newest_gen)
  1434. newest_index = i;
  1435. }
  1436. /* check to see if we actually wrapped around */
  1437. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1438. root_backup = info->super_copy->super_roots;
  1439. cur = btrfs_backup_tree_root_gen(root_backup);
  1440. if (cur == newest_gen)
  1441. newest_index = 0;
  1442. }
  1443. return newest_index;
  1444. }
  1445. /*
  1446. * find the oldest backup so we know where to store new entries
  1447. * in the backup array. This will set the backup_root_index
  1448. * field in the fs_info struct
  1449. */
  1450. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1451. u64 newest_gen)
  1452. {
  1453. int newest_index = -1;
  1454. newest_index = find_newest_super_backup(info, newest_gen);
  1455. /* if there was garbage in there, just move along */
  1456. if (newest_index == -1) {
  1457. info->backup_root_index = 0;
  1458. } else {
  1459. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1460. }
  1461. }
  1462. /*
  1463. * copy all the root pointers into the super backup array.
  1464. * this will bump the backup pointer by one when it is
  1465. * done
  1466. */
  1467. static void backup_super_roots(struct btrfs_fs_info *info)
  1468. {
  1469. int next_backup;
  1470. struct btrfs_root_backup *root_backup;
  1471. int last_backup;
  1472. next_backup = info->backup_root_index;
  1473. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1474. BTRFS_NUM_BACKUP_ROOTS;
  1475. /*
  1476. * just overwrite the last backup if we're at the same generation
  1477. * this happens only at umount
  1478. */
  1479. root_backup = info->super_for_commit->super_roots + last_backup;
  1480. if (btrfs_backup_tree_root_gen(root_backup) ==
  1481. btrfs_header_generation(info->tree_root->node))
  1482. next_backup = last_backup;
  1483. root_backup = info->super_for_commit->super_roots + next_backup;
  1484. /*
  1485. * make sure all of our padding and empty slots get zero filled
  1486. * regardless of which ones we use today
  1487. */
  1488. memset(root_backup, 0, sizeof(*root_backup));
  1489. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1490. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1491. btrfs_set_backup_tree_root_gen(root_backup,
  1492. btrfs_header_generation(info->tree_root->node));
  1493. btrfs_set_backup_tree_root_level(root_backup,
  1494. btrfs_header_level(info->tree_root->node));
  1495. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1496. btrfs_set_backup_chunk_root_gen(root_backup,
  1497. btrfs_header_generation(info->chunk_root->node));
  1498. btrfs_set_backup_chunk_root_level(root_backup,
  1499. btrfs_header_level(info->chunk_root->node));
  1500. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1501. btrfs_set_backup_extent_root_gen(root_backup,
  1502. btrfs_header_generation(info->extent_root->node));
  1503. btrfs_set_backup_extent_root_level(root_backup,
  1504. btrfs_header_level(info->extent_root->node));
  1505. /*
  1506. * we might commit during log recovery, which happens before we set
  1507. * the fs_root. Make sure it is valid before we fill it in.
  1508. */
  1509. if (info->fs_root && info->fs_root->node) {
  1510. btrfs_set_backup_fs_root(root_backup,
  1511. info->fs_root->node->start);
  1512. btrfs_set_backup_fs_root_gen(root_backup,
  1513. btrfs_header_generation(info->fs_root->node));
  1514. btrfs_set_backup_fs_root_level(root_backup,
  1515. btrfs_header_level(info->fs_root->node));
  1516. }
  1517. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1518. btrfs_set_backup_dev_root_gen(root_backup,
  1519. btrfs_header_generation(info->dev_root->node));
  1520. btrfs_set_backup_dev_root_level(root_backup,
  1521. btrfs_header_level(info->dev_root->node));
  1522. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1523. btrfs_set_backup_csum_root_gen(root_backup,
  1524. btrfs_header_generation(info->csum_root->node));
  1525. btrfs_set_backup_csum_root_level(root_backup,
  1526. btrfs_header_level(info->csum_root->node));
  1527. btrfs_set_backup_total_bytes(root_backup,
  1528. btrfs_super_total_bytes(info->super_copy));
  1529. btrfs_set_backup_bytes_used(root_backup,
  1530. btrfs_super_bytes_used(info->super_copy));
  1531. btrfs_set_backup_num_devices(root_backup,
  1532. btrfs_super_num_devices(info->super_copy));
  1533. /*
  1534. * if we don't copy this out to the super_copy, it won't get remembered
  1535. * for the next commit
  1536. */
  1537. memcpy(&info->super_copy->super_roots,
  1538. &info->super_for_commit->super_roots,
  1539. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1540. }
  1541. /*
  1542. * this copies info out of the root backup array and back into
  1543. * the in-memory super block. It is meant to help iterate through
  1544. * the array, so you send it the number of backups you've already
  1545. * tried and the last backup index you used.
  1546. *
  1547. * this returns -1 when it has tried all the backups
  1548. */
  1549. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1550. struct btrfs_super_block *super,
  1551. int *num_backups_tried, int *backup_index)
  1552. {
  1553. struct btrfs_root_backup *root_backup;
  1554. int newest = *backup_index;
  1555. if (*num_backups_tried == 0) {
  1556. u64 gen = btrfs_super_generation(super);
  1557. newest = find_newest_super_backup(info, gen);
  1558. if (newest == -1)
  1559. return -1;
  1560. *backup_index = newest;
  1561. *num_backups_tried = 1;
  1562. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1563. /* we've tried all the backups, all done */
  1564. return -1;
  1565. } else {
  1566. /* jump to the next oldest backup */
  1567. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1568. BTRFS_NUM_BACKUP_ROOTS;
  1569. *backup_index = newest;
  1570. *num_backups_tried += 1;
  1571. }
  1572. root_backup = super->super_roots + newest;
  1573. btrfs_set_super_generation(super,
  1574. btrfs_backup_tree_root_gen(root_backup));
  1575. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1576. btrfs_set_super_root_level(super,
  1577. btrfs_backup_tree_root_level(root_backup));
  1578. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1579. /*
  1580. * fixme: the total bytes and num_devices need to match or we should
  1581. * need a fsck
  1582. */
  1583. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1584. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1585. return 0;
  1586. }
  1587. /* helper to cleanup tree roots */
  1588. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1589. {
  1590. free_extent_buffer(info->tree_root->node);
  1591. free_extent_buffer(info->tree_root->commit_root);
  1592. free_extent_buffer(info->dev_root->node);
  1593. free_extent_buffer(info->dev_root->commit_root);
  1594. free_extent_buffer(info->extent_root->node);
  1595. free_extent_buffer(info->extent_root->commit_root);
  1596. free_extent_buffer(info->csum_root->node);
  1597. free_extent_buffer(info->csum_root->commit_root);
  1598. info->tree_root->node = NULL;
  1599. info->tree_root->commit_root = NULL;
  1600. info->dev_root->node = NULL;
  1601. info->dev_root->commit_root = NULL;
  1602. info->extent_root->node = NULL;
  1603. info->extent_root->commit_root = NULL;
  1604. info->csum_root->node = NULL;
  1605. info->csum_root->commit_root = NULL;
  1606. if (chunk_root) {
  1607. free_extent_buffer(info->chunk_root->node);
  1608. free_extent_buffer(info->chunk_root->commit_root);
  1609. info->chunk_root->node = NULL;
  1610. info->chunk_root->commit_root = NULL;
  1611. }
  1612. }
  1613. int open_ctree(struct super_block *sb,
  1614. struct btrfs_fs_devices *fs_devices,
  1615. char *options)
  1616. {
  1617. u32 sectorsize;
  1618. u32 nodesize;
  1619. u32 leafsize;
  1620. u32 blocksize;
  1621. u32 stripesize;
  1622. u64 generation;
  1623. u64 features;
  1624. struct btrfs_key location;
  1625. struct buffer_head *bh;
  1626. struct btrfs_super_block *disk_super;
  1627. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1628. struct btrfs_root *tree_root;
  1629. struct btrfs_root *extent_root;
  1630. struct btrfs_root *csum_root;
  1631. struct btrfs_root *chunk_root;
  1632. struct btrfs_root *dev_root;
  1633. struct btrfs_root *log_tree_root;
  1634. int ret;
  1635. int err = -EINVAL;
  1636. int num_backups_tried = 0;
  1637. int backup_index = 0;
  1638. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1639. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1640. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1641. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1642. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1643. if (!tree_root || !extent_root || !csum_root ||
  1644. !chunk_root || !dev_root) {
  1645. err = -ENOMEM;
  1646. goto fail;
  1647. }
  1648. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1649. if (ret) {
  1650. err = ret;
  1651. goto fail;
  1652. }
  1653. ret = setup_bdi(fs_info, &fs_info->bdi);
  1654. if (ret) {
  1655. err = ret;
  1656. goto fail_srcu;
  1657. }
  1658. fs_info->btree_inode = new_inode(sb);
  1659. if (!fs_info->btree_inode) {
  1660. err = -ENOMEM;
  1661. goto fail_bdi;
  1662. }
  1663. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1664. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1665. INIT_LIST_HEAD(&fs_info->trans_list);
  1666. INIT_LIST_HEAD(&fs_info->dead_roots);
  1667. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1668. INIT_LIST_HEAD(&fs_info->hashers);
  1669. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1670. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1671. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1672. spin_lock_init(&fs_info->delalloc_lock);
  1673. spin_lock_init(&fs_info->trans_lock);
  1674. spin_lock_init(&fs_info->ref_cache_lock);
  1675. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1676. spin_lock_init(&fs_info->delayed_iput_lock);
  1677. spin_lock_init(&fs_info->defrag_inodes_lock);
  1678. spin_lock_init(&fs_info->free_chunk_lock);
  1679. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1680. rwlock_init(&fs_info->tree_mod_log_lock);
  1681. mutex_init(&fs_info->reloc_mutex);
  1682. init_completion(&fs_info->kobj_unregister);
  1683. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1684. INIT_LIST_HEAD(&fs_info->space_info);
  1685. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1686. btrfs_mapping_init(&fs_info->mapping_tree);
  1687. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1688. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1689. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1690. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1691. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1692. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1693. atomic_set(&fs_info->nr_async_submits, 0);
  1694. atomic_set(&fs_info->async_delalloc_pages, 0);
  1695. atomic_set(&fs_info->async_submit_draining, 0);
  1696. atomic_set(&fs_info->nr_async_bios, 0);
  1697. atomic_set(&fs_info->defrag_running, 0);
  1698. atomic_set(&fs_info->tree_mod_seq, 0);
  1699. fs_info->sb = sb;
  1700. fs_info->max_inline = 8192 * 1024;
  1701. fs_info->metadata_ratio = 0;
  1702. fs_info->defrag_inodes = RB_ROOT;
  1703. fs_info->trans_no_join = 0;
  1704. fs_info->free_chunk_space = 0;
  1705. fs_info->tree_mod_log = RB_ROOT;
  1706. /* readahead state */
  1707. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1708. spin_lock_init(&fs_info->reada_lock);
  1709. fs_info->thread_pool_size = min_t(unsigned long,
  1710. num_online_cpus() + 2, 8);
  1711. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1712. spin_lock_init(&fs_info->ordered_extent_lock);
  1713. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1714. GFP_NOFS);
  1715. if (!fs_info->delayed_root) {
  1716. err = -ENOMEM;
  1717. goto fail_iput;
  1718. }
  1719. btrfs_init_delayed_root(fs_info->delayed_root);
  1720. mutex_init(&fs_info->scrub_lock);
  1721. atomic_set(&fs_info->scrubs_running, 0);
  1722. atomic_set(&fs_info->scrub_pause_req, 0);
  1723. atomic_set(&fs_info->scrubs_paused, 0);
  1724. atomic_set(&fs_info->scrub_cancel_req, 0);
  1725. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1726. init_rwsem(&fs_info->scrub_super_lock);
  1727. fs_info->scrub_workers_refcnt = 0;
  1728. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1729. fs_info->check_integrity_print_mask = 0;
  1730. #endif
  1731. spin_lock_init(&fs_info->balance_lock);
  1732. mutex_init(&fs_info->balance_mutex);
  1733. atomic_set(&fs_info->balance_running, 0);
  1734. atomic_set(&fs_info->balance_pause_req, 0);
  1735. atomic_set(&fs_info->balance_cancel_req, 0);
  1736. fs_info->balance_ctl = NULL;
  1737. init_waitqueue_head(&fs_info->balance_wait_q);
  1738. sb->s_blocksize = 4096;
  1739. sb->s_blocksize_bits = blksize_bits(4096);
  1740. sb->s_bdi = &fs_info->bdi;
  1741. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1742. set_nlink(fs_info->btree_inode, 1);
  1743. /*
  1744. * we set the i_size on the btree inode to the max possible int.
  1745. * the real end of the address space is determined by all of
  1746. * the devices in the system
  1747. */
  1748. fs_info->btree_inode->i_size = OFFSET_MAX;
  1749. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1750. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1751. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1752. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1753. fs_info->btree_inode->i_mapping);
  1754. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1755. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1756. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1757. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1758. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1759. sizeof(struct btrfs_key));
  1760. set_bit(BTRFS_INODE_DUMMY,
  1761. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1762. insert_inode_hash(fs_info->btree_inode);
  1763. spin_lock_init(&fs_info->block_group_cache_lock);
  1764. fs_info->block_group_cache_tree = RB_ROOT;
  1765. extent_io_tree_init(&fs_info->freed_extents[0],
  1766. fs_info->btree_inode->i_mapping);
  1767. extent_io_tree_init(&fs_info->freed_extents[1],
  1768. fs_info->btree_inode->i_mapping);
  1769. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1770. fs_info->do_barriers = 1;
  1771. mutex_init(&fs_info->ordered_operations_mutex);
  1772. mutex_init(&fs_info->tree_log_mutex);
  1773. mutex_init(&fs_info->chunk_mutex);
  1774. mutex_init(&fs_info->transaction_kthread_mutex);
  1775. mutex_init(&fs_info->cleaner_mutex);
  1776. mutex_init(&fs_info->volume_mutex);
  1777. init_rwsem(&fs_info->extent_commit_sem);
  1778. init_rwsem(&fs_info->cleanup_work_sem);
  1779. init_rwsem(&fs_info->subvol_sem);
  1780. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1781. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1782. init_waitqueue_head(&fs_info->transaction_throttle);
  1783. init_waitqueue_head(&fs_info->transaction_wait);
  1784. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1785. init_waitqueue_head(&fs_info->async_submit_wait);
  1786. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1787. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1788. invalidate_bdev(fs_devices->latest_bdev);
  1789. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1790. if (!bh) {
  1791. err = -EINVAL;
  1792. goto fail_alloc;
  1793. }
  1794. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1795. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1796. sizeof(*fs_info->super_for_commit));
  1797. brelse(bh);
  1798. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1799. disk_super = fs_info->super_copy;
  1800. if (!btrfs_super_root(disk_super))
  1801. goto fail_alloc;
  1802. /* check FS state, whether FS is broken. */
  1803. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1804. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1805. if (ret) {
  1806. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1807. err = ret;
  1808. goto fail_alloc;
  1809. }
  1810. /*
  1811. * run through our array of backup supers and setup
  1812. * our ring pointer to the oldest one
  1813. */
  1814. generation = btrfs_super_generation(disk_super);
  1815. find_oldest_super_backup(fs_info, generation);
  1816. /*
  1817. * In the long term, we'll store the compression type in the super
  1818. * block, and it'll be used for per file compression control.
  1819. */
  1820. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1821. ret = btrfs_parse_options(tree_root, options);
  1822. if (ret) {
  1823. err = ret;
  1824. goto fail_alloc;
  1825. }
  1826. features = btrfs_super_incompat_flags(disk_super) &
  1827. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1828. if (features) {
  1829. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1830. "unsupported optional features (%Lx).\n",
  1831. (unsigned long long)features);
  1832. err = -EINVAL;
  1833. goto fail_alloc;
  1834. }
  1835. if (btrfs_super_leafsize(disk_super) !=
  1836. btrfs_super_nodesize(disk_super)) {
  1837. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1838. "blocksizes don't match. node %d leaf %d\n",
  1839. btrfs_super_nodesize(disk_super),
  1840. btrfs_super_leafsize(disk_super));
  1841. err = -EINVAL;
  1842. goto fail_alloc;
  1843. }
  1844. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1845. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1846. "blocksize (%d) was too large\n",
  1847. btrfs_super_leafsize(disk_super));
  1848. err = -EINVAL;
  1849. goto fail_alloc;
  1850. }
  1851. features = btrfs_super_incompat_flags(disk_super);
  1852. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1853. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1854. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1855. /*
  1856. * flag our filesystem as having big metadata blocks if
  1857. * they are bigger than the page size
  1858. */
  1859. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1860. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1861. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1862. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1863. }
  1864. nodesize = btrfs_super_nodesize(disk_super);
  1865. leafsize = btrfs_super_leafsize(disk_super);
  1866. sectorsize = btrfs_super_sectorsize(disk_super);
  1867. stripesize = btrfs_super_stripesize(disk_super);
  1868. /*
  1869. * mixed block groups end up with duplicate but slightly offset
  1870. * extent buffers for the same range. It leads to corruptions
  1871. */
  1872. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1873. (sectorsize != leafsize)) {
  1874. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1875. "are not allowed for mixed block groups on %s\n",
  1876. sb->s_id);
  1877. goto fail_alloc;
  1878. }
  1879. btrfs_set_super_incompat_flags(disk_super, features);
  1880. features = btrfs_super_compat_ro_flags(disk_super) &
  1881. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1882. if (!(sb->s_flags & MS_RDONLY) && features) {
  1883. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1884. "unsupported option features (%Lx).\n",
  1885. (unsigned long long)features);
  1886. err = -EINVAL;
  1887. goto fail_alloc;
  1888. }
  1889. btrfs_init_workers(&fs_info->generic_worker,
  1890. "genwork", 1, NULL);
  1891. btrfs_init_workers(&fs_info->workers, "worker",
  1892. fs_info->thread_pool_size,
  1893. &fs_info->generic_worker);
  1894. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1895. fs_info->thread_pool_size,
  1896. &fs_info->generic_worker);
  1897. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1898. min_t(u64, fs_devices->num_devices,
  1899. fs_info->thread_pool_size),
  1900. &fs_info->generic_worker);
  1901. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1902. 2, &fs_info->generic_worker);
  1903. /* a higher idle thresh on the submit workers makes it much more
  1904. * likely that bios will be send down in a sane order to the
  1905. * devices
  1906. */
  1907. fs_info->submit_workers.idle_thresh = 64;
  1908. fs_info->workers.idle_thresh = 16;
  1909. fs_info->workers.ordered = 1;
  1910. fs_info->delalloc_workers.idle_thresh = 2;
  1911. fs_info->delalloc_workers.ordered = 1;
  1912. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1913. &fs_info->generic_worker);
  1914. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1915. fs_info->thread_pool_size,
  1916. &fs_info->generic_worker);
  1917. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1918. fs_info->thread_pool_size,
  1919. &fs_info->generic_worker);
  1920. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1921. "endio-meta-write", fs_info->thread_pool_size,
  1922. &fs_info->generic_worker);
  1923. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1924. fs_info->thread_pool_size,
  1925. &fs_info->generic_worker);
  1926. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1927. 1, &fs_info->generic_worker);
  1928. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1929. fs_info->thread_pool_size,
  1930. &fs_info->generic_worker);
  1931. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1932. fs_info->thread_pool_size,
  1933. &fs_info->generic_worker);
  1934. /*
  1935. * endios are largely parallel and should have a very
  1936. * low idle thresh
  1937. */
  1938. fs_info->endio_workers.idle_thresh = 4;
  1939. fs_info->endio_meta_workers.idle_thresh = 4;
  1940. fs_info->endio_write_workers.idle_thresh = 2;
  1941. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1942. fs_info->readahead_workers.idle_thresh = 2;
  1943. /*
  1944. * btrfs_start_workers can really only fail because of ENOMEM so just
  1945. * return -ENOMEM if any of these fail.
  1946. */
  1947. ret = btrfs_start_workers(&fs_info->workers);
  1948. ret |= btrfs_start_workers(&fs_info->generic_worker);
  1949. ret |= btrfs_start_workers(&fs_info->submit_workers);
  1950. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  1951. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  1952. ret |= btrfs_start_workers(&fs_info->endio_workers);
  1953. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  1954. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  1955. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  1956. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  1957. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  1958. ret |= btrfs_start_workers(&fs_info->caching_workers);
  1959. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  1960. if (ret) {
  1961. ret = -ENOMEM;
  1962. goto fail_sb_buffer;
  1963. }
  1964. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1965. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1966. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1967. tree_root->nodesize = nodesize;
  1968. tree_root->leafsize = leafsize;
  1969. tree_root->sectorsize = sectorsize;
  1970. tree_root->stripesize = stripesize;
  1971. sb->s_blocksize = sectorsize;
  1972. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1973. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1974. sizeof(disk_super->magic))) {
  1975. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1976. goto fail_sb_buffer;
  1977. }
  1978. if (sectorsize != PAGE_SIZE) {
  1979. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  1980. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  1981. goto fail_sb_buffer;
  1982. }
  1983. mutex_lock(&fs_info->chunk_mutex);
  1984. ret = btrfs_read_sys_array(tree_root);
  1985. mutex_unlock(&fs_info->chunk_mutex);
  1986. if (ret) {
  1987. printk(KERN_WARNING "btrfs: failed to read the system "
  1988. "array on %s\n", sb->s_id);
  1989. goto fail_sb_buffer;
  1990. }
  1991. blocksize = btrfs_level_size(tree_root,
  1992. btrfs_super_chunk_root_level(disk_super));
  1993. generation = btrfs_super_chunk_root_generation(disk_super);
  1994. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1995. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1996. chunk_root->node = read_tree_block(chunk_root,
  1997. btrfs_super_chunk_root(disk_super),
  1998. blocksize, generation);
  1999. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2000. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2001. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2002. sb->s_id);
  2003. goto fail_tree_roots;
  2004. }
  2005. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2006. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2007. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2008. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2009. BTRFS_UUID_SIZE);
  2010. ret = btrfs_read_chunk_tree(chunk_root);
  2011. if (ret) {
  2012. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2013. sb->s_id);
  2014. goto fail_tree_roots;
  2015. }
  2016. btrfs_close_extra_devices(fs_devices);
  2017. if (!fs_devices->latest_bdev) {
  2018. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2019. sb->s_id);
  2020. goto fail_tree_roots;
  2021. }
  2022. retry_root_backup:
  2023. blocksize = btrfs_level_size(tree_root,
  2024. btrfs_super_root_level(disk_super));
  2025. generation = btrfs_super_generation(disk_super);
  2026. tree_root->node = read_tree_block(tree_root,
  2027. btrfs_super_root(disk_super),
  2028. blocksize, generation);
  2029. if (!tree_root->node ||
  2030. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2031. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2032. sb->s_id);
  2033. goto recovery_tree_root;
  2034. }
  2035. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2036. tree_root->commit_root = btrfs_root_node(tree_root);
  2037. ret = find_and_setup_root(tree_root, fs_info,
  2038. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2039. if (ret)
  2040. goto recovery_tree_root;
  2041. extent_root->track_dirty = 1;
  2042. ret = find_and_setup_root(tree_root, fs_info,
  2043. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2044. if (ret)
  2045. goto recovery_tree_root;
  2046. dev_root->track_dirty = 1;
  2047. ret = find_and_setup_root(tree_root, fs_info,
  2048. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2049. if (ret)
  2050. goto recovery_tree_root;
  2051. csum_root->track_dirty = 1;
  2052. fs_info->generation = generation;
  2053. fs_info->last_trans_committed = generation;
  2054. ret = btrfs_recover_balance(fs_info);
  2055. if (ret) {
  2056. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2057. goto fail_block_groups;
  2058. }
  2059. ret = btrfs_init_dev_stats(fs_info);
  2060. if (ret) {
  2061. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2062. ret);
  2063. goto fail_block_groups;
  2064. }
  2065. ret = btrfs_init_space_info(fs_info);
  2066. if (ret) {
  2067. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2068. goto fail_block_groups;
  2069. }
  2070. ret = btrfs_read_block_groups(extent_root);
  2071. if (ret) {
  2072. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2073. goto fail_block_groups;
  2074. }
  2075. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2076. "btrfs-cleaner");
  2077. if (IS_ERR(fs_info->cleaner_kthread))
  2078. goto fail_block_groups;
  2079. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2080. tree_root,
  2081. "btrfs-transaction");
  2082. if (IS_ERR(fs_info->transaction_kthread))
  2083. goto fail_cleaner;
  2084. if (!btrfs_test_opt(tree_root, SSD) &&
  2085. !btrfs_test_opt(tree_root, NOSSD) &&
  2086. !fs_info->fs_devices->rotating) {
  2087. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2088. "mode\n");
  2089. btrfs_set_opt(fs_info->mount_opt, SSD);
  2090. }
  2091. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2092. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2093. ret = btrfsic_mount(tree_root, fs_devices,
  2094. btrfs_test_opt(tree_root,
  2095. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2096. 1 : 0,
  2097. fs_info->check_integrity_print_mask);
  2098. if (ret)
  2099. printk(KERN_WARNING "btrfs: failed to initialize"
  2100. " integrity check module %s\n", sb->s_id);
  2101. }
  2102. #endif
  2103. /* do not make disk changes in broken FS */
  2104. if (btrfs_super_log_root(disk_super) != 0 &&
  2105. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2106. u64 bytenr = btrfs_super_log_root(disk_super);
  2107. if (fs_devices->rw_devices == 0) {
  2108. printk(KERN_WARNING "Btrfs log replay required "
  2109. "on RO media\n");
  2110. err = -EIO;
  2111. goto fail_trans_kthread;
  2112. }
  2113. blocksize =
  2114. btrfs_level_size(tree_root,
  2115. btrfs_super_log_root_level(disk_super));
  2116. log_tree_root = btrfs_alloc_root(fs_info);
  2117. if (!log_tree_root) {
  2118. err = -ENOMEM;
  2119. goto fail_trans_kthread;
  2120. }
  2121. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2122. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2123. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2124. blocksize,
  2125. generation + 1);
  2126. /* returns with log_tree_root freed on success */
  2127. ret = btrfs_recover_log_trees(log_tree_root);
  2128. if (ret) {
  2129. btrfs_error(tree_root->fs_info, ret,
  2130. "Failed to recover log tree");
  2131. free_extent_buffer(log_tree_root->node);
  2132. kfree(log_tree_root);
  2133. goto fail_trans_kthread;
  2134. }
  2135. if (sb->s_flags & MS_RDONLY) {
  2136. ret = btrfs_commit_super(tree_root);
  2137. if (ret)
  2138. goto fail_trans_kthread;
  2139. }
  2140. }
  2141. ret = btrfs_find_orphan_roots(tree_root);
  2142. if (ret)
  2143. goto fail_trans_kthread;
  2144. if (!(sb->s_flags & MS_RDONLY)) {
  2145. ret = btrfs_cleanup_fs_roots(fs_info);
  2146. if (ret) {
  2147. }
  2148. ret = btrfs_recover_relocation(tree_root);
  2149. if (ret < 0) {
  2150. printk(KERN_WARNING
  2151. "btrfs: failed to recover relocation\n");
  2152. err = -EINVAL;
  2153. goto fail_trans_kthread;
  2154. }
  2155. }
  2156. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2157. location.type = BTRFS_ROOT_ITEM_KEY;
  2158. location.offset = (u64)-1;
  2159. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2160. if (!fs_info->fs_root)
  2161. goto fail_trans_kthread;
  2162. if (IS_ERR(fs_info->fs_root)) {
  2163. err = PTR_ERR(fs_info->fs_root);
  2164. goto fail_trans_kthread;
  2165. }
  2166. if (sb->s_flags & MS_RDONLY)
  2167. return 0;
  2168. down_read(&fs_info->cleanup_work_sem);
  2169. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2170. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2171. up_read(&fs_info->cleanup_work_sem);
  2172. close_ctree(tree_root);
  2173. return ret;
  2174. }
  2175. up_read(&fs_info->cleanup_work_sem);
  2176. ret = btrfs_resume_balance_async(fs_info);
  2177. if (ret) {
  2178. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2179. close_ctree(tree_root);
  2180. return ret;
  2181. }
  2182. return 0;
  2183. fail_trans_kthread:
  2184. kthread_stop(fs_info->transaction_kthread);
  2185. fail_cleaner:
  2186. kthread_stop(fs_info->cleaner_kthread);
  2187. /*
  2188. * make sure we're done with the btree inode before we stop our
  2189. * kthreads
  2190. */
  2191. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2192. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2193. fail_block_groups:
  2194. btrfs_free_block_groups(fs_info);
  2195. fail_tree_roots:
  2196. free_root_pointers(fs_info, 1);
  2197. fail_sb_buffer:
  2198. btrfs_stop_workers(&fs_info->generic_worker);
  2199. btrfs_stop_workers(&fs_info->readahead_workers);
  2200. btrfs_stop_workers(&fs_info->fixup_workers);
  2201. btrfs_stop_workers(&fs_info->delalloc_workers);
  2202. btrfs_stop_workers(&fs_info->workers);
  2203. btrfs_stop_workers(&fs_info->endio_workers);
  2204. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2205. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2206. btrfs_stop_workers(&fs_info->endio_write_workers);
  2207. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2208. btrfs_stop_workers(&fs_info->submit_workers);
  2209. btrfs_stop_workers(&fs_info->delayed_workers);
  2210. btrfs_stop_workers(&fs_info->caching_workers);
  2211. fail_alloc:
  2212. fail_iput:
  2213. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2214. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2215. iput(fs_info->btree_inode);
  2216. fail_bdi:
  2217. bdi_destroy(&fs_info->bdi);
  2218. fail_srcu:
  2219. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2220. fail:
  2221. btrfs_close_devices(fs_info->fs_devices);
  2222. return err;
  2223. recovery_tree_root:
  2224. if (!btrfs_test_opt(tree_root, RECOVERY))
  2225. goto fail_tree_roots;
  2226. free_root_pointers(fs_info, 0);
  2227. /* don't use the log in recovery mode, it won't be valid */
  2228. btrfs_set_super_log_root(disk_super, 0);
  2229. /* we can't trust the free space cache either */
  2230. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2231. ret = next_root_backup(fs_info, fs_info->super_copy,
  2232. &num_backups_tried, &backup_index);
  2233. if (ret == -1)
  2234. goto fail_block_groups;
  2235. goto retry_root_backup;
  2236. }
  2237. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2238. {
  2239. if (uptodate) {
  2240. set_buffer_uptodate(bh);
  2241. } else {
  2242. struct btrfs_device *device = (struct btrfs_device *)
  2243. bh->b_private;
  2244. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2245. "I/O error on %s\n",
  2246. rcu_str_deref(device->name));
  2247. /* note, we dont' set_buffer_write_io_error because we have
  2248. * our own ways of dealing with the IO errors
  2249. */
  2250. clear_buffer_uptodate(bh);
  2251. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2252. }
  2253. unlock_buffer(bh);
  2254. put_bh(bh);
  2255. }
  2256. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2257. {
  2258. struct buffer_head *bh;
  2259. struct buffer_head *latest = NULL;
  2260. struct btrfs_super_block *super;
  2261. int i;
  2262. u64 transid = 0;
  2263. u64 bytenr;
  2264. /* we would like to check all the supers, but that would make
  2265. * a btrfs mount succeed after a mkfs from a different FS.
  2266. * So, we need to add a special mount option to scan for
  2267. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2268. */
  2269. for (i = 0; i < 1; i++) {
  2270. bytenr = btrfs_sb_offset(i);
  2271. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2272. break;
  2273. bh = __bread(bdev, bytenr / 4096, 4096);
  2274. if (!bh)
  2275. continue;
  2276. super = (struct btrfs_super_block *)bh->b_data;
  2277. if (btrfs_super_bytenr(super) != bytenr ||
  2278. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2279. sizeof(super->magic))) {
  2280. brelse(bh);
  2281. continue;
  2282. }
  2283. if (!latest || btrfs_super_generation(super) > transid) {
  2284. brelse(latest);
  2285. latest = bh;
  2286. transid = btrfs_super_generation(super);
  2287. } else {
  2288. brelse(bh);
  2289. }
  2290. }
  2291. return latest;
  2292. }
  2293. /*
  2294. * this should be called twice, once with wait == 0 and
  2295. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2296. * we write are pinned.
  2297. *
  2298. * They are released when wait == 1 is done.
  2299. * max_mirrors must be the same for both runs, and it indicates how
  2300. * many supers on this one device should be written.
  2301. *
  2302. * max_mirrors == 0 means to write them all.
  2303. */
  2304. static int write_dev_supers(struct btrfs_device *device,
  2305. struct btrfs_super_block *sb,
  2306. int do_barriers, int wait, int max_mirrors)
  2307. {
  2308. struct buffer_head *bh;
  2309. int i;
  2310. int ret;
  2311. int errors = 0;
  2312. u32 crc;
  2313. u64 bytenr;
  2314. if (max_mirrors == 0)
  2315. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2316. for (i = 0; i < max_mirrors; i++) {
  2317. bytenr = btrfs_sb_offset(i);
  2318. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2319. break;
  2320. if (wait) {
  2321. bh = __find_get_block(device->bdev, bytenr / 4096,
  2322. BTRFS_SUPER_INFO_SIZE);
  2323. BUG_ON(!bh);
  2324. wait_on_buffer(bh);
  2325. if (!buffer_uptodate(bh))
  2326. errors++;
  2327. /* drop our reference */
  2328. brelse(bh);
  2329. /* drop the reference from the wait == 0 run */
  2330. brelse(bh);
  2331. continue;
  2332. } else {
  2333. btrfs_set_super_bytenr(sb, bytenr);
  2334. crc = ~(u32)0;
  2335. crc = btrfs_csum_data(NULL, (char *)sb +
  2336. BTRFS_CSUM_SIZE, crc,
  2337. BTRFS_SUPER_INFO_SIZE -
  2338. BTRFS_CSUM_SIZE);
  2339. btrfs_csum_final(crc, sb->csum);
  2340. /*
  2341. * one reference for us, and we leave it for the
  2342. * caller
  2343. */
  2344. bh = __getblk(device->bdev, bytenr / 4096,
  2345. BTRFS_SUPER_INFO_SIZE);
  2346. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2347. /* one reference for submit_bh */
  2348. get_bh(bh);
  2349. set_buffer_uptodate(bh);
  2350. lock_buffer(bh);
  2351. bh->b_end_io = btrfs_end_buffer_write_sync;
  2352. bh->b_private = device;
  2353. }
  2354. /*
  2355. * we fua the first super. The others we allow
  2356. * to go down lazy.
  2357. */
  2358. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2359. if (ret)
  2360. errors++;
  2361. }
  2362. return errors < i ? 0 : -1;
  2363. }
  2364. /*
  2365. * endio for the write_dev_flush, this will wake anyone waiting
  2366. * for the barrier when it is done
  2367. */
  2368. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2369. {
  2370. if (err) {
  2371. if (err == -EOPNOTSUPP)
  2372. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2373. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2374. }
  2375. if (bio->bi_private)
  2376. complete(bio->bi_private);
  2377. bio_put(bio);
  2378. }
  2379. /*
  2380. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2381. * sent down. With wait == 1, it waits for the previous flush.
  2382. *
  2383. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2384. * capable
  2385. */
  2386. static int write_dev_flush(struct btrfs_device *device, int wait)
  2387. {
  2388. struct bio *bio;
  2389. int ret = 0;
  2390. if (device->nobarriers)
  2391. return 0;
  2392. if (wait) {
  2393. bio = device->flush_bio;
  2394. if (!bio)
  2395. return 0;
  2396. wait_for_completion(&device->flush_wait);
  2397. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2398. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2399. rcu_str_deref(device->name));
  2400. device->nobarriers = 1;
  2401. }
  2402. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2403. ret = -EIO;
  2404. if (!bio_flagged(bio, BIO_EOPNOTSUPP))
  2405. btrfs_dev_stat_inc_and_print(device,
  2406. BTRFS_DEV_STAT_FLUSH_ERRS);
  2407. }
  2408. /* drop the reference from the wait == 0 run */
  2409. bio_put(bio);
  2410. device->flush_bio = NULL;
  2411. return ret;
  2412. }
  2413. /*
  2414. * one reference for us, and we leave it for the
  2415. * caller
  2416. */
  2417. device->flush_bio = NULL;
  2418. bio = bio_alloc(GFP_NOFS, 0);
  2419. if (!bio)
  2420. return -ENOMEM;
  2421. bio->bi_end_io = btrfs_end_empty_barrier;
  2422. bio->bi_bdev = device->bdev;
  2423. init_completion(&device->flush_wait);
  2424. bio->bi_private = &device->flush_wait;
  2425. device->flush_bio = bio;
  2426. bio_get(bio);
  2427. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2428. return 0;
  2429. }
  2430. /*
  2431. * send an empty flush down to each device in parallel,
  2432. * then wait for them
  2433. */
  2434. static int barrier_all_devices(struct btrfs_fs_info *info)
  2435. {
  2436. struct list_head *head;
  2437. struct btrfs_device *dev;
  2438. int errors = 0;
  2439. int ret;
  2440. /* send down all the barriers */
  2441. head = &info->fs_devices->devices;
  2442. list_for_each_entry_rcu(dev, head, dev_list) {
  2443. if (!dev->bdev) {
  2444. errors++;
  2445. continue;
  2446. }
  2447. if (!dev->in_fs_metadata || !dev->writeable)
  2448. continue;
  2449. ret = write_dev_flush(dev, 0);
  2450. if (ret)
  2451. errors++;
  2452. }
  2453. /* wait for all the barriers */
  2454. list_for_each_entry_rcu(dev, head, dev_list) {
  2455. if (!dev->bdev) {
  2456. errors++;
  2457. continue;
  2458. }
  2459. if (!dev->in_fs_metadata || !dev->writeable)
  2460. continue;
  2461. ret = write_dev_flush(dev, 1);
  2462. if (ret)
  2463. errors++;
  2464. }
  2465. if (errors)
  2466. return -EIO;
  2467. return 0;
  2468. }
  2469. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2470. {
  2471. struct list_head *head;
  2472. struct btrfs_device *dev;
  2473. struct btrfs_super_block *sb;
  2474. struct btrfs_dev_item *dev_item;
  2475. int ret;
  2476. int do_barriers;
  2477. int max_errors;
  2478. int total_errors = 0;
  2479. u64 flags;
  2480. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2481. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2482. backup_super_roots(root->fs_info);
  2483. sb = root->fs_info->super_for_commit;
  2484. dev_item = &sb->dev_item;
  2485. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2486. head = &root->fs_info->fs_devices->devices;
  2487. if (do_barriers)
  2488. barrier_all_devices(root->fs_info);
  2489. list_for_each_entry_rcu(dev, head, dev_list) {
  2490. if (!dev->bdev) {
  2491. total_errors++;
  2492. continue;
  2493. }
  2494. if (!dev->in_fs_metadata || !dev->writeable)
  2495. continue;
  2496. btrfs_set_stack_device_generation(dev_item, 0);
  2497. btrfs_set_stack_device_type(dev_item, dev->type);
  2498. btrfs_set_stack_device_id(dev_item, dev->devid);
  2499. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2500. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2501. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2502. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2503. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2504. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2505. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2506. flags = btrfs_super_flags(sb);
  2507. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2508. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2509. if (ret)
  2510. total_errors++;
  2511. }
  2512. if (total_errors > max_errors) {
  2513. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2514. total_errors);
  2515. /* This shouldn't happen. FUA is masked off if unsupported */
  2516. BUG();
  2517. }
  2518. total_errors = 0;
  2519. list_for_each_entry_rcu(dev, head, dev_list) {
  2520. if (!dev->bdev)
  2521. continue;
  2522. if (!dev->in_fs_metadata || !dev->writeable)
  2523. continue;
  2524. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2525. if (ret)
  2526. total_errors++;
  2527. }
  2528. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2529. if (total_errors > max_errors) {
  2530. btrfs_error(root->fs_info, -EIO,
  2531. "%d errors while writing supers", total_errors);
  2532. return -EIO;
  2533. }
  2534. return 0;
  2535. }
  2536. int write_ctree_super(struct btrfs_trans_handle *trans,
  2537. struct btrfs_root *root, int max_mirrors)
  2538. {
  2539. int ret;
  2540. ret = write_all_supers(root, max_mirrors);
  2541. return ret;
  2542. }
  2543. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2544. {
  2545. spin_lock(&fs_info->fs_roots_radix_lock);
  2546. radix_tree_delete(&fs_info->fs_roots_radix,
  2547. (unsigned long)root->root_key.objectid);
  2548. spin_unlock(&fs_info->fs_roots_radix_lock);
  2549. if (btrfs_root_refs(&root->root_item) == 0)
  2550. synchronize_srcu(&fs_info->subvol_srcu);
  2551. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2552. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2553. free_fs_root(root);
  2554. }
  2555. static void free_fs_root(struct btrfs_root *root)
  2556. {
  2557. iput(root->cache_inode);
  2558. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2559. if (root->anon_dev)
  2560. free_anon_bdev(root->anon_dev);
  2561. free_extent_buffer(root->node);
  2562. free_extent_buffer(root->commit_root);
  2563. kfree(root->free_ino_ctl);
  2564. kfree(root->free_ino_pinned);
  2565. kfree(root->name);
  2566. kfree(root);
  2567. }
  2568. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2569. {
  2570. int ret;
  2571. struct btrfs_root *gang[8];
  2572. int i;
  2573. while (!list_empty(&fs_info->dead_roots)) {
  2574. gang[0] = list_entry(fs_info->dead_roots.next,
  2575. struct btrfs_root, root_list);
  2576. list_del(&gang[0]->root_list);
  2577. if (gang[0]->in_radix) {
  2578. btrfs_free_fs_root(fs_info, gang[0]);
  2579. } else {
  2580. free_extent_buffer(gang[0]->node);
  2581. free_extent_buffer(gang[0]->commit_root);
  2582. kfree(gang[0]);
  2583. }
  2584. }
  2585. while (1) {
  2586. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2587. (void **)gang, 0,
  2588. ARRAY_SIZE(gang));
  2589. if (!ret)
  2590. break;
  2591. for (i = 0; i < ret; i++)
  2592. btrfs_free_fs_root(fs_info, gang[i]);
  2593. }
  2594. }
  2595. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2596. {
  2597. u64 root_objectid = 0;
  2598. struct btrfs_root *gang[8];
  2599. int i;
  2600. int ret;
  2601. while (1) {
  2602. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2603. (void **)gang, root_objectid,
  2604. ARRAY_SIZE(gang));
  2605. if (!ret)
  2606. break;
  2607. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2608. for (i = 0; i < ret; i++) {
  2609. int err;
  2610. root_objectid = gang[i]->root_key.objectid;
  2611. err = btrfs_orphan_cleanup(gang[i]);
  2612. if (err)
  2613. return err;
  2614. }
  2615. root_objectid++;
  2616. }
  2617. return 0;
  2618. }
  2619. int btrfs_commit_super(struct btrfs_root *root)
  2620. {
  2621. struct btrfs_trans_handle *trans;
  2622. int ret;
  2623. mutex_lock(&root->fs_info->cleaner_mutex);
  2624. btrfs_run_delayed_iputs(root);
  2625. btrfs_clean_old_snapshots(root);
  2626. mutex_unlock(&root->fs_info->cleaner_mutex);
  2627. /* wait until ongoing cleanup work done */
  2628. down_write(&root->fs_info->cleanup_work_sem);
  2629. up_write(&root->fs_info->cleanup_work_sem);
  2630. trans = btrfs_join_transaction(root);
  2631. if (IS_ERR(trans))
  2632. return PTR_ERR(trans);
  2633. ret = btrfs_commit_transaction(trans, root);
  2634. if (ret)
  2635. return ret;
  2636. /* run commit again to drop the original snapshot */
  2637. trans = btrfs_join_transaction(root);
  2638. if (IS_ERR(trans))
  2639. return PTR_ERR(trans);
  2640. ret = btrfs_commit_transaction(trans, root);
  2641. if (ret)
  2642. return ret;
  2643. ret = btrfs_write_and_wait_transaction(NULL, root);
  2644. if (ret) {
  2645. btrfs_error(root->fs_info, ret,
  2646. "Failed to sync btree inode to disk.");
  2647. return ret;
  2648. }
  2649. ret = write_ctree_super(NULL, root, 0);
  2650. return ret;
  2651. }
  2652. int close_ctree(struct btrfs_root *root)
  2653. {
  2654. struct btrfs_fs_info *fs_info = root->fs_info;
  2655. int ret;
  2656. fs_info->closing = 1;
  2657. smp_mb();
  2658. /* pause restriper - we want to resume on mount */
  2659. btrfs_pause_balance(root->fs_info);
  2660. btrfs_scrub_cancel(root);
  2661. /* wait for any defraggers to finish */
  2662. wait_event(fs_info->transaction_wait,
  2663. (atomic_read(&fs_info->defrag_running) == 0));
  2664. /* clear out the rbtree of defraggable inodes */
  2665. btrfs_run_defrag_inodes(fs_info);
  2666. /*
  2667. * Here come 2 situations when btrfs is broken to flip readonly:
  2668. *
  2669. * 1. when btrfs flips readonly somewhere else before
  2670. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2671. * and btrfs will skip to write sb directly to keep
  2672. * ERROR state on disk.
  2673. *
  2674. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2675. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2676. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2677. * btrfs will cleanup all FS resources first and write sb then.
  2678. */
  2679. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2680. ret = btrfs_commit_super(root);
  2681. if (ret)
  2682. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2683. }
  2684. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2685. ret = btrfs_error_commit_super(root);
  2686. if (ret)
  2687. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2688. }
  2689. btrfs_put_block_group_cache(fs_info);
  2690. kthread_stop(fs_info->transaction_kthread);
  2691. kthread_stop(fs_info->cleaner_kthread);
  2692. fs_info->closing = 2;
  2693. smp_mb();
  2694. if (fs_info->delalloc_bytes) {
  2695. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2696. (unsigned long long)fs_info->delalloc_bytes);
  2697. }
  2698. if (fs_info->total_ref_cache_size) {
  2699. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2700. (unsigned long long)fs_info->total_ref_cache_size);
  2701. }
  2702. free_extent_buffer(fs_info->extent_root->node);
  2703. free_extent_buffer(fs_info->extent_root->commit_root);
  2704. free_extent_buffer(fs_info->tree_root->node);
  2705. free_extent_buffer(fs_info->tree_root->commit_root);
  2706. free_extent_buffer(fs_info->chunk_root->node);
  2707. free_extent_buffer(fs_info->chunk_root->commit_root);
  2708. free_extent_buffer(fs_info->dev_root->node);
  2709. free_extent_buffer(fs_info->dev_root->commit_root);
  2710. free_extent_buffer(fs_info->csum_root->node);
  2711. free_extent_buffer(fs_info->csum_root->commit_root);
  2712. btrfs_free_block_groups(fs_info);
  2713. del_fs_roots(fs_info);
  2714. iput(fs_info->btree_inode);
  2715. btrfs_stop_workers(&fs_info->generic_worker);
  2716. btrfs_stop_workers(&fs_info->fixup_workers);
  2717. btrfs_stop_workers(&fs_info->delalloc_workers);
  2718. btrfs_stop_workers(&fs_info->workers);
  2719. btrfs_stop_workers(&fs_info->endio_workers);
  2720. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2721. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2722. btrfs_stop_workers(&fs_info->endio_write_workers);
  2723. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2724. btrfs_stop_workers(&fs_info->submit_workers);
  2725. btrfs_stop_workers(&fs_info->delayed_workers);
  2726. btrfs_stop_workers(&fs_info->caching_workers);
  2727. btrfs_stop_workers(&fs_info->readahead_workers);
  2728. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2729. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2730. btrfsic_unmount(root, fs_info->fs_devices);
  2731. #endif
  2732. btrfs_close_devices(fs_info->fs_devices);
  2733. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2734. bdi_destroy(&fs_info->bdi);
  2735. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2736. return 0;
  2737. }
  2738. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2739. int atomic)
  2740. {
  2741. int ret;
  2742. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2743. ret = extent_buffer_uptodate(buf);
  2744. if (!ret)
  2745. return ret;
  2746. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2747. parent_transid, atomic);
  2748. if (ret == -EAGAIN)
  2749. return ret;
  2750. return !ret;
  2751. }
  2752. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2753. {
  2754. return set_extent_buffer_uptodate(buf);
  2755. }
  2756. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2757. {
  2758. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2759. u64 transid = btrfs_header_generation(buf);
  2760. int was_dirty;
  2761. btrfs_assert_tree_locked(buf);
  2762. if (transid != root->fs_info->generation) {
  2763. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2764. "found %llu running %llu\n",
  2765. (unsigned long long)buf->start,
  2766. (unsigned long long)transid,
  2767. (unsigned long long)root->fs_info->generation);
  2768. WARN_ON(1);
  2769. }
  2770. was_dirty = set_extent_buffer_dirty(buf);
  2771. if (!was_dirty) {
  2772. spin_lock(&root->fs_info->delalloc_lock);
  2773. root->fs_info->dirty_metadata_bytes += buf->len;
  2774. spin_unlock(&root->fs_info->delalloc_lock);
  2775. }
  2776. }
  2777. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2778. {
  2779. /*
  2780. * looks as though older kernels can get into trouble with
  2781. * this code, they end up stuck in balance_dirty_pages forever
  2782. */
  2783. u64 num_dirty;
  2784. unsigned long thresh = 32 * 1024 * 1024;
  2785. if (current->flags & PF_MEMALLOC)
  2786. return;
  2787. btrfs_balance_delayed_items(root);
  2788. num_dirty = root->fs_info->dirty_metadata_bytes;
  2789. if (num_dirty > thresh) {
  2790. balance_dirty_pages_ratelimited_nr(
  2791. root->fs_info->btree_inode->i_mapping, 1);
  2792. }
  2793. return;
  2794. }
  2795. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2796. {
  2797. /*
  2798. * looks as though older kernels can get into trouble with
  2799. * this code, they end up stuck in balance_dirty_pages forever
  2800. */
  2801. u64 num_dirty;
  2802. unsigned long thresh = 32 * 1024 * 1024;
  2803. if (current->flags & PF_MEMALLOC)
  2804. return;
  2805. num_dirty = root->fs_info->dirty_metadata_bytes;
  2806. if (num_dirty > thresh) {
  2807. balance_dirty_pages_ratelimited_nr(
  2808. root->fs_info->btree_inode->i_mapping, 1);
  2809. }
  2810. return;
  2811. }
  2812. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2813. {
  2814. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2815. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2816. }
  2817. static int btree_lock_page_hook(struct page *page, void *data,
  2818. void (*flush_fn)(void *))
  2819. {
  2820. struct inode *inode = page->mapping->host;
  2821. struct btrfs_root *root = BTRFS_I(inode)->root;
  2822. struct extent_buffer *eb;
  2823. /*
  2824. * We culled this eb but the page is still hanging out on the mapping,
  2825. * carry on.
  2826. */
  2827. if (!PagePrivate(page))
  2828. goto out;
  2829. eb = (struct extent_buffer *)page->private;
  2830. if (!eb) {
  2831. WARN_ON(1);
  2832. goto out;
  2833. }
  2834. if (page != eb->pages[0])
  2835. goto out;
  2836. if (!btrfs_try_tree_write_lock(eb)) {
  2837. flush_fn(data);
  2838. btrfs_tree_lock(eb);
  2839. }
  2840. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2841. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2842. spin_lock(&root->fs_info->delalloc_lock);
  2843. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2844. root->fs_info->dirty_metadata_bytes -= eb->len;
  2845. else
  2846. WARN_ON(1);
  2847. spin_unlock(&root->fs_info->delalloc_lock);
  2848. }
  2849. btrfs_tree_unlock(eb);
  2850. out:
  2851. if (!trylock_page(page)) {
  2852. flush_fn(data);
  2853. lock_page(page);
  2854. }
  2855. return 0;
  2856. }
  2857. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2858. int read_only)
  2859. {
  2860. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2861. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2862. return -EINVAL;
  2863. }
  2864. if (read_only)
  2865. return 0;
  2866. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2867. printk(KERN_WARNING "warning: mount fs with errors, "
  2868. "running btrfsck is recommended\n");
  2869. }
  2870. return 0;
  2871. }
  2872. int btrfs_error_commit_super(struct btrfs_root *root)
  2873. {
  2874. int ret;
  2875. mutex_lock(&root->fs_info->cleaner_mutex);
  2876. btrfs_run_delayed_iputs(root);
  2877. mutex_unlock(&root->fs_info->cleaner_mutex);
  2878. down_write(&root->fs_info->cleanup_work_sem);
  2879. up_write(&root->fs_info->cleanup_work_sem);
  2880. /* cleanup FS via transaction */
  2881. btrfs_cleanup_transaction(root);
  2882. ret = write_ctree_super(NULL, root, 0);
  2883. return ret;
  2884. }
  2885. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2886. {
  2887. struct btrfs_inode *btrfs_inode;
  2888. struct list_head splice;
  2889. INIT_LIST_HEAD(&splice);
  2890. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2891. spin_lock(&root->fs_info->ordered_extent_lock);
  2892. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2893. while (!list_empty(&splice)) {
  2894. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2895. ordered_operations);
  2896. list_del_init(&btrfs_inode->ordered_operations);
  2897. btrfs_invalidate_inodes(btrfs_inode->root);
  2898. }
  2899. spin_unlock(&root->fs_info->ordered_extent_lock);
  2900. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2901. }
  2902. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2903. {
  2904. struct list_head splice;
  2905. struct btrfs_ordered_extent *ordered;
  2906. struct inode *inode;
  2907. INIT_LIST_HEAD(&splice);
  2908. spin_lock(&root->fs_info->ordered_extent_lock);
  2909. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2910. while (!list_empty(&splice)) {
  2911. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2912. root_extent_list);
  2913. list_del_init(&ordered->root_extent_list);
  2914. atomic_inc(&ordered->refs);
  2915. /* the inode may be getting freed (in sys_unlink path). */
  2916. inode = igrab(ordered->inode);
  2917. spin_unlock(&root->fs_info->ordered_extent_lock);
  2918. if (inode)
  2919. iput(inode);
  2920. atomic_set(&ordered->refs, 1);
  2921. btrfs_put_ordered_extent(ordered);
  2922. spin_lock(&root->fs_info->ordered_extent_lock);
  2923. }
  2924. spin_unlock(&root->fs_info->ordered_extent_lock);
  2925. }
  2926. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2927. struct btrfs_root *root)
  2928. {
  2929. struct rb_node *node;
  2930. struct btrfs_delayed_ref_root *delayed_refs;
  2931. struct btrfs_delayed_ref_node *ref;
  2932. int ret = 0;
  2933. delayed_refs = &trans->delayed_refs;
  2934. spin_lock(&delayed_refs->lock);
  2935. if (delayed_refs->num_entries == 0) {
  2936. spin_unlock(&delayed_refs->lock);
  2937. printk(KERN_INFO "delayed_refs has NO entry\n");
  2938. return ret;
  2939. }
  2940. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  2941. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2942. atomic_set(&ref->refs, 1);
  2943. if (btrfs_delayed_ref_is_head(ref)) {
  2944. struct btrfs_delayed_ref_head *head;
  2945. head = btrfs_delayed_node_to_head(ref);
  2946. if (!mutex_trylock(&head->mutex)) {
  2947. atomic_inc(&ref->refs);
  2948. spin_unlock(&delayed_refs->lock);
  2949. /* Need to wait for the delayed ref to run */
  2950. mutex_lock(&head->mutex);
  2951. mutex_unlock(&head->mutex);
  2952. btrfs_put_delayed_ref(ref);
  2953. spin_lock(&delayed_refs->lock);
  2954. continue;
  2955. }
  2956. kfree(head->extent_op);
  2957. delayed_refs->num_heads--;
  2958. if (list_empty(&head->cluster))
  2959. delayed_refs->num_heads_ready--;
  2960. list_del_init(&head->cluster);
  2961. }
  2962. ref->in_tree = 0;
  2963. rb_erase(&ref->rb_node, &delayed_refs->root);
  2964. delayed_refs->num_entries--;
  2965. spin_unlock(&delayed_refs->lock);
  2966. btrfs_put_delayed_ref(ref);
  2967. cond_resched();
  2968. spin_lock(&delayed_refs->lock);
  2969. }
  2970. spin_unlock(&delayed_refs->lock);
  2971. return ret;
  2972. }
  2973. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2974. {
  2975. struct btrfs_pending_snapshot *snapshot;
  2976. struct list_head splice;
  2977. INIT_LIST_HEAD(&splice);
  2978. list_splice_init(&t->pending_snapshots, &splice);
  2979. while (!list_empty(&splice)) {
  2980. snapshot = list_entry(splice.next,
  2981. struct btrfs_pending_snapshot,
  2982. list);
  2983. list_del_init(&snapshot->list);
  2984. kfree(snapshot);
  2985. }
  2986. }
  2987. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2988. {
  2989. struct btrfs_inode *btrfs_inode;
  2990. struct list_head splice;
  2991. INIT_LIST_HEAD(&splice);
  2992. spin_lock(&root->fs_info->delalloc_lock);
  2993. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2994. while (!list_empty(&splice)) {
  2995. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2996. delalloc_inodes);
  2997. list_del_init(&btrfs_inode->delalloc_inodes);
  2998. btrfs_invalidate_inodes(btrfs_inode->root);
  2999. }
  3000. spin_unlock(&root->fs_info->delalloc_lock);
  3001. }
  3002. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3003. struct extent_io_tree *dirty_pages,
  3004. int mark)
  3005. {
  3006. int ret;
  3007. struct page *page;
  3008. struct inode *btree_inode = root->fs_info->btree_inode;
  3009. struct extent_buffer *eb;
  3010. u64 start = 0;
  3011. u64 end;
  3012. u64 offset;
  3013. unsigned long index;
  3014. while (1) {
  3015. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3016. mark);
  3017. if (ret)
  3018. break;
  3019. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3020. while (start <= end) {
  3021. index = start >> PAGE_CACHE_SHIFT;
  3022. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3023. page = find_get_page(btree_inode->i_mapping, index);
  3024. if (!page)
  3025. continue;
  3026. offset = page_offset(page);
  3027. spin_lock(&dirty_pages->buffer_lock);
  3028. eb = radix_tree_lookup(
  3029. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3030. offset >> PAGE_CACHE_SHIFT);
  3031. spin_unlock(&dirty_pages->buffer_lock);
  3032. if (eb)
  3033. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3034. &eb->bflags);
  3035. if (PageWriteback(page))
  3036. end_page_writeback(page);
  3037. lock_page(page);
  3038. if (PageDirty(page)) {
  3039. clear_page_dirty_for_io(page);
  3040. spin_lock_irq(&page->mapping->tree_lock);
  3041. radix_tree_tag_clear(&page->mapping->page_tree,
  3042. page_index(page),
  3043. PAGECACHE_TAG_DIRTY);
  3044. spin_unlock_irq(&page->mapping->tree_lock);
  3045. }
  3046. unlock_page(page);
  3047. page_cache_release(page);
  3048. }
  3049. }
  3050. return ret;
  3051. }
  3052. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3053. struct extent_io_tree *pinned_extents)
  3054. {
  3055. struct extent_io_tree *unpin;
  3056. u64 start;
  3057. u64 end;
  3058. int ret;
  3059. bool loop = true;
  3060. unpin = pinned_extents;
  3061. again:
  3062. while (1) {
  3063. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3064. EXTENT_DIRTY);
  3065. if (ret)
  3066. break;
  3067. /* opt_discard */
  3068. if (btrfs_test_opt(root, DISCARD))
  3069. ret = btrfs_error_discard_extent(root, start,
  3070. end + 1 - start,
  3071. NULL);
  3072. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3073. btrfs_error_unpin_extent_range(root, start, end);
  3074. cond_resched();
  3075. }
  3076. if (loop) {
  3077. if (unpin == &root->fs_info->freed_extents[0])
  3078. unpin = &root->fs_info->freed_extents[1];
  3079. else
  3080. unpin = &root->fs_info->freed_extents[0];
  3081. loop = false;
  3082. goto again;
  3083. }
  3084. return 0;
  3085. }
  3086. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3087. struct btrfs_root *root)
  3088. {
  3089. btrfs_destroy_delayed_refs(cur_trans, root);
  3090. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3091. cur_trans->dirty_pages.dirty_bytes);
  3092. /* FIXME: cleanup wait for commit */
  3093. cur_trans->in_commit = 1;
  3094. cur_trans->blocked = 1;
  3095. wake_up(&root->fs_info->transaction_blocked_wait);
  3096. cur_trans->blocked = 0;
  3097. wake_up(&root->fs_info->transaction_wait);
  3098. cur_trans->commit_done = 1;
  3099. wake_up(&cur_trans->commit_wait);
  3100. btrfs_destroy_delayed_inodes(root);
  3101. btrfs_assert_delayed_root_empty(root);
  3102. btrfs_destroy_pending_snapshots(cur_trans);
  3103. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3104. EXTENT_DIRTY);
  3105. btrfs_destroy_pinned_extent(root,
  3106. root->fs_info->pinned_extents);
  3107. /*
  3108. memset(cur_trans, 0, sizeof(*cur_trans));
  3109. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3110. */
  3111. }
  3112. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3113. {
  3114. struct btrfs_transaction *t;
  3115. LIST_HEAD(list);
  3116. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3117. spin_lock(&root->fs_info->trans_lock);
  3118. list_splice_init(&root->fs_info->trans_list, &list);
  3119. root->fs_info->trans_no_join = 1;
  3120. spin_unlock(&root->fs_info->trans_lock);
  3121. while (!list_empty(&list)) {
  3122. t = list_entry(list.next, struct btrfs_transaction, list);
  3123. if (!t)
  3124. break;
  3125. btrfs_destroy_ordered_operations(root);
  3126. btrfs_destroy_ordered_extents(root);
  3127. btrfs_destroy_delayed_refs(t, root);
  3128. btrfs_block_rsv_release(root,
  3129. &root->fs_info->trans_block_rsv,
  3130. t->dirty_pages.dirty_bytes);
  3131. /* FIXME: cleanup wait for commit */
  3132. t->in_commit = 1;
  3133. t->blocked = 1;
  3134. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3135. wake_up(&root->fs_info->transaction_blocked_wait);
  3136. t->blocked = 0;
  3137. if (waitqueue_active(&root->fs_info->transaction_wait))
  3138. wake_up(&root->fs_info->transaction_wait);
  3139. t->commit_done = 1;
  3140. if (waitqueue_active(&t->commit_wait))
  3141. wake_up(&t->commit_wait);
  3142. btrfs_destroy_delayed_inodes(root);
  3143. btrfs_assert_delayed_root_empty(root);
  3144. btrfs_destroy_pending_snapshots(t);
  3145. btrfs_destroy_delalloc_inodes(root);
  3146. spin_lock(&root->fs_info->trans_lock);
  3147. root->fs_info->running_transaction = NULL;
  3148. spin_unlock(&root->fs_info->trans_lock);
  3149. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3150. EXTENT_DIRTY);
  3151. btrfs_destroy_pinned_extent(root,
  3152. root->fs_info->pinned_extents);
  3153. atomic_set(&t->use_count, 0);
  3154. list_del_init(&t->list);
  3155. memset(t, 0, sizeof(*t));
  3156. kmem_cache_free(btrfs_transaction_cachep, t);
  3157. }
  3158. spin_lock(&root->fs_info->trans_lock);
  3159. root->fs_info->trans_no_join = 0;
  3160. spin_unlock(&root->fs_info->trans_lock);
  3161. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3162. return 0;
  3163. }
  3164. static struct extent_io_ops btree_extent_io_ops = {
  3165. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3166. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3167. .readpage_io_failed_hook = btree_io_failed_hook,
  3168. .submit_bio_hook = btree_submit_bio_hook,
  3169. /* note we're sharing with inode.c for the merge bio hook */
  3170. .merge_bio_hook = btrfs_merge_bio_hook,
  3171. };