fsl_dma.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2010 Freescale Semiconductor, Inc.
  7. *
  8. * This file is licensed under the terms of the GNU General Public License
  9. * version 2. This program is licensed "as is" without any warranty of any
  10. * kind, whether express or implied.
  11. *
  12. * This driver implements ASoC support for the Elo DMA controller, which is
  13. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  14. * the PCM driver is what handles the DMA buffer.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/delay.h>
  22. #include <linux/gfp.h>
  23. #include <linux/of_platform.h>
  24. #include <linux/list.h>
  25. #include <sound/core.h>
  26. #include <sound/pcm.h>
  27. #include <sound/pcm_params.h>
  28. #include <sound/soc.h>
  29. #include <asm/io.h>
  30. #include "fsl_dma.h"
  31. #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
  32. /*
  33. * The formats that the DMA controller supports, which is anything
  34. * that is 8, 16, or 32 bits.
  35. */
  36. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  37. SNDRV_PCM_FMTBIT_U8 | \
  38. SNDRV_PCM_FMTBIT_S16_LE | \
  39. SNDRV_PCM_FMTBIT_S16_BE | \
  40. SNDRV_PCM_FMTBIT_U16_LE | \
  41. SNDRV_PCM_FMTBIT_U16_BE | \
  42. SNDRV_PCM_FMTBIT_S24_LE | \
  43. SNDRV_PCM_FMTBIT_S24_BE | \
  44. SNDRV_PCM_FMTBIT_U24_LE | \
  45. SNDRV_PCM_FMTBIT_U24_BE | \
  46. SNDRV_PCM_FMTBIT_S32_LE | \
  47. SNDRV_PCM_FMTBIT_S32_BE | \
  48. SNDRV_PCM_FMTBIT_U32_LE | \
  49. SNDRV_PCM_FMTBIT_U32_BE)
  50. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  51. SNDRV_PCM_RATE_CONTINUOUS)
  52. struct dma_object {
  53. struct snd_soc_platform_driver dai;
  54. dma_addr_t ssi_stx_phys;
  55. dma_addr_t ssi_srx_phys;
  56. unsigned int ssi_fifo_depth;
  57. struct ccsr_dma_channel __iomem *channel;
  58. unsigned int irq;
  59. bool assigned;
  60. char path[1];
  61. };
  62. /*
  63. * The number of DMA links to use. Two is the bare minimum, but if you
  64. * have really small links you might need more.
  65. */
  66. #define NUM_DMA_LINKS 2
  67. /** fsl_dma_private: p-substream DMA data
  68. *
  69. * Each substream has a 1-to-1 association with a DMA channel.
  70. *
  71. * The link[] array is first because it needs to be aligned on a 32-byte
  72. * boundary, so putting it first will ensure alignment without padding the
  73. * structure.
  74. *
  75. * @link[]: array of link descriptors
  76. * @dma_channel: pointer to the DMA channel's registers
  77. * @irq: IRQ for this DMA channel
  78. * @substream: pointer to the substream object, needed by the ISR
  79. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  80. * @ld_buf_phys: physical address of the LD buffer
  81. * @current_link: index into link[] of the link currently being processed
  82. * @dma_buf_phys: physical address of the DMA buffer
  83. * @dma_buf_next: physical address of the next period to process
  84. * @dma_buf_end: physical address of the byte after the end of the DMA
  85. * @buffer period_size: the size of a single period
  86. * @num_periods: the number of periods in the DMA buffer
  87. */
  88. struct fsl_dma_private {
  89. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  90. struct ccsr_dma_channel __iomem *dma_channel;
  91. unsigned int irq;
  92. struct snd_pcm_substream *substream;
  93. dma_addr_t ssi_sxx_phys;
  94. unsigned int ssi_fifo_depth;
  95. dma_addr_t ld_buf_phys;
  96. unsigned int current_link;
  97. dma_addr_t dma_buf_phys;
  98. dma_addr_t dma_buf_next;
  99. dma_addr_t dma_buf_end;
  100. size_t period_size;
  101. unsigned int num_periods;
  102. };
  103. /**
  104. * fsl_dma_hardare: define characteristics of the PCM hardware.
  105. *
  106. * The PCM hardware is the Freescale DMA controller. This structure defines
  107. * the capabilities of that hardware.
  108. *
  109. * Since the sampling rate and data format are not controlled by the DMA
  110. * controller, we specify no limits for those values. The only exception is
  111. * period_bytes_min, which is set to a reasonably low value to prevent the
  112. * DMA controller from generating too many interrupts per second.
  113. *
  114. * Since each link descriptor has a 32-bit byte count field, we set
  115. * period_bytes_max to the largest 32-bit number. We also have no maximum
  116. * number of periods.
  117. *
  118. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  119. * limitation in the SSI driver requires the sample rates for playback and
  120. * capture to be the same.
  121. */
  122. static const struct snd_pcm_hardware fsl_dma_hardware = {
  123. .info = SNDRV_PCM_INFO_INTERLEAVED |
  124. SNDRV_PCM_INFO_MMAP |
  125. SNDRV_PCM_INFO_MMAP_VALID |
  126. SNDRV_PCM_INFO_JOINT_DUPLEX |
  127. SNDRV_PCM_INFO_PAUSE,
  128. .formats = FSLDMA_PCM_FORMATS,
  129. .rates = FSLDMA_PCM_RATES,
  130. .rate_min = 5512,
  131. .rate_max = 192000,
  132. .period_bytes_min = 512, /* A reasonable limit */
  133. .period_bytes_max = (u32) -1,
  134. .periods_min = NUM_DMA_LINKS,
  135. .periods_max = (unsigned int) -1,
  136. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  137. };
  138. /**
  139. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  140. *
  141. * This function should be called by the ISR whenever the DMA controller
  142. * halts data transfer.
  143. */
  144. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  145. {
  146. unsigned long flags;
  147. snd_pcm_stream_lock_irqsave(substream, flags);
  148. if (snd_pcm_running(substream))
  149. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  150. snd_pcm_stream_unlock_irqrestore(substream, flags);
  151. }
  152. /**
  153. * fsl_dma_update_pointers - update LD pointers to point to the next period
  154. *
  155. * As each period is completed, this function changes the the link
  156. * descriptor pointers for that period to point to the next period.
  157. */
  158. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  159. {
  160. struct fsl_dma_link_descriptor *link =
  161. &dma_private->link[dma_private->current_link];
  162. /* Update our link descriptors to point to the next period. On a 36-bit
  163. * system, we also need to update the ESAD bits. We also set (keep) the
  164. * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
  165. */
  166. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  167. link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
  168. #ifdef CONFIG_PHYS_64BIT
  169. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  170. upper_32_bits(dma_private->dma_buf_next));
  171. #endif
  172. } else {
  173. link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
  174. #ifdef CONFIG_PHYS_64BIT
  175. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  176. upper_32_bits(dma_private->dma_buf_next));
  177. #endif
  178. }
  179. /* Update our variables for next time */
  180. dma_private->dma_buf_next += dma_private->period_size;
  181. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  182. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  183. if (++dma_private->current_link >= NUM_DMA_LINKS)
  184. dma_private->current_link = 0;
  185. }
  186. /**
  187. * fsl_dma_isr: interrupt handler for the DMA controller
  188. *
  189. * @irq: IRQ of the DMA channel
  190. * @dev_id: pointer to the dma_private structure for this DMA channel
  191. */
  192. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  193. {
  194. struct fsl_dma_private *dma_private = dev_id;
  195. struct snd_pcm_substream *substream = dma_private->substream;
  196. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  197. struct device *dev = rtd->platform->dev;
  198. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  199. irqreturn_t ret = IRQ_NONE;
  200. u32 sr, sr2 = 0;
  201. /* We got an interrupt, so read the status register to see what we
  202. were interrupted for.
  203. */
  204. sr = in_be32(&dma_channel->sr);
  205. if (sr & CCSR_DMA_SR_TE) {
  206. dev_err(dev, "dma transmit error\n");
  207. fsl_dma_abort_stream(substream);
  208. sr2 |= CCSR_DMA_SR_TE;
  209. ret = IRQ_HANDLED;
  210. }
  211. if (sr & CCSR_DMA_SR_CH)
  212. ret = IRQ_HANDLED;
  213. if (sr & CCSR_DMA_SR_PE) {
  214. dev_err(dev, "dma programming error\n");
  215. fsl_dma_abort_stream(substream);
  216. sr2 |= CCSR_DMA_SR_PE;
  217. ret = IRQ_HANDLED;
  218. }
  219. if (sr & CCSR_DMA_SR_EOLNI) {
  220. sr2 |= CCSR_DMA_SR_EOLNI;
  221. ret = IRQ_HANDLED;
  222. }
  223. if (sr & CCSR_DMA_SR_CB)
  224. ret = IRQ_HANDLED;
  225. if (sr & CCSR_DMA_SR_EOSI) {
  226. /* Tell ALSA we completed a period. */
  227. snd_pcm_period_elapsed(substream);
  228. /*
  229. * Update our link descriptors to point to the next period. We
  230. * only need to do this if the number of periods is not equal to
  231. * the number of links.
  232. */
  233. if (dma_private->num_periods != NUM_DMA_LINKS)
  234. fsl_dma_update_pointers(dma_private);
  235. sr2 |= CCSR_DMA_SR_EOSI;
  236. ret = IRQ_HANDLED;
  237. }
  238. if (sr & CCSR_DMA_SR_EOLSI) {
  239. sr2 |= CCSR_DMA_SR_EOLSI;
  240. ret = IRQ_HANDLED;
  241. }
  242. /* Clear the bits that we set */
  243. if (sr2)
  244. out_be32(&dma_channel->sr, sr2);
  245. return ret;
  246. }
  247. /**
  248. * fsl_dma_new: initialize this PCM driver.
  249. *
  250. * This function is called when the codec driver calls snd_soc_new_pcms(),
  251. * once for each .dai_link in the machine driver's snd_soc_card
  252. * structure.
  253. *
  254. * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
  255. * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
  256. * is specified. Therefore, any DMA buffers we allocate will always be in low
  257. * memory, but we support for 36-bit physical addresses anyway.
  258. *
  259. * Regardless of where the memory is actually allocated, since the device can
  260. * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
  261. */
  262. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  263. struct snd_pcm *pcm)
  264. {
  265. static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
  266. int ret;
  267. if (!card->dev->dma_mask)
  268. card->dev->dma_mask = &fsl_dma_dmamask;
  269. if (!card->dev->coherent_dma_mask)
  270. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  271. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  272. fsl_dma_hardware.buffer_bytes_max,
  273. &pcm->streams[0].substream->dma_buffer);
  274. if (ret) {
  275. dev_err(card->dev, "can't allocate playback dma buffer\n");
  276. return ret;
  277. }
  278. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  279. fsl_dma_hardware.buffer_bytes_max,
  280. &pcm->streams[1].substream->dma_buffer);
  281. if (ret) {
  282. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  283. dev_err(card->dev, "can't allocate capture dma buffer\n");
  284. return ret;
  285. }
  286. return 0;
  287. }
  288. /**
  289. * fsl_dma_open: open a new substream.
  290. *
  291. * Each substream has its own DMA buffer.
  292. *
  293. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  294. * descriptors that ping-pong from one period to the next. For example, if
  295. * there are six periods and two link descriptors, this is how they look
  296. * before playback starts:
  297. *
  298. * The last link descriptor
  299. * ____________ points back to the first
  300. * | |
  301. * V |
  302. * ___ ___ |
  303. * | |->| |->|
  304. * |___| |___|
  305. * | |
  306. * | |
  307. * V V
  308. * _________________________________________
  309. * | | | | | | | The DMA buffer is
  310. * | | | | | | | divided into 6 parts
  311. * |______|______|______|______|______|______|
  312. *
  313. * and here's how they look after the first period is finished playing:
  314. *
  315. * ____________
  316. * | |
  317. * V |
  318. * ___ ___ |
  319. * | |->| |->|
  320. * |___| |___|
  321. * | |
  322. * |______________
  323. * | |
  324. * V V
  325. * _________________________________________
  326. * | | | | | | |
  327. * | | | | | | |
  328. * |______|______|______|______|______|______|
  329. *
  330. * The first link descriptor now points to the third period. The DMA
  331. * controller is currently playing the second period. When it finishes, it
  332. * will jump back to the first descriptor and play the third period.
  333. *
  334. * There are four reasons we do this:
  335. *
  336. * 1. The only way to get the DMA controller to automatically restart the
  337. * transfer when it gets to the end of the buffer is to use chaining
  338. * mode. Basic direct mode doesn't offer that feature.
  339. * 2. We need to receive an interrupt at the end of every period. The DMA
  340. * controller can generate an interrupt at the end of every link transfer
  341. * (aka segment). Making each period into a DMA segment will give us the
  342. * interrupts we need.
  343. * 3. By creating only two link descriptors, regardless of the number of
  344. * periods, we do not need to reallocate the link descriptors if the
  345. * number of periods changes.
  346. * 4. All of the audio data is still stored in a single, contiguous DMA
  347. * buffer, which is what ALSA expects. We're just dividing it into
  348. * contiguous parts, and creating a link descriptor for each one.
  349. */
  350. static int fsl_dma_open(struct snd_pcm_substream *substream)
  351. {
  352. struct snd_pcm_runtime *runtime = substream->runtime;
  353. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  354. struct device *dev = rtd->platform->dev;
  355. struct dma_object *dma =
  356. container_of(rtd->platform->driver, struct dma_object, dai);
  357. struct fsl_dma_private *dma_private;
  358. struct ccsr_dma_channel __iomem *dma_channel;
  359. dma_addr_t ld_buf_phys;
  360. u64 temp_link; /* Pointer to next link descriptor */
  361. u32 mr;
  362. unsigned int channel;
  363. int ret = 0;
  364. unsigned int i;
  365. /*
  366. * Reject any DMA buffer whose size is not a multiple of the period
  367. * size. We need to make sure that the DMA buffer can be evenly divided
  368. * into periods.
  369. */
  370. ret = snd_pcm_hw_constraint_integer(runtime,
  371. SNDRV_PCM_HW_PARAM_PERIODS);
  372. if (ret < 0) {
  373. dev_err(dev, "invalid buffer size\n");
  374. return ret;
  375. }
  376. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  377. if (dma->assigned) {
  378. dev_err(dev, "dma channel already assigned\n");
  379. return -EBUSY;
  380. }
  381. dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
  382. &ld_buf_phys, GFP_KERNEL);
  383. if (!dma_private) {
  384. dev_err(dev, "can't allocate dma private data\n");
  385. return -ENOMEM;
  386. }
  387. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  388. dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
  389. else
  390. dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
  391. dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
  392. dma_private->dma_channel = dma->channel;
  393. dma_private->irq = dma->irq;
  394. dma_private->substream = substream;
  395. dma_private->ld_buf_phys = ld_buf_phys;
  396. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  397. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  398. if (ret) {
  399. dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
  400. dma_private->irq, ret);
  401. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  402. dma_private, dma_private->ld_buf_phys);
  403. return ret;
  404. }
  405. dma->assigned = 1;
  406. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  407. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  408. runtime->private_data = dma_private;
  409. /* Program the fixed DMA controller parameters */
  410. dma_channel = dma_private->dma_channel;
  411. temp_link = dma_private->ld_buf_phys +
  412. sizeof(struct fsl_dma_link_descriptor);
  413. for (i = 0; i < NUM_DMA_LINKS; i++) {
  414. dma_private->link[i].next = cpu_to_be64(temp_link);
  415. temp_link += sizeof(struct fsl_dma_link_descriptor);
  416. }
  417. /* The last link descriptor points to the first */
  418. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  419. /* Tell the DMA controller where the first link descriptor is */
  420. out_be32(&dma_channel->clndar,
  421. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  422. out_be32(&dma_channel->eclndar,
  423. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  424. /* The manual says the BCR must be clear before enabling EMP */
  425. out_be32(&dma_channel->bcr, 0);
  426. /*
  427. * Program the mode register for interrupts, external master control,
  428. * and source/destination hold. Also clear the Channel Abort bit.
  429. */
  430. mr = in_be32(&dma_channel->mr) &
  431. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  432. /*
  433. * We want External Master Start and External Master Pause enabled,
  434. * because the SSI is controlling the DMA controller. We want the DMA
  435. * controller to be set up in advance, and then we signal only the SSI
  436. * to start transferring.
  437. *
  438. * We want End-Of-Segment Interrupts enabled, because this will generate
  439. * an interrupt at the end of each segment (each link descriptor
  440. * represents one segment). Each DMA segment is the same thing as an
  441. * ALSA period, so this is how we get an interrupt at the end of every
  442. * period.
  443. *
  444. * We want Error Interrupt enabled, so that we can get an error if
  445. * the DMA controller is mis-programmed somehow.
  446. */
  447. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  448. CCSR_DMA_MR_EMS_EN;
  449. /* For playback, we want the destination address to be held. For
  450. capture, set the source address to be held. */
  451. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  452. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  453. out_be32(&dma_channel->mr, mr);
  454. return 0;
  455. }
  456. /**
  457. * fsl_dma_hw_params: continue initializing the DMA links
  458. *
  459. * This function obtains hardware parameters about the opened stream and
  460. * programs the DMA controller accordingly.
  461. *
  462. * One drawback of big-endian is that when copying integers of different
  463. * sizes to a fixed-sized register, the address to which the integer must be
  464. * copied is dependent on the size of the integer.
  465. *
  466. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  467. * integer, then X should be copied to address P. However, if X is a 16-bit
  468. * integer, then it should be copied to P+2. If X is an 8-bit register,
  469. * then it should be copied to P+3.
  470. *
  471. * So for playback of 8-bit samples, the DMA controller must transfer single
  472. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  473. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  474. *
  475. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  476. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  477. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  478. * 24-bit data must be padded to 32 bits.
  479. */
  480. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  481. struct snd_pcm_hw_params *hw_params)
  482. {
  483. struct snd_pcm_runtime *runtime = substream->runtime;
  484. struct fsl_dma_private *dma_private = runtime->private_data;
  485. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  486. struct device *dev = rtd->platform->dev;
  487. /* Number of bits per sample */
  488. unsigned int sample_bits =
  489. snd_pcm_format_physical_width(params_format(hw_params));
  490. /* Number of bytes per frame */
  491. unsigned int sample_bytes = sample_bits / 8;
  492. /* Bus address of SSI STX register */
  493. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  494. /* Size of the DMA buffer, in bytes */
  495. size_t buffer_size = params_buffer_bytes(hw_params);
  496. /* Number of bytes per period */
  497. size_t period_size = params_period_bytes(hw_params);
  498. /* Pointer to next period */
  499. dma_addr_t temp_addr = substream->dma_buffer.addr;
  500. /* Pointer to DMA controller */
  501. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  502. u32 mr; /* DMA Mode Register */
  503. unsigned int i;
  504. /* Initialize our DMA tracking variables */
  505. dma_private->period_size = period_size;
  506. dma_private->num_periods = params_periods(hw_params);
  507. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  508. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  509. (NUM_DMA_LINKS * period_size);
  510. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  511. /* This happens if the number of periods == NUM_DMA_LINKS */
  512. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  513. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  514. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  515. /* Due to a quirk of the SSI's STX register, the target address
  516. * for the DMA operations depends on the sample size. So we calculate
  517. * that offset here. While we're at it, also tell the DMA controller
  518. * how much data to transfer per sample.
  519. */
  520. switch (sample_bits) {
  521. case 8:
  522. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  523. ssi_sxx_phys += 3;
  524. break;
  525. case 16:
  526. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  527. ssi_sxx_phys += 2;
  528. break;
  529. case 32:
  530. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  531. break;
  532. default:
  533. /* We should never get here */
  534. dev_err(dev, "unsupported sample size %u\n", sample_bits);
  535. return -EINVAL;
  536. }
  537. /*
  538. * BWC determines how many bytes are sent/received before the DMA
  539. * controller checks the SSI to see if it needs to stop. BWC should
  540. * always be a multiple of the frame size, so that we always transmit
  541. * whole frames. Each frame occupies two slots in the FIFO. The
  542. * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
  543. * (MR[BWC] can only represent even powers of two).
  544. *
  545. * To simplify the process, we set BWC to the largest value that is
  546. * less than or equal to the FIFO watermark. For playback, this ensures
  547. * that we transfer the maximum amount without overrunning the FIFO.
  548. * For capture, this ensures that we transfer the maximum amount without
  549. * underrunning the FIFO.
  550. *
  551. * f = SSI FIFO depth
  552. * w = SSI watermark value (which equals f - 2)
  553. * b = DMA bandwidth count (in bytes)
  554. * s = sample size (in bytes, which equals frame_size * 2)
  555. *
  556. * For playback, we never transmit more than the transmit FIFO
  557. * watermark, otherwise we might write more data than the FIFO can hold.
  558. * The watermark is equal to the FIFO depth minus two.
  559. *
  560. * For capture, two equations must hold:
  561. * w > f - (b / s)
  562. * w >= b / s
  563. *
  564. * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
  565. * b = s * w, which is equal to
  566. * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
  567. */
  568. mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
  569. out_be32(&dma_channel->mr, mr);
  570. for (i = 0; i < NUM_DMA_LINKS; i++) {
  571. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  572. link->count = cpu_to_be32(period_size);
  573. /* The snoop bit tells the DMA controller whether it should tell
  574. * the ECM to snoop during a read or write to an address. For
  575. * audio, we use DMA to transfer data between memory and an I/O
  576. * device (the SSI's STX0 or SRX0 register). Snooping is only
  577. * needed if there is a cache, so we need to snoop memory
  578. * addresses only. For playback, that means we snoop the source
  579. * but not the destination. For capture, we snoop the
  580. * destination but not the source.
  581. *
  582. * Note that failing to snoop properly is unlikely to cause
  583. * cache incoherency if the period size is larger than the
  584. * size of L1 cache. This is because filling in one period will
  585. * flush out the data for the previous period. So if you
  586. * increased period_bytes_min to a large enough size, you might
  587. * get more performance by not snooping, and you'll still be
  588. * okay. You'll need to update fsl_dma_update_pointers() also.
  589. */
  590. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  591. link->source_addr = cpu_to_be32(temp_addr);
  592. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  593. upper_32_bits(temp_addr));
  594. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  595. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  596. upper_32_bits(ssi_sxx_phys));
  597. } else {
  598. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  599. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  600. upper_32_bits(ssi_sxx_phys));
  601. link->dest_addr = cpu_to_be32(temp_addr);
  602. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  603. upper_32_bits(temp_addr));
  604. }
  605. temp_addr += period_size;
  606. }
  607. return 0;
  608. }
  609. /**
  610. * fsl_dma_pointer: determine the current position of the DMA transfer
  611. *
  612. * This function is called by ALSA when ALSA wants to know where in the
  613. * stream buffer the hardware currently is.
  614. *
  615. * For playback, the SAR register contains the physical address of the most
  616. * recent DMA transfer. For capture, the value is in the DAR register.
  617. *
  618. * The base address of the buffer is stored in the source_addr field of the
  619. * first link descriptor.
  620. */
  621. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  622. {
  623. struct snd_pcm_runtime *runtime = substream->runtime;
  624. struct fsl_dma_private *dma_private = runtime->private_data;
  625. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  626. struct device *dev = rtd->platform->dev;
  627. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  628. dma_addr_t position;
  629. snd_pcm_uframes_t frames;
  630. /* Obtain the current DMA pointer, but don't read the ESAD bits if we
  631. * only have 32-bit DMA addresses. This function is typically called
  632. * in interrupt context, so we need to optimize it.
  633. */
  634. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  635. position = in_be32(&dma_channel->sar);
  636. #ifdef CONFIG_PHYS_64BIT
  637. position |= (u64)(in_be32(&dma_channel->satr) &
  638. CCSR_DMA_ATR_ESAD_MASK) << 32;
  639. #endif
  640. } else {
  641. position = in_be32(&dma_channel->dar);
  642. #ifdef CONFIG_PHYS_64BIT
  643. position |= (u64)(in_be32(&dma_channel->datr) &
  644. CCSR_DMA_ATR_ESAD_MASK) << 32;
  645. #endif
  646. }
  647. /*
  648. * When capture is started, the SSI immediately starts to fill its FIFO.
  649. * This means that the DMA controller is not started until the FIFO is
  650. * full. However, ALSA calls this function before that happens, when
  651. * MR.DAR is still zero. In this case, just return zero to indicate
  652. * that nothing has been received yet.
  653. */
  654. if (!position)
  655. return 0;
  656. if ((position < dma_private->dma_buf_phys) ||
  657. (position > dma_private->dma_buf_end)) {
  658. dev_err(dev, "dma pointer is out of range, halting stream\n");
  659. return SNDRV_PCM_POS_XRUN;
  660. }
  661. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  662. /*
  663. * If the current address is just past the end of the buffer, wrap it
  664. * around.
  665. */
  666. if (frames == runtime->buffer_size)
  667. frames = 0;
  668. return frames;
  669. }
  670. /**
  671. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  672. *
  673. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  674. * registers.
  675. *
  676. * This function can be called multiple times.
  677. */
  678. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  679. {
  680. struct snd_pcm_runtime *runtime = substream->runtime;
  681. struct fsl_dma_private *dma_private = runtime->private_data;
  682. if (dma_private) {
  683. struct ccsr_dma_channel __iomem *dma_channel;
  684. dma_channel = dma_private->dma_channel;
  685. /* Stop the DMA */
  686. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  687. out_be32(&dma_channel->mr, 0);
  688. /* Reset all the other registers */
  689. out_be32(&dma_channel->sr, -1);
  690. out_be32(&dma_channel->clndar, 0);
  691. out_be32(&dma_channel->eclndar, 0);
  692. out_be32(&dma_channel->satr, 0);
  693. out_be32(&dma_channel->sar, 0);
  694. out_be32(&dma_channel->datr, 0);
  695. out_be32(&dma_channel->dar, 0);
  696. out_be32(&dma_channel->bcr, 0);
  697. out_be32(&dma_channel->nlndar, 0);
  698. out_be32(&dma_channel->enlndar, 0);
  699. }
  700. return 0;
  701. }
  702. /**
  703. * fsl_dma_close: close the stream.
  704. */
  705. static int fsl_dma_close(struct snd_pcm_substream *substream)
  706. {
  707. struct snd_pcm_runtime *runtime = substream->runtime;
  708. struct fsl_dma_private *dma_private = runtime->private_data;
  709. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  710. struct device *dev = rtd->platform->dev;
  711. struct dma_object *dma =
  712. container_of(rtd->platform->driver, struct dma_object, dai);
  713. if (dma_private) {
  714. if (dma_private->irq)
  715. free_irq(dma_private->irq, dma_private);
  716. if (dma_private->ld_buf_phys) {
  717. dma_unmap_single(dev, dma_private->ld_buf_phys,
  718. sizeof(dma_private->link),
  719. DMA_TO_DEVICE);
  720. }
  721. /* Deallocate the fsl_dma_private structure */
  722. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  723. dma_private, dma_private->ld_buf_phys);
  724. substream->runtime->private_data = NULL;
  725. }
  726. dma->assigned = 0;
  727. return 0;
  728. }
  729. /*
  730. * Remove this PCM driver.
  731. */
  732. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  733. {
  734. struct snd_pcm_substream *substream;
  735. unsigned int i;
  736. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  737. substream = pcm->streams[i].substream;
  738. if (substream) {
  739. snd_dma_free_pages(&substream->dma_buffer);
  740. substream->dma_buffer.area = NULL;
  741. substream->dma_buffer.addr = 0;
  742. }
  743. }
  744. }
  745. /**
  746. * find_ssi_node -- returns the SSI node that points to his DMA channel node
  747. *
  748. * Although this DMA driver attempts to operate independently of the other
  749. * devices, it still needs to determine some information about the SSI device
  750. * that it's working with. Unfortunately, the device tree does not contain
  751. * a pointer from the DMA channel node to the SSI node -- the pointer goes the
  752. * other way. So we need to scan the device tree for SSI nodes until we find
  753. * the one that points to the given DMA channel node. It's ugly, but at least
  754. * it's contained in this one function.
  755. */
  756. static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
  757. {
  758. struct device_node *ssi_np, *np;
  759. for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
  760. /* Check each DMA phandle to see if it points to us. We
  761. * assume that device_node pointers are a valid comparison.
  762. */
  763. np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
  764. if (np == dma_channel_np)
  765. return ssi_np;
  766. np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
  767. if (np == dma_channel_np)
  768. return ssi_np;
  769. }
  770. return NULL;
  771. }
  772. static struct snd_pcm_ops fsl_dma_ops = {
  773. .open = fsl_dma_open,
  774. .close = fsl_dma_close,
  775. .ioctl = snd_pcm_lib_ioctl,
  776. .hw_params = fsl_dma_hw_params,
  777. .hw_free = fsl_dma_hw_free,
  778. .pointer = fsl_dma_pointer,
  779. };
  780. static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
  781. const struct of_device_id *match)
  782. {
  783. struct dma_object *dma;
  784. struct device_node *np = of_dev->dev.of_node;
  785. struct device_node *ssi_np;
  786. struct resource res;
  787. const uint32_t *iprop;
  788. int ret;
  789. /* Find the SSI node that points to us. */
  790. ssi_np = find_ssi_node(np);
  791. if (!ssi_np) {
  792. dev_err(&of_dev->dev, "cannot find parent SSI node\n");
  793. return -ENODEV;
  794. }
  795. ret = of_address_to_resource(ssi_np, 0, &res);
  796. if (ret) {
  797. dev_err(&of_dev->dev, "could not determine resources for %s\n",
  798. ssi_np->full_name);
  799. of_node_put(ssi_np);
  800. return ret;
  801. }
  802. dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
  803. if (!dma) {
  804. dev_err(&of_dev->dev, "could not allocate dma object\n");
  805. of_node_put(ssi_np);
  806. return -ENOMEM;
  807. }
  808. strcpy(dma->path, np->full_name);
  809. dma->dai.ops = &fsl_dma_ops;
  810. dma->dai.pcm_new = fsl_dma_new;
  811. dma->dai.pcm_free = fsl_dma_free_dma_buffers;
  812. /* Store the SSI-specific information that we need */
  813. dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
  814. dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
  815. iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
  816. if (iprop)
  817. dma->ssi_fifo_depth = *iprop;
  818. else
  819. /* Older 8610 DTs didn't have the fifo-depth property */
  820. dma->ssi_fifo_depth = 8;
  821. of_node_put(ssi_np);
  822. ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
  823. if (ret) {
  824. dev_err(&of_dev->dev, "could not register platform\n");
  825. kfree(dma);
  826. return ret;
  827. }
  828. dma->channel = of_iomap(np, 0);
  829. dma->irq = irq_of_parse_and_map(np, 0);
  830. dev_set_drvdata(&of_dev->dev, dma);
  831. return 0;
  832. }
  833. static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
  834. {
  835. struct dma_object *dma = dev_get_drvdata(&of_dev->dev);
  836. snd_soc_unregister_platform(&of_dev->dev);
  837. iounmap(dma->channel);
  838. irq_dispose_mapping(dma->irq);
  839. kfree(dma);
  840. return 0;
  841. }
  842. static const struct of_device_id fsl_soc_dma_ids[] = {
  843. { .compatible = "fsl,ssi-dma-channel", },
  844. {}
  845. };
  846. MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
  847. static struct of_platform_driver fsl_soc_dma_driver = {
  848. .driver = {
  849. .name = "fsl-pcm-audio",
  850. .owner = THIS_MODULE,
  851. .of_match_table = fsl_soc_dma_ids,
  852. },
  853. .probe = fsl_soc_dma_probe,
  854. .remove = __devexit_p(fsl_soc_dma_remove),
  855. };
  856. static int __init fsl_soc_dma_init(void)
  857. {
  858. pr_info("Freescale Elo DMA ASoC PCM Driver\n");
  859. return of_register_platform_driver(&fsl_soc_dma_driver);
  860. }
  861. static void __exit fsl_soc_dma_exit(void)
  862. {
  863. of_unregister_platform_driver(&fsl_soc_dma_driver);
  864. }
  865. module_init(fsl_soc_dma_init);
  866. module_exit(fsl_soc_dma_exit);
  867. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  868. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
  869. MODULE_LICENSE("GPL v2");