namespace.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/namei.h>
  15. #include <linux/security.h>
  16. #include <linux/idr.h>
  17. #include <linux/acct.h> /* acct_auto_close_mnt */
  18. #include <linux/ramfs.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include "pnode.h"
  23. #include "internal.h"
  24. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  25. #define HASH_SIZE (1UL << HASH_SHIFT)
  26. static int event;
  27. static DEFINE_IDA(mnt_id_ida);
  28. static DEFINE_IDA(mnt_group_ida);
  29. static DEFINE_SPINLOCK(mnt_id_lock);
  30. static int mnt_id_start = 0;
  31. static int mnt_group_start = 1;
  32. static struct list_head *mount_hashtable __read_mostly;
  33. static struct kmem_cache *mnt_cache __read_mostly;
  34. static struct rw_semaphore namespace_sem;
  35. /* /sys/fs */
  36. struct kobject *fs_kobj;
  37. EXPORT_SYMBOL_GPL(fs_kobj);
  38. /*
  39. * vfsmount lock may be taken for read to prevent changes to the
  40. * vfsmount hash, ie. during mountpoint lookups or walking back
  41. * up the tree.
  42. *
  43. * It should be taken for write in all cases where the vfsmount
  44. * tree or hash is modified or when a vfsmount structure is modified.
  45. */
  46. DEFINE_BRLOCK(vfsmount_lock);
  47. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  48. {
  49. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  50. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  51. tmp = tmp + (tmp >> HASH_SHIFT);
  52. return tmp & (HASH_SIZE - 1);
  53. }
  54. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  55. /*
  56. * allocation is serialized by namespace_sem, but we need the spinlock to
  57. * serialize with freeing.
  58. */
  59. static int mnt_alloc_id(struct mount *mnt)
  60. {
  61. int res;
  62. retry:
  63. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  64. spin_lock(&mnt_id_lock);
  65. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  66. if (!res)
  67. mnt_id_start = mnt->mnt_id + 1;
  68. spin_unlock(&mnt_id_lock);
  69. if (res == -EAGAIN)
  70. goto retry;
  71. return res;
  72. }
  73. static void mnt_free_id(struct mount *mnt)
  74. {
  75. int id = mnt->mnt_id;
  76. spin_lock(&mnt_id_lock);
  77. ida_remove(&mnt_id_ida, id);
  78. if (mnt_id_start > id)
  79. mnt_id_start = id;
  80. spin_unlock(&mnt_id_lock);
  81. }
  82. /*
  83. * Allocate a new peer group ID
  84. *
  85. * mnt_group_ida is protected by namespace_sem
  86. */
  87. static int mnt_alloc_group_id(struct mount *mnt)
  88. {
  89. int res;
  90. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  91. return -ENOMEM;
  92. res = ida_get_new_above(&mnt_group_ida,
  93. mnt_group_start,
  94. &mnt->mnt_group_id);
  95. if (!res)
  96. mnt_group_start = mnt->mnt_group_id + 1;
  97. return res;
  98. }
  99. /*
  100. * Release a peer group ID
  101. */
  102. void mnt_release_group_id(struct mount *mnt)
  103. {
  104. int id = mnt->mnt_group_id;
  105. ida_remove(&mnt_group_ida, id);
  106. if (mnt_group_start > id)
  107. mnt_group_start = id;
  108. mnt->mnt_group_id = 0;
  109. }
  110. /*
  111. * vfsmount lock must be held for read
  112. */
  113. static inline void mnt_add_count(struct mount *mnt, int n)
  114. {
  115. #ifdef CONFIG_SMP
  116. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  117. #else
  118. preempt_disable();
  119. mnt->mnt_count += n;
  120. preempt_enable();
  121. #endif
  122. }
  123. /*
  124. * vfsmount lock must be held for write
  125. */
  126. unsigned int mnt_get_count(struct mount *mnt)
  127. {
  128. #ifdef CONFIG_SMP
  129. unsigned int count = 0;
  130. int cpu;
  131. for_each_possible_cpu(cpu) {
  132. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  133. }
  134. return count;
  135. #else
  136. return mnt->mnt_count;
  137. #endif
  138. }
  139. static struct mount *alloc_vfsmnt(const char *name)
  140. {
  141. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  142. if (mnt) {
  143. int err;
  144. err = mnt_alloc_id(mnt);
  145. if (err)
  146. goto out_free_cache;
  147. if (name) {
  148. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  149. if (!mnt->mnt_devname)
  150. goto out_free_id;
  151. }
  152. #ifdef CONFIG_SMP
  153. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  154. if (!mnt->mnt_pcp)
  155. goto out_free_devname;
  156. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  157. #else
  158. mnt->mnt_count = 1;
  159. mnt->mnt_writers = 0;
  160. #endif
  161. INIT_LIST_HEAD(&mnt->mnt_hash);
  162. INIT_LIST_HEAD(&mnt->mnt_child);
  163. INIT_LIST_HEAD(&mnt->mnt_mounts);
  164. INIT_LIST_HEAD(&mnt->mnt_list);
  165. INIT_LIST_HEAD(&mnt->mnt_expire);
  166. INIT_LIST_HEAD(&mnt->mnt_share);
  167. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  168. INIT_LIST_HEAD(&mnt->mnt_slave);
  169. #ifdef CONFIG_FSNOTIFY
  170. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  171. #endif
  172. }
  173. return mnt;
  174. #ifdef CONFIG_SMP
  175. out_free_devname:
  176. kfree(mnt->mnt_devname);
  177. #endif
  178. out_free_id:
  179. mnt_free_id(mnt);
  180. out_free_cache:
  181. kmem_cache_free(mnt_cache, mnt);
  182. return NULL;
  183. }
  184. /*
  185. * Most r/o checks on a fs are for operations that take
  186. * discrete amounts of time, like a write() or unlink().
  187. * We must keep track of when those operations start
  188. * (for permission checks) and when they end, so that
  189. * we can determine when writes are able to occur to
  190. * a filesystem.
  191. */
  192. /*
  193. * __mnt_is_readonly: check whether a mount is read-only
  194. * @mnt: the mount to check for its write status
  195. *
  196. * This shouldn't be used directly ouside of the VFS.
  197. * It does not guarantee that the filesystem will stay
  198. * r/w, just that it is right *now*. This can not and
  199. * should not be used in place of IS_RDONLY(inode).
  200. * mnt_want/drop_write() will _keep_ the filesystem
  201. * r/w.
  202. */
  203. int __mnt_is_readonly(struct vfsmount *mnt)
  204. {
  205. if (mnt->mnt_flags & MNT_READONLY)
  206. return 1;
  207. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  208. return 1;
  209. return 0;
  210. }
  211. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  212. static inline void mnt_inc_writers(struct mount *mnt)
  213. {
  214. #ifdef CONFIG_SMP
  215. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  216. #else
  217. mnt->mnt_writers++;
  218. #endif
  219. }
  220. static inline void mnt_dec_writers(struct mount *mnt)
  221. {
  222. #ifdef CONFIG_SMP
  223. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  224. #else
  225. mnt->mnt_writers--;
  226. #endif
  227. }
  228. static unsigned int mnt_get_writers(struct mount *mnt)
  229. {
  230. #ifdef CONFIG_SMP
  231. unsigned int count = 0;
  232. int cpu;
  233. for_each_possible_cpu(cpu) {
  234. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  235. }
  236. return count;
  237. #else
  238. return mnt->mnt_writers;
  239. #endif
  240. }
  241. static int mnt_is_readonly(struct vfsmount *mnt)
  242. {
  243. if (mnt->mnt_sb->s_readonly_remount)
  244. return 1;
  245. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  246. smp_rmb();
  247. return __mnt_is_readonly(mnt);
  248. }
  249. /*
  250. * Most r/o checks on a fs are for operations that take
  251. * discrete amounts of time, like a write() or unlink().
  252. * We must keep track of when those operations start
  253. * (for permission checks) and when they end, so that
  254. * we can determine when writes are able to occur to
  255. * a filesystem.
  256. */
  257. /**
  258. * mnt_want_write - get write access to a mount
  259. * @m: the mount on which to take a write
  260. *
  261. * This tells the low-level filesystem that a write is
  262. * about to be performed to it, and makes sure that
  263. * writes are allowed before returning success. When
  264. * the write operation is finished, mnt_drop_write()
  265. * must be called. This is effectively a refcount.
  266. */
  267. int mnt_want_write(struct vfsmount *m)
  268. {
  269. struct mount *mnt = real_mount(m);
  270. int ret = 0;
  271. preempt_disable();
  272. mnt_inc_writers(mnt);
  273. /*
  274. * The store to mnt_inc_writers must be visible before we pass
  275. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  276. * incremented count after it has set MNT_WRITE_HOLD.
  277. */
  278. smp_mb();
  279. while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  280. cpu_relax();
  281. /*
  282. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  283. * be set to match its requirements. So we must not load that until
  284. * MNT_WRITE_HOLD is cleared.
  285. */
  286. smp_rmb();
  287. if (mnt_is_readonly(m)) {
  288. mnt_dec_writers(mnt);
  289. ret = -EROFS;
  290. goto out;
  291. }
  292. out:
  293. preempt_enable();
  294. return ret;
  295. }
  296. EXPORT_SYMBOL_GPL(mnt_want_write);
  297. /**
  298. * mnt_clone_write - get write access to a mount
  299. * @mnt: the mount on which to take a write
  300. *
  301. * This is effectively like mnt_want_write, except
  302. * it must only be used to take an extra write reference
  303. * on a mountpoint that we already know has a write reference
  304. * on it. This allows some optimisation.
  305. *
  306. * After finished, mnt_drop_write must be called as usual to
  307. * drop the reference.
  308. */
  309. int mnt_clone_write(struct vfsmount *mnt)
  310. {
  311. /* superblock may be r/o */
  312. if (__mnt_is_readonly(mnt))
  313. return -EROFS;
  314. preempt_disable();
  315. mnt_inc_writers(real_mount(mnt));
  316. preempt_enable();
  317. return 0;
  318. }
  319. EXPORT_SYMBOL_GPL(mnt_clone_write);
  320. /**
  321. * mnt_want_write_file - get write access to a file's mount
  322. * @file: the file who's mount on which to take a write
  323. *
  324. * This is like mnt_want_write, but it takes a file and can
  325. * do some optimisations if the file is open for write already
  326. */
  327. int mnt_want_write_file(struct file *file)
  328. {
  329. struct inode *inode = file->f_dentry->d_inode;
  330. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  331. return mnt_want_write(file->f_path.mnt);
  332. else
  333. return mnt_clone_write(file->f_path.mnt);
  334. }
  335. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  336. /**
  337. * mnt_drop_write - give up write access to a mount
  338. * @mnt: the mount on which to give up write access
  339. *
  340. * Tells the low-level filesystem that we are done
  341. * performing writes to it. Must be matched with
  342. * mnt_want_write() call above.
  343. */
  344. void mnt_drop_write(struct vfsmount *mnt)
  345. {
  346. preempt_disable();
  347. mnt_dec_writers(real_mount(mnt));
  348. preempt_enable();
  349. }
  350. EXPORT_SYMBOL_GPL(mnt_drop_write);
  351. void mnt_drop_write_file(struct file *file)
  352. {
  353. mnt_drop_write(file->f_path.mnt);
  354. }
  355. EXPORT_SYMBOL(mnt_drop_write_file);
  356. static int mnt_make_readonly(struct mount *mnt)
  357. {
  358. int ret = 0;
  359. br_write_lock(vfsmount_lock);
  360. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  361. /*
  362. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  363. * should be visible before we do.
  364. */
  365. smp_mb();
  366. /*
  367. * With writers on hold, if this value is zero, then there are
  368. * definitely no active writers (although held writers may subsequently
  369. * increment the count, they'll have to wait, and decrement it after
  370. * seeing MNT_READONLY).
  371. *
  372. * It is OK to have counter incremented on one CPU and decremented on
  373. * another: the sum will add up correctly. The danger would be when we
  374. * sum up each counter, if we read a counter before it is incremented,
  375. * but then read another CPU's count which it has been subsequently
  376. * decremented from -- we would see more decrements than we should.
  377. * MNT_WRITE_HOLD protects against this scenario, because
  378. * mnt_want_write first increments count, then smp_mb, then spins on
  379. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  380. * we're counting up here.
  381. */
  382. if (mnt_get_writers(mnt) > 0)
  383. ret = -EBUSY;
  384. else
  385. mnt->mnt.mnt_flags |= MNT_READONLY;
  386. /*
  387. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  388. * that become unheld will see MNT_READONLY.
  389. */
  390. smp_wmb();
  391. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  392. br_write_unlock(vfsmount_lock);
  393. return ret;
  394. }
  395. static void __mnt_unmake_readonly(struct mount *mnt)
  396. {
  397. br_write_lock(vfsmount_lock);
  398. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  399. br_write_unlock(vfsmount_lock);
  400. }
  401. int sb_prepare_remount_readonly(struct super_block *sb)
  402. {
  403. struct mount *mnt;
  404. int err = 0;
  405. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  406. if (atomic_long_read(&sb->s_remove_count))
  407. return -EBUSY;
  408. br_write_lock(vfsmount_lock);
  409. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  410. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  411. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  412. smp_mb();
  413. if (mnt_get_writers(mnt) > 0) {
  414. err = -EBUSY;
  415. break;
  416. }
  417. }
  418. }
  419. if (!err && atomic_long_read(&sb->s_remove_count))
  420. err = -EBUSY;
  421. if (!err) {
  422. sb->s_readonly_remount = 1;
  423. smp_wmb();
  424. }
  425. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  426. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  427. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  428. }
  429. br_write_unlock(vfsmount_lock);
  430. return err;
  431. }
  432. static void free_vfsmnt(struct mount *mnt)
  433. {
  434. kfree(mnt->mnt_devname);
  435. mnt_free_id(mnt);
  436. #ifdef CONFIG_SMP
  437. free_percpu(mnt->mnt_pcp);
  438. #endif
  439. kmem_cache_free(mnt_cache, mnt);
  440. }
  441. /*
  442. * find the first or last mount at @dentry on vfsmount @mnt depending on
  443. * @dir. If @dir is set return the first mount else return the last mount.
  444. * vfsmount_lock must be held for read or write.
  445. */
  446. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  447. int dir)
  448. {
  449. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  450. struct list_head *tmp = head;
  451. struct mount *p, *found = NULL;
  452. for (;;) {
  453. tmp = dir ? tmp->next : tmp->prev;
  454. p = NULL;
  455. if (tmp == head)
  456. break;
  457. p = list_entry(tmp, struct mount, mnt_hash);
  458. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  459. found = p;
  460. break;
  461. }
  462. }
  463. return found;
  464. }
  465. /*
  466. * lookup_mnt increments the ref count before returning
  467. * the vfsmount struct.
  468. */
  469. struct vfsmount *lookup_mnt(struct path *path)
  470. {
  471. struct mount *child_mnt;
  472. br_read_lock(vfsmount_lock);
  473. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  474. if (child_mnt) {
  475. mnt_add_count(child_mnt, 1);
  476. br_read_unlock(vfsmount_lock);
  477. return &child_mnt->mnt;
  478. } else {
  479. br_read_unlock(vfsmount_lock);
  480. return NULL;
  481. }
  482. }
  483. static inline int check_mnt(struct mount *mnt)
  484. {
  485. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  486. }
  487. /*
  488. * vfsmount lock must be held for write
  489. */
  490. static void touch_mnt_namespace(struct mnt_namespace *ns)
  491. {
  492. if (ns) {
  493. ns->event = ++event;
  494. wake_up_interruptible(&ns->poll);
  495. }
  496. }
  497. /*
  498. * vfsmount lock must be held for write
  499. */
  500. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  501. {
  502. if (ns && ns->event != event) {
  503. ns->event = event;
  504. wake_up_interruptible(&ns->poll);
  505. }
  506. }
  507. /*
  508. * Clear dentry's mounted state if it has no remaining mounts.
  509. * vfsmount_lock must be held for write.
  510. */
  511. static void dentry_reset_mounted(struct dentry *dentry)
  512. {
  513. unsigned u;
  514. for (u = 0; u < HASH_SIZE; u++) {
  515. struct mount *p;
  516. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  517. if (p->mnt_mountpoint == dentry)
  518. return;
  519. }
  520. }
  521. spin_lock(&dentry->d_lock);
  522. dentry->d_flags &= ~DCACHE_MOUNTED;
  523. spin_unlock(&dentry->d_lock);
  524. }
  525. /*
  526. * vfsmount lock must be held for write
  527. */
  528. static void detach_mnt(struct mount *mnt, struct path *old_path)
  529. {
  530. old_path->dentry = mnt->mnt_mountpoint;
  531. old_path->mnt = &mnt->mnt_parent->mnt;
  532. mnt->mnt_parent = mnt;
  533. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  534. list_del_init(&mnt->mnt_child);
  535. list_del_init(&mnt->mnt_hash);
  536. dentry_reset_mounted(old_path->dentry);
  537. }
  538. /*
  539. * vfsmount lock must be held for write
  540. */
  541. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  542. struct mount *child_mnt)
  543. {
  544. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  545. child_mnt->mnt_mountpoint = dget(dentry);
  546. child_mnt->mnt_parent = mnt;
  547. spin_lock(&dentry->d_lock);
  548. dentry->d_flags |= DCACHE_MOUNTED;
  549. spin_unlock(&dentry->d_lock);
  550. }
  551. /*
  552. * vfsmount lock must be held for write
  553. */
  554. static void attach_mnt(struct mount *mnt, struct path *path)
  555. {
  556. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  557. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  558. hash(path->mnt, path->dentry));
  559. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  560. }
  561. static inline void __mnt_make_longterm(struct mount *mnt)
  562. {
  563. #ifdef CONFIG_SMP
  564. atomic_inc(&mnt->mnt_longterm);
  565. #endif
  566. }
  567. /* needs vfsmount lock for write */
  568. static inline void __mnt_make_shortterm(struct mount *mnt)
  569. {
  570. #ifdef CONFIG_SMP
  571. atomic_dec(&mnt->mnt_longterm);
  572. #endif
  573. }
  574. /*
  575. * vfsmount lock must be held for write
  576. */
  577. static void commit_tree(struct mount *mnt)
  578. {
  579. struct mount *parent = mnt->mnt_parent;
  580. struct mount *m;
  581. LIST_HEAD(head);
  582. struct mnt_namespace *n = parent->mnt_ns;
  583. BUG_ON(parent == mnt);
  584. list_add_tail(&head, &mnt->mnt_list);
  585. list_for_each_entry(m, &head, mnt_list) {
  586. m->mnt_ns = n;
  587. __mnt_make_longterm(m);
  588. }
  589. list_splice(&head, n->list.prev);
  590. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  591. hash(&parent->mnt, mnt->mnt_mountpoint));
  592. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  593. touch_mnt_namespace(n);
  594. }
  595. static struct mount *next_mnt(struct mount *p, struct mount *root)
  596. {
  597. struct list_head *next = p->mnt_mounts.next;
  598. if (next == &p->mnt_mounts) {
  599. while (1) {
  600. if (p == root)
  601. return NULL;
  602. next = p->mnt_child.next;
  603. if (next != &p->mnt_parent->mnt_mounts)
  604. break;
  605. p = p->mnt_parent;
  606. }
  607. }
  608. return list_entry(next, struct mount, mnt_child);
  609. }
  610. static struct mount *skip_mnt_tree(struct mount *p)
  611. {
  612. struct list_head *prev = p->mnt_mounts.prev;
  613. while (prev != &p->mnt_mounts) {
  614. p = list_entry(prev, struct mount, mnt_child);
  615. prev = p->mnt_mounts.prev;
  616. }
  617. return p;
  618. }
  619. struct vfsmount *
  620. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  621. {
  622. struct mount *mnt;
  623. struct dentry *root;
  624. if (!type)
  625. return ERR_PTR(-ENODEV);
  626. mnt = alloc_vfsmnt(name);
  627. if (!mnt)
  628. return ERR_PTR(-ENOMEM);
  629. if (flags & MS_KERNMOUNT)
  630. mnt->mnt.mnt_flags = MNT_INTERNAL;
  631. root = mount_fs(type, flags, name, data);
  632. if (IS_ERR(root)) {
  633. free_vfsmnt(mnt);
  634. return ERR_CAST(root);
  635. }
  636. mnt->mnt.mnt_root = root;
  637. mnt->mnt.mnt_sb = root->d_sb;
  638. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  639. mnt->mnt_parent = mnt;
  640. br_write_lock(vfsmount_lock);
  641. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  642. br_write_unlock(vfsmount_lock);
  643. return &mnt->mnt;
  644. }
  645. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  646. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  647. int flag)
  648. {
  649. struct super_block *sb = old->mnt.mnt_sb;
  650. struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
  651. if (mnt) {
  652. if (flag & (CL_SLAVE | CL_PRIVATE))
  653. mnt->mnt_group_id = 0; /* not a peer of original */
  654. else
  655. mnt->mnt_group_id = old->mnt_group_id;
  656. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  657. int err = mnt_alloc_group_id(mnt);
  658. if (err)
  659. goto out_free;
  660. }
  661. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  662. atomic_inc(&sb->s_active);
  663. mnt->mnt.mnt_sb = sb;
  664. mnt->mnt.mnt_root = dget(root);
  665. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  666. mnt->mnt_parent = mnt;
  667. br_write_lock(vfsmount_lock);
  668. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  669. br_write_unlock(vfsmount_lock);
  670. if (flag & CL_SLAVE) {
  671. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  672. mnt->mnt_master = old;
  673. CLEAR_MNT_SHARED(mnt);
  674. } else if (!(flag & CL_PRIVATE)) {
  675. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  676. list_add(&mnt->mnt_share, &old->mnt_share);
  677. if (IS_MNT_SLAVE(old))
  678. list_add(&mnt->mnt_slave, &old->mnt_slave);
  679. mnt->mnt_master = old->mnt_master;
  680. }
  681. if (flag & CL_MAKE_SHARED)
  682. set_mnt_shared(mnt);
  683. /* stick the duplicate mount on the same expiry list
  684. * as the original if that was on one */
  685. if (flag & CL_EXPIRE) {
  686. if (!list_empty(&old->mnt_expire))
  687. list_add(&mnt->mnt_expire, &old->mnt_expire);
  688. }
  689. }
  690. return mnt;
  691. out_free:
  692. free_vfsmnt(mnt);
  693. return NULL;
  694. }
  695. static inline void mntfree(struct mount *mnt)
  696. {
  697. struct vfsmount *m = &mnt->mnt;
  698. struct super_block *sb = m->mnt_sb;
  699. /*
  700. * This probably indicates that somebody messed
  701. * up a mnt_want/drop_write() pair. If this
  702. * happens, the filesystem was probably unable
  703. * to make r/w->r/o transitions.
  704. */
  705. /*
  706. * The locking used to deal with mnt_count decrement provides barriers,
  707. * so mnt_get_writers() below is safe.
  708. */
  709. WARN_ON(mnt_get_writers(mnt));
  710. fsnotify_vfsmount_delete(m);
  711. dput(m->mnt_root);
  712. free_vfsmnt(mnt);
  713. deactivate_super(sb);
  714. }
  715. static void mntput_no_expire(struct mount *mnt)
  716. {
  717. put_again:
  718. #ifdef CONFIG_SMP
  719. br_read_lock(vfsmount_lock);
  720. if (likely(atomic_read(&mnt->mnt_longterm))) {
  721. mnt_add_count(mnt, -1);
  722. br_read_unlock(vfsmount_lock);
  723. return;
  724. }
  725. br_read_unlock(vfsmount_lock);
  726. br_write_lock(vfsmount_lock);
  727. mnt_add_count(mnt, -1);
  728. if (mnt_get_count(mnt)) {
  729. br_write_unlock(vfsmount_lock);
  730. return;
  731. }
  732. #else
  733. mnt_add_count(mnt, -1);
  734. if (likely(mnt_get_count(mnt)))
  735. return;
  736. br_write_lock(vfsmount_lock);
  737. #endif
  738. if (unlikely(mnt->mnt_pinned)) {
  739. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  740. mnt->mnt_pinned = 0;
  741. br_write_unlock(vfsmount_lock);
  742. acct_auto_close_mnt(&mnt->mnt);
  743. goto put_again;
  744. }
  745. list_del(&mnt->mnt_instance);
  746. br_write_unlock(vfsmount_lock);
  747. mntfree(mnt);
  748. }
  749. void mntput(struct vfsmount *mnt)
  750. {
  751. if (mnt) {
  752. struct mount *m = real_mount(mnt);
  753. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  754. if (unlikely(m->mnt_expiry_mark))
  755. m->mnt_expiry_mark = 0;
  756. mntput_no_expire(m);
  757. }
  758. }
  759. EXPORT_SYMBOL(mntput);
  760. struct vfsmount *mntget(struct vfsmount *mnt)
  761. {
  762. if (mnt)
  763. mnt_add_count(real_mount(mnt), 1);
  764. return mnt;
  765. }
  766. EXPORT_SYMBOL(mntget);
  767. void mnt_pin(struct vfsmount *mnt)
  768. {
  769. br_write_lock(vfsmount_lock);
  770. real_mount(mnt)->mnt_pinned++;
  771. br_write_unlock(vfsmount_lock);
  772. }
  773. EXPORT_SYMBOL(mnt_pin);
  774. void mnt_unpin(struct vfsmount *m)
  775. {
  776. struct mount *mnt = real_mount(m);
  777. br_write_lock(vfsmount_lock);
  778. if (mnt->mnt_pinned) {
  779. mnt_add_count(mnt, 1);
  780. mnt->mnt_pinned--;
  781. }
  782. br_write_unlock(vfsmount_lock);
  783. }
  784. EXPORT_SYMBOL(mnt_unpin);
  785. static inline void mangle(struct seq_file *m, const char *s)
  786. {
  787. seq_escape(m, s, " \t\n\\");
  788. }
  789. /*
  790. * Simple .show_options callback for filesystems which don't want to
  791. * implement more complex mount option showing.
  792. *
  793. * See also save_mount_options().
  794. */
  795. int generic_show_options(struct seq_file *m, struct dentry *root)
  796. {
  797. const char *options;
  798. rcu_read_lock();
  799. options = rcu_dereference(root->d_sb->s_options);
  800. if (options != NULL && options[0]) {
  801. seq_putc(m, ',');
  802. mangle(m, options);
  803. }
  804. rcu_read_unlock();
  805. return 0;
  806. }
  807. EXPORT_SYMBOL(generic_show_options);
  808. /*
  809. * If filesystem uses generic_show_options(), this function should be
  810. * called from the fill_super() callback.
  811. *
  812. * The .remount_fs callback usually needs to be handled in a special
  813. * way, to make sure, that previous options are not overwritten if the
  814. * remount fails.
  815. *
  816. * Also note, that if the filesystem's .remount_fs function doesn't
  817. * reset all options to their default value, but changes only newly
  818. * given options, then the displayed options will not reflect reality
  819. * any more.
  820. */
  821. void save_mount_options(struct super_block *sb, char *options)
  822. {
  823. BUG_ON(sb->s_options);
  824. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  825. }
  826. EXPORT_SYMBOL(save_mount_options);
  827. void replace_mount_options(struct super_block *sb, char *options)
  828. {
  829. char *old = sb->s_options;
  830. rcu_assign_pointer(sb->s_options, options);
  831. if (old) {
  832. synchronize_rcu();
  833. kfree(old);
  834. }
  835. }
  836. EXPORT_SYMBOL(replace_mount_options);
  837. #ifdef CONFIG_PROC_FS
  838. /* iterator; we want it to have access to namespace_sem, thus here... */
  839. static void *m_start(struct seq_file *m, loff_t *pos)
  840. {
  841. struct proc_mounts *p = container_of(m, struct proc_mounts, m);
  842. down_read(&namespace_sem);
  843. return seq_list_start(&p->ns->list, *pos);
  844. }
  845. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  846. {
  847. struct proc_mounts *p = container_of(m, struct proc_mounts, m);
  848. return seq_list_next(v, &p->ns->list, pos);
  849. }
  850. static void m_stop(struct seq_file *m, void *v)
  851. {
  852. up_read(&namespace_sem);
  853. }
  854. static int m_show(struct seq_file *m, void *v)
  855. {
  856. struct proc_mounts *p = container_of(m, struct proc_mounts, m);
  857. struct mount *r = list_entry(v, struct mount, mnt_list);
  858. return p->show(m, &r->mnt);
  859. }
  860. const struct seq_operations mounts_op = {
  861. .start = m_start,
  862. .next = m_next,
  863. .stop = m_stop,
  864. .show = m_show,
  865. };
  866. #endif /* CONFIG_PROC_FS */
  867. /**
  868. * may_umount_tree - check if a mount tree is busy
  869. * @mnt: root of mount tree
  870. *
  871. * This is called to check if a tree of mounts has any
  872. * open files, pwds, chroots or sub mounts that are
  873. * busy.
  874. */
  875. int may_umount_tree(struct vfsmount *m)
  876. {
  877. struct mount *mnt = real_mount(m);
  878. int actual_refs = 0;
  879. int minimum_refs = 0;
  880. struct mount *p;
  881. BUG_ON(!m);
  882. /* write lock needed for mnt_get_count */
  883. br_write_lock(vfsmount_lock);
  884. for (p = mnt; p; p = next_mnt(p, mnt)) {
  885. actual_refs += mnt_get_count(p);
  886. minimum_refs += 2;
  887. }
  888. br_write_unlock(vfsmount_lock);
  889. if (actual_refs > minimum_refs)
  890. return 0;
  891. return 1;
  892. }
  893. EXPORT_SYMBOL(may_umount_tree);
  894. /**
  895. * may_umount - check if a mount point is busy
  896. * @mnt: root of mount
  897. *
  898. * This is called to check if a mount point has any
  899. * open files, pwds, chroots or sub mounts. If the
  900. * mount has sub mounts this will return busy
  901. * regardless of whether the sub mounts are busy.
  902. *
  903. * Doesn't take quota and stuff into account. IOW, in some cases it will
  904. * give false negatives. The main reason why it's here is that we need
  905. * a non-destructive way to look for easily umountable filesystems.
  906. */
  907. int may_umount(struct vfsmount *mnt)
  908. {
  909. int ret = 1;
  910. down_read(&namespace_sem);
  911. br_write_lock(vfsmount_lock);
  912. if (propagate_mount_busy(real_mount(mnt), 2))
  913. ret = 0;
  914. br_write_unlock(vfsmount_lock);
  915. up_read(&namespace_sem);
  916. return ret;
  917. }
  918. EXPORT_SYMBOL(may_umount);
  919. void release_mounts(struct list_head *head)
  920. {
  921. struct mount *mnt;
  922. while (!list_empty(head)) {
  923. mnt = list_first_entry(head, struct mount, mnt_hash);
  924. list_del_init(&mnt->mnt_hash);
  925. if (mnt_has_parent(mnt)) {
  926. struct dentry *dentry;
  927. struct mount *m;
  928. br_write_lock(vfsmount_lock);
  929. dentry = mnt->mnt_mountpoint;
  930. m = mnt->mnt_parent;
  931. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  932. mnt->mnt_parent = mnt;
  933. m->mnt_ghosts--;
  934. br_write_unlock(vfsmount_lock);
  935. dput(dentry);
  936. mntput(&m->mnt);
  937. }
  938. mntput(&mnt->mnt);
  939. }
  940. }
  941. /*
  942. * vfsmount lock must be held for write
  943. * namespace_sem must be held for write
  944. */
  945. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  946. {
  947. LIST_HEAD(tmp_list);
  948. struct mount *p;
  949. for (p = mnt; p; p = next_mnt(p, mnt))
  950. list_move(&p->mnt_hash, &tmp_list);
  951. if (propagate)
  952. propagate_umount(&tmp_list);
  953. list_for_each_entry(p, &tmp_list, mnt_hash) {
  954. list_del_init(&p->mnt_expire);
  955. list_del_init(&p->mnt_list);
  956. __touch_mnt_namespace(p->mnt_ns);
  957. p->mnt_ns = NULL;
  958. __mnt_make_shortterm(p);
  959. list_del_init(&p->mnt_child);
  960. if (mnt_has_parent(p)) {
  961. p->mnt_parent->mnt_ghosts++;
  962. dentry_reset_mounted(p->mnt_mountpoint);
  963. }
  964. change_mnt_propagation(p, MS_PRIVATE);
  965. }
  966. list_splice(&tmp_list, kill);
  967. }
  968. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  969. static int do_umount(struct mount *mnt, int flags)
  970. {
  971. struct super_block *sb = mnt->mnt.mnt_sb;
  972. int retval;
  973. LIST_HEAD(umount_list);
  974. retval = security_sb_umount(&mnt->mnt, flags);
  975. if (retval)
  976. return retval;
  977. /*
  978. * Allow userspace to request a mountpoint be expired rather than
  979. * unmounting unconditionally. Unmount only happens if:
  980. * (1) the mark is already set (the mark is cleared by mntput())
  981. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  982. */
  983. if (flags & MNT_EXPIRE) {
  984. if (&mnt->mnt == current->fs->root.mnt ||
  985. flags & (MNT_FORCE | MNT_DETACH))
  986. return -EINVAL;
  987. /*
  988. * probably don't strictly need the lock here if we examined
  989. * all race cases, but it's a slowpath.
  990. */
  991. br_write_lock(vfsmount_lock);
  992. if (mnt_get_count(mnt) != 2) {
  993. br_write_unlock(vfsmount_lock);
  994. return -EBUSY;
  995. }
  996. br_write_unlock(vfsmount_lock);
  997. if (!xchg(&mnt->mnt_expiry_mark, 1))
  998. return -EAGAIN;
  999. }
  1000. /*
  1001. * If we may have to abort operations to get out of this
  1002. * mount, and they will themselves hold resources we must
  1003. * allow the fs to do things. In the Unix tradition of
  1004. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1005. * might fail to complete on the first run through as other tasks
  1006. * must return, and the like. Thats for the mount program to worry
  1007. * about for the moment.
  1008. */
  1009. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1010. sb->s_op->umount_begin(sb);
  1011. }
  1012. /*
  1013. * No sense to grab the lock for this test, but test itself looks
  1014. * somewhat bogus. Suggestions for better replacement?
  1015. * Ho-hum... In principle, we might treat that as umount + switch
  1016. * to rootfs. GC would eventually take care of the old vfsmount.
  1017. * Actually it makes sense, especially if rootfs would contain a
  1018. * /reboot - static binary that would close all descriptors and
  1019. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1020. */
  1021. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1022. /*
  1023. * Special case for "unmounting" root ...
  1024. * we just try to remount it readonly.
  1025. */
  1026. down_write(&sb->s_umount);
  1027. if (!(sb->s_flags & MS_RDONLY))
  1028. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1029. up_write(&sb->s_umount);
  1030. return retval;
  1031. }
  1032. down_write(&namespace_sem);
  1033. br_write_lock(vfsmount_lock);
  1034. event++;
  1035. if (!(flags & MNT_DETACH))
  1036. shrink_submounts(mnt, &umount_list);
  1037. retval = -EBUSY;
  1038. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1039. if (!list_empty(&mnt->mnt_list))
  1040. umount_tree(mnt, 1, &umount_list);
  1041. retval = 0;
  1042. }
  1043. br_write_unlock(vfsmount_lock);
  1044. up_write(&namespace_sem);
  1045. release_mounts(&umount_list);
  1046. return retval;
  1047. }
  1048. /*
  1049. * Now umount can handle mount points as well as block devices.
  1050. * This is important for filesystems which use unnamed block devices.
  1051. *
  1052. * We now support a flag for forced unmount like the other 'big iron'
  1053. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1054. */
  1055. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1056. {
  1057. struct path path;
  1058. struct mount *mnt;
  1059. int retval;
  1060. int lookup_flags = 0;
  1061. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1062. return -EINVAL;
  1063. if (!(flags & UMOUNT_NOFOLLOW))
  1064. lookup_flags |= LOOKUP_FOLLOW;
  1065. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1066. if (retval)
  1067. goto out;
  1068. mnt = real_mount(path.mnt);
  1069. retval = -EINVAL;
  1070. if (path.dentry != path.mnt->mnt_root)
  1071. goto dput_and_out;
  1072. if (!check_mnt(mnt))
  1073. goto dput_and_out;
  1074. retval = -EPERM;
  1075. if (!capable(CAP_SYS_ADMIN))
  1076. goto dput_and_out;
  1077. retval = do_umount(mnt, flags);
  1078. dput_and_out:
  1079. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1080. dput(path.dentry);
  1081. mntput_no_expire(mnt);
  1082. out:
  1083. return retval;
  1084. }
  1085. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1086. /*
  1087. * The 2.0 compatible umount. No flags.
  1088. */
  1089. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1090. {
  1091. return sys_umount(name, 0);
  1092. }
  1093. #endif
  1094. static int mount_is_safe(struct path *path)
  1095. {
  1096. if (capable(CAP_SYS_ADMIN))
  1097. return 0;
  1098. return -EPERM;
  1099. #ifdef notyet
  1100. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1101. return -EPERM;
  1102. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1103. if (current_uid() != path->dentry->d_inode->i_uid)
  1104. return -EPERM;
  1105. }
  1106. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1107. return -EPERM;
  1108. return 0;
  1109. #endif
  1110. }
  1111. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1112. int flag)
  1113. {
  1114. struct mount *res, *p, *q, *r;
  1115. struct path path;
  1116. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1117. return NULL;
  1118. res = q = clone_mnt(mnt, dentry, flag);
  1119. if (!q)
  1120. goto Enomem;
  1121. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1122. p = mnt;
  1123. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1124. struct mount *s;
  1125. if (!is_subdir(r->mnt_mountpoint, dentry))
  1126. continue;
  1127. for (s = r; s; s = next_mnt(s, r)) {
  1128. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1129. s = skip_mnt_tree(s);
  1130. continue;
  1131. }
  1132. while (p != s->mnt_parent) {
  1133. p = p->mnt_parent;
  1134. q = q->mnt_parent;
  1135. }
  1136. p = s;
  1137. path.mnt = &q->mnt;
  1138. path.dentry = p->mnt_mountpoint;
  1139. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1140. if (!q)
  1141. goto Enomem;
  1142. br_write_lock(vfsmount_lock);
  1143. list_add_tail(&q->mnt_list, &res->mnt_list);
  1144. attach_mnt(q, &path);
  1145. br_write_unlock(vfsmount_lock);
  1146. }
  1147. }
  1148. return res;
  1149. Enomem:
  1150. if (res) {
  1151. LIST_HEAD(umount_list);
  1152. br_write_lock(vfsmount_lock);
  1153. umount_tree(res, 0, &umount_list);
  1154. br_write_unlock(vfsmount_lock);
  1155. release_mounts(&umount_list);
  1156. }
  1157. return NULL;
  1158. }
  1159. struct vfsmount *collect_mounts(struct path *path)
  1160. {
  1161. struct mount *tree;
  1162. down_write(&namespace_sem);
  1163. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1164. CL_COPY_ALL | CL_PRIVATE);
  1165. up_write(&namespace_sem);
  1166. return tree ? &tree->mnt : NULL;
  1167. }
  1168. void drop_collected_mounts(struct vfsmount *mnt)
  1169. {
  1170. LIST_HEAD(umount_list);
  1171. down_write(&namespace_sem);
  1172. br_write_lock(vfsmount_lock);
  1173. umount_tree(real_mount(mnt), 0, &umount_list);
  1174. br_write_unlock(vfsmount_lock);
  1175. up_write(&namespace_sem);
  1176. release_mounts(&umount_list);
  1177. }
  1178. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1179. struct vfsmount *root)
  1180. {
  1181. struct mount *mnt;
  1182. int res = f(root, arg);
  1183. if (res)
  1184. return res;
  1185. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1186. res = f(&mnt->mnt, arg);
  1187. if (res)
  1188. return res;
  1189. }
  1190. return 0;
  1191. }
  1192. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1193. {
  1194. struct mount *p;
  1195. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1196. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1197. mnt_release_group_id(p);
  1198. }
  1199. }
  1200. static int invent_group_ids(struct mount *mnt, bool recurse)
  1201. {
  1202. struct mount *p;
  1203. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1204. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1205. int err = mnt_alloc_group_id(p);
  1206. if (err) {
  1207. cleanup_group_ids(mnt, p);
  1208. return err;
  1209. }
  1210. }
  1211. }
  1212. return 0;
  1213. }
  1214. /*
  1215. * @source_mnt : mount tree to be attached
  1216. * @nd : place the mount tree @source_mnt is attached
  1217. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1218. * store the parent mount and mountpoint dentry.
  1219. * (done when source_mnt is moved)
  1220. *
  1221. * NOTE: in the table below explains the semantics when a source mount
  1222. * of a given type is attached to a destination mount of a given type.
  1223. * ---------------------------------------------------------------------------
  1224. * | BIND MOUNT OPERATION |
  1225. * |**************************************************************************
  1226. * | source-->| shared | private | slave | unbindable |
  1227. * | dest | | | | |
  1228. * | | | | | | |
  1229. * | v | | | | |
  1230. * |**************************************************************************
  1231. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1232. * | | | | | |
  1233. * |non-shared| shared (+) | private | slave (*) | invalid |
  1234. * ***************************************************************************
  1235. * A bind operation clones the source mount and mounts the clone on the
  1236. * destination mount.
  1237. *
  1238. * (++) the cloned mount is propagated to all the mounts in the propagation
  1239. * tree of the destination mount and the cloned mount is added to
  1240. * the peer group of the source mount.
  1241. * (+) the cloned mount is created under the destination mount and is marked
  1242. * as shared. The cloned mount is added to the peer group of the source
  1243. * mount.
  1244. * (+++) the mount is propagated to all the mounts in the propagation tree
  1245. * of the destination mount and the cloned mount is made slave
  1246. * of the same master as that of the source mount. The cloned mount
  1247. * is marked as 'shared and slave'.
  1248. * (*) the cloned mount is made a slave of the same master as that of the
  1249. * source mount.
  1250. *
  1251. * ---------------------------------------------------------------------------
  1252. * | MOVE MOUNT OPERATION |
  1253. * |**************************************************************************
  1254. * | source-->| shared | private | slave | unbindable |
  1255. * | dest | | | | |
  1256. * | | | | | | |
  1257. * | v | | | | |
  1258. * |**************************************************************************
  1259. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1260. * | | | | | |
  1261. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1262. * ***************************************************************************
  1263. *
  1264. * (+) the mount is moved to the destination. And is then propagated to
  1265. * all the mounts in the propagation tree of the destination mount.
  1266. * (+*) the mount is moved to the destination.
  1267. * (+++) the mount is moved to the destination and is then propagated to
  1268. * all the mounts belonging to the destination mount's propagation tree.
  1269. * the mount is marked as 'shared and slave'.
  1270. * (*) the mount continues to be a slave at the new location.
  1271. *
  1272. * if the source mount is a tree, the operations explained above is
  1273. * applied to each mount in the tree.
  1274. * Must be called without spinlocks held, since this function can sleep
  1275. * in allocations.
  1276. */
  1277. static int attach_recursive_mnt(struct mount *source_mnt,
  1278. struct path *path, struct path *parent_path)
  1279. {
  1280. LIST_HEAD(tree_list);
  1281. struct mount *dest_mnt = real_mount(path->mnt);
  1282. struct dentry *dest_dentry = path->dentry;
  1283. struct mount *child, *p;
  1284. int err;
  1285. if (IS_MNT_SHARED(dest_mnt)) {
  1286. err = invent_group_ids(source_mnt, true);
  1287. if (err)
  1288. goto out;
  1289. }
  1290. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1291. if (err)
  1292. goto out_cleanup_ids;
  1293. br_write_lock(vfsmount_lock);
  1294. if (IS_MNT_SHARED(dest_mnt)) {
  1295. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1296. set_mnt_shared(p);
  1297. }
  1298. if (parent_path) {
  1299. detach_mnt(source_mnt, parent_path);
  1300. attach_mnt(source_mnt, path);
  1301. touch_mnt_namespace(source_mnt->mnt_ns);
  1302. } else {
  1303. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1304. commit_tree(source_mnt);
  1305. }
  1306. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1307. list_del_init(&child->mnt_hash);
  1308. commit_tree(child);
  1309. }
  1310. br_write_unlock(vfsmount_lock);
  1311. return 0;
  1312. out_cleanup_ids:
  1313. if (IS_MNT_SHARED(dest_mnt))
  1314. cleanup_group_ids(source_mnt, NULL);
  1315. out:
  1316. return err;
  1317. }
  1318. static int lock_mount(struct path *path)
  1319. {
  1320. struct vfsmount *mnt;
  1321. retry:
  1322. mutex_lock(&path->dentry->d_inode->i_mutex);
  1323. if (unlikely(cant_mount(path->dentry))) {
  1324. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1325. return -ENOENT;
  1326. }
  1327. down_write(&namespace_sem);
  1328. mnt = lookup_mnt(path);
  1329. if (likely(!mnt))
  1330. return 0;
  1331. up_write(&namespace_sem);
  1332. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1333. path_put(path);
  1334. path->mnt = mnt;
  1335. path->dentry = dget(mnt->mnt_root);
  1336. goto retry;
  1337. }
  1338. static void unlock_mount(struct path *path)
  1339. {
  1340. up_write(&namespace_sem);
  1341. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1342. }
  1343. static int graft_tree(struct mount *mnt, struct path *path)
  1344. {
  1345. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1346. return -EINVAL;
  1347. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1348. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1349. return -ENOTDIR;
  1350. if (d_unlinked(path->dentry))
  1351. return -ENOENT;
  1352. return attach_recursive_mnt(mnt, path, NULL);
  1353. }
  1354. /*
  1355. * Sanity check the flags to change_mnt_propagation.
  1356. */
  1357. static int flags_to_propagation_type(int flags)
  1358. {
  1359. int type = flags & ~(MS_REC | MS_SILENT);
  1360. /* Fail if any non-propagation flags are set */
  1361. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1362. return 0;
  1363. /* Only one propagation flag should be set */
  1364. if (!is_power_of_2(type))
  1365. return 0;
  1366. return type;
  1367. }
  1368. /*
  1369. * recursively change the type of the mountpoint.
  1370. */
  1371. static int do_change_type(struct path *path, int flag)
  1372. {
  1373. struct mount *m;
  1374. struct mount *mnt = real_mount(path->mnt);
  1375. int recurse = flag & MS_REC;
  1376. int type;
  1377. int err = 0;
  1378. if (!capable(CAP_SYS_ADMIN))
  1379. return -EPERM;
  1380. if (path->dentry != path->mnt->mnt_root)
  1381. return -EINVAL;
  1382. type = flags_to_propagation_type(flag);
  1383. if (!type)
  1384. return -EINVAL;
  1385. down_write(&namespace_sem);
  1386. if (type == MS_SHARED) {
  1387. err = invent_group_ids(mnt, recurse);
  1388. if (err)
  1389. goto out_unlock;
  1390. }
  1391. br_write_lock(vfsmount_lock);
  1392. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1393. change_mnt_propagation(m, type);
  1394. br_write_unlock(vfsmount_lock);
  1395. out_unlock:
  1396. up_write(&namespace_sem);
  1397. return err;
  1398. }
  1399. /*
  1400. * do loopback mount.
  1401. */
  1402. static int do_loopback(struct path *path, char *old_name,
  1403. int recurse)
  1404. {
  1405. LIST_HEAD(umount_list);
  1406. struct path old_path;
  1407. struct mount *mnt = NULL, *old;
  1408. int err = mount_is_safe(path);
  1409. if (err)
  1410. return err;
  1411. if (!old_name || !*old_name)
  1412. return -EINVAL;
  1413. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1414. if (err)
  1415. return err;
  1416. err = lock_mount(path);
  1417. if (err)
  1418. goto out;
  1419. old = real_mount(old_path.mnt);
  1420. err = -EINVAL;
  1421. if (IS_MNT_UNBINDABLE(old))
  1422. goto out2;
  1423. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1424. goto out2;
  1425. err = -ENOMEM;
  1426. if (recurse)
  1427. mnt = copy_tree(old, old_path.dentry, 0);
  1428. else
  1429. mnt = clone_mnt(old, old_path.dentry, 0);
  1430. if (!mnt)
  1431. goto out2;
  1432. err = graft_tree(mnt, path);
  1433. if (err) {
  1434. br_write_lock(vfsmount_lock);
  1435. umount_tree(mnt, 0, &umount_list);
  1436. br_write_unlock(vfsmount_lock);
  1437. }
  1438. out2:
  1439. unlock_mount(path);
  1440. release_mounts(&umount_list);
  1441. out:
  1442. path_put(&old_path);
  1443. return err;
  1444. }
  1445. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1446. {
  1447. int error = 0;
  1448. int readonly_request = 0;
  1449. if (ms_flags & MS_RDONLY)
  1450. readonly_request = 1;
  1451. if (readonly_request == __mnt_is_readonly(mnt))
  1452. return 0;
  1453. if (readonly_request)
  1454. error = mnt_make_readonly(real_mount(mnt));
  1455. else
  1456. __mnt_unmake_readonly(real_mount(mnt));
  1457. return error;
  1458. }
  1459. /*
  1460. * change filesystem flags. dir should be a physical root of filesystem.
  1461. * If you've mounted a non-root directory somewhere and want to do remount
  1462. * on it - tough luck.
  1463. */
  1464. static int do_remount(struct path *path, int flags, int mnt_flags,
  1465. void *data)
  1466. {
  1467. int err;
  1468. struct super_block *sb = path->mnt->mnt_sb;
  1469. struct mount *mnt = real_mount(path->mnt);
  1470. if (!capable(CAP_SYS_ADMIN))
  1471. return -EPERM;
  1472. if (!check_mnt(mnt))
  1473. return -EINVAL;
  1474. if (path->dentry != path->mnt->mnt_root)
  1475. return -EINVAL;
  1476. err = security_sb_remount(sb, data);
  1477. if (err)
  1478. return err;
  1479. down_write(&sb->s_umount);
  1480. if (flags & MS_BIND)
  1481. err = change_mount_flags(path->mnt, flags);
  1482. else
  1483. err = do_remount_sb(sb, flags, data, 0);
  1484. if (!err) {
  1485. br_write_lock(vfsmount_lock);
  1486. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1487. mnt->mnt.mnt_flags = mnt_flags;
  1488. br_write_unlock(vfsmount_lock);
  1489. }
  1490. up_write(&sb->s_umount);
  1491. if (!err) {
  1492. br_write_lock(vfsmount_lock);
  1493. touch_mnt_namespace(mnt->mnt_ns);
  1494. br_write_unlock(vfsmount_lock);
  1495. }
  1496. return err;
  1497. }
  1498. static inline int tree_contains_unbindable(struct mount *mnt)
  1499. {
  1500. struct mount *p;
  1501. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1502. if (IS_MNT_UNBINDABLE(p))
  1503. return 1;
  1504. }
  1505. return 0;
  1506. }
  1507. static int do_move_mount(struct path *path, char *old_name)
  1508. {
  1509. struct path old_path, parent_path;
  1510. struct mount *p;
  1511. struct mount *old;
  1512. int err = 0;
  1513. if (!capable(CAP_SYS_ADMIN))
  1514. return -EPERM;
  1515. if (!old_name || !*old_name)
  1516. return -EINVAL;
  1517. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1518. if (err)
  1519. return err;
  1520. err = lock_mount(path);
  1521. if (err < 0)
  1522. goto out;
  1523. old = real_mount(old_path.mnt);
  1524. p = real_mount(path->mnt);
  1525. err = -EINVAL;
  1526. if (!check_mnt(p) || !check_mnt(old))
  1527. goto out1;
  1528. if (d_unlinked(path->dentry))
  1529. goto out1;
  1530. err = -EINVAL;
  1531. if (old_path.dentry != old_path.mnt->mnt_root)
  1532. goto out1;
  1533. if (!mnt_has_parent(old))
  1534. goto out1;
  1535. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1536. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1537. goto out1;
  1538. /*
  1539. * Don't move a mount residing in a shared parent.
  1540. */
  1541. if (IS_MNT_SHARED(old->mnt_parent))
  1542. goto out1;
  1543. /*
  1544. * Don't move a mount tree containing unbindable mounts to a destination
  1545. * mount which is shared.
  1546. */
  1547. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1548. goto out1;
  1549. err = -ELOOP;
  1550. for (; mnt_has_parent(p); p = p->mnt_parent)
  1551. if (p == old)
  1552. goto out1;
  1553. err = attach_recursive_mnt(old, path, &parent_path);
  1554. if (err)
  1555. goto out1;
  1556. /* if the mount is moved, it should no longer be expire
  1557. * automatically */
  1558. list_del_init(&old->mnt_expire);
  1559. out1:
  1560. unlock_mount(path);
  1561. out:
  1562. if (!err)
  1563. path_put(&parent_path);
  1564. path_put(&old_path);
  1565. return err;
  1566. }
  1567. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1568. {
  1569. int err;
  1570. const char *subtype = strchr(fstype, '.');
  1571. if (subtype) {
  1572. subtype++;
  1573. err = -EINVAL;
  1574. if (!subtype[0])
  1575. goto err;
  1576. } else
  1577. subtype = "";
  1578. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1579. err = -ENOMEM;
  1580. if (!mnt->mnt_sb->s_subtype)
  1581. goto err;
  1582. return mnt;
  1583. err:
  1584. mntput(mnt);
  1585. return ERR_PTR(err);
  1586. }
  1587. static struct vfsmount *
  1588. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1589. {
  1590. struct file_system_type *type = get_fs_type(fstype);
  1591. struct vfsmount *mnt;
  1592. if (!type)
  1593. return ERR_PTR(-ENODEV);
  1594. mnt = vfs_kern_mount(type, flags, name, data);
  1595. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1596. !mnt->mnt_sb->s_subtype)
  1597. mnt = fs_set_subtype(mnt, fstype);
  1598. put_filesystem(type);
  1599. return mnt;
  1600. }
  1601. /*
  1602. * add a mount into a namespace's mount tree
  1603. */
  1604. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1605. {
  1606. int err;
  1607. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1608. err = lock_mount(path);
  1609. if (err)
  1610. return err;
  1611. err = -EINVAL;
  1612. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
  1613. goto unlock;
  1614. /* Refuse the same filesystem on the same mount point */
  1615. err = -EBUSY;
  1616. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1617. path->mnt->mnt_root == path->dentry)
  1618. goto unlock;
  1619. err = -EINVAL;
  1620. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1621. goto unlock;
  1622. newmnt->mnt.mnt_flags = mnt_flags;
  1623. err = graft_tree(newmnt, path);
  1624. unlock:
  1625. unlock_mount(path);
  1626. return err;
  1627. }
  1628. /*
  1629. * create a new mount for userspace and request it to be added into the
  1630. * namespace's tree
  1631. */
  1632. static int do_new_mount(struct path *path, char *type, int flags,
  1633. int mnt_flags, char *name, void *data)
  1634. {
  1635. struct vfsmount *mnt;
  1636. int err;
  1637. if (!type)
  1638. return -EINVAL;
  1639. /* we need capabilities... */
  1640. if (!capable(CAP_SYS_ADMIN))
  1641. return -EPERM;
  1642. mnt = do_kern_mount(type, flags, name, data);
  1643. if (IS_ERR(mnt))
  1644. return PTR_ERR(mnt);
  1645. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1646. if (err)
  1647. mntput(mnt);
  1648. return err;
  1649. }
  1650. int finish_automount(struct vfsmount *m, struct path *path)
  1651. {
  1652. struct mount *mnt = real_mount(m);
  1653. int err;
  1654. /* The new mount record should have at least 2 refs to prevent it being
  1655. * expired before we get a chance to add it
  1656. */
  1657. BUG_ON(mnt_get_count(mnt) < 2);
  1658. if (m->mnt_sb == path->mnt->mnt_sb &&
  1659. m->mnt_root == path->dentry) {
  1660. err = -ELOOP;
  1661. goto fail;
  1662. }
  1663. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1664. if (!err)
  1665. return 0;
  1666. fail:
  1667. /* remove m from any expiration list it may be on */
  1668. if (!list_empty(&mnt->mnt_expire)) {
  1669. down_write(&namespace_sem);
  1670. br_write_lock(vfsmount_lock);
  1671. list_del_init(&mnt->mnt_expire);
  1672. br_write_unlock(vfsmount_lock);
  1673. up_write(&namespace_sem);
  1674. }
  1675. mntput(m);
  1676. mntput(m);
  1677. return err;
  1678. }
  1679. /**
  1680. * mnt_set_expiry - Put a mount on an expiration list
  1681. * @mnt: The mount to list.
  1682. * @expiry_list: The list to add the mount to.
  1683. */
  1684. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1685. {
  1686. down_write(&namespace_sem);
  1687. br_write_lock(vfsmount_lock);
  1688. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1689. br_write_unlock(vfsmount_lock);
  1690. up_write(&namespace_sem);
  1691. }
  1692. EXPORT_SYMBOL(mnt_set_expiry);
  1693. /*
  1694. * process a list of expirable mountpoints with the intent of discarding any
  1695. * mountpoints that aren't in use and haven't been touched since last we came
  1696. * here
  1697. */
  1698. void mark_mounts_for_expiry(struct list_head *mounts)
  1699. {
  1700. struct mount *mnt, *next;
  1701. LIST_HEAD(graveyard);
  1702. LIST_HEAD(umounts);
  1703. if (list_empty(mounts))
  1704. return;
  1705. down_write(&namespace_sem);
  1706. br_write_lock(vfsmount_lock);
  1707. /* extract from the expiration list every vfsmount that matches the
  1708. * following criteria:
  1709. * - only referenced by its parent vfsmount
  1710. * - still marked for expiry (marked on the last call here; marks are
  1711. * cleared by mntput())
  1712. */
  1713. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1714. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1715. propagate_mount_busy(mnt, 1))
  1716. continue;
  1717. list_move(&mnt->mnt_expire, &graveyard);
  1718. }
  1719. while (!list_empty(&graveyard)) {
  1720. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1721. touch_mnt_namespace(mnt->mnt_ns);
  1722. umount_tree(mnt, 1, &umounts);
  1723. }
  1724. br_write_unlock(vfsmount_lock);
  1725. up_write(&namespace_sem);
  1726. release_mounts(&umounts);
  1727. }
  1728. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1729. /*
  1730. * Ripoff of 'select_parent()'
  1731. *
  1732. * search the list of submounts for a given mountpoint, and move any
  1733. * shrinkable submounts to the 'graveyard' list.
  1734. */
  1735. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1736. {
  1737. struct mount *this_parent = parent;
  1738. struct list_head *next;
  1739. int found = 0;
  1740. repeat:
  1741. next = this_parent->mnt_mounts.next;
  1742. resume:
  1743. while (next != &this_parent->mnt_mounts) {
  1744. struct list_head *tmp = next;
  1745. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1746. next = tmp->next;
  1747. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1748. continue;
  1749. /*
  1750. * Descend a level if the d_mounts list is non-empty.
  1751. */
  1752. if (!list_empty(&mnt->mnt_mounts)) {
  1753. this_parent = mnt;
  1754. goto repeat;
  1755. }
  1756. if (!propagate_mount_busy(mnt, 1)) {
  1757. list_move_tail(&mnt->mnt_expire, graveyard);
  1758. found++;
  1759. }
  1760. }
  1761. /*
  1762. * All done at this level ... ascend and resume the search
  1763. */
  1764. if (this_parent != parent) {
  1765. next = this_parent->mnt_child.next;
  1766. this_parent = this_parent->mnt_parent;
  1767. goto resume;
  1768. }
  1769. return found;
  1770. }
  1771. /*
  1772. * process a list of expirable mountpoints with the intent of discarding any
  1773. * submounts of a specific parent mountpoint
  1774. *
  1775. * vfsmount_lock must be held for write
  1776. */
  1777. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1778. {
  1779. LIST_HEAD(graveyard);
  1780. struct mount *m;
  1781. /* extract submounts of 'mountpoint' from the expiration list */
  1782. while (select_submounts(mnt, &graveyard)) {
  1783. while (!list_empty(&graveyard)) {
  1784. m = list_first_entry(&graveyard, struct mount,
  1785. mnt_expire);
  1786. touch_mnt_namespace(m->mnt_ns);
  1787. umount_tree(m, 1, umounts);
  1788. }
  1789. }
  1790. }
  1791. /*
  1792. * Some copy_from_user() implementations do not return the exact number of
  1793. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1794. * Note that this function differs from copy_from_user() in that it will oops
  1795. * on bad values of `to', rather than returning a short copy.
  1796. */
  1797. static long exact_copy_from_user(void *to, const void __user * from,
  1798. unsigned long n)
  1799. {
  1800. char *t = to;
  1801. const char __user *f = from;
  1802. char c;
  1803. if (!access_ok(VERIFY_READ, from, n))
  1804. return n;
  1805. while (n) {
  1806. if (__get_user(c, f)) {
  1807. memset(t, 0, n);
  1808. break;
  1809. }
  1810. *t++ = c;
  1811. f++;
  1812. n--;
  1813. }
  1814. return n;
  1815. }
  1816. int copy_mount_options(const void __user * data, unsigned long *where)
  1817. {
  1818. int i;
  1819. unsigned long page;
  1820. unsigned long size;
  1821. *where = 0;
  1822. if (!data)
  1823. return 0;
  1824. if (!(page = __get_free_page(GFP_KERNEL)))
  1825. return -ENOMEM;
  1826. /* We only care that *some* data at the address the user
  1827. * gave us is valid. Just in case, we'll zero
  1828. * the remainder of the page.
  1829. */
  1830. /* copy_from_user cannot cross TASK_SIZE ! */
  1831. size = TASK_SIZE - (unsigned long)data;
  1832. if (size > PAGE_SIZE)
  1833. size = PAGE_SIZE;
  1834. i = size - exact_copy_from_user((void *)page, data, size);
  1835. if (!i) {
  1836. free_page(page);
  1837. return -EFAULT;
  1838. }
  1839. if (i != PAGE_SIZE)
  1840. memset((char *)page + i, 0, PAGE_SIZE - i);
  1841. *where = page;
  1842. return 0;
  1843. }
  1844. int copy_mount_string(const void __user *data, char **where)
  1845. {
  1846. char *tmp;
  1847. if (!data) {
  1848. *where = NULL;
  1849. return 0;
  1850. }
  1851. tmp = strndup_user(data, PAGE_SIZE);
  1852. if (IS_ERR(tmp))
  1853. return PTR_ERR(tmp);
  1854. *where = tmp;
  1855. return 0;
  1856. }
  1857. /*
  1858. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1859. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1860. *
  1861. * data is a (void *) that can point to any structure up to
  1862. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1863. * information (or be NULL).
  1864. *
  1865. * Pre-0.97 versions of mount() didn't have a flags word.
  1866. * When the flags word was introduced its top half was required
  1867. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1868. * Therefore, if this magic number is present, it carries no information
  1869. * and must be discarded.
  1870. */
  1871. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1872. unsigned long flags, void *data_page)
  1873. {
  1874. struct path path;
  1875. int retval = 0;
  1876. int mnt_flags = 0;
  1877. /* Discard magic */
  1878. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1879. flags &= ~MS_MGC_MSK;
  1880. /* Basic sanity checks */
  1881. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1882. return -EINVAL;
  1883. if (data_page)
  1884. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1885. /* ... and get the mountpoint */
  1886. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1887. if (retval)
  1888. return retval;
  1889. retval = security_sb_mount(dev_name, &path,
  1890. type_page, flags, data_page);
  1891. if (retval)
  1892. goto dput_out;
  1893. /* Default to relatime unless overriden */
  1894. if (!(flags & MS_NOATIME))
  1895. mnt_flags |= MNT_RELATIME;
  1896. /* Separate the per-mountpoint flags */
  1897. if (flags & MS_NOSUID)
  1898. mnt_flags |= MNT_NOSUID;
  1899. if (flags & MS_NODEV)
  1900. mnt_flags |= MNT_NODEV;
  1901. if (flags & MS_NOEXEC)
  1902. mnt_flags |= MNT_NOEXEC;
  1903. if (flags & MS_NOATIME)
  1904. mnt_flags |= MNT_NOATIME;
  1905. if (flags & MS_NODIRATIME)
  1906. mnt_flags |= MNT_NODIRATIME;
  1907. if (flags & MS_STRICTATIME)
  1908. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1909. if (flags & MS_RDONLY)
  1910. mnt_flags |= MNT_READONLY;
  1911. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1912. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1913. MS_STRICTATIME);
  1914. if (flags & MS_REMOUNT)
  1915. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1916. data_page);
  1917. else if (flags & MS_BIND)
  1918. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1919. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1920. retval = do_change_type(&path, flags);
  1921. else if (flags & MS_MOVE)
  1922. retval = do_move_mount(&path, dev_name);
  1923. else
  1924. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1925. dev_name, data_page);
  1926. dput_out:
  1927. path_put(&path);
  1928. return retval;
  1929. }
  1930. static struct mnt_namespace *alloc_mnt_ns(void)
  1931. {
  1932. struct mnt_namespace *new_ns;
  1933. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1934. if (!new_ns)
  1935. return ERR_PTR(-ENOMEM);
  1936. atomic_set(&new_ns->count, 1);
  1937. new_ns->root = NULL;
  1938. INIT_LIST_HEAD(&new_ns->list);
  1939. init_waitqueue_head(&new_ns->poll);
  1940. new_ns->event = 0;
  1941. return new_ns;
  1942. }
  1943. void mnt_make_longterm(struct vfsmount *mnt)
  1944. {
  1945. __mnt_make_longterm(real_mount(mnt));
  1946. }
  1947. void mnt_make_shortterm(struct vfsmount *m)
  1948. {
  1949. #ifdef CONFIG_SMP
  1950. struct mount *mnt = real_mount(m);
  1951. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  1952. return;
  1953. br_write_lock(vfsmount_lock);
  1954. atomic_dec(&mnt->mnt_longterm);
  1955. br_write_unlock(vfsmount_lock);
  1956. #endif
  1957. }
  1958. /*
  1959. * Allocate a new namespace structure and populate it with contents
  1960. * copied from the namespace of the passed in task structure.
  1961. */
  1962. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1963. struct fs_struct *fs)
  1964. {
  1965. struct mnt_namespace *new_ns;
  1966. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  1967. struct mount *p, *q;
  1968. struct mount *old = mnt_ns->root;
  1969. struct mount *new;
  1970. new_ns = alloc_mnt_ns();
  1971. if (IS_ERR(new_ns))
  1972. return new_ns;
  1973. down_write(&namespace_sem);
  1974. /* First pass: copy the tree topology */
  1975. new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
  1976. if (!new) {
  1977. up_write(&namespace_sem);
  1978. kfree(new_ns);
  1979. return ERR_PTR(-ENOMEM);
  1980. }
  1981. new_ns->root = new;
  1982. br_write_lock(vfsmount_lock);
  1983. list_add_tail(&new_ns->list, &new->mnt_list);
  1984. br_write_unlock(vfsmount_lock);
  1985. /*
  1986. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1987. * as belonging to new namespace. We have already acquired a private
  1988. * fs_struct, so tsk->fs->lock is not needed.
  1989. */
  1990. p = old;
  1991. q = new;
  1992. while (p) {
  1993. q->mnt_ns = new_ns;
  1994. __mnt_make_longterm(q);
  1995. if (fs) {
  1996. if (&p->mnt == fs->root.mnt) {
  1997. fs->root.mnt = mntget(&q->mnt);
  1998. __mnt_make_longterm(q);
  1999. mnt_make_shortterm(&p->mnt);
  2000. rootmnt = &p->mnt;
  2001. }
  2002. if (&p->mnt == fs->pwd.mnt) {
  2003. fs->pwd.mnt = mntget(&q->mnt);
  2004. __mnt_make_longterm(q);
  2005. mnt_make_shortterm(&p->mnt);
  2006. pwdmnt = &p->mnt;
  2007. }
  2008. }
  2009. p = next_mnt(p, old);
  2010. q = next_mnt(q, new);
  2011. }
  2012. up_write(&namespace_sem);
  2013. if (rootmnt)
  2014. mntput(rootmnt);
  2015. if (pwdmnt)
  2016. mntput(pwdmnt);
  2017. return new_ns;
  2018. }
  2019. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2020. struct fs_struct *new_fs)
  2021. {
  2022. struct mnt_namespace *new_ns;
  2023. BUG_ON(!ns);
  2024. get_mnt_ns(ns);
  2025. if (!(flags & CLONE_NEWNS))
  2026. return ns;
  2027. new_ns = dup_mnt_ns(ns, new_fs);
  2028. put_mnt_ns(ns);
  2029. return new_ns;
  2030. }
  2031. /**
  2032. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2033. * @mnt: pointer to the new root filesystem mountpoint
  2034. */
  2035. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2036. {
  2037. struct mnt_namespace *new_ns = alloc_mnt_ns();
  2038. if (!IS_ERR(new_ns)) {
  2039. struct mount *mnt = real_mount(m);
  2040. mnt->mnt_ns = new_ns;
  2041. __mnt_make_longterm(mnt);
  2042. new_ns->root = mnt;
  2043. list_add(&new_ns->list, &mnt->mnt_list);
  2044. } else {
  2045. mntput(m);
  2046. }
  2047. return new_ns;
  2048. }
  2049. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2050. {
  2051. struct mnt_namespace *ns;
  2052. struct super_block *s;
  2053. struct path path;
  2054. int err;
  2055. ns = create_mnt_ns(mnt);
  2056. if (IS_ERR(ns))
  2057. return ERR_CAST(ns);
  2058. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2059. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2060. put_mnt_ns(ns);
  2061. if (err)
  2062. return ERR_PTR(err);
  2063. /* trade a vfsmount reference for active sb one */
  2064. s = path.mnt->mnt_sb;
  2065. atomic_inc(&s->s_active);
  2066. mntput(path.mnt);
  2067. /* lock the sucker */
  2068. down_write(&s->s_umount);
  2069. /* ... and return the root of (sub)tree on it */
  2070. return path.dentry;
  2071. }
  2072. EXPORT_SYMBOL(mount_subtree);
  2073. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2074. char __user *, type, unsigned long, flags, void __user *, data)
  2075. {
  2076. int ret;
  2077. char *kernel_type;
  2078. char *kernel_dir;
  2079. char *kernel_dev;
  2080. unsigned long data_page;
  2081. ret = copy_mount_string(type, &kernel_type);
  2082. if (ret < 0)
  2083. goto out_type;
  2084. kernel_dir = getname(dir_name);
  2085. if (IS_ERR(kernel_dir)) {
  2086. ret = PTR_ERR(kernel_dir);
  2087. goto out_dir;
  2088. }
  2089. ret = copy_mount_string(dev_name, &kernel_dev);
  2090. if (ret < 0)
  2091. goto out_dev;
  2092. ret = copy_mount_options(data, &data_page);
  2093. if (ret < 0)
  2094. goto out_data;
  2095. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2096. (void *) data_page);
  2097. free_page(data_page);
  2098. out_data:
  2099. kfree(kernel_dev);
  2100. out_dev:
  2101. putname(kernel_dir);
  2102. out_dir:
  2103. kfree(kernel_type);
  2104. out_type:
  2105. return ret;
  2106. }
  2107. /*
  2108. * Return true if path is reachable from root
  2109. *
  2110. * namespace_sem or vfsmount_lock is held
  2111. */
  2112. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2113. const struct path *root)
  2114. {
  2115. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2116. dentry = mnt->mnt_mountpoint;
  2117. mnt = mnt->mnt_parent;
  2118. }
  2119. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2120. }
  2121. int path_is_under(struct path *path1, struct path *path2)
  2122. {
  2123. int res;
  2124. br_read_lock(vfsmount_lock);
  2125. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2126. br_read_unlock(vfsmount_lock);
  2127. return res;
  2128. }
  2129. EXPORT_SYMBOL(path_is_under);
  2130. /*
  2131. * pivot_root Semantics:
  2132. * Moves the root file system of the current process to the directory put_old,
  2133. * makes new_root as the new root file system of the current process, and sets
  2134. * root/cwd of all processes which had them on the current root to new_root.
  2135. *
  2136. * Restrictions:
  2137. * The new_root and put_old must be directories, and must not be on the
  2138. * same file system as the current process root. The put_old must be
  2139. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2140. * pointed to by put_old must yield the same directory as new_root. No other
  2141. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2142. *
  2143. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2144. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2145. * in this situation.
  2146. *
  2147. * Notes:
  2148. * - we don't move root/cwd if they are not at the root (reason: if something
  2149. * cared enough to change them, it's probably wrong to force them elsewhere)
  2150. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2151. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2152. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2153. * first.
  2154. */
  2155. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2156. const char __user *, put_old)
  2157. {
  2158. struct path new, old, parent_path, root_parent, root;
  2159. struct mount *new_mnt, *root_mnt;
  2160. int error;
  2161. if (!capable(CAP_SYS_ADMIN))
  2162. return -EPERM;
  2163. error = user_path_dir(new_root, &new);
  2164. if (error)
  2165. goto out0;
  2166. error = user_path_dir(put_old, &old);
  2167. if (error)
  2168. goto out1;
  2169. error = security_sb_pivotroot(&old, &new);
  2170. if (error)
  2171. goto out2;
  2172. get_fs_root(current->fs, &root);
  2173. error = lock_mount(&old);
  2174. if (error)
  2175. goto out3;
  2176. error = -EINVAL;
  2177. new_mnt = real_mount(new.mnt);
  2178. root_mnt = real_mount(root.mnt);
  2179. if (IS_MNT_SHARED(real_mount(old.mnt)) ||
  2180. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2181. IS_MNT_SHARED(root_mnt->mnt_parent))
  2182. goto out4;
  2183. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2184. goto out4;
  2185. error = -ENOENT;
  2186. if (d_unlinked(new.dentry))
  2187. goto out4;
  2188. if (d_unlinked(old.dentry))
  2189. goto out4;
  2190. error = -EBUSY;
  2191. if (new.mnt == root.mnt ||
  2192. old.mnt == root.mnt)
  2193. goto out4; /* loop, on the same file system */
  2194. error = -EINVAL;
  2195. if (root.mnt->mnt_root != root.dentry)
  2196. goto out4; /* not a mountpoint */
  2197. if (!mnt_has_parent(root_mnt))
  2198. goto out4; /* not attached */
  2199. if (new.mnt->mnt_root != new.dentry)
  2200. goto out4; /* not a mountpoint */
  2201. if (!mnt_has_parent(new_mnt))
  2202. goto out4; /* not attached */
  2203. /* make sure we can reach put_old from new_root */
  2204. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2205. goto out4;
  2206. br_write_lock(vfsmount_lock);
  2207. detach_mnt(new_mnt, &parent_path);
  2208. detach_mnt(root_mnt, &root_parent);
  2209. /* mount old root on put_old */
  2210. attach_mnt(root_mnt, &old);
  2211. /* mount new_root on / */
  2212. attach_mnt(new_mnt, &root_parent);
  2213. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2214. br_write_unlock(vfsmount_lock);
  2215. chroot_fs_refs(&root, &new);
  2216. error = 0;
  2217. out4:
  2218. unlock_mount(&old);
  2219. if (!error) {
  2220. path_put(&root_parent);
  2221. path_put(&parent_path);
  2222. }
  2223. out3:
  2224. path_put(&root);
  2225. out2:
  2226. path_put(&old);
  2227. out1:
  2228. path_put(&new);
  2229. out0:
  2230. return error;
  2231. }
  2232. static void __init init_mount_tree(void)
  2233. {
  2234. struct vfsmount *mnt;
  2235. struct mnt_namespace *ns;
  2236. struct path root;
  2237. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2238. if (IS_ERR(mnt))
  2239. panic("Can't create rootfs");
  2240. ns = create_mnt_ns(mnt);
  2241. if (IS_ERR(ns))
  2242. panic("Can't allocate initial namespace");
  2243. init_task.nsproxy->mnt_ns = ns;
  2244. get_mnt_ns(ns);
  2245. root.mnt = mnt;
  2246. root.dentry = mnt->mnt_root;
  2247. set_fs_pwd(current->fs, &root);
  2248. set_fs_root(current->fs, &root);
  2249. }
  2250. void __init mnt_init(void)
  2251. {
  2252. unsigned u;
  2253. int err;
  2254. init_rwsem(&namespace_sem);
  2255. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2256. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2257. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2258. if (!mount_hashtable)
  2259. panic("Failed to allocate mount hash table\n");
  2260. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2261. for (u = 0; u < HASH_SIZE; u++)
  2262. INIT_LIST_HEAD(&mount_hashtable[u]);
  2263. br_lock_init(vfsmount_lock);
  2264. err = sysfs_init();
  2265. if (err)
  2266. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2267. __func__, err);
  2268. fs_kobj = kobject_create_and_add("fs", NULL);
  2269. if (!fs_kobj)
  2270. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2271. init_rootfs();
  2272. init_mount_tree();
  2273. }
  2274. void put_mnt_ns(struct mnt_namespace *ns)
  2275. {
  2276. LIST_HEAD(umount_list);
  2277. if (!atomic_dec_and_test(&ns->count))
  2278. return;
  2279. down_write(&namespace_sem);
  2280. br_write_lock(vfsmount_lock);
  2281. umount_tree(ns->root, 0, &umount_list);
  2282. br_write_unlock(vfsmount_lock);
  2283. up_write(&namespace_sem);
  2284. release_mounts(&umount_list);
  2285. kfree(ns);
  2286. }
  2287. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2288. {
  2289. struct vfsmount *mnt;
  2290. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2291. if (!IS_ERR(mnt)) {
  2292. /*
  2293. * it is a longterm mount, don't release mnt until
  2294. * we unmount before file sys is unregistered
  2295. */
  2296. mnt_make_longterm(mnt);
  2297. }
  2298. return mnt;
  2299. }
  2300. EXPORT_SYMBOL_GPL(kern_mount_data);
  2301. void kern_unmount(struct vfsmount *mnt)
  2302. {
  2303. /* release long term mount so mount point can be released */
  2304. if (!IS_ERR_OR_NULL(mnt)) {
  2305. mnt_make_shortterm(mnt);
  2306. mntput(mnt);
  2307. }
  2308. }
  2309. EXPORT_SYMBOL(kern_unmount);
  2310. bool our_mnt(struct vfsmount *mnt)
  2311. {
  2312. return check_mnt(real_mount(mnt));
  2313. }