cafe.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752
  1. /*
  2. * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3. *
  4. * Copyright © 2006 Red Hat, Inc.
  5. * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  6. */
  7. #define DEBUG
  8. #include <linux/device.h>
  9. #undef DEBUG
  10. #include <linux/mtd/mtd.h>
  11. #include <linux/mtd/nand.h>
  12. #include <linux/pci.h>
  13. #include <linux/delay.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/dma-mapping.h>
  16. #include <asm/io.h>
  17. #define CAFE_NAND_CTRL1 0x00
  18. #define CAFE_NAND_CTRL2 0x04
  19. #define CAFE_NAND_CTRL3 0x08
  20. #define CAFE_NAND_STATUS 0x0c
  21. #define CAFE_NAND_IRQ 0x10
  22. #define CAFE_NAND_IRQ_MASK 0x14
  23. #define CAFE_NAND_DATA_LEN 0x18
  24. #define CAFE_NAND_ADDR1 0x1c
  25. #define CAFE_NAND_ADDR2 0x20
  26. #define CAFE_NAND_TIMING1 0x24
  27. #define CAFE_NAND_TIMING2 0x28
  28. #define CAFE_NAND_TIMING3 0x2c
  29. #define CAFE_NAND_NONMEM 0x30
  30. #define CAFE_NAND_ECC_RESULT 0x3C
  31. #define CAFE_NAND_DMA_CTRL 0x40
  32. #define CAFE_NAND_DMA_ADDR0 0x44
  33. #define CAFE_NAND_DMA_ADDR1 0x48
  34. #define CAFE_NAND_ECC_SYN01 0x50
  35. #define CAFE_NAND_ECC_SYN23 0x54
  36. #define CAFE_NAND_ECC_SYN45 0x58
  37. #define CAFE_NAND_ECC_SYN67 0x5c
  38. #define CAFE_NAND_READ_DATA 0x1000
  39. #define CAFE_NAND_WRITE_DATA 0x2000
  40. #define CAFE_GLOBAL_CTRL 0x3004
  41. #define CAFE_GLOBAL_IRQ 0x3008
  42. #define CAFE_GLOBAL_IRQ_MASK 0x300c
  43. #define CAFE_NAND_RESET 0x3034
  44. int cafe_correct_ecc(unsigned char *buf,
  45. unsigned short *chk_syndrome_list);
  46. struct cafe_priv {
  47. struct nand_chip nand;
  48. struct pci_dev *pdev;
  49. void __iomem *mmio;
  50. uint32_t ctl1;
  51. uint32_t ctl2;
  52. int datalen;
  53. int nr_data;
  54. int data_pos;
  55. int page_addr;
  56. dma_addr_t dmaaddr;
  57. unsigned char *dmabuf;
  58. };
  59. static int usedma = 1;
  60. module_param(usedma, int, 0644);
  61. static int skipbbt = 0;
  62. module_param(skipbbt, int, 0644);
  63. static int debug = 0;
  64. module_param(debug, int, 0644);
  65. static int regdebug = 0;
  66. module_param(regdebug, int, 0644);
  67. static int checkecc = 1;
  68. module_param(checkecc, int, 0644);
  69. static int numtimings;
  70. static int timing[3];
  71. module_param_array(timing, int, &numtimings, 0644);
  72. /* Hrm. Why isn't this already conditional on something in the struct device? */
  73. #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  74. /* Make it easier to switch to PIO if we need to */
  75. #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
  76. #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
  77. static int cafe_device_ready(struct mtd_info *mtd)
  78. {
  79. struct cafe_priv *cafe = mtd->priv;
  80. int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
  81. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  82. cafe_writel(cafe, irqs, NAND_IRQ);
  83. cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
  84. result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
  85. cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  86. return result;
  87. }
  88. static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
  89. {
  90. struct cafe_priv *cafe = mtd->priv;
  91. if (usedma)
  92. memcpy(cafe->dmabuf + cafe->datalen, buf, len);
  93. else
  94. memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
  95. cafe->datalen += len;
  96. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
  97. len, cafe->datalen);
  98. }
  99. static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  100. {
  101. struct cafe_priv *cafe = mtd->priv;
  102. if (usedma)
  103. memcpy(buf, cafe->dmabuf + cafe->datalen, len);
  104. else
  105. memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
  106. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
  107. len, cafe->datalen);
  108. cafe->datalen += len;
  109. }
  110. static uint8_t cafe_read_byte(struct mtd_info *mtd)
  111. {
  112. struct cafe_priv *cafe = mtd->priv;
  113. uint8_t d;
  114. cafe_read_buf(mtd, &d, 1);
  115. cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
  116. return d;
  117. }
  118. static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
  119. int column, int page_addr)
  120. {
  121. struct cafe_priv *cafe = mtd->priv;
  122. int adrbytes = 0;
  123. uint32_t ctl1;
  124. uint32_t doneint = 0x80000000;
  125. cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
  126. command, column, page_addr);
  127. if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
  128. /* Second half of a command we already calculated */
  129. cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
  130. ctl1 = cafe->ctl1;
  131. cafe->ctl2 &= ~(1<<30);
  132. cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
  133. cafe->ctl1, cafe->nr_data);
  134. goto do_command;
  135. }
  136. /* Reset ECC engine */
  137. cafe_writel(cafe, 0, NAND_CTRL2);
  138. /* Emulate NAND_CMD_READOOB on large-page chips */
  139. if (mtd->writesize > 512 &&
  140. command == NAND_CMD_READOOB) {
  141. column += mtd->writesize;
  142. command = NAND_CMD_READ0;
  143. }
  144. /* FIXME: Do we need to send read command before sending data
  145. for small-page chips, to position the buffer correctly? */
  146. if (column != -1) {
  147. cafe_writel(cafe, column, NAND_ADDR1);
  148. adrbytes = 2;
  149. if (page_addr != -1)
  150. goto write_adr2;
  151. } else if (page_addr != -1) {
  152. cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
  153. page_addr >>= 16;
  154. write_adr2:
  155. cafe_writel(cafe, page_addr, NAND_ADDR2);
  156. adrbytes += 2;
  157. if (mtd->size > mtd->writesize << 16)
  158. adrbytes++;
  159. }
  160. cafe->data_pos = cafe->datalen = 0;
  161. /* Set command valid bit */
  162. ctl1 = 0x80000000 | command;
  163. /* Set RD or WR bits as appropriate */
  164. if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
  165. ctl1 |= (1<<26); /* rd */
  166. /* Always 5 bytes, for now */
  167. cafe->datalen = 4;
  168. /* And one address cycle -- even for STATUS, since the controller doesn't work without */
  169. adrbytes = 1;
  170. } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  171. command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
  172. ctl1 |= 1<<26; /* rd */
  173. /* For now, assume just read to end of page */
  174. cafe->datalen = mtd->writesize + mtd->oobsize - column;
  175. } else if (command == NAND_CMD_SEQIN)
  176. ctl1 |= 1<<25; /* wr */
  177. /* Set number of address bytes */
  178. if (adrbytes)
  179. ctl1 |= ((adrbytes-1)|8) << 27;
  180. if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
  181. /* Ignore the first command of a pair; the hardware
  182. deals with them both at once, later */
  183. cafe->ctl1 = ctl1;
  184. cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
  185. cafe->ctl1, cafe->datalen);
  186. return;
  187. }
  188. /* RNDOUT and READ0 commands need a following byte */
  189. if (command == NAND_CMD_RNDOUT)
  190. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
  191. else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
  192. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
  193. do_command:
  194. cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
  195. cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
  196. /* NB: The datasheet lies -- we really should be subtracting 1 here */
  197. cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
  198. cafe_writel(cafe, 0x90000000, NAND_IRQ);
  199. if (usedma && (ctl1 & (3<<25))) {
  200. uint32_t dmactl = 0xc0000000 + cafe->datalen;
  201. /* If WR or RD bits set, set up DMA */
  202. if (ctl1 & (1<<26)) {
  203. /* It's a read */
  204. dmactl |= (1<<29);
  205. /* ... so it's done when the DMA is done, not just
  206. the command. */
  207. doneint = 0x10000000;
  208. }
  209. cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
  210. }
  211. cafe->datalen = 0;
  212. if (unlikely(regdebug)) {
  213. int i;
  214. printk("About to write command %08x to register 0\n", ctl1);
  215. for (i=4; i< 0x5c; i+=4)
  216. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  217. }
  218. cafe_writel(cafe, ctl1, NAND_CTRL1);
  219. /* Apply this short delay always to ensure that we do wait tWB in
  220. * any case on any machine. */
  221. ndelay(100);
  222. if (1) {
  223. int c;
  224. uint32_t irqs;
  225. for (c = 500000; c != 0; c--) {
  226. irqs = cafe_readl(cafe, NAND_IRQ);
  227. if (irqs & doneint)
  228. break;
  229. udelay(1);
  230. if (!(c % 100000))
  231. cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
  232. cpu_relax();
  233. }
  234. cafe_writel(cafe, doneint, NAND_IRQ);
  235. cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
  236. command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
  237. }
  238. WARN_ON(cafe->ctl2 & (1<<30));
  239. switch (command) {
  240. case NAND_CMD_CACHEDPROG:
  241. case NAND_CMD_PAGEPROG:
  242. case NAND_CMD_ERASE1:
  243. case NAND_CMD_ERASE2:
  244. case NAND_CMD_SEQIN:
  245. case NAND_CMD_RNDIN:
  246. case NAND_CMD_STATUS:
  247. case NAND_CMD_DEPLETE1:
  248. case NAND_CMD_RNDOUT:
  249. case NAND_CMD_STATUS_ERROR:
  250. case NAND_CMD_STATUS_ERROR0:
  251. case NAND_CMD_STATUS_ERROR1:
  252. case NAND_CMD_STATUS_ERROR2:
  253. case NAND_CMD_STATUS_ERROR3:
  254. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  255. return;
  256. }
  257. nand_wait_ready(mtd);
  258. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  259. }
  260. static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
  261. {
  262. //struct cafe_priv *cafe = mtd->priv;
  263. // cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
  264. }
  265. static int cafe_nand_interrupt(int irq, void *id)
  266. {
  267. struct mtd_info *mtd = id;
  268. struct cafe_priv *cafe = mtd->priv;
  269. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  270. cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
  271. if (!irqs)
  272. return IRQ_NONE;
  273. cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
  274. return IRQ_HANDLED;
  275. }
  276. static void cafe_nand_bug(struct mtd_info *mtd)
  277. {
  278. BUG();
  279. }
  280. static int cafe_nand_write_oob(struct mtd_info *mtd,
  281. struct nand_chip *chip, int page)
  282. {
  283. int status = 0;
  284. chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
  285. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  286. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  287. status = chip->waitfunc(mtd, chip);
  288. return status & NAND_STATUS_FAIL ? -EIO : 0;
  289. }
  290. /* Don't use -- use nand_read_oob_std for now */
  291. static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
  292. int page, int sndcmd)
  293. {
  294. chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
  295. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  296. return 1;
  297. }
  298. /**
  299. * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
  300. * @mtd: mtd info structure
  301. * @chip: nand chip info structure
  302. * @buf: buffer to store read data
  303. *
  304. * The hw generator calculates the error syndrome automatically. Therefor
  305. * we need a special oob layout and handling.
  306. */
  307. static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
  308. uint8_t *buf)
  309. {
  310. struct cafe_priv *cafe = mtd->priv;
  311. cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
  312. cafe_readl(cafe, NAND_ECC_RESULT),
  313. cafe_readl(cafe, NAND_ECC_SYN01));
  314. chip->read_buf(mtd, buf, mtd->writesize);
  315. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  316. if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
  317. unsigned short syn[8];
  318. int i;
  319. for (i=0; i<8; i+=2) {
  320. uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
  321. syn[i] = tmp & 0xfff;
  322. syn[i+1] = (tmp >> 16) & 0xfff;
  323. }
  324. if ((i = cafe_correct_ecc(buf, syn)) < 0) {
  325. dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
  326. cafe_readl(cafe, NAND_ADDR2) * 2048);
  327. for (i=0; i< 0x5c; i+=4)
  328. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  329. mtd->ecc_stats.failed++;
  330. } else {
  331. dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
  332. mtd->ecc_stats.corrected += i;
  333. }
  334. }
  335. return 0;
  336. }
  337. static struct nand_ecclayout cafe_oobinfo_2048 = {
  338. .eccbytes = 14,
  339. .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
  340. .oobfree = {{14, 50}}
  341. };
  342. /* Ick. The BBT code really ought to be able to work this bit out
  343. for itself from the above, at least for the 2KiB case */
  344. static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
  345. static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
  346. static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
  347. static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
  348. static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
  349. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  350. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  351. .offs = 14,
  352. .len = 4,
  353. .veroffs = 18,
  354. .maxblocks = 4,
  355. .pattern = cafe_bbt_pattern_2048
  356. };
  357. static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
  358. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  359. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  360. .offs = 14,
  361. .len = 4,
  362. .veroffs = 18,
  363. .maxblocks = 4,
  364. .pattern = cafe_mirror_pattern_2048
  365. };
  366. static struct nand_ecclayout cafe_oobinfo_512 = {
  367. .eccbytes = 14,
  368. .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
  369. .oobfree = {{14, 2}}
  370. };
  371. static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
  372. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  373. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  374. .offs = 14,
  375. .len = 1,
  376. .veroffs = 15,
  377. .maxblocks = 4,
  378. .pattern = cafe_bbt_pattern_512
  379. };
  380. static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
  381. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  382. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  383. .offs = 14,
  384. .len = 1,
  385. .veroffs = 15,
  386. .maxblocks = 4,
  387. .pattern = cafe_mirror_pattern_512
  388. };
  389. static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
  390. struct nand_chip *chip, const uint8_t *buf)
  391. {
  392. struct cafe_priv *cafe = mtd->priv;
  393. chip->write_buf(mtd, buf, mtd->writesize);
  394. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  395. /* Set up ECC autogeneration */
  396. cafe->ctl2 |= (1<<30);
  397. }
  398. static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  399. const uint8_t *buf, int page, int cached, int raw)
  400. {
  401. int status;
  402. chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
  403. if (unlikely(raw))
  404. chip->ecc.write_page_raw(mtd, chip, buf);
  405. else
  406. chip->ecc.write_page(mtd, chip, buf);
  407. /*
  408. * Cached progamming disabled for now, Not sure if its worth the
  409. * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
  410. */
  411. cached = 0;
  412. if (!cached || !(chip->options & NAND_CACHEPRG)) {
  413. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  414. status = chip->waitfunc(mtd, chip);
  415. /*
  416. * See if operation failed and additional status checks are
  417. * available
  418. */
  419. if ((status & NAND_STATUS_FAIL) && (chip->errstat))
  420. status = chip->errstat(mtd, chip, FL_WRITING, status,
  421. page);
  422. if (status & NAND_STATUS_FAIL)
  423. return -EIO;
  424. } else {
  425. chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
  426. status = chip->waitfunc(mtd, chip);
  427. }
  428. #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
  429. /* Send command to read back the data */
  430. chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
  431. if (chip->verify_buf(mtd, buf, mtd->writesize))
  432. return -EIO;
  433. #endif
  434. return 0;
  435. }
  436. static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
  437. {
  438. return 0;
  439. }
  440. static int __devinit cafe_nand_probe(struct pci_dev *pdev,
  441. const struct pci_device_id *ent)
  442. {
  443. struct mtd_info *mtd;
  444. struct cafe_priv *cafe;
  445. uint32_t ctrl;
  446. int err = 0;
  447. err = pci_enable_device(pdev);
  448. if (err)
  449. return err;
  450. pci_set_master(pdev);
  451. mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
  452. if (!mtd) {
  453. dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
  454. return -ENOMEM;
  455. }
  456. cafe = (void *)(&mtd[1]);
  457. mtd->priv = cafe;
  458. mtd->owner = THIS_MODULE;
  459. cafe->pdev = pdev;
  460. cafe->mmio = pci_iomap(pdev, 0, 0);
  461. if (!cafe->mmio) {
  462. dev_warn(&pdev->dev, "failed to iomap\n");
  463. err = -ENOMEM;
  464. goto out_free_mtd;
  465. }
  466. cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
  467. &cafe->dmaaddr, GFP_KERNEL);
  468. if (!cafe->dmabuf) {
  469. err = -ENOMEM;
  470. goto out_ior;
  471. }
  472. cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
  473. cafe->nand.cmdfunc = cafe_nand_cmdfunc;
  474. cafe->nand.dev_ready = cafe_device_ready;
  475. cafe->nand.read_byte = cafe_read_byte;
  476. cafe->nand.read_buf = cafe_read_buf;
  477. cafe->nand.write_buf = cafe_write_buf;
  478. cafe->nand.select_chip = cafe_select_chip;
  479. cafe->nand.chip_delay = 0;
  480. /* Enable the following for a flash based bad block table */
  481. cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
  482. if (skipbbt) {
  483. cafe->nand.options |= NAND_SKIP_BBTSCAN;
  484. cafe->nand.block_bad = cafe_nand_block_bad;
  485. }
  486. if (numtimings && numtimings != 3) {
  487. dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
  488. }
  489. if (numtimings == 3) {
  490. cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
  491. timing[0], timing[1], timing[2]);
  492. } else {
  493. timing[0] = cafe_readl(cafe, NAND_TIMING1);
  494. timing[1] = cafe_readl(cafe, NAND_TIMING2);
  495. timing[2] = cafe_readl(cafe, NAND_TIMING3);
  496. if (timing[0] | timing[1] | timing[2]) {
  497. cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
  498. timing[0], timing[1], timing[2]);
  499. } else {
  500. dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
  501. timing[0] = timing[1] = timing[2] = 0xffffffff;
  502. }
  503. }
  504. /* Start off by resetting the NAND controller completely */
  505. cafe_writel(cafe, 1, NAND_RESET);
  506. cafe_writel(cafe, 0, NAND_RESET);
  507. cafe_writel(cafe, timing[0], NAND_TIMING1);
  508. cafe_writel(cafe, timing[1], NAND_TIMING2);
  509. cafe_writel(cafe, timing[2], NAND_TIMING3);
  510. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  511. err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
  512. "CAFE NAND", mtd);
  513. if (err) {
  514. dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
  515. goto out_free_dma;
  516. }
  517. /* Disable master reset, enable NAND clock */
  518. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  519. ctrl &= 0xffffeff0;
  520. ctrl |= 0x00007000;
  521. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  522. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  523. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  524. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  525. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  526. /* Set up DMA address */
  527. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  528. if (sizeof(cafe->dmaaddr) > 4)
  529. /* Shift in two parts to shut the compiler up */
  530. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  531. else
  532. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  533. cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
  534. cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
  535. /* Enable NAND IRQ in global IRQ mask register */
  536. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  537. cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
  538. cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  539. /* Scan to find existence of the device */
  540. if (nand_scan_ident(mtd, 1)) {
  541. err = -ENXIO;
  542. goto out_irq;
  543. }
  544. cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
  545. if (mtd->writesize == 2048)
  546. cafe->ctl2 |= 1<<29; /* 2KiB page size */
  547. /* Set up ECC according to the type of chip we found */
  548. if (mtd->writesize == 2048) {
  549. cafe->nand.ecc.layout = &cafe_oobinfo_2048;
  550. cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
  551. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
  552. } else if (mtd->writesize == 512) {
  553. cafe->nand.ecc.layout = &cafe_oobinfo_512;
  554. cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
  555. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
  556. } else {
  557. printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
  558. mtd->writesize);
  559. goto out_irq;
  560. }
  561. cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
  562. cafe->nand.ecc.size = mtd->writesize;
  563. cafe->nand.ecc.bytes = 14;
  564. cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
  565. cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
  566. cafe->nand.ecc.correct = (void *)cafe_nand_bug;
  567. cafe->nand.write_page = cafe_nand_write_page;
  568. cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
  569. cafe->nand.ecc.write_oob = cafe_nand_write_oob;
  570. cafe->nand.ecc.read_page = cafe_nand_read_page;
  571. cafe->nand.ecc.read_oob = cafe_nand_read_oob;
  572. err = nand_scan_tail(mtd);
  573. if (err)
  574. goto out_irq;
  575. pci_set_drvdata(pdev, mtd);
  576. add_mtd_device(mtd);
  577. goto out;
  578. out_irq:
  579. /* Disable NAND IRQ in global IRQ mask register */
  580. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  581. free_irq(pdev->irq, mtd);
  582. out_free_dma:
  583. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  584. out_ior:
  585. pci_iounmap(pdev, cafe->mmio);
  586. out_free_mtd:
  587. kfree(mtd);
  588. out:
  589. return err;
  590. }
  591. static void __devexit cafe_nand_remove(struct pci_dev *pdev)
  592. {
  593. struct mtd_info *mtd = pci_get_drvdata(pdev);
  594. struct cafe_priv *cafe = mtd->priv;
  595. del_mtd_device(mtd);
  596. /* Disable NAND IRQ in global IRQ mask register */
  597. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  598. free_irq(pdev->irq, mtd);
  599. nand_release(mtd);
  600. pci_iounmap(pdev, cafe->mmio);
  601. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  602. kfree(mtd);
  603. }
  604. static struct pci_device_id cafe_nand_tbl[] = {
  605. { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
  606. };
  607. MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
  608. static struct pci_driver cafe_nand_pci_driver = {
  609. .name = "CAFÉ NAND",
  610. .id_table = cafe_nand_tbl,
  611. .probe = cafe_nand_probe,
  612. .remove = __devexit_p(cafe_nand_remove),
  613. #ifdef CONFIG_PMx
  614. .suspend = cafe_nand_suspend,
  615. .resume = cafe_nand_resume,
  616. #endif
  617. };
  618. static int cafe_nand_init(void)
  619. {
  620. return pci_register_driver(&cafe_nand_pci_driver);
  621. }
  622. static void cafe_nand_exit(void)
  623. {
  624. pci_unregister_driver(&cafe_nand_pci_driver);
  625. }
  626. module_init(cafe_nand_init);
  627. module_exit(cafe_nand_exit);
  628. MODULE_LICENSE("GPL");
  629. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  630. MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");