mmu.c 98 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  119. /* make pte_list_desc fit well in cache line */
  120. #define PTE_LIST_EXT 3
  121. struct pte_list_desc {
  122. u64 *sptes[PTE_LIST_EXT];
  123. struct pte_list_desc *more;
  124. };
  125. struct kvm_shadow_walk_iterator {
  126. u64 addr;
  127. hpa_t shadow_addr;
  128. u64 *sptep;
  129. int level;
  130. unsigned index;
  131. };
  132. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  133. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  134. shadow_walk_okay(&(_walker)); \
  135. shadow_walk_next(&(_walker)))
  136. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  137. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  138. shadow_walk_okay(&(_walker)) && \
  139. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  140. __shadow_walk_next(&(_walker), spte))
  141. static struct kmem_cache *pte_list_desc_cache;
  142. static struct kmem_cache *mmu_page_header_cache;
  143. static struct percpu_counter kvm_total_used_mmu_pages;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static u64 __read_mostly shadow_mmio_mask;
  150. static void mmu_spte_set(u64 *sptep, u64 spte);
  151. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  152. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  153. {
  154. shadow_mmio_mask = mmio_mask;
  155. }
  156. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  157. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  158. {
  159. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  160. trace_mark_mmio_spte(sptep, gfn, access);
  161. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  162. }
  163. static bool is_mmio_spte(u64 spte)
  164. {
  165. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  166. }
  167. static gfn_t get_mmio_spte_gfn(u64 spte)
  168. {
  169. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  170. }
  171. static unsigned get_mmio_spte_access(u64 spte)
  172. {
  173. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  174. }
  175. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  176. {
  177. if (unlikely(is_noslot_pfn(pfn))) {
  178. mark_mmio_spte(sptep, gfn, access);
  179. return true;
  180. }
  181. return false;
  182. }
  183. static inline u64 rsvd_bits(int s, int e)
  184. {
  185. return ((1ULL << (e - s + 1)) - 1) << s;
  186. }
  187. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  188. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  189. {
  190. shadow_user_mask = user_mask;
  191. shadow_accessed_mask = accessed_mask;
  192. shadow_dirty_mask = dirty_mask;
  193. shadow_nx_mask = nx_mask;
  194. shadow_x_mask = x_mask;
  195. }
  196. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  197. static int is_cpuid_PSE36(void)
  198. {
  199. return 1;
  200. }
  201. static int is_nx(struct kvm_vcpu *vcpu)
  202. {
  203. return vcpu->arch.efer & EFER_NX;
  204. }
  205. static int is_shadow_present_pte(u64 pte)
  206. {
  207. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  208. }
  209. static int is_large_pte(u64 pte)
  210. {
  211. return pte & PT_PAGE_SIZE_MASK;
  212. }
  213. static int is_dirty_gpte(unsigned long pte)
  214. {
  215. return pte & PT_DIRTY_MASK;
  216. }
  217. static int is_rmap_spte(u64 pte)
  218. {
  219. return is_shadow_present_pte(pte);
  220. }
  221. static int is_last_spte(u64 pte, int level)
  222. {
  223. if (level == PT_PAGE_TABLE_LEVEL)
  224. return 1;
  225. if (is_large_pte(pte))
  226. return 1;
  227. return 0;
  228. }
  229. static pfn_t spte_to_pfn(u64 pte)
  230. {
  231. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  232. }
  233. static gfn_t pse36_gfn_delta(u32 gpte)
  234. {
  235. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  236. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  237. }
  238. #ifdef CONFIG_X86_64
  239. static void __set_spte(u64 *sptep, u64 spte)
  240. {
  241. *sptep = spte;
  242. }
  243. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  244. {
  245. *sptep = spte;
  246. }
  247. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  248. {
  249. return xchg(sptep, spte);
  250. }
  251. static u64 __get_spte_lockless(u64 *sptep)
  252. {
  253. return ACCESS_ONCE(*sptep);
  254. }
  255. static bool __check_direct_spte_mmio_pf(u64 spte)
  256. {
  257. /* It is valid if the spte is zapped. */
  258. return spte == 0ull;
  259. }
  260. #else
  261. union split_spte {
  262. struct {
  263. u32 spte_low;
  264. u32 spte_high;
  265. };
  266. u64 spte;
  267. };
  268. static void count_spte_clear(u64 *sptep, u64 spte)
  269. {
  270. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  271. if (is_shadow_present_pte(spte))
  272. return;
  273. /* Ensure the spte is completely set before we increase the count */
  274. smp_wmb();
  275. sp->clear_spte_count++;
  276. }
  277. static void __set_spte(u64 *sptep, u64 spte)
  278. {
  279. union split_spte *ssptep, sspte;
  280. ssptep = (union split_spte *)sptep;
  281. sspte = (union split_spte)spte;
  282. ssptep->spte_high = sspte.spte_high;
  283. /*
  284. * If we map the spte from nonpresent to present, We should store
  285. * the high bits firstly, then set present bit, so cpu can not
  286. * fetch this spte while we are setting the spte.
  287. */
  288. smp_wmb();
  289. ssptep->spte_low = sspte.spte_low;
  290. }
  291. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  292. {
  293. union split_spte *ssptep, sspte;
  294. ssptep = (union split_spte *)sptep;
  295. sspte = (union split_spte)spte;
  296. ssptep->spte_low = sspte.spte_low;
  297. /*
  298. * If we map the spte from present to nonpresent, we should clear
  299. * present bit firstly to avoid vcpu fetch the old high bits.
  300. */
  301. smp_wmb();
  302. ssptep->spte_high = sspte.spte_high;
  303. count_spte_clear(sptep, spte);
  304. }
  305. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  306. {
  307. union split_spte *ssptep, sspte, orig;
  308. ssptep = (union split_spte *)sptep;
  309. sspte = (union split_spte)spte;
  310. /* xchg acts as a barrier before the setting of the high bits */
  311. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  312. orig.spte_high = ssptep->spte_high;
  313. ssptep->spte_high = sspte.spte_high;
  314. count_spte_clear(sptep, spte);
  315. return orig.spte;
  316. }
  317. /*
  318. * The idea using the light way get the spte on x86_32 guest is from
  319. * gup_get_pte(arch/x86/mm/gup.c).
  320. * The difference is we can not catch the spte tlb flush if we leave
  321. * guest mode, so we emulate it by increase clear_spte_count when spte
  322. * is cleared.
  323. */
  324. static u64 __get_spte_lockless(u64 *sptep)
  325. {
  326. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  327. union split_spte spte, *orig = (union split_spte *)sptep;
  328. int count;
  329. retry:
  330. count = sp->clear_spte_count;
  331. smp_rmb();
  332. spte.spte_low = orig->spte_low;
  333. smp_rmb();
  334. spte.spte_high = orig->spte_high;
  335. smp_rmb();
  336. if (unlikely(spte.spte_low != orig->spte_low ||
  337. count != sp->clear_spte_count))
  338. goto retry;
  339. return spte.spte;
  340. }
  341. static bool __check_direct_spte_mmio_pf(u64 spte)
  342. {
  343. union split_spte sspte = (union split_spte)spte;
  344. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  345. /* It is valid if the spte is zapped. */
  346. if (spte == 0ull)
  347. return true;
  348. /* It is valid if the spte is being zapped. */
  349. if (sspte.spte_low == 0ull &&
  350. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  351. return true;
  352. return false;
  353. }
  354. #endif
  355. static bool spte_has_volatile_bits(u64 spte)
  356. {
  357. if (!shadow_accessed_mask)
  358. return false;
  359. if (!is_shadow_present_pte(spte))
  360. return false;
  361. if ((spte & shadow_accessed_mask) &&
  362. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  363. return false;
  364. return true;
  365. }
  366. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  367. {
  368. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  369. }
  370. /* Rules for using mmu_spte_set:
  371. * Set the sptep from nonpresent to present.
  372. * Note: the sptep being assigned *must* be either not present
  373. * or in a state where the hardware will not attempt to update
  374. * the spte.
  375. */
  376. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  377. {
  378. WARN_ON(is_shadow_present_pte(*sptep));
  379. __set_spte(sptep, new_spte);
  380. }
  381. /* Rules for using mmu_spte_update:
  382. * Update the state bits, it means the mapped pfn is not changged.
  383. */
  384. static void mmu_spte_update(u64 *sptep, u64 new_spte)
  385. {
  386. u64 mask, old_spte = *sptep;
  387. WARN_ON(!is_rmap_spte(new_spte));
  388. if (!is_shadow_present_pte(old_spte))
  389. return mmu_spte_set(sptep, new_spte);
  390. new_spte |= old_spte & shadow_dirty_mask;
  391. mask = shadow_accessed_mask;
  392. if (is_writable_pte(old_spte))
  393. mask |= shadow_dirty_mask;
  394. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  395. __update_clear_spte_fast(sptep, new_spte);
  396. else
  397. old_spte = __update_clear_spte_slow(sptep, new_spte);
  398. if (!shadow_accessed_mask)
  399. return;
  400. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  401. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  402. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  403. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  404. }
  405. /*
  406. * Rules for using mmu_spte_clear_track_bits:
  407. * It sets the sptep from present to nonpresent, and track the
  408. * state bits, it is used to clear the last level sptep.
  409. */
  410. static int mmu_spte_clear_track_bits(u64 *sptep)
  411. {
  412. pfn_t pfn;
  413. u64 old_spte = *sptep;
  414. if (!spte_has_volatile_bits(old_spte))
  415. __update_clear_spte_fast(sptep, 0ull);
  416. else
  417. old_spte = __update_clear_spte_slow(sptep, 0ull);
  418. if (!is_rmap_spte(old_spte))
  419. return 0;
  420. pfn = spte_to_pfn(old_spte);
  421. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  422. kvm_set_pfn_accessed(pfn);
  423. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  424. kvm_set_pfn_dirty(pfn);
  425. return 1;
  426. }
  427. /*
  428. * Rules for using mmu_spte_clear_no_track:
  429. * Directly clear spte without caring the state bits of sptep,
  430. * it is used to set the upper level spte.
  431. */
  432. static void mmu_spte_clear_no_track(u64 *sptep)
  433. {
  434. __update_clear_spte_fast(sptep, 0ull);
  435. }
  436. static u64 mmu_spte_get_lockless(u64 *sptep)
  437. {
  438. return __get_spte_lockless(sptep);
  439. }
  440. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  441. {
  442. /*
  443. * Prevent page table teardown by making any free-er wait during
  444. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  445. */
  446. local_irq_disable();
  447. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  448. /*
  449. * Make sure a following spte read is not reordered ahead of the write
  450. * to vcpu->mode.
  451. */
  452. smp_mb();
  453. }
  454. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  455. {
  456. /*
  457. * Make sure the write to vcpu->mode is not reordered in front of
  458. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  459. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  460. */
  461. smp_mb();
  462. vcpu->mode = OUTSIDE_GUEST_MODE;
  463. local_irq_enable();
  464. }
  465. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  466. struct kmem_cache *base_cache, int min)
  467. {
  468. void *obj;
  469. if (cache->nobjs >= min)
  470. return 0;
  471. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  472. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  473. if (!obj)
  474. return -ENOMEM;
  475. cache->objects[cache->nobjs++] = obj;
  476. }
  477. return 0;
  478. }
  479. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  480. {
  481. return cache->nobjs;
  482. }
  483. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  484. struct kmem_cache *cache)
  485. {
  486. while (mc->nobjs)
  487. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  488. }
  489. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  490. int min)
  491. {
  492. void *page;
  493. if (cache->nobjs >= min)
  494. return 0;
  495. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  496. page = (void *)__get_free_page(GFP_KERNEL);
  497. if (!page)
  498. return -ENOMEM;
  499. cache->objects[cache->nobjs++] = page;
  500. }
  501. return 0;
  502. }
  503. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  504. {
  505. while (mc->nobjs)
  506. free_page((unsigned long)mc->objects[--mc->nobjs]);
  507. }
  508. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  509. {
  510. int r;
  511. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  512. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  513. if (r)
  514. goto out;
  515. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  516. if (r)
  517. goto out;
  518. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  519. mmu_page_header_cache, 4);
  520. out:
  521. return r;
  522. }
  523. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  524. {
  525. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  526. pte_list_desc_cache);
  527. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  528. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  529. mmu_page_header_cache);
  530. }
  531. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  532. {
  533. void *p;
  534. BUG_ON(!mc->nobjs);
  535. p = mc->objects[--mc->nobjs];
  536. return p;
  537. }
  538. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  539. {
  540. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  541. }
  542. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  543. {
  544. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  545. }
  546. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  547. {
  548. if (!sp->role.direct)
  549. return sp->gfns[index];
  550. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  551. }
  552. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  553. {
  554. if (sp->role.direct)
  555. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  556. else
  557. sp->gfns[index] = gfn;
  558. }
  559. /*
  560. * Return the pointer to the large page information for a given gfn,
  561. * handling slots that are not large page aligned.
  562. */
  563. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  564. struct kvm_memory_slot *slot,
  565. int level)
  566. {
  567. unsigned long idx;
  568. idx = gfn_to_index(gfn, slot->base_gfn, level);
  569. return &slot->arch.lpage_info[level - 2][idx];
  570. }
  571. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  572. {
  573. struct kvm_memory_slot *slot;
  574. struct kvm_lpage_info *linfo;
  575. int i;
  576. slot = gfn_to_memslot(kvm, gfn);
  577. for (i = PT_DIRECTORY_LEVEL;
  578. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  579. linfo = lpage_info_slot(gfn, slot, i);
  580. linfo->write_count += 1;
  581. }
  582. kvm->arch.indirect_shadow_pages++;
  583. }
  584. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  585. {
  586. struct kvm_memory_slot *slot;
  587. struct kvm_lpage_info *linfo;
  588. int i;
  589. slot = gfn_to_memslot(kvm, gfn);
  590. for (i = PT_DIRECTORY_LEVEL;
  591. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  592. linfo = lpage_info_slot(gfn, slot, i);
  593. linfo->write_count -= 1;
  594. WARN_ON(linfo->write_count < 0);
  595. }
  596. kvm->arch.indirect_shadow_pages--;
  597. }
  598. static int has_wrprotected_page(struct kvm *kvm,
  599. gfn_t gfn,
  600. int level)
  601. {
  602. struct kvm_memory_slot *slot;
  603. struct kvm_lpage_info *linfo;
  604. slot = gfn_to_memslot(kvm, gfn);
  605. if (slot) {
  606. linfo = lpage_info_slot(gfn, slot, level);
  607. return linfo->write_count;
  608. }
  609. return 1;
  610. }
  611. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  612. {
  613. unsigned long page_size;
  614. int i, ret = 0;
  615. page_size = kvm_host_page_size(kvm, gfn);
  616. for (i = PT_PAGE_TABLE_LEVEL;
  617. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  618. if (page_size >= KVM_HPAGE_SIZE(i))
  619. ret = i;
  620. else
  621. break;
  622. }
  623. return ret;
  624. }
  625. static struct kvm_memory_slot *
  626. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  627. bool no_dirty_log)
  628. {
  629. struct kvm_memory_slot *slot;
  630. slot = gfn_to_memslot(vcpu->kvm, gfn);
  631. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  632. (no_dirty_log && slot->dirty_bitmap))
  633. slot = NULL;
  634. return slot;
  635. }
  636. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  637. {
  638. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  639. }
  640. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  641. {
  642. int host_level, level, max_level;
  643. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  644. if (host_level == PT_PAGE_TABLE_LEVEL)
  645. return host_level;
  646. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  647. kvm_x86_ops->get_lpage_level() : host_level;
  648. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  649. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  650. break;
  651. return level - 1;
  652. }
  653. /*
  654. * Pte mapping structures:
  655. *
  656. * If pte_list bit zero is zero, then pte_list point to the spte.
  657. *
  658. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  659. * pte_list_desc containing more mappings.
  660. *
  661. * Returns the number of pte entries before the spte was added or zero if
  662. * the spte was not added.
  663. *
  664. */
  665. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  666. unsigned long *pte_list)
  667. {
  668. struct pte_list_desc *desc;
  669. int i, count = 0;
  670. if (!*pte_list) {
  671. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  672. *pte_list = (unsigned long)spte;
  673. } else if (!(*pte_list & 1)) {
  674. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  675. desc = mmu_alloc_pte_list_desc(vcpu);
  676. desc->sptes[0] = (u64 *)*pte_list;
  677. desc->sptes[1] = spte;
  678. *pte_list = (unsigned long)desc | 1;
  679. ++count;
  680. } else {
  681. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  682. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  683. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  684. desc = desc->more;
  685. count += PTE_LIST_EXT;
  686. }
  687. if (desc->sptes[PTE_LIST_EXT-1]) {
  688. desc->more = mmu_alloc_pte_list_desc(vcpu);
  689. desc = desc->more;
  690. }
  691. for (i = 0; desc->sptes[i]; ++i)
  692. ++count;
  693. desc->sptes[i] = spte;
  694. }
  695. return count;
  696. }
  697. static void
  698. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  699. int i, struct pte_list_desc *prev_desc)
  700. {
  701. int j;
  702. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  703. ;
  704. desc->sptes[i] = desc->sptes[j];
  705. desc->sptes[j] = NULL;
  706. if (j != 0)
  707. return;
  708. if (!prev_desc && !desc->more)
  709. *pte_list = (unsigned long)desc->sptes[0];
  710. else
  711. if (prev_desc)
  712. prev_desc->more = desc->more;
  713. else
  714. *pte_list = (unsigned long)desc->more | 1;
  715. mmu_free_pte_list_desc(desc);
  716. }
  717. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  718. {
  719. struct pte_list_desc *desc;
  720. struct pte_list_desc *prev_desc;
  721. int i;
  722. if (!*pte_list) {
  723. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  724. BUG();
  725. } else if (!(*pte_list & 1)) {
  726. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  727. if ((u64 *)*pte_list != spte) {
  728. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  729. BUG();
  730. }
  731. *pte_list = 0;
  732. } else {
  733. rmap_printk("pte_list_remove: %p many->many\n", spte);
  734. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  735. prev_desc = NULL;
  736. while (desc) {
  737. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  738. if (desc->sptes[i] == spte) {
  739. pte_list_desc_remove_entry(pte_list,
  740. desc, i,
  741. prev_desc);
  742. return;
  743. }
  744. prev_desc = desc;
  745. desc = desc->more;
  746. }
  747. pr_err("pte_list_remove: %p many->many\n", spte);
  748. BUG();
  749. }
  750. }
  751. typedef void (*pte_list_walk_fn) (u64 *spte);
  752. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  753. {
  754. struct pte_list_desc *desc;
  755. int i;
  756. if (!*pte_list)
  757. return;
  758. if (!(*pte_list & 1))
  759. return fn((u64 *)*pte_list);
  760. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  761. while (desc) {
  762. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  763. fn(desc->sptes[i]);
  764. desc = desc->more;
  765. }
  766. }
  767. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  768. struct kvm_memory_slot *slot)
  769. {
  770. struct kvm_lpage_info *linfo;
  771. if (likely(level == PT_PAGE_TABLE_LEVEL))
  772. return &slot->rmap[gfn - slot->base_gfn];
  773. linfo = lpage_info_slot(gfn, slot, level);
  774. return &linfo->rmap_pde;
  775. }
  776. /*
  777. * Take gfn and return the reverse mapping to it.
  778. */
  779. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  780. {
  781. struct kvm_memory_slot *slot;
  782. slot = gfn_to_memslot(kvm, gfn);
  783. return __gfn_to_rmap(gfn, level, slot);
  784. }
  785. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  786. {
  787. struct kvm_mmu_memory_cache *cache;
  788. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  789. return mmu_memory_cache_free_objects(cache);
  790. }
  791. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  792. {
  793. struct kvm_mmu_page *sp;
  794. unsigned long *rmapp;
  795. sp = page_header(__pa(spte));
  796. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  797. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  798. return pte_list_add(vcpu, spte, rmapp);
  799. }
  800. static void rmap_remove(struct kvm *kvm, u64 *spte)
  801. {
  802. struct kvm_mmu_page *sp;
  803. gfn_t gfn;
  804. unsigned long *rmapp;
  805. sp = page_header(__pa(spte));
  806. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  807. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  808. pte_list_remove(spte, rmapp);
  809. }
  810. /*
  811. * Used by the following functions to iterate through the sptes linked by a
  812. * rmap. All fields are private and not assumed to be used outside.
  813. */
  814. struct rmap_iterator {
  815. /* private fields */
  816. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  817. int pos; /* index of the sptep */
  818. };
  819. /*
  820. * Iteration must be started by this function. This should also be used after
  821. * removing/dropping sptes from the rmap link because in such cases the
  822. * information in the itererator may not be valid.
  823. *
  824. * Returns sptep if found, NULL otherwise.
  825. */
  826. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  827. {
  828. if (!rmap)
  829. return NULL;
  830. if (!(rmap & 1)) {
  831. iter->desc = NULL;
  832. return (u64 *)rmap;
  833. }
  834. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  835. iter->pos = 0;
  836. return iter->desc->sptes[iter->pos];
  837. }
  838. /*
  839. * Must be used with a valid iterator: e.g. after rmap_get_first().
  840. *
  841. * Returns sptep if found, NULL otherwise.
  842. */
  843. static u64 *rmap_get_next(struct rmap_iterator *iter)
  844. {
  845. if (iter->desc) {
  846. if (iter->pos < PTE_LIST_EXT - 1) {
  847. u64 *sptep;
  848. ++iter->pos;
  849. sptep = iter->desc->sptes[iter->pos];
  850. if (sptep)
  851. return sptep;
  852. }
  853. iter->desc = iter->desc->more;
  854. if (iter->desc) {
  855. iter->pos = 0;
  856. /* desc->sptes[0] cannot be NULL */
  857. return iter->desc->sptes[iter->pos];
  858. }
  859. }
  860. return NULL;
  861. }
  862. static void drop_spte(struct kvm *kvm, u64 *sptep)
  863. {
  864. if (mmu_spte_clear_track_bits(sptep))
  865. rmap_remove(kvm, sptep);
  866. }
  867. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  868. {
  869. if (is_large_pte(*sptep)) {
  870. WARN_ON(page_header(__pa(sptep))->role.level ==
  871. PT_PAGE_TABLE_LEVEL);
  872. drop_spte(kvm, sptep);
  873. --kvm->stat.lpages;
  874. return true;
  875. }
  876. return false;
  877. }
  878. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  879. {
  880. if (__drop_large_spte(vcpu->kvm, sptep))
  881. kvm_flush_remote_tlbs(vcpu->kvm);
  882. }
  883. /*
  884. * Write-protect on the specified @sptep due to dirty page logging or
  885. * protecting shadow page table. @flush indicates whether tlb need be
  886. * flushed.
  887. *
  888. * Return true if the spte is dropped.
  889. */
  890. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush)
  891. {
  892. u64 spte = *sptep;
  893. if (!is_writable_pte(spte))
  894. return false;
  895. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  896. *flush |= true;
  897. if (__drop_large_spte(kvm, sptep))
  898. return true;
  899. spte = spte & ~PT_WRITABLE_MASK;
  900. mmu_spte_update(sptep, spte);
  901. return false;
  902. }
  903. static bool
  904. __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
  905. {
  906. u64 *sptep;
  907. struct rmap_iterator iter;
  908. bool flush = false;
  909. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  910. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  911. if (spte_write_protect(kvm, sptep, &flush)) {
  912. sptep = rmap_get_first(*rmapp, &iter);
  913. continue;
  914. }
  915. sptep = rmap_get_next(&iter);
  916. }
  917. return flush;
  918. }
  919. /**
  920. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  921. * @kvm: kvm instance
  922. * @slot: slot to protect
  923. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  924. * @mask: indicates which pages we should protect
  925. *
  926. * Used when we do not need to care about huge page mappings: e.g. during dirty
  927. * logging we do not have any such mappings.
  928. */
  929. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  930. struct kvm_memory_slot *slot,
  931. gfn_t gfn_offset, unsigned long mask)
  932. {
  933. unsigned long *rmapp;
  934. while (mask) {
  935. rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
  936. __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
  937. /* clear the first set bit */
  938. mask &= mask - 1;
  939. }
  940. }
  941. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  942. {
  943. struct kvm_memory_slot *slot;
  944. unsigned long *rmapp;
  945. int i;
  946. bool write_protected = false;
  947. slot = gfn_to_memslot(kvm, gfn);
  948. for (i = PT_PAGE_TABLE_LEVEL;
  949. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  950. rmapp = __gfn_to_rmap(gfn, i, slot);
  951. write_protected |= __rmap_write_protect(kvm, rmapp, i);
  952. }
  953. return write_protected;
  954. }
  955. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  956. unsigned long data)
  957. {
  958. u64 *sptep;
  959. struct rmap_iterator iter;
  960. int need_tlb_flush = 0;
  961. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  962. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  963. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  964. drop_spte(kvm, sptep);
  965. need_tlb_flush = 1;
  966. }
  967. return need_tlb_flush;
  968. }
  969. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  970. unsigned long data)
  971. {
  972. u64 *sptep;
  973. struct rmap_iterator iter;
  974. int need_flush = 0;
  975. u64 new_spte;
  976. pte_t *ptep = (pte_t *)data;
  977. pfn_t new_pfn;
  978. WARN_ON(pte_huge(*ptep));
  979. new_pfn = pte_pfn(*ptep);
  980. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  981. BUG_ON(!is_shadow_present_pte(*sptep));
  982. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  983. need_flush = 1;
  984. if (pte_write(*ptep)) {
  985. drop_spte(kvm, sptep);
  986. sptep = rmap_get_first(*rmapp, &iter);
  987. } else {
  988. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  989. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  990. new_spte &= ~PT_WRITABLE_MASK;
  991. new_spte &= ~SPTE_HOST_WRITEABLE;
  992. new_spte &= ~shadow_accessed_mask;
  993. mmu_spte_clear_track_bits(sptep);
  994. mmu_spte_set(sptep, new_spte);
  995. sptep = rmap_get_next(&iter);
  996. }
  997. }
  998. if (need_flush)
  999. kvm_flush_remote_tlbs(kvm);
  1000. return 0;
  1001. }
  1002. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1003. unsigned long data,
  1004. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1005. unsigned long data))
  1006. {
  1007. int j;
  1008. int ret;
  1009. int retval = 0;
  1010. struct kvm_memslots *slots;
  1011. struct kvm_memory_slot *memslot;
  1012. slots = kvm_memslots(kvm);
  1013. kvm_for_each_memslot(memslot, slots) {
  1014. unsigned long start = memslot->userspace_addr;
  1015. unsigned long end;
  1016. end = start + (memslot->npages << PAGE_SHIFT);
  1017. if (hva >= start && hva < end) {
  1018. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  1019. gfn_t gfn = memslot->base_gfn + gfn_offset;
  1020. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  1021. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  1022. struct kvm_lpage_info *linfo;
  1023. linfo = lpage_info_slot(gfn, memslot,
  1024. PT_DIRECTORY_LEVEL + j);
  1025. ret |= handler(kvm, &linfo->rmap_pde, data);
  1026. }
  1027. trace_kvm_age_page(hva, memslot, ret);
  1028. retval |= ret;
  1029. }
  1030. }
  1031. return retval;
  1032. }
  1033. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1034. {
  1035. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1036. }
  1037. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1038. {
  1039. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1040. }
  1041. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1042. unsigned long data)
  1043. {
  1044. u64 *sptep;
  1045. struct rmap_iterator uninitialized_var(iter);
  1046. int young = 0;
  1047. /*
  1048. * In case of absence of EPT Access and Dirty Bits supports,
  1049. * emulate the accessed bit for EPT, by checking if this page has
  1050. * an EPT mapping, and clearing it if it does. On the next access,
  1051. * a new EPT mapping will be established.
  1052. * This has some overhead, but not as much as the cost of swapping
  1053. * out actively used pages or breaking up actively used hugepages.
  1054. */
  1055. if (!shadow_accessed_mask)
  1056. return kvm_unmap_rmapp(kvm, rmapp, data);
  1057. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1058. sptep = rmap_get_next(&iter)) {
  1059. BUG_ON(!is_shadow_present_pte(*sptep));
  1060. if (*sptep & shadow_accessed_mask) {
  1061. young = 1;
  1062. clear_bit((ffs(shadow_accessed_mask) - 1),
  1063. (unsigned long *)sptep);
  1064. }
  1065. }
  1066. return young;
  1067. }
  1068. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1069. unsigned long data)
  1070. {
  1071. u64 *sptep;
  1072. struct rmap_iterator iter;
  1073. int young = 0;
  1074. /*
  1075. * If there's no access bit in the secondary pte set by the
  1076. * hardware it's up to gup-fast/gup to set the access bit in
  1077. * the primary pte or in the page structure.
  1078. */
  1079. if (!shadow_accessed_mask)
  1080. goto out;
  1081. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1082. sptep = rmap_get_next(&iter)) {
  1083. BUG_ON(!is_shadow_present_pte(*sptep));
  1084. if (*sptep & shadow_accessed_mask) {
  1085. young = 1;
  1086. break;
  1087. }
  1088. }
  1089. out:
  1090. return young;
  1091. }
  1092. #define RMAP_RECYCLE_THRESHOLD 1000
  1093. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1094. {
  1095. unsigned long *rmapp;
  1096. struct kvm_mmu_page *sp;
  1097. sp = page_header(__pa(spte));
  1098. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1099. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  1100. kvm_flush_remote_tlbs(vcpu->kvm);
  1101. }
  1102. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1103. {
  1104. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  1105. }
  1106. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1107. {
  1108. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1109. }
  1110. #ifdef MMU_DEBUG
  1111. static int is_empty_shadow_page(u64 *spt)
  1112. {
  1113. u64 *pos;
  1114. u64 *end;
  1115. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1116. if (is_shadow_present_pte(*pos)) {
  1117. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1118. pos, *pos);
  1119. return 0;
  1120. }
  1121. return 1;
  1122. }
  1123. #endif
  1124. /*
  1125. * This value is the sum of all of the kvm instances's
  1126. * kvm->arch.n_used_mmu_pages values. We need a global,
  1127. * aggregate version in order to make the slab shrinker
  1128. * faster
  1129. */
  1130. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1131. {
  1132. kvm->arch.n_used_mmu_pages += nr;
  1133. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1134. }
  1135. /*
  1136. * Remove the sp from shadow page cache, after call it,
  1137. * we can not find this sp from the cache, and the shadow
  1138. * page table is still valid.
  1139. * It should be under the protection of mmu lock.
  1140. */
  1141. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1142. {
  1143. ASSERT(is_empty_shadow_page(sp->spt));
  1144. hlist_del(&sp->hash_link);
  1145. if (!sp->role.direct)
  1146. free_page((unsigned long)sp->gfns);
  1147. }
  1148. /*
  1149. * Free the shadow page table and the sp, we can do it
  1150. * out of the protection of mmu lock.
  1151. */
  1152. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1153. {
  1154. list_del(&sp->link);
  1155. free_page((unsigned long)sp->spt);
  1156. kmem_cache_free(mmu_page_header_cache, sp);
  1157. }
  1158. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1159. {
  1160. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1161. }
  1162. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1163. struct kvm_mmu_page *sp, u64 *parent_pte)
  1164. {
  1165. if (!parent_pte)
  1166. return;
  1167. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1168. }
  1169. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1170. u64 *parent_pte)
  1171. {
  1172. pte_list_remove(parent_pte, &sp->parent_ptes);
  1173. }
  1174. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1175. u64 *parent_pte)
  1176. {
  1177. mmu_page_remove_parent_pte(sp, parent_pte);
  1178. mmu_spte_clear_no_track(parent_pte);
  1179. }
  1180. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1181. u64 *parent_pte, int direct)
  1182. {
  1183. struct kvm_mmu_page *sp;
  1184. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1185. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1186. if (!direct)
  1187. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1188. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1189. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1190. bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
  1191. sp->parent_ptes = 0;
  1192. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1193. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1194. return sp;
  1195. }
  1196. static void mark_unsync(u64 *spte);
  1197. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1198. {
  1199. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1200. }
  1201. static void mark_unsync(u64 *spte)
  1202. {
  1203. struct kvm_mmu_page *sp;
  1204. unsigned int index;
  1205. sp = page_header(__pa(spte));
  1206. index = spte - sp->spt;
  1207. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1208. return;
  1209. if (sp->unsync_children++)
  1210. return;
  1211. kvm_mmu_mark_parents_unsync(sp);
  1212. }
  1213. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1214. struct kvm_mmu_page *sp)
  1215. {
  1216. return 1;
  1217. }
  1218. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1219. {
  1220. }
  1221. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1222. struct kvm_mmu_page *sp, u64 *spte,
  1223. const void *pte)
  1224. {
  1225. WARN_ON(1);
  1226. }
  1227. #define KVM_PAGE_ARRAY_NR 16
  1228. struct kvm_mmu_pages {
  1229. struct mmu_page_and_offset {
  1230. struct kvm_mmu_page *sp;
  1231. unsigned int idx;
  1232. } page[KVM_PAGE_ARRAY_NR];
  1233. unsigned int nr;
  1234. };
  1235. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1236. int idx)
  1237. {
  1238. int i;
  1239. if (sp->unsync)
  1240. for (i=0; i < pvec->nr; i++)
  1241. if (pvec->page[i].sp == sp)
  1242. return 0;
  1243. pvec->page[pvec->nr].sp = sp;
  1244. pvec->page[pvec->nr].idx = idx;
  1245. pvec->nr++;
  1246. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1247. }
  1248. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1249. struct kvm_mmu_pages *pvec)
  1250. {
  1251. int i, ret, nr_unsync_leaf = 0;
  1252. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1253. struct kvm_mmu_page *child;
  1254. u64 ent = sp->spt[i];
  1255. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1256. goto clear_child_bitmap;
  1257. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1258. if (child->unsync_children) {
  1259. if (mmu_pages_add(pvec, child, i))
  1260. return -ENOSPC;
  1261. ret = __mmu_unsync_walk(child, pvec);
  1262. if (!ret)
  1263. goto clear_child_bitmap;
  1264. else if (ret > 0)
  1265. nr_unsync_leaf += ret;
  1266. else
  1267. return ret;
  1268. } else if (child->unsync) {
  1269. nr_unsync_leaf++;
  1270. if (mmu_pages_add(pvec, child, i))
  1271. return -ENOSPC;
  1272. } else
  1273. goto clear_child_bitmap;
  1274. continue;
  1275. clear_child_bitmap:
  1276. __clear_bit(i, sp->unsync_child_bitmap);
  1277. sp->unsync_children--;
  1278. WARN_ON((int)sp->unsync_children < 0);
  1279. }
  1280. return nr_unsync_leaf;
  1281. }
  1282. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1283. struct kvm_mmu_pages *pvec)
  1284. {
  1285. if (!sp->unsync_children)
  1286. return 0;
  1287. mmu_pages_add(pvec, sp, 0);
  1288. return __mmu_unsync_walk(sp, pvec);
  1289. }
  1290. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1291. {
  1292. WARN_ON(!sp->unsync);
  1293. trace_kvm_mmu_sync_page(sp);
  1294. sp->unsync = 0;
  1295. --kvm->stat.mmu_unsync;
  1296. }
  1297. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1298. struct list_head *invalid_list);
  1299. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1300. struct list_head *invalid_list);
  1301. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1302. hlist_for_each_entry(sp, pos, \
  1303. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1304. if ((sp)->gfn != (gfn)) {} else
  1305. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1306. hlist_for_each_entry(sp, pos, \
  1307. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1308. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1309. (sp)->role.invalid) {} else
  1310. /* @sp->gfn should be write-protected at the call site */
  1311. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1312. struct list_head *invalid_list, bool clear_unsync)
  1313. {
  1314. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1315. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1316. return 1;
  1317. }
  1318. if (clear_unsync)
  1319. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1320. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1321. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1322. return 1;
  1323. }
  1324. kvm_mmu_flush_tlb(vcpu);
  1325. return 0;
  1326. }
  1327. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1328. struct kvm_mmu_page *sp)
  1329. {
  1330. LIST_HEAD(invalid_list);
  1331. int ret;
  1332. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1333. if (ret)
  1334. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1335. return ret;
  1336. }
  1337. #ifdef CONFIG_KVM_MMU_AUDIT
  1338. #include "mmu_audit.c"
  1339. #else
  1340. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1341. static void mmu_audit_disable(void) { }
  1342. #endif
  1343. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1344. struct list_head *invalid_list)
  1345. {
  1346. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1347. }
  1348. /* @gfn should be write-protected at the call site */
  1349. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1350. {
  1351. struct kvm_mmu_page *s;
  1352. struct hlist_node *node;
  1353. LIST_HEAD(invalid_list);
  1354. bool flush = false;
  1355. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1356. if (!s->unsync)
  1357. continue;
  1358. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1359. kvm_unlink_unsync_page(vcpu->kvm, s);
  1360. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1361. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1362. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1363. continue;
  1364. }
  1365. flush = true;
  1366. }
  1367. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1368. if (flush)
  1369. kvm_mmu_flush_tlb(vcpu);
  1370. }
  1371. struct mmu_page_path {
  1372. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1373. unsigned int idx[PT64_ROOT_LEVEL-1];
  1374. };
  1375. #define for_each_sp(pvec, sp, parents, i) \
  1376. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1377. sp = pvec.page[i].sp; \
  1378. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1379. i = mmu_pages_next(&pvec, &parents, i))
  1380. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1381. struct mmu_page_path *parents,
  1382. int i)
  1383. {
  1384. int n;
  1385. for (n = i+1; n < pvec->nr; n++) {
  1386. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1387. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1388. parents->idx[0] = pvec->page[n].idx;
  1389. return n;
  1390. }
  1391. parents->parent[sp->role.level-2] = sp;
  1392. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1393. }
  1394. return n;
  1395. }
  1396. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1397. {
  1398. struct kvm_mmu_page *sp;
  1399. unsigned int level = 0;
  1400. do {
  1401. unsigned int idx = parents->idx[level];
  1402. sp = parents->parent[level];
  1403. if (!sp)
  1404. return;
  1405. --sp->unsync_children;
  1406. WARN_ON((int)sp->unsync_children < 0);
  1407. __clear_bit(idx, sp->unsync_child_bitmap);
  1408. level++;
  1409. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1410. }
  1411. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1412. struct mmu_page_path *parents,
  1413. struct kvm_mmu_pages *pvec)
  1414. {
  1415. parents->parent[parent->role.level-1] = NULL;
  1416. pvec->nr = 0;
  1417. }
  1418. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1419. struct kvm_mmu_page *parent)
  1420. {
  1421. int i;
  1422. struct kvm_mmu_page *sp;
  1423. struct mmu_page_path parents;
  1424. struct kvm_mmu_pages pages;
  1425. LIST_HEAD(invalid_list);
  1426. kvm_mmu_pages_init(parent, &parents, &pages);
  1427. while (mmu_unsync_walk(parent, &pages)) {
  1428. bool protected = false;
  1429. for_each_sp(pages, sp, parents, i)
  1430. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1431. if (protected)
  1432. kvm_flush_remote_tlbs(vcpu->kvm);
  1433. for_each_sp(pages, sp, parents, i) {
  1434. kvm_sync_page(vcpu, sp, &invalid_list);
  1435. mmu_pages_clear_parents(&parents);
  1436. }
  1437. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1438. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1439. kvm_mmu_pages_init(parent, &parents, &pages);
  1440. }
  1441. }
  1442. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1443. {
  1444. int i;
  1445. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1446. sp->spt[i] = 0ull;
  1447. }
  1448. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1449. {
  1450. sp->write_flooding_count = 0;
  1451. }
  1452. static void clear_sp_write_flooding_count(u64 *spte)
  1453. {
  1454. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1455. __clear_sp_write_flooding_count(sp);
  1456. }
  1457. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1458. gfn_t gfn,
  1459. gva_t gaddr,
  1460. unsigned level,
  1461. int direct,
  1462. unsigned access,
  1463. u64 *parent_pte)
  1464. {
  1465. union kvm_mmu_page_role role;
  1466. unsigned quadrant;
  1467. struct kvm_mmu_page *sp;
  1468. struct hlist_node *node;
  1469. bool need_sync = false;
  1470. role = vcpu->arch.mmu.base_role;
  1471. role.level = level;
  1472. role.direct = direct;
  1473. if (role.direct)
  1474. role.cr4_pae = 0;
  1475. role.access = access;
  1476. if (!vcpu->arch.mmu.direct_map
  1477. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1478. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1479. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1480. role.quadrant = quadrant;
  1481. }
  1482. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1483. if (!need_sync && sp->unsync)
  1484. need_sync = true;
  1485. if (sp->role.word != role.word)
  1486. continue;
  1487. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1488. break;
  1489. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1490. if (sp->unsync_children) {
  1491. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1492. kvm_mmu_mark_parents_unsync(sp);
  1493. } else if (sp->unsync)
  1494. kvm_mmu_mark_parents_unsync(sp);
  1495. __clear_sp_write_flooding_count(sp);
  1496. trace_kvm_mmu_get_page(sp, false);
  1497. return sp;
  1498. }
  1499. ++vcpu->kvm->stat.mmu_cache_miss;
  1500. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1501. if (!sp)
  1502. return sp;
  1503. sp->gfn = gfn;
  1504. sp->role = role;
  1505. hlist_add_head(&sp->hash_link,
  1506. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1507. if (!direct) {
  1508. if (rmap_write_protect(vcpu->kvm, gfn))
  1509. kvm_flush_remote_tlbs(vcpu->kvm);
  1510. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1511. kvm_sync_pages(vcpu, gfn);
  1512. account_shadowed(vcpu->kvm, gfn);
  1513. }
  1514. init_shadow_page_table(sp);
  1515. trace_kvm_mmu_get_page(sp, true);
  1516. return sp;
  1517. }
  1518. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1519. struct kvm_vcpu *vcpu, u64 addr)
  1520. {
  1521. iterator->addr = addr;
  1522. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1523. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1524. if (iterator->level == PT64_ROOT_LEVEL &&
  1525. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1526. !vcpu->arch.mmu.direct_map)
  1527. --iterator->level;
  1528. if (iterator->level == PT32E_ROOT_LEVEL) {
  1529. iterator->shadow_addr
  1530. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1531. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1532. --iterator->level;
  1533. if (!iterator->shadow_addr)
  1534. iterator->level = 0;
  1535. }
  1536. }
  1537. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1538. {
  1539. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1540. return false;
  1541. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1542. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1543. return true;
  1544. }
  1545. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1546. u64 spte)
  1547. {
  1548. if (is_last_spte(spte, iterator->level)) {
  1549. iterator->level = 0;
  1550. return;
  1551. }
  1552. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1553. --iterator->level;
  1554. }
  1555. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1556. {
  1557. return __shadow_walk_next(iterator, *iterator->sptep);
  1558. }
  1559. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1560. {
  1561. u64 spte;
  1562. spte = __pa(sp->spt)
  1563. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1564. | PT_WRITABLE_MASK | PT_USER_MASK;
  1565. mmu_spte_set(sptep, spte);
  1566. }
  1567. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1568. unsigned direct_access)
  1569. {
  1570. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1571. struct kvm_mmu_page *child;
  1572. /*
  1573. * For the direct sp, if the guest pte's dirty bit
  1574. * changed form clean to dirty, it will corrupt the
  1575. * sp's access: allow writable in the read-only sp,
  1576. * so we should update the spte at this point to get
  1577. * a new sp with the correct access.
  1578. */
  1579. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1580. if (child->role.access == direct_access)
  1581. return;
  1582. drop_parent_pte(child, sptep);
  1583. kvm_flush_remote_tlbs(vcpu->kvm);
  1584. }
  1585. }
  1586. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1587. u64 *spte)
  1588. {
  1589. u64 pte;
  1590. struct kvm_mmu_page *child;
  1591. pte = *spte;
  1592. if (is_shadow_present_pte(pte)) {
  1593. if (is_last_spte(pte, sp->role.level)) {
  1594. drop_spte(kvm, spte);
  1595. if (is_large_pte(pte))
  1596. --kvm->stat.lpages;
  1597. } else {
  1598. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1599. drop_parent_pte(child, spte);
  1600. }
  1601. return true;
  1602. }
  1603. if (is_mmio_spte(pte))
  1604. mmu_spte_clear_no_track(spte);
  1605. return false;
  1606. }
  1607. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1608. struct kvm_mmu_page *sp)
  1609. {
  1610. unsigned i;
  1611. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1612. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1613. }
  1614. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1615. {
  1616. mmu_page_remove_parent_pte(sp, parent_pte);
  1617. }
  1618. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1619. {
  1620. u64 *sptep;
  1621. struct rmap_iterator iter;
  1622. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1623. drop_parent_pte(sp, sptep);
  1624. }
  1625. static int mmu_zap_unsync_children(struct kvm *kvm,
  1626. struct kvm_mmu_page *parent,
  1627. struct list_head *invalid_list)
  1628. {
  1629. int i, zapped = 0;
  1630. struct mmu_page_path parents;
  1631. struct kvm_mmu_pages pages;
  1632. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1633. return 0;
  1634. kvm_mmu_pages_init(parent, &parents, &pages);
  1635. while (mmu_unsync_walk(parent, &pages)) {
  1636. struct kvm_mmu_page *sp;
  1637. for_each_sp(pages, sp, parents, i) {
  1638. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1639. mmu_pages_clear_parents(&parents);
  1640. zapped++;
  1641. }
  1642. kvm_mmu_pages_init(parent, &parents, &pages);
  1643. }
  1644. return zapped;
  1645. }
  1646. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1647. struct list_head *invalid_list)
  1648. {
  1649. int ret;
  1650. trace_kvm_mmu_prepare_zap_page(sp);
  1651. ++kvm->stat.mmu_shadow_zapped;
  1652. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1653. kvm_mmu_page_unlink_children(kvm, sp);
  1654. kvm_mmu_unlink_parents(kvm, sp);
  1655. if (!sp->role.invalid && !sp->role.direct)
  1656. unaccount_shadowed(kvm, sp->gfn);
  1657. if (sp->unsync)
  1658. kvm_unlink_unsync_page(kvm, sp);
  1659. if (!sp->root_count) {
  1660. /* Count self */
  1661. ret++;
  1662. list_move(&sp->link, invalid_list);
  1663. kvm_mod_used_mmu_pages(kvm, -1);
  1664. } else {
  1665. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1666. kvm_reload_remote_mmus(kvm);
  1667. }
  1668. sp->role.invalid = 1;
  1669. return ret;
  1670. }
  1671. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1672. struct list_head *invalid_list)
  1673. {
  1674. struct kvm_mmu_page *sp;
  1675. if (list_empty(invalid_list))
  1676. return;
  1677. /*
  1678. * wmb: make sure everyone sees our modifications to the page tables
  1679. * rmb: make sure we see changes to vcpu->mode
  1680. */
  1681. smp_mb();
  1682. /*
  1683. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1684. * page table walks.
  1685. */
  1686. kvm_flush_remote_tlbs(kvm);
  1687. do {
  1688. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1689. WARN_ON(!sp->role.invalid || sp->root_count);
  1690. kvm_mmu_isolate_page(sp);
  1691. kvm_mmu_free_page(sp);
  1692. } while (!list_empty(invalid_list));
  1693. }
  1694. /*
  1695. * Changing the number of mmu pages allocated to the vm
  1696. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1697. */
  1698. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1699. {
  1700. LIST_HEAD(invalid_list);
  1701. /*
  1702. * If we set the number of mmu pages to be smaller be than the
  1703. * number of actived pages , we must to free some mmu pages before we
  1704. * change the value
  1705. */
  1706. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1707. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1708. !list_empty(&kvm->arch.active_mmu_pages)) {
  1709. struct kvm_mmu_page *page;
  1710. page = container_of(kvm->arch.active_mmu_pages.prev,
  1711. struct kvm_mmu_page, link);
  1712. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1713. }
  1714. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1715. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1716. }
  1717. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1718. }
  1719. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1720. {
  1721. struct kvm_mmu_page *sp;
  1722. struct hlist_node *node;
  1723. LIST_HEAD(invalid_list);
  1724. int r;
  1725. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1726. r = 0;
  1727. spin_lock(&kvm->mmu_lock);
  1728. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1729. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1730. sp->role.word);
  1731. r = 1;
  1732. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1733. }
  1734. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1735. spin_unlock(&kvm->mmu_lock);
  1736. return r;
  1737. }
  1738. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1739. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1740. {
  1741. int slot = memslot_id(kvm, gfn);
  1742. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1743. __set_bit(slot, sp->slot_bitmap);
  1744. }
  1745. /*
  1746. * The function is based on mtrr_type_lookup() in
  1747. * arch/x86/kernel/cpu/mtrr/generic.c
  1748. */
  1749. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1750. u64 start, u64 end)
  1751. {
  1752. int i;
  1753. u64 base, mask;
  1754. u8 prev_match, curr_match;
  1755. int num_var_ranges = KVM_NR_VAR_MTRR;
  1756. if (!mtrr_state->enabled)
  1757. return 0xFF;
  1758. /* Make end inclusive end, instead of exclusive */
  1759. end--;
  1760. /* Look in fixed ranges. Just return the type as per start */
  1761. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1762. int idx;
  1763. if (start < 0x80000) {
  1764. idx = 0;
  1765. idx += (start >> 16);
  1766. return mtrr_state->fixed_ranges[idx];
  1767. } else if (start < 0xC0000) {
  1768. idx = 1 * 8;
  1769. idx += ((start - 0x80000) >> 14);
  1770. return mtrr_state->fixed_ranges[idx];
  1771. } else if (start < 0x1000000) {
  1772. idx = 3 * 8;
  1773. idx += ((start - 0xC0000) >> 12);
  1774. return mtrr_state->fixed_ranges[idx];
  1775. }
  1776. }
  1777. /*
  1778. * Look in variable ranges
  1779. * Look of multiple ranges matching this address and pick type
  1780. * as per MTRR precedence
  1781. */
  1782. if (!(mtrr_state->enabled & 2))
  1783. return mtrr_state->def_type;
  1784. prev_match = 0xFF;
  1785. for (i = 0; i < num_var_ranges; ++i) {
  1786. unsigned short start_state, end_state;
  1787. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1788. continue;
  1789. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1790. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1791. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1792. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1793. start_state = ((start & mask) == (base & mask));
  1794. end_state = ((end & mask) == (base & mask));
  1795. if (start_state != end_state)
  1796. return 0xFE;
  1797. if ((start & mask) != (base & mask))
  1798. continue;
  1799. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1800. if (prev_match == 0xFF) {
  1801. prev_match = curr_match;
  1802. continue;
  1803. }
  1804. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1805. curr_match == MTRR_TYPE_UNCACHABLE)
  1806. return MTRR_TYPE_UNCACHABLE;
  1807. if ((prev_match == MTRR_TYPE_WRBACK &&
  1808. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1809. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1810. curr_match == MTRR_TYPE_WRBACK)) {
  1811. prev_match = MTRR_TYPE_WRTHROUGH;
  1812. curr_match = MTRR_TYPE_WRTHROUGH;
  1813. }
  1814. if (prev_match != curr_match)
  1815. return MTRR_TYPE_UNCACHABLE;
  1816. }
  1817. if (prev_match != 0xFF)
  1818. return prev_match;
  1819. return mtrr_state->def_type;
  1820. }
  1821. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1822. {
  1823. u8 mtrr;
  1824. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1825. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1826. if (mtrr == 0xfe || mtrr == 0xff)
  1827. mtrr = MTRR_TYPE_WRBACK;
  1828. return mtrr;
  1829. }
  1830. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1831. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1832. {
  1833. trace_kvm_mmu_unsync_page(sp);
  1834. ++vcpu->kvm->stat.mmu_unsync;
  1835. sp->unsync = 1;
  1836. kvm_mmu_mark_parents_unsync(sp);
  1837. }
  1838. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1839. {
  1840. struct kvm_mmu_page *s;
  1841. struct hlist_node *node;
  1842. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1843. if (s->unsync)
  1844. continue;
  1845. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1846. __kvm_unsync_page(vcpu, s);
  1847. }
  1848. }
  1849. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1850. bool can_unsync)
  1851. {
  1852. struct kvm_mmu_page *s;
  1853. struct hlist_node *node;
  1854. bool need_unsync = false;
  1855. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1856. if (!can_unsync)
  1857. return 1;
  1858. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1859. return 1;
  1860. if (!need_unsync && !s->unsync) {
  1861. need_unsync = true;
  1862. }
  1863. }
  1864. if (need_unsync)
  1865. kvm_unsync_pages(vcpu, gfn);
  1866. return 0;
  1867. }
  1868. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1869. unsigned pte_access, int user_fault,
  1870. int write_fault, int level,
  1871. gfn_t gfn, pfn_t pfn, bool speculative,
  1872. bool can_unsync, bool host_writable)
  1873. {
  1874. u64 spte, entry = *sptep;
  1875. int ret = 0;
  1876. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1877. return 0;
  1878. spte = PT_PRESENT_MASK;
  1879. if (!speculative)
  1880. spte |= shadow_accessed_mask;
  1881. if (pte_access & ACC_EXEC_MASK)
  1882. spte |= shadow_x_mask;
  1883. else
  1884. spte |= shadow_nx_mask;
  1885. if (pte_access & ACC_USER_MASK)
  1886. spte |= shadow_user_mask;
  1887. if (level > PT_PAGE_TABLE_LEVEL)
  1888. spte |= PT_PAGE_SIZE_MASK;
  1889. if (tdp_enabled)
  1890. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1891. kvm_is_mmio_pfn(pfn));
  1892. if (host_writable)
  1893. spte |= SPTE_HOST_WRITEABLE;
  1894. else
  1895. pte_access &= ~ACC_WRITE_MASK;
  1896. spte |= (u64)pfn << PAGE_SHIFT;
  1897. if ((pte_access & ACC_WRITE_MASK)
  1898. || (!vcpu->arch.mmu.direct_map && write_fault
  1899. && !is_write_protection(vcpu) && !user_fault)) {
  1900. if (level > PT_PAGE_TABLE_LEVEL &&
  1901. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1902. ret = 1;
  1903. drop_spte(vcpu->kvm, sptep);
  1904. goto done;
  1905. }
  1906. spte |= PT_WRITABLE_MASK;
  1907. if (!vcpu->arch.mmu.direct_map
  1908. && !(pte_access & ACC_WRITE_MASK)) {
  1909. spte &= ~PT_USER_MASK;
  1910. /*
  1911. * If we converted a user page to a kernel page,
  1912. * so that the kernel can write to it when cr0.wp=0,
  1913. * then we should prevent the kernel from executing it
  1914. * if SMEP is enabled.
  1915. */
  1916. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1917. spte |= PT64_NX_MASK;
  1918. }
  1919. /*
  1920. * Optimization: for pte sync, if spte was writable the hash
  1921. * lookup is unnecessary (and expensive). Write protection
  1922. * is responsibility of mmu_get_page / kvm_sync_page.
  1923. * Same reasoning can be applied to dirty page accounting.
  1924. */
  1925. if (!can_unsync && is_writable_pte(*sptep))
  1926. goto set_pte;
  1927. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1928. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1929. __func__, gfn);
  1930. ret = 1;
  1931. pte_access &= ~ACC_WRITE_MASK;
  1932. if (is_writable_pte(spte))
  1933. spte &= ~PT_WRITABLE_MASK;
  1934. }
  1935. }
  1936. if (pte_access & ACC_WRITE_MASK)
  1937. mark_page_dirty(vcpu->kvm, gfn);
  1938. set_pte:
  1939. mmu_spte_update(sptep, spte);
  1940. /*
  1941. * If we overwrite a writable spte with a read-only one we
  1942. * should flush remote TLBs. Otherwise rmap_write_protect
  1943. * will find a read-only spte, even though the writable spte
  1944. * might be cached on a CPU's TLB.
  1945. */
  1946. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1947. kvm_flush_remote_tlbs(vcpu->kvm);
  1948. done:
  1949. return ret;
  1950. }
  1951. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1952. unsigned pt_access, unsigned pte_access,
  1953. int user_fault, int write_fault,
  1954. int *emulate, int level, gfn_t gfn,
  1955. pfn_t pfn, bool speculative,
  1956. bool host_writable)
  1957. {
  1958. int was_rmapped = 0;
  1959. int rmap_count;
  1960. pgprintk("%s: spte %llx access %x write_fault %d"
  1961. " user_fault %d gfn %llx\n",
  1962. __func__, *sptep, pt_access,
  1963. write_fault, user_fault, gfn);
  1964. if (is_rmap_spte(*sptep)) {
  1965. /*
  1966. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1967. * the parent of the now unreachable PTE.
  1968. */
  1969. if (level > PT_PAGE_TABLE_LEVEL &&
  1970. !is_large_pte(*sptep)) {
  1971. struct kvm_mmu_page *child;
  1972. u64 pte = *sptep;
  1973. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1974. drop_parent_pte(child, sptep);
  1975. kvm_flush_remote_tlbs(vcpu->kvm);
  1976. } else if (pfn != spte_to_pfn(*sptep)) {
  1977. pgprintk("hfn old %llx new %llx\n",
  1978. spte_to_pfn(*sptep), pfn);
  1979. drop_spte(vcpu->kvm, sptep);
  1980. kvm_flush_remote_tlbs(vcpu->kvm);
  1981. } else
  1982. was_rmapped = 1;
  1983. }
  1984. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1985. level, gfn, pfn, speculative, true,
  1986. host_writable)) {
  1987. if (write_fault)
  1988. *emulate = 1;
  1989. kvm_mmu_flush_tlb(vcpu);
  1990. }
  1991. if (unlikely(is_mmio_spte(*sptep) && emulate))
  1992. *emulate = 1;
  1993. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1994. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1995. is_large_pte(*sptep)? "2MB" : "4kB",
  1996. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1997. *sptep, sptep);
  1998. if (!was_rmapped && is_large_pte(*sptep))
  1999. ++vcpu->kvm->stat.lpages;
  2000. if (is_shadow_present_pte(*sptep)) {
  2001. page_header_update_slot(vcpu->kvm, sptep, gfn);
  2002. if (!was_rmapped) {
  2003. rmap_count = rmap_add(vcpu, sptep, gfn);
  2004. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2005. rmap_recycle(vcpu, sptep, gfn);
  2006. }
  2007. }
  2008. kvm_release_pfn_clean(pfn);
  2009. }
  2010. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2011. {
  2012. mmu_free_roots(vcpu);
  2013. }
  2014. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2015. bool no_dirty_log)
  2016. {
  2017. struct kvm_memory_slot *slot;
  2018. unsigned long hva;
  2019. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2020. if (!slot) {
  2021. get_page(fault_page);
  2022. return page_to_pfn(fault_page);
  2023. }
  2024. hva = gfn_to_hva_memslot(slot, gfn);
  2025. return hva_to_pfn_atomic(vcpu->kvm, hva);
  2026. }
  2027. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2028. struct kvm_mmu_page *sp,
  2029. u64 *start, u64 *end)
  2030. {
  2031. struct page *pages[PTE_PREFETCH_NUM];
  2032. unsigned access = sp->role.access;
  2033. int i, ret;
  2034. gfn_t gfn;
  2035. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2036. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2037. return -1;
  2038. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2039. if (ret <= 0)
  2040. return -1;
  2041. for (i = 0; i < ret; i++, gfn++, start++)
  2042. mmu_set_spte(vcpu, start, ACC_ALL,
  2043. access, 0, 0, NULL,
  2044. sp->role.level, gfn,
  2045. page_to_pfn(pages[i]), true, true);
  2046. return 0;
  2047. }
  2048. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2049. struct kvm_mmu_page *sp, u64 *sptep)
  2050. {
  2051. u64 *spte, *start = NULL;
  2052. int i;
  2053. WARN_ON(!sp->role.direct);
  2054. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2055. spte = sp->spt + i;
  2056. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2057. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2058. if (!start)
  2059. continue;
  2060. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2061. break;
  2062. start = NULL;
  2063. } else if (!start)
  2064. start = spte;
  2065. }
  2066. }
  2067. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2068. {
  2069. struct kvm_mmu_page *sp;
  2070. /*
  2071. * Since it's no accessed bit on EPT, it's no way to
  2072. * distinguish between actually accessed translations
  2073. * and prefetched, so disable pte prefetch if EPT is
  2074. * enabled.
  2075. */
  2076. if (!shadow_accessed_mask)
  2077. return;
  2078. sp = page_header(__pa(sptep));
  2079. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2080. return;
  2081. __direct_pte_prefetch(vcpu, sp, sptep);
  2082. }
  2083. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2084. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2085. bool prefault)
  2086. {
  2087. struct kvm_shadow_walk_iterator iterator;
  2088. struct kvm_mmu_page *sp;
  2089. int emulate = 0;
  2090. gfn_t pseudo_gfn;
  2091. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2092. if (iterator.level == level) {
  2093. unsigned pte_access = ACC_ALL;
  2094. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2095. 0, write, &emulate,
  2096. level, gfn, pfn, prefault, map_writable);
  2097. direct_pte_prefetch(vcpu, iterator.sptep);
  2098. ++vcpu->stat.pf_fixed;
  2099. break;
  2100. }
  2101. if (!is_shadow_present_pte(*iterator.sptep)) {
  2102. u64 base_addr = iterator.addr;
  2103. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2104. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2105. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2106. iterator.level - 1,
  2107. 1, ACC_ALL, iterator.sptep);
  2108. if (!sp) {
  2109. pgprintk("nonpaging_map: ENOMEM\n");
  2110. kvm_release_pfn_clean(pfn);
  2111. return -ENOMEM;
  2112. }
  2113. mmu_spte_set(iterator.sptep,
  2114. __pa(sp->spt)
  2115. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2116. | shadow_user_mask | shadow_x_mask
  2117. | shadow_accessed_mask);
  2118. }
  2119. }
  2120. return emulate;
  2121. }
  2122. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2123. {
  2124. siginfo_t info;
  2125. info.si_signo = SIGBUS;
  2126. info.si_errno = 0;
  2127. info.si_code = BUS_MCEERR_AR;
  2128. info.si_addr = (void __user *)address;
  2129. info.si_addr_lsb = PAGE_SHIFT;
  2130. send_sig_info(SIGBUS, &info, tsk);
  2131. }
  2132. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2133. {
  2134. kvm_release_pfn_clean(pfn);
  2135. if (is_hwpoison_pfn(pfn)) {
  2136. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2137. return 0;
  2138. }
  2139. return -EFAULT;
  2140. }
  2141. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2142. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2143. {
  2144. pfn_t pfn = *pfnp;
  2145. gfn_t gfn = *gfnp;
  2146. int level = *levelp;
  2147. /*
  2148. * Check if it's a transparent hugepage. If this would be an
  2149. * hugetlbfs page, level wouldn't be set to
  2150. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2151. * here.
  2152. */
  2153. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2154. level == PT_PAGE_TABLE_LEVEL &&
  2155. PageTransCompound(pfn_to_page(pfn)) &&
  2156. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2157. unsigned long mask;
  2158. /*
  2159. * mmu_notifier_retry was successful and we hold the
  2160. * mmu_lock here, so the pmd can't become splitting
  2161. * from under us, and in turn
  2162. * __split_huge_page_refcount() can't run from under
  2163. * us and we can safely transfer the refcount from
  2164. * PG_tail to PG_head as we switch the pfn to tail to
  2165. * head.
  2166. */
  2167. *levelp = level = PT_DIRECTORY_LEVEL;
  2168. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2169. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2170. if (pfn & mask) {
  2171. gfn &= ~mask;
  2172. *gfnp = gfn;
  2173. kvm_release_pfn_clean(pfn);
  2174. pfn &= ~mask;
  2175. kvm_get_pfn(pfn);
  2176. *pfnp = pfn;
  2177. }
  2178. }
  2179. }
  2180. static bool mmu_invalid_pfn(pfn_t pfn)
  2181. {
  2182. return unlikely(is_invalid_pfn(pfn));
  2183. }
  2184. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2185. pfn_t pfn, unsigned access, int *ret_val)
  2186. {
  2187. bool ret = true;
  2188. /* The pfn is invalid, report the error! */
  2189. if (unlikely(is_invalid_pfn(pfn))) {
  2190. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2191. goto exit;
  2192. }
  2193. if (unlikely(is_noslot_pfn(pfn)))
  2194. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2195. ret = false;
  2196. exit:
  2197. return ret;
  2198. }
  2199. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2200. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2201. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  2202. bool prefault)
  2203. {
  2204. int r;
  2205. int level;
  2206. int force_pt_level;
  2207. pfn_t pfn;
  2208. unsigned long mmu_seq;
  2209. bool map_writable;
  2210. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2211. if (likely(!force_pt_level)) {
  2212. level = mapping_level(vcpu, gfn);
  2213. /*
  2214. * This path builds a PAE pagetable - so we can map
  2215. * 2mb pages at maximum. Therefore check if the level
  2216. * is larger than that.
  2217. */
  2218. if (level > PT_DIRECTORY_LEVEL)
  2219. level = PT_DIRECTORY_LEVEL;
  2220. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2221. } else
  2222. level = PT_PAGE_TABLE_LEVEL;
  2223. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2224. smp_rmb();
  2225. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2226. return 0;
  2227. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2228. return r;
  2229. spin_lock(&vcpu->kvm->mmu_lock);
  2230. if (mmu_notifier_retry(vcpu, mmu_seq))
  2231. goto out_unlock;
  2232. kvm_mmu_free_some_pages(vcpu);
  2233. if (likely(!force_pt_level))
  2234. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2235. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2236. prefault);
  2237. spin_unlock(&vcpu->kvm->mmu_lock);
  2238. return r;
  2239. out_unlock:
  2240. spin_unlock(&vcpu->kvm->mmu_lock);
  2241. kvm_release_pfn_clean(pfn);
  2242. return 0;
  2243. }
  2244. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2245. {
  2246. int i;
  2247. struct kvm_mmu_page *sp;
  2248. LIST_HEAD(invalid_list);
  2249. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2250. return;
  2251. spin_lock(&vcpu->kvm->mmu_lock);
  2252. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2253. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2254. vcpu->arch.mmu.direct_map)) {
  2255. hpa_t root = vcpu->arch.mmu.root_hpa;
  2256. sp = page_header(root);
  2257. --sp->root_count;
  2258. if (!sp->root_count && sp->role.invalid) {
  2259. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2260. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2261. }
  2262. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2263. spin_unlock(&vcpu->kvm->mmu_lock);
  2264. return;
  2265. }
  2266. for (i = 0; i < 4; ++i) {
  2267. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2268. if (root) {
  2269. root &= PT64_BASE_ADDR_MASK;
  2270. sp = page_header(root);
  2271. --sp->root_count;
  2272. if (!sp->root_count && sp->role.invalid)
  2273. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2274. &invalid_list);
  2275. }
  2276. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2277. }
  2278. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2279. spin_unlock(&vcpu->kvm->mmu_lock);
  2280. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2281. }
  2282. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2283. {
  2284. int ret = 0;
  2285. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2286. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2287. ret = 1;
  2288. }
  2289. return ret;
  2290. }
  2291. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2292. {
  2293. struct kvm_mmu_page *sp;
  2294. unsigned i;
  2295. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2296. spin_lock(&vcpu->kvm->mmu_lock);
  2297. kvm_mmu_free_some_pages(vcpu);
  2298. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2299. 1, ACC_ALL, NULL);
  2300. ++sp->root_count;
  2301. spin_unlock(&vcpu->kvm->mmu_lock);
  2302. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2303. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2304. for (i = 0; i < 4; ++i) {
  2305. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2306. ASSERT(!VALID_PAGE(root));
  2307. spin_lock(&vcpu->kvm->mmu_lock);
  2308. kvm_mmu_free_some_pages(vcpu);
  2309. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2310. i << 30,
  2311. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2312. NULL);
  2313. root = __pa(sp->spt);
  2314. ++sp->root_count;
  2315. spin_unlock(&vcpu->kvm->mmu_lock);
  2316. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2317. }
  2318. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2319. } else
  2320. BUG();
  2321. return 0;
  2322. }
  2323. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2324. {
  2325. struct kvm_mmu_page *sp;
  2326. u64 pdptr, pm_mask;
  2327. gfn_t root_gfn;
  2328. int i;
  2329. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2330. if (mmu_check_root(vcpu, root_gfn))
  2331. return 1;
  2332. /*
  2333. * Do we shadow a long mode page table? If so we need to
  2334. * write-protect the guests page table root.
  2335. */
  2336. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2337. hpa_t root = vcpu->arch.mmu.root_hpa;
  2338. ASSERT(!VALID_PAGE(root));
  2339. spin_lock(&vcpu->kvm->mmu_lock);
  2340. kvm_mmu_free_some_pages(vcpu);
  2341. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2342. 0, ACC_ALL, NULL);
  2343. root = __pa(sp->spt);
  2344. ++sp->root_count;
  2345. spin_unlock(&vcpu->kvm->mmu_lock);
  2346. vcpu->arch.mmu.root_hpa = root;
  2347. return 0;
  2348. }
  2349. /*
  2350. * We shadow a 32 bit page table. This may be a legacy 2-level
  2351. * or a PAE 3-level page table. In either case we need to be aware that
  2352. * the shadow page table may be a PAE or a long mode page table.
  2353. */
  2354. pm_mask = PT_PRESENT_MASK;
  2355. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2356. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2357. for (i = 0; i < 4; ++i) {
  2358. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2359. ASSERT(!VALID_PAGE(root));
  2360. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2361. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2362. if (!is_present_gpte(pdptr)) {
  2363. vcpu->arch.mmu.pae_root[i] = 0;
  2364. continue;
  2365. }
  2366. root_gfn = pdptr >> PAGE_SHIFT;
  2367. if (mmu_check_root(vcpu, root_gfn))
  2368. return 1;
  2369. }
  2370. spin_lock(&vcpu->kvm->mmu_lock);
  2371. kvm_mmu_free_some_pages(vcpu);
  2372. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2373. PT32_ROOT_LEVEL, 0,
  2374. ACC_ALL, NULL);
  2375. root = __pa(sp->spt);
  2376. ++sp->root_count;
  2377. spin_unlock(&vcpu->kvm->mmu_lock);
  2378. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2379. }
  2380. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2381. /*
  2382. * If we shadow a 32 bit page table with a long mode page
  2383. * table we enter this path.
  2384. */
  2385. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2386. if (vcpu->arch.mmu.lm_root == NULL) {
  2387. /*
  2388. * The additional page necessary for this is only
  2389. * allocated on demand.
  2390. */
  2391. u64 *lm_root;
  2392. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2393. if (lm_root == NULL)
  2394. return 1;
  2395. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2396. vcpu->arch.mmu.lm_root = lm_root;
  2397. }
  2398. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2399. }
  2400. return 0;
  2401. }
  2402. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2403. {
  2404. if (vcpu->arch.mmu.direct_map)
  2405. return mmu_alloc_direct_roots(vcpu);
  2406. else
  2407. return mmu_alloc_shadow_roots(vcpu);
  2408. }
  2409. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2410. {
  2411. int i;
  2412. struct kvm_mmu_page *sp;
  2413. if (vcpu->arch.mmu.direct_map)
  2414. return;
  2415. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2416. return;
  2417. vcpu_clear_mmio_info(vcpu, ~0ul);
  2418. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2419. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2420. hpa_t root = vcpu->arch.mmu.root_hpa;
  2421. sp = page_header(root);
  2422. mmu_sync_children(vcpu, sp);
  2423. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2424. return;
  2425. }
  2426. for (i = 0; i < 4; ++i) {
  2427. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2428. if (root && VALID_PAGE(root)) {
  2429. root &= PT64_BASE_ADDR_MASK;
  2430. sp = page_header(root);
  2431. mmu_sync_children(vcpu, sp);
  2432. }
  2433. }
  2434. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2435. }
  2436. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2437. {
  2438. spin_lock(&vcpu->kvm->mmu_lock);
  2439. mmu_sync_roots(vcpu);
  2440. spin_unlock(&vcpu->kvm->mmu_lock);
  2441. }
  2442. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2443. u32 access, struct x86_exception *exception)
  2444. {
  2445. if (exception)
  2446. exception->error_code = 0;
  2447. return vaddr;
  2448. }
  2449. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2450. u32 access,
  2451. struct x86_exception *exception)
  2452. {
  2453. if (exception)
  2454. exception->error_code = 0;
  2455. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2456. }
  2457. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2458. {
  2459. if (direct)
  2460. return vcpu_match_mmio_gpa(vcpu, addr);
  2461. return vcpu_match_mmio_gva(vcpu, addr);
  2462. }
  2463. /*
  2464. * On direct hosts, the last spte is only allows two states
  2465. * for mmio page fault:
  2466. * - It is the mmio spte
  2467. * - It is zapped or it is being zapped.
  2468. *
  2469. * This function completely checks the spte when the last spte
  2470. * is not the mmio spte.
  2471. */
  2472. static bool check_direct_spte_mmio_pf(u64 spte)
  2473. {
  2474. return __check_direct_spte_mmio_pf(spte);
  2475. }
  2476. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2477. {
  2478. struct kvm_shadow_walk_iterator iterator;
  2479. u64 spte = 0ull;
  2480. walk_shadow_page_lockless_begin(vcpu);
  2481. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2482. if (!is_shadow_present_pte(spte))
  2483. break;
  2484. walk_shadow_page_lockless_end(vcpu);
  2485. return spte;
  2486. }
  2487. /*
  2488. * If it is a real mmio page fault, return 1 and emulat the instruction
  2489. * directly, return 0 to let CPU fault again on the address, -1 is
  2490. * returned if bug is detected.
  2491. */
  2492. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2493. {
  2494. u64 spte;
  2495. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2496. return 1;
  2497. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2498. if (is_mmio_spte(spte)) {
  2499. gfn_t gfn = get_mmio_spte_gfn(spte);
  2500. unsigned access = get_mmio_spte_access(spte);
  2501. if (direct)
  2502. addr = 0;
  2503. trace_handle_mmio_page_fault(addr, gfn, access);
  2504. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2505. return 1;
  2506. }
  2507. /*
  2508. * It's ok if the gva is remapped by other cpus on shadow guest,
  2509. * it's a BUG if the gfn is not a mmio page.
  2510. */
  2511. if (direct && !check_direct_spte_mmio_pf(spte))
  2512. return -1;
  2513. /*
  2514. * If the page table is zapped by other cpus, let CPU fault again on
  2515. * the address.
  2516. */
  2517. return 0;
  2518. }
  2519. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2520. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2521. u32 error_code, bool direct)
  2522. {
  2523. int ret;
  2524. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2525. WARN_ON(ret < 0);
  2526. return ret;
  2527. }
  2528. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2529. u32 error_code, bool prefault)
  2530. {
  2531. gfn_t gfn;
  2532. int r;
  2533. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2534. if (unlikely(error_code & PFERR_RSVD_MASK))
  2535. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2536. r = mmu_topup_memory_caches(vcpu);
  2537. if (r)
  2538. return r;
  2539. ASSERT(vcpu);
  2540. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2541. gfn = gva >> PAGE_SHIFT;
  2542. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2543. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2544. }
  2545. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2546. {
  2547. struct kvm_arch_async_pf arch;
  2548. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2549. arch.gfn = gfn;
  2550. arch.direct_map = vcpu->arch.mmu.direct_map;
  2551. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2552. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2553. }
  2554. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2555. {
  2556. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2557. kvm_event_needs_reinjection(vcpu)))
  2558. return false;
  2559. return kvm_x86_ops->interrupt_allowed(vcpu);
  2560. }
  2561. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2562. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2563. {
  2564. bool async;
  2565. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2566. if (!async)
  2567. return false; /* *pfn has correct page already */
  2568. put_page(pfn_to_page(*pfn));
  2569. if (!prefault && can_do_async_pf(vcpu)) {
  2570. trace_kvm_try_async_get_page(gva, gfn);
  2571. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2572. trace_kvm_async_pf_doublefault(gva, gfn);
  2573. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2574. return true;
  2575. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2576. return true;
  2577. }
  2578. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2579. return false;
  2580. }
  2581. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2582. bool prefault)
  2583. {
  2584. pfn_t pfn;
  2585. int r;
  2586. int level;
  2587. int force_pt_level;
  2588. gfn_t gfn = gpa >> PAGE_SHIFT;
  2589. unsigned long mmu_seq;
  2590. int write = error_code & PFERR_WRITE_MASK;
  2591. bool map_writable;
  2592. ASSERT(vcpu);
  2593. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2594. if (unlikely(error_code & PFERR_RSVD_MASK))
  2595. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2596. r = mmu_topup_memory_caches(vcpu);
  2597. if (r)
  2598. return r;
  2599. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2600. if (likely(!force_pt_level)) {
  2601. level = mapping_level(vcpu, gfn);
  2602. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2603. } else
  2604. level = PT_PAGE_TABLE_LEVEL;
  2605. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2606. smp_rmb();
  2607. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2608. return 0;
  2609. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2610. return r;
  2611. spin_lock(&vcpu->kvm->mmu_lock);
  2612. if (mmu_notifier_retry(vcpu, mmu_seq))
  2613. goto out_unlock;
  2614. kvm_mmu_free_some_pages(vcpu);
  2615. if (likely(!force_pt_level))
  2616. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2617. r = __direct_map(vcpu, gpa, write, map_writable,
  2618. level, gfn, pfn, prefault);
  2619. spin_unlock(&vcpu->kvm->mmu_lock);
  2620. return r;
  2621. out_unlock:
  2622. spin_unlock(&vcpu->kvm->mmu_lock);
  2623. kvm_release_pfn_clean(pfn);
  2624. return 0;
  2625. }
  2626. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2627. {
  2628. mmu_free_roots(vcpu);
  2629. }
  2630. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2631. struct kvm_mmu *context)
  2632. {
  2633. context->new_cr3 = nonpaging_new_cr3;
  2634. context->page_fault = nonpaging_page_fault;
  2635. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2636. context->free = nonpaging_free;
  2637. context->sync_page = nonpaging_sync_page;
  2638. context->invlpg = nonpaging_invlpg;
  2639. context->update_pte = nonpaging_update_pte;
  2640. context->root_level = 0;
  2641. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2642. context->root_hpa = INVALID_PAGE;
  2643. context->direct_map = true;
  2644. context->nx = false;
  2645. return 0;
  2646. }
  2647. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2648. {
  2649. ++vcpu->stat.tlb_flush;
  2650. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2651. }
  2652. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2653. {
  2654. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2655. mmu_free_roots(vcpu);
  2656. }
  2657. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2658. {
  2659. return kvm_read_cr3(vcpu);
  2660. }
  2661. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2662. struct x86_exception *fault)
  2663. {
  2664. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2665. }
  2666. static void paging_free(struct kvm_vcpu *vcpu)
  2667. {
  2668. nonpaging_free(vcpu);
  2669. }
  2670. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2671. {
  2672. int bit7;
  2673. bit7 = (gpte >> 7) & 1;
  2674. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2675. }
  2676. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2677. int *nr_present)
  2678. {
  2679. if (unlikely(is_mmio_spte(*sptep))) {
  2680. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2681. mmu_spte_clear_no_track(sptep);
  2682. return true;
  2683. }
  2684. (*nr_present)++;
  2685. mark_mmio_spte(sptep, gfn, access);
  2686. return true;
  2687. }
  2688. return false;
  2689. }
  2690. #define PTTYPE 64
  2691. #include "paging_tmpl.h"
  2692. #undef PTTYPE
  2693. #define PTTYPE 32
  2694. #include "paging_tmpl.h"
  2695. #undef PTTYPE
  2696. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2697. struct kvm_mmu *context)
  2698. {
  2699. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2700. u64 exb_bit_rsvd = 0;
  2701. if (!context->nx)
  2702. exb_bit_rsvd = rsvd_bits(63, 63);
  2703. switch (context->root_level) {
  2704. case PT32_ROOT_LEVEL:
  2705. /* no rsvd bits for 2 level 4K page table entries */
  2706. context->rsvd_bits_mask[0][1] = 0;
  2707. context->rsvd_bits_mask[0][0] = 0;
  2708. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2709. if (!is_pse(vcpu)) {
  2710. context->rsvd_bits_mask[1][1] = 0;
  2711. break;
  2712. }
  2713. if (is_cpuid_PSE36())
  2714. /* 36bits PSE 4MB page */
  2715. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2716. else
  2717. /* 32 bits PSE 4MB page */
  2718. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2719. break;
  2720. case PT32E_ROOT_LEVEL:
  2721. context->rsvd_bits_mask[0][2] =
  2722. rsvd_bits(maxphyaddr, 63) |
  2723. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2724. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2725. rsvd_bits(maxphyaddr, 62); /* PDE */
  2726. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2727. rsvd_bits(maxphyaddr, 62); /* PTE */
  2728. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2729. rsvd_bits(maxphyaddr, 62) |
  2730. rsvd_bits(13, 20); /* large page */
  2731. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2732. break;
  2733. case PT64_ROOT_LEVEL:
  2734. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2735. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2736. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2737. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2738. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2739. rsvd_bits(maxphyaddr, 51);
  2740. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2741. rsvd_bits(maxphyaddr, 51);
  2742. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2743. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2744. rsvd_bits(maxphyaddr, 51) |
  2745. rsvd_bits(13, 29);
  2746. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2747. rsvd_bits(maxphyaddr, 51) |
  2748. rsvd_bits(13, 20); /* large page */
  2749. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2750. break;
  2751. }
  2752. }
  2753. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2754. struct kvm_mmu *context,
  2755. int level)
  2756. {
  2757. context->nx = is_nx(vcpu);
  2758. context->root_level = level;
  2759. reset_rsvds_bits_mask(vcpu, context);
  2760. ASSERT(is_pae(vcpu));
  2761. context->new_cr3 = paging_new_cr3;
  2762. context->page_fault = paging64_page_fault;
  2763. context->gva_to_gpa = paging64_gva_to_gpa;
  2764. context->sync_page = paging64_sync_page;
  2765. context->invlpg = paging64_invlpg;
  2766. context->update_pte = paging64_update_pte;
  2767. context->free = paging_free;
  2768. context->shadow_root_level = level;
  2769. context->root_hpa = INVALID_PAGE;
  2770. context->direct_map = false;
  2771. return 0;
  2772. }
  2773. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2774. struct kvm_mmu *context)
  2775. {
  2776. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2777. }
  2778. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2779. struct kvm_mmu *context)
  2780. {
  2781. context->nx = false;
  2782. context->root_level = PT32_ROOT_LEVEL;
  2783. reset_rsvds_bits_mask(vcpu, context);
  2784. context->new_cr3 = paging_new_cr3;
  2785. context->page_fault = paging32_page_fault;
  2786. context->gva_to_gpa = paging32_gva_to_gpa;
  2787. context->free = paging_free;
  2788. context->sync_page = paging32_sync_page;
  2789. context->invlpg = paging32_invlpg;
  2790. context->update_pte = paging32_update_pte;
  2791. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2792. context->root_hpa = INVALID_PAGE;
  2793. context->direct_map = false;
  2794. return 0;
  2795. }
  2796. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2797. struct kvm_mmu *context)
  2798. {
  2799. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2800. }
  2801. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2802. {
  2803. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2804. context->base_role.word = 0;
  2805. context->new_cr3 = nonpaging_new_cr3;
  2806. context->page_fault = tdp_page_fault;
  2807. context->free = nonpaging_free;
  2808. context->sync_page = nonpaging_sync_page;
  2809. context->invlpg = nonpaging_invlpg;
  2810. context->update_pte = nonpaging_update_pte;
  2811. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2812. context->root_hpa = INVALID_PAGE;
  2813. context->direct_map = true;
  2814. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2815. context->get_cr3 = get_cr3;
  2816. context->get_pdptr = kvm_pdptr_read;
  2817. context->inject_page_fault = kvm_inject_page_fault;
  2818. if (!is_paging(vcpu)) {
  2819. context->nx = false;
  2820. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2821. context->root_level = 0;
  2822. } else if (is_long_mode(vcpu)) {
  2823. context->nx = is_nx(vcpu);
  2824. context->root_level = PT64_ROOT_LEVEL;
  2825. reset_rsvds_bits_mask(vcpu, context);
  2826. context->gva_to_gpa = paging64_gva_to_gpa;
  2827. } else if (is_pae(vcpu)) {
  2828. context->nx = is_nx(vcpu);
  2829. context->root_level = PT32E_ROOT_LEVEL;
  2830. reset_rsvds_bits_mask(vcpu, context);
  2831. context->gva_to_gpa = paging64_gva_to_gpa;
  2832. } else {
  2833. context->nx = false;
  2834. context->root_level = PT32_ROOT_LEVEL;
  2835. reset_rsvds_bits_mask(vcpu, context);
  2836. context->gva_to_gpa = paging32_gva_to_gpa;
  2837. }
  2838. return 0;
  2839. }
  2840. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2841. {
  2842. int r;
  2843. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2844. ASSERT(vcpu);
  2845. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2846. if (!is_paging(vcpu))
  2847. r = nonpaging_init_context(vcpu, context);
  2848. else if (is_long_mode(vcpu))
  2849. r = paging64_init_context(vcpu, context);
  2850. else if (is_pae(vcpu))
  2851. r = paging32E_init_context(vcpu, context);
  2852. else
  2853. r = paging32_init_context(vcpu, context);
  2854. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2855. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2856. vcpu->arch.mmu.base_role.smep_andnot_wp
  2857. = smep && !is_write_protection(vcpu);
  2858. return r;
  2859. }
  2860. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2861. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2862. {
  2863. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2864. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2865. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2866. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  2867. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2868. return r;
  2869. }
  2870. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2871. {
  2872. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2873. g_context->get_cr3 = get_cr3;
  2874. g_context->get_pdptr = kvm_pdptr_read;
  2875. g_context->inject_page_fault = kvm_inject_page_fault;
  2876. /*
  2877. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2878. * translation of l2_gpa to l1_gpa addresses is done using the
  2879. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2880. * functions between mmu and nested_mmu are swapped.
  2881. */
  2882. if (!is_paging(vcpu)) {
  2883. g_context->nx = false;
  2884. g_context->root_level = 0;
  2885. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2886. } else if (is_long_mode(vcpu)) {
  2887. g_context->nx = is_nx(vcpu);
  2888. g_context->root_level = PT64_ROOT_LEVEL;
  2889. reset_rsvds_bits_mask(vcpu, g_context);
  2890. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2891. } else if (is_pae(vcpu)) {
  2892. g_context->nx = is_nx(vcpu);
  2893. g_context->root_level = PT32E_ROOT_LEVEL;
  2894. reset_rsvds_bits_mask(vcpu, g_context);
  2895. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2896. } else {
  2897. g_context->nx = false;
  2898. g_context->root_level = PT32_ROOT_LEVEL;
  2899. reset_rsvds_bits_mask(vcpu, g_context);
  2900. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2901. }
  2902. return 0;
  2903. }
  2904. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2905. {
  2906. if (mmu_is_nested(vcpu))
  2907. return init_kvm_nested_mmu(vcpu);
  2908. else if (tdp_enabled)
  2909. return init_kvm_tdp_mmu(vcpu);
  2910. else
  2911. return init_kvm_softmmu(vcpu);
  2912. }
  2913. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2914. {
  2915. ASSERT(vcpu);
  2916. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2917. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2918. vcpu->arch.mmu.free(vcpu);
  2919. }
  2920. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2921. {
  2922. destroy_kvm_mmu(vcpu);
  2923. return init_kvm_mmu(vcpu);
  2924. }
  2925. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2926. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2927. {
  2928. int r;
  2929. r = mmu_topup_memory_caches(vcpu);
  2930. if (r)
  2931. goto out;
  2932. r = mmu_alloc_roots(vcpu);
  2933. spin_lock(&vcpu->kvm->mmu_lock);
  2934. mmu_sync_roots(vcpu);
  2935. spin_unlock(&vcpu->kvm->mmu_lock);
  2936. if (r)
  2937. goto out;
  2938. /* set_cr3() should ensure TLB has been flushed */
  2939. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2940. out:
  2941. return r;
  2942. }
  2943. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2944. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2945. {
  2946. mmu_free_roots(vcpu);
  2947. }
  2948. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2949. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2950. struct kvm_mmu_page *sp, u64 *spte,
  2951. const void *new)
  2952. {
  2953. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2954. ++vcpu->kvm->stat.mmu_pde_zapped;
  2955. return;
  2956. }
  2957. ++vcpu->kvm->stat.mmu_pte_updated;
  2958. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  2959. }
  2960. static bool need_remote_flush(u64 old, u64 new)
  2961. {
  2962. if (!is_shadow_present_pte(old))
  2963. return false;
  2964. if (!is_shadow_present_pte(new))
  2965. return true;
  2966. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2967. return true;
  2968. old ^= PT64_NX_MASK;
  2969. new ^= PT64_NX_MASK;
  2970. return (old & ~new & PT64_PERM_MASK) != 0;
  2971. }
  2972. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2973. bool remote_flush, bool local_flush)
  2974. {
  2975. if (zap_page)
  2976. return;
  2977. if (remote_flush)
  2978. kvm_flush_remote_tlbs(vcpu->kvm);
  2979. else if (local_flush)
  2980. kvm_mmu_flush_tlb(vcpu);
  2981. }
  2982. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  2983. const u8 *new, int *bytes)
  2984. {
  2985. u64 gentry;
  2986. int r;
  2987. /*
  2988. * Assume that the pte write on a page table of the same type
  2989. * as the current vcpu paging mode since we update the sptes only
  2990. * when they have the same mode.
  2991. */
  2992. if (is_pae(vcpu) && *bytes == 4) {
  2993. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2994. *gpa &= ~(gpa_t)7;
  2995. *bytes = 8;
  2996. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  2997. if (r)
  2998. gentry = 0;
  2999. new = (const u8 *)&gentry;
  3000. }
  3001. switch (*bytes) {
  3002. case 4:
  3003. gentry = *(const u32 *)new;
  3004. break;
  3005. case 8:
  3006. gentry = *(const u64 *)new;
  3007. break;
  3008. default:
  3009. gentry = 0;
  3010. break;
  3011. }
  3012. return gentry;
  3013. }
  3014. /*
  3015. * If we're seeing too many writes to a page, it may no longer be a page table,
  3016. * or we may be forking, in which case it is better to unmap the page.
  3017. */
  3018. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3019. {
  3020. /*
  3021. * Skip write-flooding detected for the sp whose level is 1, because
  3022. * it can become unsync, then the guest page is not write-protected.
  3023. */
  3024. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3025. return false;
  3026. return ++sp->write_flooding_count >= 3;
  3027. }
  3028. /*
  3029. * Misaligned accesses are too much trouble to fix up; also, they usually
  3030. * indicate a page is not used as a page table.
  3031. */
  3032. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3033. int bytes)
  3034. {
  3035. unsigned offset, pte_size, misaligned;
  3036. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3037. gpa, bytes, sp->role.word);
  3038. offset = offset_in_page(gpa);
  3039. pte_size = sp->role.cr4_pae ? 8 : 4;
  3040. /*
  3041. * Sometimes, the OS only writes the last one bytes to update status
  3042. * bits, for example, in linux, andb instruction is used in clear_bit().
  3043. */
  3044. if (!(offset & (pte_size - 1)) && bytes == 1)
  3045. return false;
  3046. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3047. misaligned |= bytes < 4;
  3048. return misaligned;
  3049. }
  3050. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3051. {
  3052. unsigned page_offset, quadrant;
  3053. u64 *spte;
  3054. int level;
  3055. page_offset = offset_in_page(gpa);
  3056. level = sp->role.level;
  3057. *nspte = 1;
  3058. if (!sp->role.cr4_pae) {
  3059. page_offset <<= 1; /* 32->64 */
  3060. /*
  3061. * A 32-bit pde maps 4MB while the shadow pdes map
  3062. * only 2MB. So we need to double the offset again
  3063. * and zap two pdes instead of one.
  3064. */
  3065. if (level == PT32_ROOT_LEVEL) {
  3066. page_offset &= ~7; /* kill rounding error */
  3067. page_offset <<= 1;
  3068. *nspte = 2;
  3069. }
  3070. quadrant = page_offset >> PAGE_SHIFT;
  3071. page_offset &= ~PAGE_MASK;
  3072. if (quadrant != sp->role.quadrant)
  3073. return NULL;
  3074. }
  3075. spte = &sp->spt[page_offset / sizeof(*spte)];
  3076. return spte;
  3077. }
  3078. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3079. const u8 *new, int bytes)
  3080. {
  3081. gfn_t gfn = gpa >> PAGE_SHIFT;
  3082. union kvm_mmu_page_role mask = { .word = 0 };
  3083. struct kvm_mmu_page *sp;
  3084. struct hlist_node *node;
  3085. LIST_HEAD(invalid_list);
  3086. u64 entry, gentry, *spte;
  3087. int npte;
  3088. bool remote_flush, local_flush, zap_page;
  3089. /*
  3090. * If we don't have indirect shadow pages, it means no page is
  3091. * write-protected, so we can exit simply.
  3092. */
  3093. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3094. return;
  3095. zap_page = remote_flush = local_flush = false;
  3096. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3097. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3098. /*
  3099. * No need to care whether allocation memory is successful
  3100. * or not since pte prefetch is skiped if it does not have
  3101. * enough objects in the cache.
  3102. */
  3103. mmu_topup_memory_caches(vcpu);
  3104. spin_lock(&vcpu->kvm->mmu_lock);
  3105. ++vcpu->kvm->stat.mmu_pte_write;
  3106. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3107. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3108. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3109. if (detect_write_misaligned(sp, gpa, bytes) ||
  3110. detect_write_flooding(sp)) {
  3111. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3112. &invalid_list);
  3113. ++vcpu->kvm->stat.mmu_flooded;
  3114. continue;
  3115. }
  3116. spte = get_written_sptes(sp, gpa, &npte);
  3117. if (!spte)
  3118. continue;
  3119. local_flush = true;
  3120. while (npte--) {
  3121. entry = *spte;
  3122. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3123. if (gentry &&
  3124. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3125. & mask.word) && rmap_can_add(vcpu))
  3126. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3127. if (!remote_flush && need_remote_flush(entry, *spte))
  3128. remote_flush = true;
  3129. ++spte;
  3130. }
  3131. }
  3132. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3133. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3134. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3135. spin_unlock(&vcpu->kvm->mmu_lock);
  3136. }
  3137. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3138. {
  3139. gpa_t gpa;
  3140. int r;
  3141. if (vcpu->arch.mmu.direct_map)
  3142. return 0;
  3143. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3144. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3145. return r;
  3146. }
  3147. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3148. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3149. {
  3150. LIST_HEAD(invalid_list);
  3151. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3152. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3153. struct kvm_mmu_page *sp;
  3154. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3155. struct kvm_mmu_page, link);
  3156. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3157. ++vcpu->kvm->stat.mmu_recycled;
  3158. }
  3159. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3160. }
  3161. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3162. {
  3163. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3164. return vcpu_match_mmio_gpa(vcpu, addr);
  3165. return vcpu_match_mmio_gva(vcpu, addr);
  3166. }
  3167. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3168. void *insn, int insn_len)
  3169. {
  3170. int r, emulation_type = EMULTYPE_RETRY;
  3171. enum emulation_result er;
  3172. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3173. if (r < 0)
  3174. goto out;
  3175. if (!r) {
  3176. r = 1;
  3177. goto out;
  3178. }
  3179. if (is_mmio_page_fault(vcpu, cr2))
  3180. emulation_type = 0;
  3181. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3182. switch (er) {
  3183. case EMULATE_DONE:
  3184. return 1;
  3185. case EMULATE_DO_MMIO:
  3186. ++vcpu->stat.mmio_exits;
  3187. /* fall through */
  3188. case EMULATE_FAIL:
  3189. return 0;
  3190. default:
  3191. BUG();
  3192. }
  3193. out:
  3194. return r;
  3195. }
  3196. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3197. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3198. {
  3199. vcpu->arch.mmu.invlpg(vcpu, gva);
  3200. kvm_mmu_flush_tlb(vcpu);
  3201. ++vcpu->stat.invlpg;
  3202. }
  3203. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3204. void kvm_enable_tdp(void)
  3205. {
  3206. tdp_enabled = true;
  3207. }
  3208. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3209. void kvm_disable_tdp(void)
  3210. {
  3211. tdp_enabled = false;
  3212. }
  3213. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3214. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3215. {
  3216. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3217. if (vcpu->arch.mmu.lm_root != NULL)
  3218. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3219. }
  3220. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3221. {
  3222. struct page *page;
  3223. int i;
  3224. ASSERT(vcpu);
  3225. /*
  3226. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3227. * Therefore we need to allocate shadow page tables in the first
  3228. * 4GB of memory, which happens to fit the DMA32 zone.
  3229. */
  3230. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3231. if (!page)
  3232. return -ENOMEM;
  3233. vcpu->arch.mmu.pae_root = page_address(page);
  3234. for (i = 0; i < 4; ++i)
  3235. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3236. return 0;
  3237. }
  3238. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3239. {
  3240. ASSERT(vcpu);
  3241. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3242. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3243. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3244. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3245. return alloc_mmu_pages(vcpu);
  3246. }
  3247. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3248. {
  3249. ASSERT(vcpu);
  3250. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3251. return init_kvm_mmu(vcpu);
  3252. }
  3253. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3254. {
  3255. struct kvm_mmu_page *sp;
  3256. bool flush = false;
  3257. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3258. int i;
  3259. u64 *pt;
  3260. if (!test_bit(slot, sp->slot_bitmap))
  3261. continue;
  3262. pt = sp->spt;
  3263. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3264. if (!is_shadow_present_pte(pt[i]) ||
  3265. !is_last_spte(pt[i], sp->role.level))
  3266. continue;
  3267. spte_write_protect(kvm, &pt[i], &flush);
  3268. }
  3269. }
  3270. kvm_flush_remote_tlbs(kvm);
  3271. }
  3272. void kvm_mmu_zap_all(struct kvm *kvm)
  3273. {
  3274. struct kvm_mmu_page *sp, *node;
  3275. LIST_HEAD(invalid_list);
  3276. spin_lock(&kvm->mmu_lock);
  3277. restart:
  3278. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3279. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3280. goto restart;
  3281. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3282. spin_unlock(&kvm->mmu_lock);
  3283. }
  3284. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3285. struct list_head *invalid_list)
  3286. {
  3287. struct kvm_mmu_page *page;
  3288. page = container_of(kvm->arch.active_mmu_pages.prev,
  3289. struct kvm_mmu_page, link);
  3290. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3291. }
  3292. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3293. {
  3294. struct kvm *kvm;
  3295. int nr_to_scan = sc->nr_to_scan;
  3296. if (nr_to_scan == 0)
  3297. goto out;
  3298. raw_spin_lock(&kvm_lock);
  3299. list_for_each_entry(kvm, &vm_list, vm_list) {
  3300. int idx;
  3301. LIST_HEAD(invalid_list);
  3302. /*
  3303. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3304. * here. We may skip a VM instance errorneosly, but we do not
  3305. * want to shrink a VM that only started to populate its MMU
  3306. * anyway.
  3307. */
  3308. if (kvm->arch.n_used_mmu_pages > 0) {
  3309. if (!nr_to_scan--)
  3310. break;
  3311. continue;
  3312. }
  3313. idx = srcu_read_lock(&kvm->srcu);
  3314. spin_lock(&kvm->mmu_lock);
  3315. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3316. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3317. spin_unlock(&kvm->mmu_lock);
  3318. srcu_read_unlock(&kvm->srcu, idx);
  3319. list_move_tail(&kvm->vm_list, &vm_list);
  3320. break;
  3321. }
  3322. raw_spin_unlock(&kvm_lock);
  3323. out:
  3324. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3325. }
  3326. static struct shrinker mmu_shrinker = {
  3327. .shrink = mmu_shrink,
  3328. .seeks = DEFAULT_SEEKS * 10,
  3329. };
  3330. static void mmu_destroy_caches(void)
  3331. {
  3332. if (pte_list_desc_cache)
  3333. kmem_cache_destroy(pte_list_desc_cache);
  3334. if (mmu_page_header_cache)
  3335. kmem_cache_destroy(mmu_page_header_cache);
  3336. }
  3337. int kvm_mmu_module_init(void)
  3338. {
  3339. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3340. sizeof(struct pte_list_desc),
  3341. 0, 0, NULL);
  3342. if (!pte_list_desc_cache)
  3343. goto nomem;
  3344. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3345. sizeof(struct kvm_mmu_page),
  3346. 0, 0, NULL);
  3347. if (!mmu_page_header_cache)
  3348. goto nomem;
  3349. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3350. goto nomem;
  3351. register_shrinker(&mmu_shrinker);
  3352. return 0;
  3353. nomem:
  3354. mmu_destroy_caches();
  3355. return -ENOMEM;
  3356. }
  3357. /*
  3358. * Caculate mmu pages needed for kvm.
  3359. */
  3360. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3361. {
  3362. unsigned int nr_mmu_pages;
  3363. unsigned int nr_pages = 0;
  3364. struct kvm_memslots *slots;
  3365. struct kvm_memory_slot *memslot;
  3366. slots = kvm_memslots(kvm);
  3367. kvm_for_each_memslot(memslot, slots)
  3368. nr_pages += memslot->npages;
  3369. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3370. nr_mmu_pages = max(nr_mmu_pages,
  3371. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3372. return nr_mmu_pages;
  3373. }
  3374. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3375. {
  3376. struct kvm_shadow_walk_iterator iterator;
  3377. u64 spte;
  3378. int nr_sptes = 0;
  3379. walk_shadow_page_lockless_begin(vcpu);
  3380. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3381. sptes[iterator.level-1] = spte;
  3382. nr_sptes++;
  3383. if (!is_shadow_present_pte(spte))
  3384. break;
  3385. }
  3386. walk_shadow_page_lockless_end(vcpu);
  3387. return nr_sptes;
  3388. }
  3389. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3390. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3391. {
  3392. ASSERT(vcpu);
  3393. destroy_kvm_mmu(vcpu);
  3394. free_mmu_pages(vcpu);
  3395. mmu_free_memory_caches(vcpu);
  3396. }
  3397. void kvm_mmu_module_exit(void)
  3398. {
  3399. mmu_destroy_caches();
  3400. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3401. unregister_shrinker(&mmu_shrinker);
  3402. mmu_audit_disable();
  3403. }