kvm_main.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <asm/processor.h>
  44. #include <asm/io.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/pgtable.h>
  47. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  48. #include "coalesced_mmio.h"
  49. #endif
  50. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  51. #include <linux/pci.h>
  52. #include <linux/interrupt.h>
  53. #include "irq.h"
  54. #endif
  55. MODULE_AUTHOR("Qumranet");
  56. MODULE_LICENSE("GPL");
  57. DEFINE_SPINLOCK(kvm_lock);
  58. LIST_HEAD(vm_list);
  59. static cpumask_var_t cpus_hardware_enabled;
  60. struct kmem_cache *kvm_vcpu_cache;
  61. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  62. static __read_mostly struct preempt_ops kvm_preempt_ops;
  63. struct dentry *kvm_debugfs_dir;
  64. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  65. unsigned long arg);
  66. static bool kvm_rebooting;
  67. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  68. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  69. int assigned_dev_id)
  70. {
  71. struct list_head *ptr;
  72. struct kvm_assigned_dev_kernel *match;
  73. list_for_each(ptr, head) {
  74. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  75. if (match->assigned_dev_id == assigned_dev_id)
  76. return match;
  77. }
  78. return NULL;
  79. }
  80. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  81. *assigned_dev, int irq)
  82. {
  83. int i, index;
  84. struct msix_entry *host_msix_entries;
  85. host_msix_entries = assigned_dev->host_msix_entries;
  86. index = -1;
  87. for (i = 0; i < assigned_dev->entries_nr; i++)
  88. if (irq == host_msix_entries[i].vector) {
  89. index = i;
  90. break;
  91. }
  92. if (index < 0) {
  93. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  94. return 0;
  95. }
  96. return index;
  97. }
  98. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  99. {
  100. struct kvm_assigned_dev_kernel *assigned_dev;
  101. struct kvm *kvm;
  102. int irq, i;
  103. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  104. interrupt_work);
  105. kvm = assigned_dev->kvm;
  106. /* This is taken to safely inject irq inside the guest. When
  107. * the interrupt injection (or the ioapic code) uses a
  108. * finer-grained lock, update this
  109. */
  110. mutex_lock(&kvm->lock);
  111. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  112. struct kvm_guest_msix_entry *guest_entries =
  113. assigned_dev->guest_msix_entries;
  114. for (i = 0; i < assigned_dev->entries_nr; i++) {
  115. if (!(guest_entries[i].flags &
  116. KVM_ASSIGNED_MSIX_PENDING))
  117. continue;
  118. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  119. kvm_set_irq(assigned_dev->kvm,
  120. assigned_dev->irq_source_id,
  121. guest_entries[i].vector, 1);
  122. irq = assigned_dev->host_msix_entries[i].vector;
  123. if (irq != 0)
  124. enable_irq(irq);
  125. assigned_dev->host_irq_disabled = false;
  126. }
  127. } else {
  128. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  129. assigned_dev->guest_irq, 1);
  130. if (assigned_dev->irq_requested_type &
  131. KVM_DEV_IRQ_GUEST_MSI) {
  132. enable_irq(assigned_dev->host_irq);
  133. assigned_dev->host_irq_disabled = false;
  134. }
  135. }
  136. mutex_unlock(&assigned_dev->kvm->lock);
  137. }
  138. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  139. {
  140. struct kvm_assigned_dev_kernel *assigned_dev =
  141. (struct kvm_assigned_dev_kernel *) dev_id;
  142. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  143. int index = find_index_from_host_irq(assigned_dev, irq);
  144. if (index < 0)
  145. return IRQ_HANDLED;
  146. assigned_dev->guest_msix_entries[index].flags |=
  147. KVM_ASSIGNED_MSIX_PENDING;
  148. }
  149. schedule_work(&assigned_dev->interrupt_work);
  150. disable_irq_nosync(irq);
  151. assigned_dev->host_irq_disabled = true;
  152. return IRQ_HANDLED;
  153. }
  154. /* Ack the irq line for an assigned device */
  155. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  156. {
  157. struct kvm_assigned_dev_kernel *dev;
  158. if (kian->gsi == -1)
  159. return;
  160. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  161. ack_notifier);
  162. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  163. /* The guest irq may be shared so this ack may be
  164. * from another device.
  165. */
  166. if (dev->host_irq_disabled) {
  167. enable_irq(dev->host_irq);
  168. dev->host_irq_disabled = false;
  169. }
  170. }
  171. static void deassign_guest_irq(struct kvm *kvm,
  172. struct kvm_assigned_dev_kernel *assigned_dev)
  173. {
  174. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  175. assigned_dev->ack_notifier.gsi = -1;
  176. if (assigned_dev->irq_source_id != -1)
  177. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  178. assigned_dev->irq_source_id = -1;
  179. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  180. }
  181. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  182. static void deassign_host_irq(struct kvm *kvm,
  183. struct kvm_assigned_dev_kernel *assigned_dev)
  184. {
  185. /*
  186. * In kvm_free_device_irq, cancel_work_sync return true if:
  187. * 1. work is scheduled, and then cancelled.
  188. * 2. work callback is executed.
  189. *
  190. * The first one ensured that the irq is disabled and no more events
  191. * would happen. But for the second one, the irq may be enabled (e.g.
  192. * for MSI). So we disable irq here to prevent further events.
  193. *
  194. * Notice this maybe result in nested disable if the interrupt type is
  195. * INTx, but it's OK for we are going to free it.
  196. *
  197. * If this function is a part of VM destroy, please ensure that till
  198. * now, the kvm state is still legal for probably we also have to wait
  199. * interrupt_work done.
  200. */
  201. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  202. int i;
  203. for (i = 0; i < assigned_dev->entries_nr; i++)
  204. disable_irq_nosync(assigned_dev->
  205. host_msix_entries[i].vector);
  206. cancel_work_sync(&assigned_dev->interrupt_work);
  207. for (i = 0; i < assigned_dev->entries_nr; i++)
  208. free_irq(assigned_dev->host_msix_entries[i].vector,
  209. (void *)assigned_dev);
  210. assigned_dev->entries_nr = 0;
  211. kfree(assigned_dev->host_msix_entries);
  212. kfree(assigned_dev->guest_msix_entries);
  213. pci_disable_msix(assigned_dev->dev);
  214. } else {
  215. /* Deal with MSI and INTx */
  216. disable_irq_nosync(assigned_dev->host_irq);
  217. cancel_work_sync(&assigned_dev->interrupt_work);
  218. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  219. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  220. pci_disable_msi(assigned_dev->dev);
  221. }
  222. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  223. }
  224. static int kvm_deassign_irq(struct kvm *kvm,
  225. struct kvm_assigned_dev_kernel *assigned_dev,
  226. unsigned long irq_requested_type)
  227. {
  228. unsigned long guest_irq_type, host_irq_type;
  229. if (!irqchip_in_kernel(kvm))
  230. return -EINVAL;
  231. /* no irq assignment to deassign */
  232. if (!assigned_dev->irq_requested_type)
  233. return -ENXIO;
  234. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  235. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  236. if (host_irq_type)
  237. deassign_host_irq(kvm, assigned_dev);
  238. if (guest_irq_type)
  239. deassign_guest_irq(kvm, assigned_dev);
  240. return 0;
  241. }
  242. static void kvm_free_assigned_irq(struct kvm *kvm,
  243. struct kvm_assigned_dev_kernel *assigned_dev)
  244. {
  245. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  246. }
  247. static void kvm_free_assigned_device(struct kvm *kvm,
  248. struct kvm_assigned_dev_kernel
  249. *assigned_dev)
  250. {
  251. kvm_free_assigned_irq(kvm, assigned_dev);
  252. pci_reset_function(assigned_dev->dev);
  253. pci_release_regions(assigned_dev->dev);
  254. pci_disable_device(assigned_dev->dev);
  255. pci_dev_put(assigned_dev->dev);
  256. list_del(&assigned_dev->list);
  257. kfree(assigned_dev);
  258. }
  259. void kvm_free_all_assigned_devices(struct kvm *kvm)
  260. {
  261. struct list_head *ptr, *ptr2;
  262. struct kvm_assigned_dev_kernel *assigned_dev;
  263. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  264. assigned_dev = list_entry(ptr,
  265. struct kvm_assigned_dev_kernel,
  266. list);
  267. kvm_free_assigned_device(kvm, assigned_dev);
  268. }
  269. }
  270. static int assigned_device_enable_host_intx(struct kvm *kvm,
  271. struct kvm_assigned_dev_kernel *dev)
  272. {
  273. dev->host_irq = dev->dev->irq;
  274. /* Even though this is PCI, we don't want to use shared
  275. * interrupts. Sharing host devices with guest-assigned devices
  276. * on the same interrupt line is not a happy situation: there
  277. * are going to be long delays in accepting, acking, etc.
  278. */
  279. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  280. 0, "kvm_assigned_intx_device", (void *)dev))
  281. return -EIO;
  282. return 0;
  283. }
  284. #ifdef __KVM_HAVE_MSI
  285. static int assigned_device_enable_host_msi(struct kvm *kvm,
  286. struct kvm_assigned_dev_kernel *dev)
  287. {
  288. int r;
  289. if (!dev->dev->msi_enabled) {
  290. r = pci_enable_msi(dev->dev);
  291. if (r)
  292. return r;
  293. }
  294. dev->host_irq = dev->dev->irq;
  295. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  296. "kvm_assigned_msi_device", (void *)dev)) {
  297. pci_disable_msi(dev->dev);
  298. return -EIO;
  299. }
  300. return 0;
  301. }
  302. #endif
  303. #ifdef __KVM_HAVE_MSIX
  304. static int assigned_device_enable_host_msix(struct kvm *kvm,
  305. struct kvm_assigned_dev_kernel *dev)
  306. {
  307. int i, r = -EINVAL;
  308. /* host_msix_entries and guest_msix_entries should have been
  309. * initialized */
  310. if (dev->entries_nr == 0)
  311. return r;
  312. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  313. if (r)
  314. return r;
  315. for (i = 0; i < dev->entries_nr; i++) {
  316. r = request_irq(dev->host_msix_entries[i].vector,
  317. kvm_assigned_dev_intr, 0,
  318. "kvm_assigned_msix_device",
  319. (void *)dev);
  320. /* FIXME: free requested_irq's on failure */
  321. if (r)
  322. return r;
  323. }
  324. return 0;
  325. }
  326. #endif
  327. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  328. struct kvm_assigned_dev_kernel *dev,
  329. struct kvm_assigned_irq *irq)
  330. {
  331. dev->guest_irq = irq->guest_irq;
  332. dev->ack_notifier.gsi = irq->guest_irq;
  333. return 0;
  334. }
  335. #ifdef __KVM_HAVE_MSI
  336. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  337. struct kvm_assigned_dev_kernel *dev,
  338. struct kvm_assigned_irq *irq)
  339. {
  340. dev->guest_irq = irq->guest_irq;
  341. dev->ack_notifier.gsi = -1;
  342. return 0;
  343. }
  344. #endif
  345. #ifdef __KVM_HAVE_MSIX
  346. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  347. struct kvm_assigned_dev_kernel *dev,
  348. struct kvm_assigned_irq *irq)
  349. {
  350. dev->guest_irq = irq->guest_irq;
  351. dev->ack_notifier.gsi = -1;
  352. return 0;
  353. }
  354. #endif
  355. static int assign_host_irq(struct kvm *kvm,
  356. struct kvm_assigned_dev_kernel *dev,
  357. __u32 host_irq_type)
  358. {
  359. int r = -EEXIST;
  360. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  361. return r;
  362. switch (host_irq_type) {
  363. case KVM_DEV_IRQ_HOST_INTX:
  364. r = assigned_device_enable_host_intx(kvm, dev);
  365. break;
  366. #ifdef __KVM_HAVE_MSI
  367. case KVM_DEV_IRQ_HOST_MSI:
  368. r = assigned_device_enable_host_msi(kvm, dev);
  369. break;
  370. #endif
  371. #ifdef __KVM_HAVE_MSIX
  372. case KVM_DEV_IRQ_HOST_MSIX:
  373. r = assigned_device_enable_host_msix(kvm, dev);
  374. break;
  375. #endif
  376. default:
  377. r = -EINVAL;
  378. }
  379. if (!r)
  380. dev->irq_requested_type |= host_irq_type;
  381. return r;
  382. }
  383. static int assign_guest_irq(struct kvm *kvm,
  384. struct kvm_assigned_dev_kernel *dev,
  385. struct kvm_assigned_irq *irq,
  386. unsigned long guest_irq_type)
  387. {
  388. int id;
  389. int r = -EEXIST;
  390. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  391. return r;
  392. id = kvm_request_irq_source_id(kvm);
  393. if (id < 0)
  394. return id;
  395. dev->irq_source_id = id;
  396. switch (guest_irq_type) {
  397. case KVM_DEV_IRQ_GUEST_INTX:
  398. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  399. break;
  400. #ifdef __KVM_HAVE_MSI
  401. case KVM_DEV_IRQ_GUEST_MSI:
  402. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  403. break;
  404. #endif
  405. #ifdef __KVM_HAVE_MSIX
  406. case KVM_DEV_IRQ_GUEST_MSIX:
  407. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  408. break;
  409. #endif
  410. default:
  411. r = -EINVAL;
  412. }
  413. if (!r) {
  414. dev->irq_requested_type |= guest_irq_type;
  415. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  416. } else
  417. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  418. return r;
  419. }
  420. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  421. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  422. struct kvm_assigned_irq *assigned_irq)
  423. {
  424. int r = -EINVAL;
  425. struct kvm_assigned_dev_kernel *match;
  426. unsigned long host_irq_type, guest_irq_type;
  427. if (!capable(CAP_SYS_RAWIO))
  428. return -EPERM;
  429. if (!irqchip_in_kernel(kvm))
  430. return r;
  431. mutex_lock(&kvm->lock);
  432. r = -ENODEV;
  433. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  434. assigned_irq->assigned_dev_id);
  435. if (!match)
  436. goto out;
  437. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  438. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  439. r = -EINVAL;
  440. /* can only assign one type at a time */
  441. if (hweight_long(host_irq_type) > 1)
  442. goto out;
  443. if (hweight_long(guest_irq_type) > 1)
  444. goto out;
  445. if (host_irq_type == 0 && guest_irq_type == 0)
  446. goto out;
  447. r = 0;
  448. if (host_irq_type)
  449. r = assign_host_irq(kvm, match, host_irq_type);
  450. if (r)
  451. goto out;
  452. if (guest_irq_type)
  453. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  454. out:
  455. mutex_unlock(&kvm->lock);
  456. return r;
  457. }
  458. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  459. struct kvm_assigned_irq
  460. *assigned_irq)
  461. {
  462. int r = -ENODEV;
  463. struct kvm_assigned_dev_kernel *match;
  464. mutex_lock(&kvm->lock);
  465. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  466. assigned_irq->assigned_dev_id);
  467. if (!match)
  468. goto out;
  469. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  470. out:
  471. mutex_unlock(&kvm->lock);
  472. return r;
  473. }
  474. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  475. struct kvm_assigned_pci_dev *assigned_dev)
  476. {
  477. int r = 0;
  478. struct kvm_assigned_dev_kernel *match;
  479. struct pci_dev *dev;
  480. down_read(&kvm->slots_lock);
  481. mutex_lock(&kvm->lock);
  482. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  483. assigned_dev->assigned_dev_id);
  484. if (match) {
  485. /* device already assigned */
  486. r = -EEXIST;
  487. goto out;
  488. }
  489. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  490. if (match == NULL) {
  491. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  492. __func__);
  493. r = -ENOMEM;
  494. goto out;
  495. }
  496. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  497. assigned_dev->devfn);
  498. if (!dev) {
  499. printk(KERN_INFO "%s: host device not found\n", __func__);
  500. r = -EINVAL;
  501. goto out_free;
  502. }
  503. if (pci_enable_device(dev)) {
  504. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  505. r = -EBUSY;
  506. goto out_put;
  507. }
  508. r = pci_request_regions(dev, "kvm_assigned_device");
  509. if (r) {
  510. printk(KERN_INFO "%s: Could not get access to device regions\n",
  511. __func__);
  512. goto out_disable;
  513. }
  514. pci_reset_function(dev);
  515. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  516. match->host_busnr = assigned_dev->busnr;
  517. match->host_devfn = assigned_dev->devfn;
  518. match->flags = assigned_dev->flags;
  519. match->dev = dev;
  520. match->irq_source_id = -1;
  521. match->kvm = kvm;
  522. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  523. INIT_WORK(&match->interrupt_work,
  524. kvm_assigned_dev_interrupt_work_handler);
  525. list_add(&match->list, &kvm->arch.assigned_dev_head);
  526. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  527. if (!kvm->arch.iommu_domain) {
  528. r = kvm_iommu_map_guest(kvm);
  529. if (r)
  530. goto out_list_del;
  531. }
  532. r = kvm_assign_device(kvm, match);
  533. if (r)
  534. goto out_list_del;
  535. }
  536. out:
  537. mutex_unlock(&kvm->lock);
  538. up_read(&kvm->slots_lock);
  539. return r;
  540. out_list_del:
  541. list_del(&match->list);
  542. pci_release_regions(dev);
  543. out_disable:
  544. pci_disable_device(dev);
  545. out_put:
  546. pci_dev_put(dev);
  547. out_free:
  548. kfree(match);
  549. mutex_unlock(&kvm->lock);
  550. up_read(&kvm->slots_lock);
  551. return r;
  552. }
  553. #endif
  554. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  555. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  556. struct kvm_assigned_pci_dev *assigned_dev)
  557. {
  558. int r = 0;
  559. struct kvm_assigned_dev_kernel *match;
  560. mutex_lock(&kvm->lock);
  561. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  562. assigned_dev->assigned_dev_id);
  563. if (!match) {
  564. printk(KERN_INFO "%s: device hasn't been assigned before, "
  565. "so cannot be deassigned\n", __func__);
  566. r = -EINVAL;
  567. goto out;
  568. }
  569. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  570. kvm_deassign_device(kvm, match);
  571. kvm_free_assigned_device(kvm, match);
  572. out:
  573. mutex_unlock(&kvm->lock);
  574. return r;
  575. }
  576. #endif
  577. static inline int valid_vcpu(int n)
  578. {
  579. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  580. }
  581. inline int kvm_is_mmio_pfn(pfn_t pfn)
  582. {
  583. if (pfn_valid(pfn)) {
  584. struct page *page = compound_head(pfn_to_page(pfn));
  585. return PageReserved(page);
  586. }
  587. return true;
  588. }
  589. /*
  590. * Switches to specified vcpu, until a matching vcpu_put()
  591. */
  592. void vcpu_load(struct kvm_vcpu *vcpu)
  593. {
  594. int cpu;
  595. mutex_lock(&vcpu->mutex);
  596. cpu = get_cpu();
  597. preempt_notifier_register(&vcpu->preempt_notifier);
  598. kvm_arch_vcpu_load(vcpu, cpu);
  599. put_cpu();
  600. }
  601. void vcpu_put(struct kvm_vcpu *vcpu)
  602. {
  603. preempt_disable();
  604. kvm_arch_vcpu_put(vcpu);
  605. preempt_notifier_unregister(&vcpu->preempt_notifier);
  606. preempt_enable();
  607. mutex_unlock(&vcpu->mutex);
  608. }
  609. static void ack_flush(void *_completed)
  610. {
  611. }
  612. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  613. {
  614. int i, cpu, me;
  615. cpumask_var_t cpus;
  616. bool called = true;
  617. struct kvm_vcpu *vcpu;
  618. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  619. cpumask_clear(cpus);
  620. me = get_cpu();
  621. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  622. vcpu = kvm->vcpus[i];
  623. if (!vcpu)
  624. continue;
  625. if (test_and_set_bit(req, &vcpu->requests))
  626. continue;
  627. cpu = vcpu->cpu;
  628. if (cpus != NULL && cpu != -1 && cpu != me)
  629. cpumask_set_cpu(cpu, cpus);
  630. }
  631. if (unlikely(cpus == NULL))
  632. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  633. else if (!cpumask_empty(cpus))
  634. smp_call_function_many(cpus, ack_flush, NULL, 1);
  635. else
  636. called = false;
  637. put_cpu();
  638. free_cpumask_var(cpus);
  639. return called;
  640. }
  641. void kvm_flush_remote_tlbs(struct kvm *kvm)
  642. {
  643. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  644. ++kvm->stat.remote_tlb_flush;
  645. }
  646. void kvm_reload_remote_mmus(struct kvm *kvm)
  647. {
  648. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  649. }
  650. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  651. {
  652. struct page *page;
  653. int r;
  654. mutex_init(&vcpu->mutex);
  655. vcpu->cpu = -1;
  656. vcpu->kvm = kvm;
  657. vcpu->vcpu_id = id;
  658. init_waitqueue_head(&vcpu->wq);
  659. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  660. if (!page) {
  661. r = -ENOMEM;
  662. goto fail;
  663. }
  664. vcpu->run = page_address(page);
  665. r = kvm_arch_vcpu_init(vcpu);
  666. if (r < 0)
  667. goto fail_free_run;
  668. return 0;
  669. fail_free_run:
  670. free_page((unsigned long)vcpu->run);
  671. fail:
  672. return r;
  673. }
  674. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  675. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  676. {
  677. kvm_arch_vcpu_uninit(vcpu);
  678. free_page((unsigned long)vcpu->run);
  679. }
  680. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  681. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  682. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  683. {
  684. return container_of(mn, struct kvm, mmu_notifier);
  685. }
  686. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  687. struct mm_struct *mm,
  688. unsigned long address)
  689. {
  690. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  691. int need_tlb_flush;
  692. /*
  693. * When ->invalidate_page runs, the linux pte has been zapped
  694. * already but the page is still allocated until
  695. * ->invalidate_page returns. So if we increase the sequence
  696. * here the kvm page fault will notice if the spte can't be
  697. * established because the page is going to be freed. If
  698. * instead the kvm page fault establishes the spte before
  699. * ->invalidate_page runs, kvm_unmap_hva will release it
  700. * before returning.
  701. *
  702. * The sequence increase only need to be seen at spin_unlock
  703. * time, and not at spin_lock time.
  704. *
  705. * Increasing the sequence after the spin_unlock would be
  706. * unsafe because the kvm page fault could then establish the
  707. * pte after kvm_unmap_hva returned, without noticing the page
  708. * is going to be freed.
  709. */
  710. spin_lock(&kvm->mmu_lock);
  711. kvm->mmu_notifier_seq++;
  712. need_tlb_flush = kvm_unmap_hva(kvm, address);
  713. spin_unlock(&kvm->mmu_lock);
  714. /* we've to flush the tlb before the pages can be freed */
  715. if (need_tlb_flush)
  716. kvm_flush_remote_tlbs(kvm);
  717. }
  718. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  719. struct mm_struct *mm,
  720. unsigned long start,
  721. unsigned long end)
  722. {
  723. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  724. int need_tlb_flush = 0;
  725. spin_lock(&kvm->mmu_lock);
  726. /*
  727. * The count increase must become visible at unlock time as no
  728. * spte can be established without taking the mmu_lock and
  729. * count is also read inside the mmu_lock critical section.
  730. */
  731. kvm->mmu_notifier_count++;
  732. for (; start < end; start += PAGE_SIZE)
  733. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  734. spin_unlock(&kvm->mmu_lock);
  735. /* we've to flush the tlb before the pages can be freed */
  736. if (need_tlb_flush)
  737. kvm_flush_remote_tlbs(kvm);
  738. }
  739. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  740. struct mm_struct *mm,
  741. unsigned long start,
  742. unsigned long end)
  743. {
  744. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  745. spin_lock(&kvm->mmu_lock);
  746. /*
  747. * This sequence increase will notify the kvm page fault that
  748. * the page that is going to be mapped in the spte could have
  749. * been freed.
  750. */
  751. kvm->mmu_notifier_seq++;
  752. /*
  753. * The above sequence increase must be visible before the
  754. * below count decrease but both values are read by the kvm
  755. * page fault under mmu_lock spinlock so we don't need to add
  756. * a smb_wmb() here in between the two.
  757. */
  758. kvm->mmu_notifier_count--;
  759. spin_unlock(&kvm->mmu_lock);
  760. BUG_ON(kvm->mmu_notifier_count < 0);
  761. }
  762. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  763. struct mm_struct *mm,
  764. unsigned long address)
  765. {
  766. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  767. int young;
  768. spin_lock(&kvm->mmu_lock);
  769. young = kvm_age_hva(kvm, address);
  770. spin_unlock(&kvm->mmu_lock);
  771. if (young)
  772. kvm_flush_remote_tlbs(kvm);
  773. return young;
  774. }
  775. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  776. struct mm_struct *mm)
  777. {
  778. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  779. kvm_arch_flush_shadow(kvm);
  780. }
  781. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  782. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  783. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  784. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  785. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  786. .release = kvm_mmu_notifier_release,
  787. };
  788. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  789. static struct kvm *kvm_create_vm(void)
  790. {
  791. struct kvm *kvm = kvm_arch_create_vm();
  792. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  793. struct page *page;
  794. #endif
  795. if (IS_ERR(kvm))
  796. goto out;
  797. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  798. INIT_LIST_HEAD(&kvm->irq_routing);
  799. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  800. #endif
  801. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  802. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  803. if (!page) {
  804. kfree(kvm);
  805. return ERR_PTR(-ENOMEM);
  806. }
  807. kvm->coalesced_mmio_ring =
  808. (struct kvm_coalesced_mmio_ring *)page_address(page);
  809. #endif
  810. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  811. {
  812. int err;
  813. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  814. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  815. if (err) {
  816. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  817. put_page(page);
  818. #endif
  819. kfree(kvm);
  820. return ERR_PTR(err);
  821. }
  822. }
  823. #endif
  824. kvm->mm = current->mm;
  825. atomic_inc(&kvm->mm->mm_count);
  826. spin_lock_init(&kvm->mmu_lock);
  827. kvm_io_bus_init(&kvm->pio_bus);
  828. mutex_init(&kvm->lock);
  829. kvm_io_bus_init(&kvm->mmio_bus);
  830. init_rwsem(&kvm->slots_lock);
  831. atomic_set(&kvm->users_count, 1);
  832. spin_lock(&kvm_lock);
  833. list_add(&kvm->vm_list, &vm_list);
  834. spin_unlock(&kvm_lock);
  835. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  836. kvm_coalesced_mmio_init(kvm);
  837. #endif
  838. out:
  839. return kvm;
  840. }
  841. /*
  842. * Free any memory in @free but not in @dont.
  843. */
  844. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  845. struct kvm_memory_slot *dont)
  846. {
  847. if (!dont || free->rmap != dont->rmap)
  848. vfree(free->rmap);
  849. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  850. vfree(free->dirty_bitmap);
  851. if (!dont || free->lpage_info != dont->lpage_info)
  852. vfree(free->lpage_info);
  853. free->npages = 0;
  854. free->dirty_bitmap = NULL;
  855. free->rmap = NULL;
  856. free->lpage_info = NULL;
  857. }
  858. void kvm_free_physmem(struct kvm *kvm)
  859. {
  860. int i;
  861. for (i = 0; i < kvm->nmemslots; ++i)
  862. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  863. }
  864. static void kvm_destroy_vm(struct kvm *kvm)
  865. {
  866. struct mm_struct *mm = kvm->mm;
  867. kvm_arch_sync_events(kvm);
  868. spin_lock(&kvm_lock);
  869. list_del(&kvm->vm_list);
  870. spin_unlock(&kvm_lock);
  871. kvm_free_irq_routing(kvm);
  872. kvm_io_bus_destroy(&kvm->pio_bus);
  873. kvm_io_bus_destroy(&kvm->mmio_bus);
  874. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  875. if (kvm->coalesced_mmio_ring != NULL)
  876. free_page((unsigned long)kvm->coalesced_mmio_ring);
  877. #endif
  878. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  879. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  880. #else
  881. kvm_arch_flush_shadow(kvm);
  882. #endif
  883. kvm_arch_destroy_vm(kvm);
  884. mmdrop(mm);
  885. }
  886. void kvm_get_kvm(struct kvm *kvm)
  887. {
  888. atomic_inc(&kvm->users_count);
  889. }
  890. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  891. void kvm_put_kvm(struct kvm *kvm)
  892. {
  893. if (atomic_dec_and_test(&kvm->users_count))
  894. kvm_destroy_vm(kvm);
  895. }
  896. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  897. static int kvm_vm_release(struct inode *inode, struct file *filp)
  898. {
  899. struct kvm *kvm = filp->private_data;
  900. kvm_put_kvm(kvm);
  901. return 0;
  902. }
  903. /*
  904. * Allocate some memory and give it an address in the guest physical address
  905. * space.
  906. *
  907. * Discontiguous memory is allowed, mostly for framebuffers.
  908. *
  909. * Must be called holding mmap_sem for write.
  910. */
  911. int __kvm_set_memory_region(struct kvm *kvm,
  912. struct kvm_userspace_memory_region *mem,
  913. int user_alloc)
  914. {
  915. int r;
  916. gfn_t base_gfn;
  917. unsigned long npages;
  918. int largepages;
  919. unsigned long i;
  920. struct kvm_memory_slot *memslot;
  921. struct kvm_memory_slot old, new;
  922. r = -EINVAL;
  923. /* General sanity checks */
  924. if (mem->memory_size & (PAGE_SIZE - 1))
  925. goto out;
  926. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  927. goto out;
  928. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  929. goto out;
  930. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  931. goto out;
  932. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  933. goto out;
  934. memslot = &kvm->memslots[mem->slot];
  935. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  936. npages = mem->memory_size >> PAGE_SHIFT;
  937. if (!npages)
  938. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  939. new = old = *memslot;
  940. new.base_gfn = base_gfn;
  941. new.npages = npages;
  942. new.flags = mem->flags;
  943. /* Disallow changing a memory slot's size. */
  944. r = -EINVAL;
  945. if (npages && old.npages && npages != old.npages)
  946. goto out_free;
  947. /* Check for overlaps */
  948. r = -EEXIST;
  949. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  950. struct kvm_memory_slot *s = &kvm->memslots[i];
  951. if (s == memslot || !s->npages)
  952. continue;
  953. if (!((base_gfn + npages <= s->base_gfn) ||
  954. (base_gfn >= s->base_gfn + s->npages)))
  955. goto out_free;
  956. }
  957. /* Free page dirty bitmap if unneeded */
  958. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  959. new.dirty_bitmap = NULL;
  960. r = -ENOMEM;
  961. /* Allocate if a slot is being created */
  962. #ifndef CONFIG_S390
  963. if (npages && !new.rmap) {
  964. new.rmap = vmalloc(npages * sizeof(struct page *));
  965. if (!new.rmap)
  966. goto out_free;
  967. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  968. new.user_alloc = user_alloc;
  969. /*
  970. * hva_to_rmmap() serialzies with the mmu_lock and to be
  971. * safe it has to ignore memslots with !user_alloc &&
  972. * !userspace_addr.
  973. */
  974. if (user_alloc)
  975. new.userspace_addr = mem->userspace_addr;
  976. else
  977. new.userspace_addr = 0;
  978. }
  979. if (npages && !new.lpage_info) {
  980. largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
  981. largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
  982. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  983. if (!new.lpage_info)
  984. goto out_free;
  985. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  986. if (base_gfn % KVM_PAGES_PER_HPAGE)
  987. new.lpage_info[0].write_count = 1;
  988. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  989. new.lpage_info[largepages-1].write_count = 1;
  990. }
  991. /* Allocate page dirty bitmap if needed */
  992. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  993. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  994. new.dirty_bitmap = vmalloc(dirty_bytes);
  995. if (!new.dirty_bitmap)
  996. goto out_free;
  997. memset(new.dirty_bitmap, 0, dirty_bytes);
  998. }
  999. #endif /* not defined CONFIG_S390 */
  1000. if (!npages)
  1001. kvm_arch_flush_shadow(kvm);
  1002. spin_lock(&kvm->mmu_lock);
  1003. if (mem->slot >= kvm->nmemslots)
  1004. kvm->nmemslots = mem->slot + 1;
  1005. *memslot = new;
  1006. spin_unlock(&kvm->mmu_lock);
  1007. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1008. if (r) {
  1009. spin_lock(&kvm->mmu_lock);
  1010. *memslot = old;
  1011. spin_unlock(&kvm->mmu_lock);
  1012. goto out_free;
  1013. }
  1014. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1015. /* Slot deletion case: we have to update the current slot */
  1016. if (!npages)
  1017. *memslot = old;
  1018. #ifdef CONFIG_DMAR
  1019. /* map the pages in iommu page table */
  1020. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1021. if (r)
  1022. goto out;
  1023. #endif
  1024. return 0;
  1025. out_free:
  1026. kvm_free_physmem_slot(&new, &old);
  1027. out:
  1028. return r;
  1029. }
  1030. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1031. int kvm_set_memory_region(struct kvm *kvm,
  1032. struct kvm_userspace_memory_region *mem,
  1033. int user_alloc)
  1034. {
  1035. int r;
  1036. down_write(&kvm->slots_lock);
  1037. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1038. up_write(&kvm->slots_lock);
  1039. return r;
  1040. }
  1041. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1042. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1043. struct
  1044. kvm_userspace_memory_region *mem,
  1045. int user_alloc)
  1046. {
  1047. if (mem->slot >= KVM_MEMORY_SLOTS)
  1048. return -EINVAL;
  1049. return kvm_set_memory_region(kvm, mem, user_alloc);
  1050. }
  1051. int kvm_get_dirty_log(struct kvm *kvm,
  1052. struct kvm_dirty_log *log, int *is_dirty)
  1053. {
  1054. struct kvm_memory_slot *memslot;
  1055. int r, i;
  1056. int n;
  1057. unsigned long any = 0;
  1058. r = -EINVAL;
  1059. if (log->slot >= KVM_MEMORY_SLOTS)
  1060. goto out;
  1061. memslot = &kvm->memslots[log->slot];
  1062. r = -ENOENT;
  1063. if (!memslot->dirty_bitmap)
  1064. goto out;
  1065. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1066. for (i = 0; !any && i < n/sizeof(long); ++i)
  1067. any = memslot->dirty_bitmap[i];
  1068. r = -EFAULT;
  1069. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1070. goto out;
  1071. if (any)
  1072. *is_dirty = 1;
  1073. r = 0;
  1074. out:
  1075. return r;
  1076. }
  1077. int is_error_page(struct page *page)
  1078. {
  1079. return page == bad_page;
  1080. }
  1081. EXPORT_SYMBOL_GPL(is_error_page);
  1082. int is_error_pfn(pfn_t pfn)
  1083. {
  1084. return pfn == bad_pfn;
  1085. }
  1086. EXPORT_SYMBOL_GPL(is_error_pfn);
  1087. static inline unsigned long bad_hva(void)
  1088. {
  1089. return PAGE_OFFSET;
  1090. }
  1091. int kvm_is_error_hva(unsigned long addr)
  1092. {
  1093. return addr == bad_hva();
  1094. }
  1095. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1096. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1097. {
  1098. int i;
  1099. for (i = 0; i < kvm->nmemslots; ++i) {
  1100. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1101. if (gfn >= memslot->base_gfn
  1102. && gfn < memslot->base_gfn + memslot->npages)
  1103. return memslot;
  1104. }
  1105. return NULL;
  1106. }
  1107. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1108. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1109. {
  1110. gfn = unalias_gfn(kvm, gfn);
  1111. return gfn_to_memslot_unaliased(kvm, gfn);
  1112. }
  1113. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1114. {
  1115. int i;
  1116. gfn = unalias_gfn(kvm, gfn);
  1117. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1118. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1119. if (gfn >= memslot->base_gfn
  1120. && gfn < memslot->base_gfn + memslot->npages)
  1121. return 1;
  1122. }
  1123. return 0;
  1124. }
  1125. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1126. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1127. {
  1128. struct kvm_memory_slot *slot;
  1129. gfn = unalias_gfn(kvm, gfn);
  1130. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1131. if (!slot)
  1132. return bad_hva();
  1133. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1134. }
  1135. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1136. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1137. {
  1138. struct page *page[1];
  1139. unsigned long addr;
  1140. int npages;
  1141. pfn_t pfn;
  1142. might_sleep();
  1143. addr = gfn_to_hva(kvm, gfn);
  1144. if (kvm_is_error_hva(addr)) {
  1145. get_page(bad_page);
  1146. return page_to_pfn(bad_page);
  1147. }
  1148. npages = get_user_pages_fast(addr, 1, 1, page);
  1149. if (unlikely(npages != 1)) {
  1150. struct vm_area_struct *vma;
  1151. down_read(&current->mm->mmap_sem);
  1152. vma = find_vma(current->mm, addr);
  1153. if (vma == NULL || addr < vma->vm_start ||
  1154. !(vma->vm_flags & VM_PFNMAP)) {
  1155. up_read(&current->mm->mmap_sem);
  1156. get_page(bad_page);
  1157. return page_to_pfn(bad_page);
  1158. }
  1159. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1160. up_read(&current->mm->mmap_sem);
  1161. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1162. } else
  1163. pfn = page_to_pfn(page[0]);
  1164. return pfn;
  1165. }
  1166. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1167. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1168. {
  1169. pfn_t pfn;
  1170. pfn = gfn_to_pfn(kvm, gfn);
  1171. if (!kvm_is_mmio_pfn(pfn))
  1172. return pfn_to_page(pfn);
  1173. WARN_ON(kvm_is_mmio_pfn(pfn));
  1174. get_page(bad_page);
  1175. return bad_page;
  1176. }
  1177. EXPORT_SYMBOL_GPL(gfn_to_page);
  1178. void kvm_release_page_clean(struct page *page)
  1179. {
  1180. kvm_release_pfn_clean(page_to_pfn(page));
  1181. }
  1182. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1183. void kvm_release_pfn_clean(pfn_t pfn)
  1184. {
  1185. if (!kvm_is_mmio_pfn(pfn))
  1186. put_page(pfn_to_page(pfn));
  1187. }
  1188. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1189. void kvm_release_page_dirty(struct page *page)
  1190. {
  1191. kvm_release_pfn_dirty(page_to_pfn(page));
  1192. }
  1193. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1194. void kvm_release_pfn_dirty(pfn_t pfn)
  1195. {
  1196. kvm_set_pfn_dirty(pfn);
  1197. kvm_release_pfn_clean(pfn);
  1198. }
  1199. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1200. void kvm_set_page_dirty(struct page *page)
  1201. {
  1202. kvm_set_pfn_dirty(page_to_pfn(page));
  1203. }
  1204. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1205. void kvm_set_pfn_dirty(pfn_t pfn)
  1206. {
  1207. if (!kvm_is_mmio_pfn(pfn)) {
  1208. struct page *page = pfn_to_page(pfn);
  1209. if (!PageReserved(page))
  1210. SetPageDirty(page);
  1211. }
  1212. }
  1213. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1214. void kvm_set_pfn_accessed(pfn_t pfn)
  1215. {
  1216. if (!kvm_is_mmio_pfn(pfn))
  1217. mark_page_accessed(pfn_to_page(pfn));
  1218. }
  1219. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1220. void kvm_get_pfn(pfn_t pfn)
  1221. {
  1222. if (!kvm_is_mmio_pfn(pfn))
  1223. get_page(pfn_to_page(pfn));
  1224. }
  1225. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1226. static int next_segment(unsigned long len, int offset)
  1227. {
  1228. if (len > PAGE_SIZE - offset)
  1229. return PAGE_SIZE - offset;
  1230. else
  1231. return len;
  1232. }
  1233. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1234. int len)
  1235. {
  1236. int r;
  1237. unsigned long addr;
  1238. addr = gfn_to_hva(kvm, gfn);
  1239. if (kvm_is_error_hva(addr))
  1240. return -EFAULT;
  1241. r = copy_from_user(data, (void __user *)addr + offset, len);
  1242. if (r)
  1243. return -EFAULT;
  1244. return 0;
  1245. }
  1246. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1247. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1248. {
  1249. gfn_t gfn = gpa >> PAGE_SHIFT;
  1250. int seg;
  1251. int offset = offset_in_page(gpa);
  1252. int ret;
  1253. while ((seg = next_segment(len, offset)) != 0) {
  1254. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1255. if (ret < 0)
  1256. return ret;
  1257. offset = 0;
  1258. len -= seg;
  1259. data += seg;
  1260. ++gfn;
  1261. }
  1262. return 0;
  1263. }
  1264. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1265. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1266. unsigned long len)
  1267. {
  1268. int r;
  1269. unsigned long addr;
  1270. gfn_t gfn = gpa >> PAGE_SHIFT;
  1271. int offset = offset_in_page(gpa);
  1272. addr = gfn_to_hva(kvm, gfn);
  1273. if (kvm_is_error_hva(addr))
  1274. return -EFAULT;
  1275. pagefault_disable();
  1276. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1277. pagefault_enable();
  1278. if (r)
  1279. return -EFAULT;
  1280. return 0;
  1281. }
  1282. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1283. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1284. int offset, int len)
  1285. {
  1286. int r;
  1287. unsigned long addr;
  1288. addr = gfn_to_hva(kvm, gfn);
  1289. if (kvm_is_error_hva(addr))
  1290. return -EFAULT;
  1291. r = copy_to_user((void __user *)addr + offset, data, len);
  1292. if (r)
  1293. return -EFAULT;
  1294. mark_page_dirty(kvm, gfn);
  1295. return 0;
  1296. }
  1297. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1298. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1299. unsigned long len)
  1300. {
  1301. gfn_t gfn = gpa >> PAGE_SHIFT;
  1302. int seg;
  1303. int offset = offset_in_page(gpa);
  1304. int ret;
  1305. while ((seg = next_segment(len, offset)) != 0) {
  1306. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1307. if (ret < 0)
  1308. return ret;
  1309. offset = 0;
  1310. len -= seg;
  1311. data += seg;
  1312. ++gfn;
  1313. }
  1314. return 0;
  1315. }
  1316. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1317. {
  1318. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1319. }
  1320. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1321. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1322. {
  1323. gfn_t gfn = gpa >> PAGE_SHIFT;
  1324. int seg;
  1325. int offset = offset_in_page(gpa);
  1326. int ret;
  1327. while ((seg = next_segment(len, offset)) != 0) {
  1328. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1329. if (ret < 0)
  1330. return ret;
  1331. offset = 0;
  1332. len -= seg;
  1333. ++gfn;
  1334. }
  1335. return 0;
  1336. }
  1337. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1338. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1339. {
  1340. struct kvm_memory_slot *memslot;
  1341. gfn = unalias_gfn(kvm, gfn);
  1342. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1343. if (memslot && memslot->dirty_bitmap) {
  1344. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1345. /* avoid RMW */
  1346. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1347. set_bit(rel_gfn, memslot->dirty_bitmap);
  1348. }
  1349. }
  1350. /*
  1351. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1352. */
  1353. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1354. {
  1355. DEFINE_WAIT(wait);
  1356. for (;;) {
  1357. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1358. if ((kvm_arch_interrupt_allowed(vcpu) &&
  1359. kvm_cpu_has_interrupt(vcpu)) ||
  1360. kvm_arch_vcpu_runnable(vcpu)) {
  1361. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1362. break;
  1363. }
  1364. if (kvm_cpu_has_pending_timer(vcpu))
  1365. break;
  1366. if (signal_pending(current))
  1367. break;
  1368. vcpu_put(vcpu);
  1369. schedule();
  1370. vcpu_load(vcpu);
  1371. }
  1372. finish_wait(&vcpu->wq, &wait);
  1373. }
  1374. void kvm_resched(struct kvm_vcpu *vcpu)
  1375. {
  1376. if (!need_resched())
  1377. return;
  1378. cond_resched();
  1379. }
  1380. EXPORT_SYMBOL_GPL(kvm_resched);
  1381. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1382. {
  1383. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1384. struct page *page;
  1385. if (vmf->pgoff == 0)
  1386. page = virt_to_page(vcpu->run);
  1387. #ifdef CONFIG_X86
  1388. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1389. page = virt_to_page(vcpu->arch.pio_data);
  1390. #endif
  1391. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1392. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1393. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1394. #endif
  1395. else
  1396. return VM_FAULT_SIGBUS;
  1397. get_page(page);
  1398. vmf->page = page;
  1399. return 0;
  1400. }
  1401. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1402. .fault = kvm_vcpu_fault,
  1403. };
  1404. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1405. {
  1406. vma->vm_ops = &kvm_vcpu_vm_ops;
  1407. return 0;
  1408. }
  1409. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1410. {
  1411. struct kvm_vcpu *vcpu = filp->private_data;
  1412. kvm_put_kvm(vcpu->kvm);
  1413. return 0;
  1414. }
  1415. static struct file_operations kvm_vcpu_fops = {
  1416. .release = kvm_vcpu_release,
  1417. .unlocked_ioctl = kvm_vcpu_ioctl,
  1418. .compat_ioctl = kvm_vcpu_ioctl,
  1419. .mmap = kvm_vcpu_mmap,
  1420. };
  1421. /*
  1422. * Allocates an inode for the vcpu.
  1423. */
  1424. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1425. {
  1426. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1427. if (fd < 0)
  1428. kvm_put_kvm(vcpu->kvm);
  1429. return fd;
  1430. }
  1431. /*
  1432. * Creates some virtual cpus. Good luck creating more than one.
  1433. */
  1434. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1435. {
  1436. int r;
  1437. struct kvm_vcpu *vcpu;
  1438. if (!valid_vcpu(n))
  1439. return -EINVAL;
  1440. vcpu = kvm_arch_vcpu_create(kvm, n);
  1441. if (IS_ERR(vcpu))
  1442. return PTR_ERR(vcpu);
  1443. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1444. r = kvm_arch_vcpu_setup(vcpu);
  1445. if (r)
  1446. return r;
  1447. mutex_lock(&kvm->lock);
  1448. if (kvm->vcpus[n]) {
  1449. r = -EEXIST;
  1450. goto vcpu_destroy;
  1451. }
  1452. kvm->vcpus[n] = vcpu;
  1453. mutex_unlock(&kvm->lock);
  1454. /* Now it's all set up, let userspace reach it */
  1455. kvm_get_kvm(kvm);
  1456. r = create_vcpu_fd(vcpu);
  1457. if (r < 0)
  1458. goto unlink;
  1459. return r;
  1460. unlink:
  1461. mutex_lock(&kvm->lock);
  1462. kvm->vcpus[n] = NULL;
  1463. vcpu_destroy:
  1464. mutex_unlock(&kvm->lock);
  1465. kvm_arch_vcpu_destroy(vcpu);
  1466. return r;
  1467. }
  1468. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1469. {
  1470. if (sigset) {
  1471. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1472. vcpu->sigset_active = 1;
  1473. vcpu->sigset = *sigset;
  1474. } else
  1475. vcpu->sigset_active = 0;
  1476. return 0;
  1477. }
  1478. #ifdef __KVM_HAVE_MSIX
  1479. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1480. struct kvm_assigned_msix_nr *entry_nr)
  1481. {
  1482. int r = 0;
  1483. struct kvm_assigned_dev_kernel *adev;
  1484. mutex_lock(&kvm->lock);
  1485. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1486. entry_nr->assigned_dev_id);
  1487. if (!adev) {
  1488. r = -EINVAL;
  1489. goto msix_nr_out;
  1490. }
  1491. if (adev->entries_nr == 0) {
  1492. adev->entries_nr = entry_nr->entry_nr;
  1493. if (adev->entries_nr == 0 ||
  1494. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1495. r = -EINVAL;
  1496. goto msix_nr_out;
  1497. }
  1498. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1499. entry_nr->entry_nr,
  1500. GFP_KERNEL);
  1501. if (!adev->host_msix_entries) {
  1502. r = -ENOMEM;
  1503. goto msix_nr_out;
  1504. }
  1505. adev->guest_msix_entries = kzalloc(
  1506. sizeof(struct kvm_guest_msix_entry) *
  1507. entry_nr->entry_nr, GFP_KERNEL);
  1508. if (!adev->guest_msix_entries) {
  1509. kfree(adev->host_msix_entries);
  1510. r = -ENOMEM;
  1511. goto msix_nr_out;
  1512. }
  1513. } else /* Not allowed set MSI-X number twice */
  1514. r = -EINVAL;
  1515. msix_nr_out:
  1516. mutex_unlock(&kvm->lock);
  1517. return r;
  1518. }
  1519. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1520. struct kvm_assigned_msix_entry *entry)
  1521. {
  1522. int r = 0, i;
  1523. struct kvm_assigned_dev_kernel *adev;
  1524. mutex_lock(&kvm->lock);
  1525. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1526. entry->assigned_dev_id);
  1527. if (!adev) {
  1528. r = -EINVAL;
  1529. goto msix_entry_out;
  1530. }
  1531. for (i = 0; i < adev->entries_nr; i++)
  1532. if (adev->guest_msix_entries[i].vector == 0 ||
  1533. adev->guest_msix_entries[i].entry == entry->entry) {
  1534. adev->guest_msix_entries[i].entry = entry->entry;
  1535. adev->guest_msix_entries[i].vector = entry->gsi;
  1536. adev->host_msix_entries[i].entry = entry->entry;
  1537. break;
  1538. }
  1539. if (i == adev->entries_nr) {
  1540. r = -ENOSPC;
  1541. goto msix_entry_out;
  1542. }
  1543. msix_entry_out:
  1544. mutex_unlock(&kvm->lock);
  1545. return r;
  1546. }
  1547. #endif
  1548. static long kvm_vcpu_ioctl(struct file *filp,
  1549. unsigned int ioctl, unsigned long arg)
  1550. {
  1551. struct kvm_vcpu *vcpu = filp->private_data;
  1552. void __user *argp = (void __user *)arg;
  1553. int r;
  1554. struct kvm_fpu *fpu = NULL;
  1555. struct kvm_sregs *kvm_sregs = NULL;
  1556. if (vcpu->kvm->mm != current->mm)
  1557. return -EIO;
  1558. switch (ioctl) {
  1559. case KVM_RUN:
  1560. r = -EINVAL;
  1561. if (arg)
  1562. goto out;
  1563. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1564. break;
  1565. case KVM_GET_REGS: {
  1566. struct kvm_regs *kvm_regs;
  1567. r = -ENOMEM;
  1568. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1569. if (!kvm_regs)
  1570. goto out;
  1571. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1572. if (r)
  1573. goto out_free1;
  1574. r = -EFAULT;
  1575. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1576. goto out_free1;
  1577. r = 0;
  1578. out_free1:
  1579. kfree(kvm_regs);
  1580. break;
  1581. }
  1582. case KVM_SET_REGS: {
  1583. struct kvm_regs *kvm_regs;
  1584. r = -ENOMEM;
  1585. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1586. if (!kvm_regs)
  1587. goto out;
  1588. r = -EFAULT;
  1589. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1590. goto out_free2;
  1591. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1592. if (r)
  1593. goto out_free2;
  1594. r = 0;
  1595. out_free2:
  1596. kfree(kvm_regs);
  1597. break;
  1598. }
  1599. case KVM_GET_SREGS: {
  1600. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1601. r = -ENOMEM;
  1602. if (!kvm_sregs)
  1603. goto out;
  1604. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1605. if (r)
  1606. goto out;
  1607. r = -EFAULT;
  1608. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1609. goto out;
  1610. r = 0;
  1611. break;
  1612. }
  1613. case KVM_SET_SREGS: {
  1614. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1615. r = -ENOMEM;
  1616. if (!kvm_sregs)
  1617. goto out;
  1618. r = -EFAULT;
  1619. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1620. goto out;
  1621. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1622. if (r)
  1623. goto out;
  1624. r = 0;
  1625. break;
  1626. }
  1627. case KVM_GET_MP_STATE: {
  1628. struct kvm_mp_state mp_state;
  1629. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1630. if (r)
  1631. goto out;
  1632. r = -EFAULT;
  1633. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1634. goto out;
  1635. r = 0;
  1636. break;
  1637. }
  1638. case KVM_SET_MP_STATE: {
  1639. struct kvm_mp_state mp_state;
  1640. r = -EFAULT;
  1641. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1642. goto out;
  1643. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1644. if (r)
  1645. goto out;
  1646. r = 0;
  1647. break;
  1648. }
  1649. case KVM_TRANSLATE: {
  1650. struct kvm_translation tr;
  1651. r = -EFAULT;
  1652. if (copy_from_user(&tr, argp, sizeof tr))
  1653. goto out;
  1654. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1655. if (r)
  1656. goto out;
  1657. r = -EFAULT;
  1658. if (copy_to_user(argp, &tr, sizeof tr))
  1659. goto out;
  1660. r = 0;
  1661. break;
  1662. }
  1663. case KVM_SET_GUEST_DEBUG: {
  1664. struct kvm_guest_debug dbg;
  1665. r = -EFAULT;
  1666. if (copy_from_user(&dbg, argp, sizeof dbg))
  1667. goto out;
  1668. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1669. if (r)
  1670. goto out;
  1671. r = 0;
  1672. break;
  1673. }
  1674. case KVM_SET_SIGNAL_MASK: {
  1675. struct kvm_signal_mask __user *sigmask_arg = argp;
  1676. struct kvm_signal_mask kvm_sigmask;
  1677. sigset_t sigset, *p;
  1678. p = NULL;
  1679. if (argp) {
  1680. r = -EFAULT;
  1681. if (copy_from_user(&kvm_sigmask, argp,
  1682. sizeof kvm_sigmask))
  1683. goto out;
  1684. r = -EINVAL;
  1685. if (kvm_sigmask.len != sizeof sigset)
  1686. goto out;
  1687. r = -EFAULT;
  1688. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1689. sizeof sigset))
  1690. goto out;
  1691. p = &sigset;
  1692. }
  1693. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1694. break;
  1695. }
  1696. case KVM_GET_FPU: {
  1697. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1698. r = -ENOMEM;
  1699. if (!fpu)
  1700. goto out;
  1701. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1702. if (r)
  1703. goto out;
  1704. r = -EFAULT;
  1705. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1706. goto out;
  1707. r = 0;
  1708. break;
  1709. }
  1710. case KVM_SET_FPU: {
  1711. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1712. r = -ENOMEM;
  1713. if (!fpu)
  1714. goto out;
  1715. r = -EFAULT;
  1716. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1717. goto out;
  1718. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1719. if (r)
  1720. goto out;
  1721. r = 0;
  1722. break;
  1723. }
  1724. default:
  1725. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1726. }
  1727. out:
  1728. kfree(fpu);
  1729. kfree(kvm_sregs);
  1730. return r;
  1731. }
  1732. static long kvm_vm_ioctl(struct file *filp,
  1733. unsigned int ioctl, unsigned long arg)
  1734. {
  1735. struct kvm *kvm = filp->private_data;
  1736. void __user *argp = (void __user *)arg;
  1737. int r;
  1738. if (kvm->mm != current->mm)
  1739. return -EIO;
  1740. switch (ioctl) {
  1741. case KVM_CREATE_VCPU:
  1742. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1743. if (r < 0)
  1744. goto out;
  1745. break;
  1746. case KVM_SET_USER_MEMORY_REGION: {
  1747. struct kvm_userspace_memory_region kvm_userspace_mem;
  1748. r = -EFAULT;
  1749. if (copy_from_user(&kvm_userspace_mem, argp,
  1750. sizeof kvm_userspace_mem))
  1751. goto out;
  1752. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1753. if (r)
  1754. goto out;
  1755. break;
  1756. }
  1757. case KVM_GET_DIRTY_LOG: {
  1758. struct kvm_dirty_log log;
  1759. r = -EFAULT;
  1760. if (copy_from_user(&log, argp, sizeof log))
  1761. goto out;
  1762. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1763. if (r)
  1764. goto out;
  1765. break;
  1766. }
  1767. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1768. case KVM_REGISTER_COALESCED_MMIO: {
  1769. struct kvm_coalesced_mmio_zone zone;
  1770. r = -EFAULT;
  1771. if (copy_from_user(&zone, argp, sizeof zone))
  1772. goto out;
  1773. r = -ENXIO;
  1774. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1775. if (r)
  1776. goto out;
  1777. r = 0;
  1778. break;
  1779. }
  1780. case KVM_UNREGISTER_COALESCED_MMIO: {
  1781. struct kvm_coalesced_mmio_zone zone;
  1782. r = -EFAULT;
  1783. if (copy_from_user(&zone, argp, sizeof zone))
  1784. goto out;
  1785. r = -ENXIO;
  1786. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1787. if (r)
  1788. goto out;
  1789. r = 0;
  1790. break;
  1791. }
  1792. #endif
  1793. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1794. case KVM_ASSIGN_PCI_DEVICE: {
  1795. struct kvm_assigned_pci_dev assigned_dev;
  1796. r = -EFAULT;
  1797. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1798. goto out;
  1799. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1800. if (r)
  1801. goto out;
  1802. break;
  1803. }
  1804. case KVM_ASSIGN_IRQ: {
  1805. r = -EOPNOTSUPP;
  1806. break;
  1807. }
  1808. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1809. case KVM_ASSIGN_DEV_IRQ: {
  1810. struct kvm_assigned_irq assigned_irq;
  1811. r = -EFAULT;
  1812. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1813. goto out;
  1814. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1815. if (r)
  1816. goto out;
  1817. break;
  1818. }
  1819. case KVM_DEASSIGN_DEV_IRQ: {
  1820. struct kvm_assigned_irq assigned_irq;
  1821. r = -EFAULT;
  1822. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1823. goto out;
  1824. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1825. if (r)
  1826. goto out;
  1827. break;
  1828. }
  1829. #endif
  1830. #endif
  1831. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1832. case KVM_DEASSIGN_PCI_DEVICE: {
  1833. struct kvm_assigned_pci_dev assigned_dev;
  1834. r = -EFAULT;
  1835. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1836. goto out;
  1837. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1838. if (r)
  1839. goto out;
  1840. break;
  1841. }
  1842. #endif
  1843. #ifdef KVM_CAP_IRQ_ROUTING
  1844. case KVM_SET_GSI_ROUTING: {
  1845. struct kvm_irq_routing routing;
  1846. struct kvm_irq_routing __user *urouting;
  1847. struct kvm_irq_routing_entry *entries;
  1848. r = -EFAULT;
  1849. if (copy_from_user(&routing, argp, sizeof(routing)))
  1850. goto out;
  1851. r = -EINVAL;
  1852. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1853. goto out;
  1854. if (routing.flags)
  1855. goto out;
  1856. r = -ENOMEM;
  1857. entries = vmalloc(routing.nr * sizeof(*entries));
  1858. if (!entries)
  1859. goto out;
  1860. r = -EFAULT;
  1861. urouting = argp;
  1862. if (copy_from_user(entries, urouting->entries,
  1863. routing.nr * sizeof(*entries)))
  1864. goto out_free_irq_routing;
  1865. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1866. routing.flags);
  1867. out_free_irq_routing:
  1868. vfree(entries);
  1869. break;
  1870. }
  1871. #ifdef __KVM_HAVE_MSIX
  1872. case KVM_ASSIGN_SET_MSIX_NR: {
  1873. struct kvm_assigned_msix_nr entry_nr;
  1874. r = -EFAULT;
  1875. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1876. goto out;
  1877. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1878. if (r)
  1879. goto out;
  1880. break;
  1881. }
  1882. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1883. struct kvm_assigned_msix_entry entry;
  1884. r = -EFAULT;
  1885. if (copy_from_user(&entry, argp, sizeof entry))
  1886. goto out;
  1887. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1888. if (r)
  1889. goto out;
  1890. break;
  1891. }
  1892. #endif
  1893. #endif /* KVM_CAP_IRQ_ROUTING */
  1894. default:
  1895. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1896. }
  1897. out:
  1898. return r;
  1899. }
  1900. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1901. {
  1902. struct page *page[1];
  1903. unsigned long addr;
  1904. int npages;
  1905. gfn_t gfn = vmf->pgoff;
  1906. struct kvm *kvm = vma->vm_file->private_data;
  1907. addr = gfn_to_hva(kvm, gfn);
  1908. if (kvm_is_error_hva(addr))
  1909. return VM_FAULT_SIGBUS;
  1910. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1911. NULL);
  1912. if (unlikely(npages != 1))
  1913. return VM_FAULT_SIGBUS;
  1914. vmf->page = page[0];
  1915. return 0;
  1916. }
  1917. static struct vm_operations_struct kvm_vm_vm_ops = {
  1918. .fault = kvm_vm_fault,
  1919. };
  1920. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1921. {
  1922. vma->vm_ops = &kvm_vm_vm_ops;
  1923. return 0;
  1924. }
  1925. static struct file_operations kvm_vm_fops = {
  1926. .release = kvm_vm_release,
  1927. .unlocked_ioctl = kvm_vm_ioctl,
  1928. .compat_ioctl = kvm_vm_ioctl,
  1929. .mmap = kvm_vm_mmap,
  1930. };
  1931. static int kvm_dev_ioctl_create_vm(void)
  1932. {
  1933. int fd;
  1934. struct kvm *kvm;
  1935. kvm = kvm_create_vm();
  1936. if (IS_ERR(kvm))
  1937. return PTR_ERR(kvm);
  1938. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1939. if (fd < 0)
  1940. kvm_put_kvm(kvm);
  1941. return fd;
  1942. }
  1943. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1944. {
  1945. switch (arg) {
  1946. case KVM_CAP_USER_MEMORY:
  1947. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1948. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1949. return 1;
  1950. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1951. case KVM_CAP_IRQ_ROUTING:
  1952. return KVM_MAX_IRQ_ROUTES;
  1953. #endif
  1954. default:
  1955. break;
  1956. }
  1957. return kvm_dev_ioctl_check_extension(arg);
  1958. }
  1959. static long kvm_dev_ioctl(struct file *filp,
  1960. unsigned int ioctl, unsigned long arg)
  1961. {
  1962. long r = -EINVAL;
  1963. switch (ioctl) {
  1964. case KVM_GET_API_VERSION:
  1965. r = -EINVAL;
  1966. if (arg)
  1967. goto out;
  1968. r = KVM_API_VERSION;
  1969. break;
  1970. case KVM_CREATE_VM:
  1971. r = -EINVAL;
  1972. if (arg)
  1973. goto out;
  1974. r = kvm_dev_ioctl_create_vm();
  1975. break;
  1976. case KVM_CHECK_EXTENSION:
  1977. r = kvm_dev_ioctl_check_extension_generic(arg);
  1978. break;
  1979. case KVM_GET_VCPU_MMAP_SIZE:
  1980. r = -EINVAL;
  1981. if (arg)
  1982. goto out;
  1983. r = PAGE_SIZE; /* struct kvm_run */
  1984. #ifdef CONFIG_X86
  1985. r += PAGE_SIZE; /* pio data page */
  1986. #endif
  1987. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1988. r += PAGE_SIZE; /* coalesced mmio ring page */
  1989. #endif
  1990. break;
  1991. case KVM_TRACE_ENABLE:
  1992. case KVM_TRACE_PAUSE:
  1993. case KVM_TRACE_DISABLE:
  1994. r = kvm_trace_ioctl(ioctl, arg);
  1995. break;
  1996. default:
  1997. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1998. }
  1999. out:
  2000. return r;
  2001. }
  2002. static struct file_operations kvm_chardev_ops = {
  2003. .unlocked_ioctl = kvm_dev_ioctl,
  2004. .compat_ioctl = kvm_dev_ioctl,
  2005. };
  2006. static struct miscdevice kvm_dev = {
  2007. KVM_MINOR,
  2008. "kvm",
  2009. &kvm_chardev_ops,
  2010. };
  2011. static void hardware_enable(void *junk)
  2012. {
  2013. int cpu = raw_smp_processor_id();
  2014. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2015. return;
  2016. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2017. kvm_arch_hardware_enable(NULL);
  2018. }
  2019. static void hardware_disable(void *junk)
  2020. {
  2021. int cpu = raw_smp_processor_id();
  2022. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2023. return;
  2024. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2025. kvm_arch_hardware_disable(NULL);
  2026. }
  2027. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2028. void *v)
  2029. {
  2030. int cpu = (long)v;
  2031. val &= ~CPU_TASKS_FROZEN;
  2032. switch (val) {
  2033. case CPU_DYING:
  2034. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2035. cpu);
  2036. hardware_disable(NULL);
  2037. break;
  2038. case CPU_UP_CANCELED:
  2039. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2040. cpu);
  2041. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2042. break;
  2043. case CPU_ONLINE:
  2044. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2045. cpu);
  2046. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2047. break;
  2048. }
  2049. return NOTIFY_OK;
  2050. }
  2051. asmlinkage void kvm_handle_fault_on_reboot(void)
  2052. {
  2053. if (kvm_rebooting)
  2054. /* spin while reset goes on */
  2055. while (true)
  2056. ;
  2057. /* Fault while not rebooting. We want the trace. */
  2058. BUG();
  2059. }
  2060. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2061. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2062. void *v)
  2063. {
  2064. /*
  2065. * Some (well, at least mine) BIOSes hang on reboot if
  2066. * in vmx root mode.
  2067. *
  2068. * And Intel TXT required VMX off for all cpu when system shutdown.
  2069. */
  2070. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2071. kvm_rebooting = true;
  2072. on_each_cpu(hardware_disable, NULL, 1);
  2073. return NOTIFY_OK;
  2074. }
  2075. static struct notifier_block kvm_reboot_notifier = {
  2076. .notifier_call = kvm_reboot,
  2077. .priority = 0,
  2078. };
  2079. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2080. {
  2081. memset(bus, 0, sizeof(*bus));
  2082. }
  2083. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2084. {
  2085. int i;
  2086. for (i = 0; i < bus->dev_count; i++) {
  2087. struct kvm_io_device *pos = bus->devs[i];
  2088. kvm_iodevice_destructor(pos);
  2089. }
  2090. }
  2091. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  2092. gpa_t addr, int len, int is_write)
  2093. {
  2094. int i;
  2095. for (i = 0; i < bus->dev_count; i++) {
  2096. struct kvm_io_device *pos = bus->devs[i];
  2097. if (pos->in_range(pos, addr, len, is_write))
  2098. return pos;
  2099. }
  2100. return NULL;
  2101. }
  2102. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2103. {
  2104. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2105. bus->devs[bus->dev_count++] = dev;
  2106. }
  2107. static struct notifier_block kvm_cpu_notifier = {
  2108. .notifier_call = kvm_cpu_hotplug,
  2109. .priority = 20, /* must be > scheduler priority */
  2110. };
  2111. static int vm_stat_get(void *_offset, u64 *val)
  2112. {
  2113. unsigned offset = (long)_offset;
  2114. struct kvm *kvm;
  2115. *val = 0;
  2116. spin_lock(&kvm_lock);
  2117. list_for_each_entry(kvm, &vm_list, vm_list)
  2118. *val += *(u32 *)((void *)kvm + offset);
  2119. spin_unlock(&kvm_lock);
  2120. return 0;
  2121. }
  2122. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2123. static int vcpu_stat_get(void *_offset, u64 *val)
  2124. {
  2125. unsigned offset = (long)_offset;
  2126. struct kvm *kvm;
  2127. struct kvm_vcpu *vcpu;
  2128. int i;
  2129. *val = 0;
  2130. spin_lock(&kvm_lock);
  2131. list_for_each_entry(kvm, &vm_list, vm_list)
  2132. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2133. vcpu = kvm->vcpus[i];
  2134. if (vcpu)
  2135. *val += *(u32 *)((void *)vcpu + offset);
  2136. }
  2137. spin_unlock(&kvm_lock);
  2138. return 0;
  2139. }
  2140. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2141. static struct file_operations *stat_fops[] = {
  2142. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2143. [KVM_STAT_VM] = &vm_stat_fops,
  2144. };
  2145. static void kvm_init_debug(void)
  2146. {
  2147. struct kvm_stats_debugfs_item *p;
  2148. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2149. for (p = debugfs_entries; p->name; ++p)
  2150. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2151. (void *)(long)p->offset,
  2152. stat_fops[p->kind]);
  2153. }
  2154. static void kvm_exit_debug(void)
  2155. {
  2156. struct kvm_stats_debugfs_item *p;
  2157. for (p = debugfs_entries; p->name; ++p)
  2158. debugfs_remove(p->dentry);
  2159. debugfs_remove(kvm_debugfs_dir);
  2160. }
  2161. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2162. {
  2163. hardware_disable(NULL);
  2164. return 0;
  2165. }
  2166. static int kvm_resume(struct sys_device *dev)
  2167. {
  2168. hardware_enable(NULL);
  2169. return 0;
  2170. }
  2171. static struct sysdev_class kvm_sysdev_class = {
  2172. .name = "kvm",
  2173. .suspend = kvm_suspend,
  2174. .resume = kvm_resume,
  2175. };
  2176. static struct sys_device kvm_sysdev = {
  2177. .id = 0,
  2178. .cls = &kvm_sysdev_class,
  2179. };
  2180. struct page *bad_page;
  2181. pfn_t bad_pfn;
  2182. static inline
  2183. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2184. {
  2185. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2186. }
  2187. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2188. {
  2189. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2190. kvm_arch_vcpu_load(vcpu, cpu);
  2191. }
  2192. static void kvm_sched_out(struct preempt_notifier *pn,
  2193. struct task_struct *next)
  2194. {
  2195. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2196. kvm_arch_vcpu_put(vcpu);
  2197. }
  2198. int kvm_init(void *opaque, unsigned int vcpu_size,
  2199. struct module *module)
  2200. {
  2201. int r;
  2202. int cpu;
  2203. kvm_init_debug();
  2204. r = kvm_arch_init(opaque);
  2205. if (r)
  2206. goto out_fail;
  2207. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2208. if (bad_page == NULL) {
  2209. r = -ENOMEM;
  2210. goto out;
  2211. }
  2212. bad_pfn = page_to_pfn(bad_page);
  2213. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2214. r = -ENOMEM;
  2215. goto out_free_0;
  2216. }
  2217. cpumask_clear(cpus_hardware_enabled);
  2218. r = kvm_arch_hardware_setup();
  2219. if (r < 0)
  2220. goto out_free_0a;
  2221. for_each_online_cpu(cpu) {
  2222. smp_call_function_single(cpu,
  2223. kvm_arch_check_processor_compat,
  2224. &r, 1);
  2225. if (r < 0)
  2226. goto out_free_1;
  2227. }
  2228. on_each_cpu(hardware_enable, NULL, 1);
  2229. r = register_cpu_notifier(&kvm_cpu_notifier);
  2230. if (r)
  2231. goto out_free_2;
  2232. register_reboot_notifier(&kvm_reboot_notifier);
  2233. r = sysdev_class_register(&kvm_sysdev_class);
  2234. if (r)
  2235. goto out_free_3;
  2236. r = sysdev_register(&kvm_sysdev);
  2237. if (r)
  2238. goto out_free_4;
  2239. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2240. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2241. __alignof__(struct kvm_vcpu),
  2242. 0, NULL);
  2243. if (!kvm_vcpu_cache) {
  2244. r = -ENOMEM;
  2245. goto out_free_5;
  2246. }
  2247. kvm_chardev_ops.owner = module;
  2248. kvm_vm_fops.owner = module;
  2249. kvm_vcpu_fops.owner = module;
  2250. r = misc_register(&kvm_dev);
  2251. if (r) {
  2252. printk(KERN_ERR "kvm: misc device register failed\n");
  2253. goto out_free;
  2254. }
  2255. kvm_preempt_ops.sched_in = kvm_sched_in;
  2256. kvm_preempt_ops.sched_out = kvm_sched_out;
  2257. return 0;
  2258. out_free:
  2259. kmem_cache_destroy(kvm_vcpu_cache);
  2260. out_free_5:
  2261. sysdev_unregister(&kvm_sysdev);
  2262. out_free_4:
  2263. sysdev_class_unregister(&kvm_sysdev_class);
  2264. out_free_3:
  2265. unregister_reboot_notifier(&kvm_reboot_notifier);
  2266. unregister_cpu_notifier(&kvm_cpu_notifier);
  2267. out_free_2:
  2268. on_each_cpu(hardware_disable, NULL, 1);
  2269. out_free_1:
  2270. kvm_arch_hardware_unsetup();
  2271. out_free_0a:
  2272. free_cpumask_var(cpus_hardware_enabled);
  2273. out_free_0:
  2274. __free_page(bad_page);
  2275. out:
  2276. kvm_arch_exit();
  2277. kvm_exit_debug();
  2278. out_fail:
  2279. return r;
  2280. }
  2281. EXPORT_SYMBOL_GPL(kvm_init);
  2282. void kvm_exit(void)
  2283. {
  2284. kvm_trace_cleanup();
  2285. misc_deregister(&kvm_dev);
  2286. kmem_cache_destroy(kvm_vcpu_cache);
  2287. sysdev_unregister(&kvm_sysdev);
  2288. sysdev_class_unregister(&kvm_sysdev_class);
  2289. unregister_reboot_notifier(&kvm_reboot_notifier);
  2290. unregister_cpu_notifier(&kvm_cpu_notifier);
  2291. on_each_cpu(hardware_disable, NULL, 1);
  2292. kvm_arch_hardware_unsetup();
  2293. kvm_arch_exit();
  2294. kvm_exit_debug();
  2295. free_cpumask_var(cpus_hardware_enabled);
  2296. __free_page(bad_page);
  2297. }
  2298. EXPORT_SYMBOL_GPL(kvm_exit);