md.c 109 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/init.h>
  37. #include <linux/file.h>
  38. #ifdef CONFIG_KMOD
  39. #include <linux/kmod.h>
  40. #endif
  41. #include <asm/unaligned.h>
  42. #define MAJOR_NR MD_MAJOR
  43. #define MD_DRIVER
  44. /* 63 partitions with the alternate major number (mdp) */
  45. #define MdpMinorShift 6
  46. #define DEBUG 0
  47. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  48. #ifndef MODULE
  49. static void autostart_arrays (int part);
  50. #endif
  51. static mdk_personality_t *pers[MAX_PERSONALITY];
  52. static DEFINE_SPINLOCK(pers_lock);
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. */
  64. static int sysctl_speed_limit_min = 1000;
  65. static int sysctl_speed_limit_max = 200000;
  66. static struct ctl_table_header *raid_table_header;
  67. static ctl_table raid_table[] = {
  68. {
  69. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  70. .procname = "speed_limit_min",
  71. .data = &sysctl_speed_limit_min,
  72. .maxlen = sizeof(int),
  73. .mode = 0644,
  74. .proc_handler = &proc_dointvec,
  75. },
  76. {
  77. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  78. .procname = "speed_limit_max",
  79. .data = &sysctl_speed_limit_max,
  80. .maxlen = sizeof(int),
  81. .mode = 0644,
  82. .proc_handler = &proc_dointvec,
  83. },
  84. { .ctl_name = 0 }
  85. };
  86. static ctl_table raid_dir_table[] = {
  87. {
  88. .ctl_name = DEV_RAID,
  89. .procname = "raid",
  90. .maxlen = 0,
  91. .mode = 0555,
  92. .child = raid_table,
  93. },
  94. { .ctl_name = 0 }
  95. };
  96. static ctl_table raid_root_table[] = {
  97. {
  98. .ctl_name = CTL_DEV,
  99. .procname = "dev",
  100. .maxlen = 0,
  101. .mode = 0555,
  102. .child = raid_dir_table,
  103. },
  104. { .ctl_name = 0 }
  105. };
  106. static struct block_device_operations md_fops;
  107. static int start_readonly;
  108. /*
  109. * Enables to iterate over all existing md arrays
  110. * all_mddevs_lock protects this list.
  111. */
  112. static LIST_HEAD(all_mddevs);
  113. static DEFINE_SPINLOCK(all_mddevs_lock);
  114. /*
  115. * iterates through all used mddevs in the system.
  116. * We take care to grab the all_mddevs_lock whenever navigating
  117. * the list, and to always hold a refcount when unlocked.
  118. * Any code which breaks out of this loop while own
  119. * a reference to the current mddev and must mddev_put it.
  120. */
  121. #define ITERATE_MDDEV(mddev,tmp) \
  122. \
  123. for (({ spin_lock(&all_mddevs_lock); \
  124. tmp = all_mddevs.next; \
  125. mddev = NULL;}); \
  126. ({ if (tmp != &all_mddevs) \
  127. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  128. spin_unlock(&all_mddevs_lock); \
  129. if (mddev) mddev_put(mddev); \
  130. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  131. tmp != &all_mddevs;}); \
  132. ({ spin_lock(&all_mddevs_lock); \
  133. tmp = tmp->next;}) \
  134. )
  135. static int md_fail_request (request_queue_t *q, struct bio *bio)
  136. {
  137. bio_io_error(bio, bio->bi_size);
  138. return 0;
  139. }
  140. static inline mddev_t *mddev_get(mddev_t *mddev)
  141. {
  142. atomic_inc(&mddev->active);
  143. return mddev;
  144. }
  145. static void mddev_put(mddev_t *mddev)
  146. {
  147. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  148. return;
  149. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  150. list_del(&mddev->all_mddevs);
  151. blk_put_queue(mddev->queue);
  152. kobject_unregister(&mddev->kobj);
  153. }
  154. spin_unlock(&all_mddevs_lock);
  155. }
  156. static mddev_t * mddev_find(dev_t unit)
  157. {
  158. mddev_t *mddev, *new = NULL;
  159. retry:
  160. spin_lock(&all_mddevs_lock);
  161. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  162. if (mddev->unit == unit) {
  163. mddev_get(mddev);
  164. spin_unlock(&all_mddevs_lock);
  165. kfree(new);
  166. return mddev;
  167. }
  168. if (new) {
  169. list_add(&new->all_mddevs, &all_mddevs);
  170. spin_unlock(&all_mddevs_lock);
  171. return new;
  172. }
  173. spin_unlock(&all_mddevs_lock);
  174. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  175. if (!new)
  176. return NULL;
  177. memset(new, 0, sizeof(*new));
  178. new->unit = unit;
  179. if (MAJOR(unit) == MD_MAJOR)
  180. new->md_minor = MINOR(unit);
  181. else
  182. new->md_minor = MINOR(unit) >> MdpMinorShift;
  183. init_MUTEX(&new->reconfig_sem);
  184. INIT_LIST_HEAD(&new->disks);
  185. INIT_LIST_HEAD(&new->all_mddevs);
  186. init_timer(&new->safemode_timer);
  187. atomic_set(&new->active, 1);
  188. spin_lock_init(&new->write_lock);
  189. init_waitqueue_head(&new->sb_wait);
  190. new->queue = blk_alloc_queue(GFP_KERNEL);
  191. if (!new->queue) {
  192. kfree(new);
  193. return NULL;
  194. }
  195. blk_queue_make_request(new->queue, md_fail_request);
  196. goto retry;
  197. }
  198. static inline int mddev_lock(mddev_t * mddev)
  199. {
  200. return down_interruptible(&mddev->reconfig_sem);
  201. }
  202. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  203. {
  204. down(&mddev->reconfig_sem);
  205. }
  206. static inline int mddev_trylock(mddev_t * mddev)
  207. {
  208. return down_trylock(&mddev->reconfig_sem);
  209. }
  210. static inline void mddev_unlock(mddev_t * mddev)
  211. {
  212. up(&mddev->reconfig_sem);
  213. md_wakeup_thread(mddev->thread);
  214. }
  215. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  216. {
  217. mdk_rdev_t * rdev;
  218. struct list_head *tmp;
  219. ITERATE_RDEV(mddev,rdev,tmp) {
  220. if (rdev->desc_nr == nr)
  221. return rdev;
  222. }
  223. return NULL;
  224. }
  225. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  226. {
  227. struct list_head *tmp;
  228. mdk_rdev_t *rdev;
  229. ITERATE_RDEV(mddev,rdev,tmp) {
  230. if (rdev->bdev->bd_dev == dev)
  231. return rdev;
  232. }
  233. return NULL;
  234. }
  235. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  236. {
  237. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  238. return MD_NEW_SIZE_BLOCKS(size);
  239. }
  240. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  241. {
  242. sector_t size;
  243. size = rdev->sb_offset;
  244. if (chunk_size)
  245. size &= ~((sector_t)chunk_size/1024 - 1);
  246. return size;
  247. }
  248. static int alloc_disk_sb(mdk_rdev_t * rdev)
  249. {
  250. if (rdev->sb_page)
  251. MD_BUG();
  252. rdev->sb_page = alloc_page(GFP_KERNEL);
  253. if (!rdev->sb_page) {
  254. printk(KERN_ALERT "md: out of memory.\n");
  255. return -EINVAL;
  256. }
  257. return 0;
  258. }
  259. static void free_disk_sb(mdk_rdev_t * rdev)
  260. {
  261. if (rdev->sb_page) {
  262. page_cache_release(rdev->sb_page);
  263. rdev->sb_loaded = 0;
  264. rdev->sb_page = NULL;
  265. rdev->sb_offset = 0;
  266. rdev->size = 0;
  267. }
  268. }
  269. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  270. {
  271. mdk_rdev_t *rdev = bio->bi_private;
  272. mddev_t *mddev = rdev->mddev;
  273. if (bio->bi_size)
  274. return 1;
  275. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  276. md_error(mddev, rdev);
  277. if (atomic_dec_and_test(&mddev->pending_writes))
  278. wake_up(&mddev->sb_wait);
  279. bio_put(bio);
  280. return 0;
  281. }
  282. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  283. {
  284. struct bio *bio2 = bio->bi_private;
  285. mdk_rdev_t *rdev = bio2->bi_private;
  286. mddev_t *mddev = rdev->mddev;
  287. if (bio->bi_size)
  288. return 1;
  289. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  290. error == -EOPNOTSUPP) {
  291. unsigned long flags;
  292. /* barriers don't appear to be supported :-( */
  293. set_bit(BarriersNotsupp, &rdev->flags);
  294. mddev->barriers_work = 0;
  295. spin_lock_irqsave(&mddev->write_lock, flags);
  296. bio2->bi_next = mddev->biolist;
  297. mddev->biolist = bio2;
  298. spin_unlock_irqrestore(&mddev->write_lock, flags);
  299. wake_up(&mddev->sb_wait);
  300. bio_put(bio);
  301. return 0;
  302. }
  303. bio_put(bio2);
  304. bio->bi_private = rdev;
  305. return super_written(bio, bytes_done, error);
  306. }
  307. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  308. sector_t sector, int size, struct page *page)
  309. {
  310. /* write first size bytes of page to sector of rdev
  311. * Increment mddev->pending_writes before returning
  312. * and decrement it on completion, waking up sb_wait
  313. * if zero is reached.
  314. * If an error occurred, call md_error
  315. *
  316. * As we might need to resubmit the request if BIO_RW_BARRIER
  317. * causes ENOTSUPP, we allocate a spare bio...
  318. */
  319. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  320. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  321. bio->bi_bdev = rdev->bdev;
  322. bio->bi_sector = sector;
  323. bio_add_page(bio, page, size, 0);
  324. bio->bi_private = rdev;
  325. bio->bi_end_io = super_written;
  326. bio->bi_rw = rw;
  327. atomic_inc(&mddev->pending_writes);
  328. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  329. struct bio *rbio;
  330. rw |= (1<<BIO_RW_BARRIER);
  331. rbio = bio_clone(bio, GFP_NOIO);
  332. rbio->bi_private = bio;
  333. rbio->bi_end_io = super_written_barrier;
  334. submit_bio(rw, rbio);
  335. } else
  336. submit_bio(rw, bio);
  337. }
  338. void md_super_wait(mddev_t *mddev)
  339. {
  340. /* wait for all superblock writes that were scheduled to complete.
  341. * if any had to be retried (due to BARRIER problems), retry them
  342. */
  343. DEFINE_WAIT(wq);
  344. for(;;) {
  345. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  346. if (atomic_read(&mddev->pending_writes)==0)
  347. break;
  348. while (mddev->biolist) {
  349. struct bio *bio;
  350. spin_lock_irq(&mddev->write_lock);
  351. bio = mddev->biolist;
  352. mddev->biolist = bio->bi_next ;
  353. bio->bi_next = NULL;
  354. spin_unlock_irq(&mddev->write_lock);
  355. submit_bio(bio->bi_rw, bio);
  356. }
  357. schedule();
  358. }
  359. finish_wait(&mddev->sb_wait, &wq);
  360. }
  361. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  362. {
  363. if (bio->bi_size)
  364. return 1;
  365. complete((struct completion*)bio->bi_private);
  366. return 0;
  367. }
  368. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  369. struct page *page, int rw)
  370. {
  371. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  372. struct completion event;
  373. int ret;
  374. rw |= (1 << BIO_RW_SYNC);
  375. bio->bi_bdev = bdev;
  376. bio->bi_sector = sector;
  377. bio_add_page(bio, page, size, 0);
  378. init_completion(&event);
  379. bio->bi_private = &event;
  380. bio->bi_end_io = bi_complete;
  381. submit_bio(rw, bio);
  382. wait_for_completion(&event);
  383. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  384. bio_put(bio);
  385. return ret;
  386. }
  387. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  388. {
  389. char b[BDEVNAME_SIZE];
  390. if (!rdev->sb_page) {
  391. MD_BUG();
  392. return -EINVAL;
  393. }
  394. if (rdev->sb_loaded)
  395. return 0;
  396. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  397. goto fail;
  398. rdev->sb_loaded = 1;
  399. return 0;
  400. fail:
  401. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  402. bdevname(rdev->bdev,b));
  403. return -EINVAL;
  404. }
  405. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  406. {
  407. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  408. (sb1->set_uuid1 == sb2->set_uuid1) &&
  409. (sb1->set_uuid2 == sb2->set_uuid2) &&
  410. (sb1->set_uuid3 == sb2->set_uuid3))
  411. return 1;
  412. return 0;
  413. }
  414. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  415. {
  416. int ret;
  417. mdp_super_t *tmp1, *tmp2;
  418. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  419. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  420. if (!tmp1 || !tmp2) {
  421. ret = 0;
  422. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  423. goto abort;
  424. }
  425. *tmp1 = *sb1;
  426. *tmp2 = *sb2;
  427. /*
  428. * nr_disks is not constant
  429. */
  430. tmp1->nr_disks = 0;
  431. tmp2->nr_disks = 0;
  432. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  433. ret = 0;
  434. else
  435. ret = 1;
  436. abort:
  437. kfree(tmp1);
  438. kfree(tmp2);
  439. return ret;
  440. }
  441. static unsigned int calc_sb_csum(mdp_super_t * sb)
  442. {
  443. unsigned int disk_csum, csum;
  444. disk_csum = sb->sb_csum;
  445. sb->sb_csum = 0;
  446. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  447. sb->sb_csum = disk_csum;
  448. return csum;
  449. }
  450. /*
  451. * Handle superblock details.
  452. * We want to be able to handle multiple superblock formats
  453. * so we have a common interface to them all, and an array of
  454. * different handlers.
  455. * We rely on user-space to write the initial superblock, and support
  456. * reading and updating of superblocks.
  457. * Interface methods are:
  458. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  459. * loads and validates a superblock on dev.
  460. * if refdev != NULL, compare superblocks on both devices
  461. * Return:
  462. * 0 - dev has a superblock that is compatible with refdev
  463. * 1 - dev has a superblock that is compatible and newer than refdev
  464. * so dev should be used as the refdev in future
  465. * -EINVAL superblock incompatible or invalid
  466. * -othererror e.g. -EIO
  467. *
  468. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  469. * Verify that dev is acceptable into mddev.
  470. * The first time, mddev->raid_disks will be 0, and data from
  471. * dev should be merged in. Subsequent calls check that dev
  472. * is new enough. Return 0 or -EINVAL
  473. *
  474. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  475. * Update the superblock for rdev with data in mddev
  476. * This does not write to disc.
  477. *
  478. */
  479. struct super_type {
  480. char *name;
  481. struct module *owner;
  482. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  483. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  484. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  485. };
  486. /*
  487. * load_super for 0.90.0
  488. */
  489. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  490. {
  491. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  492. mdp_super_t *sb;
  493. int ret;
  494. sector_t sb_offset;
  495. /*
  496. * Calculate the position of the superblock,
  497. * it's at the end of the disk.
  498. *
  499. * It also happens to be a multiple of 4Kb.
  500. */
  501. sb_offset = calc_dev_sboffset(rdev->bdev);
  502. rdev->sb_offset = sb_offset;
  503. ret = read_disk_sb(rdev, MD_SB_BYTES);
  504. if (ret) return ret;
  505. ret = -EINVAL;
  506. bdevname(rdev->bdev, b);
  507. sb = (mdp_super_t*)page_address(rdev->sb_page);
  508. if (sb->md_magic != MD_SB_MAGIC) {
  509. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  510. b);
  511. goto abort;
  512. }
  513. if (sb->major_version != 0 ||
  514. sb->minor_version != 90) {
  515. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  516. sb->major_version, sb->minor_version,
  517. b);
  518. goto abort;
  519. }
  520. if (sb->raid_disks <= 0)
  521. goto abort;
  522. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  523. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  524. b);
  525. goto abort;
  526. }
  527. rdev->preferred_minor = sb->md_minor;
  528. rdev->data_offset = 0;
  529. rdev->sb_size = MD_SB_BYTES;
  530. if (sb->level == LEVEL_MULTIPATH)
  531. rdev->desc_nr = -1;
  532. else
  533. rdev->desc_nr = sb->this_disk.number;
  534. if (refdev == 0)
  535. ret = 1;
  536. else {
  537. __u64 ev1, ev2;
  538. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  539. if (!uuid_equal(refsb, sb)) {
  540. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  541. b, bdevname(refdev->bdev,b2));
  542. goto abort;
  543. }
  544. if (!sb_equal(refsb, sb)) {
  545. printk(KERN_WARNING "md: %s has same UUID"
  546. " but different superblock to %s\n",
  547. b, bdevname(refdev->bdev, b2));
  548. goto abort;
  549. }
  550. ev1 = md_event(sb);
  551. ev2 = md_event(refsb);
  552. if (ev1 > ev2)
  553. ret = 1;
  554. else
  555. ret = 0;
  556. }
  557. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  558. abort:
  559. return ret;
  560. }
  561. /*
  562. * validate_super for 0.90.0
  563. */
  564. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  565. {
  566. mdp_disk_t *desc;
  567. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  568. rdev->raid_disk = -1;
  569. rdev->flags = 0;
  570. if (mddev->raid_disks == 0) {
  571. mddev->major_version = 0;
  572. mddev->minor_version = sb->minor_version;
  573. mddev->patch_version = sb->patch_version;
  574. mddev->persistent = ! sb->not_persistent;
  575. mddev->chunk_size = sb->chunk_size;
  576. mddev->ctime = sb->ctime;
  577. mddev->utime = sb->utime;
  578. mddev->level = sb->level;
  579. mddev->layout = sb->layout;
  580. mddev->raid_disks = sb->raid_disks;
  581. mddev->size = sb->size;
  582. mddev->events = md_event(sb);
  583. mddev->bitmap_offset = 0;
  584. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  585. if (sb->state & (1<<MD_SB_CLEAN))
  586. mddev->recovery_cp = MaxSector;
  587. else {
  588. if (sb->events_hi == sb->cp_events_hi &&
  589. sb->events_lo == sb->cp_events_lo) {
  590. mddev->recovery_cp = sb->recovery_cp;
  591. } else
  592. mddev->recovery_cp = 0;
  593. }
  594. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  595. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  596. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  597. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  598. mddev->max_disks = MD_SB_DISKS;
  599. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  600. mddev->bitmap_file == NULL) {
  601. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
  602. /* FIXME use a better test */
  603. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  604. return -EINVAL;
  605. }
  606. mddev->bitmap_offset = mddev->default_bitmap_offset;
  607. }
  608. } else if (mddev->pers == NULL) {
  609. /* Insist on good event counter while assembling */
  610. __u64 ev1 = md_event(sb);
  611. ++ev1;
  612. if (ev1 < mddev->events)
  613. return -EINVAL;
  614. } else if (mddev->bitmap) {
  615. /* if adding to array with a bitmap, then we can accept an
  616. * older device ... but not too old.
  617. */
  618. __u64 ev1 = md_event(sb);
  619. if (ev1 < mddev->bitmap->events_cleared)
  620. return 0;
  621. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  622. return 0;
  623. if (mddev->level != LEVEL_MULTIPATH) {
  624. desc = sb->disks + rdev->desc_nr;
  625. if (desc->state & (1<<MD_DISK_FAULTY))
  626. set_bit(Faulty, &rdev->flags);
  627. else if (desc->state & (1<<MD_DISK_SYNC) &&
  628. desc->raid_disk < mddev->raid_disks) {
  629. set_bit(In_sync, &rdev->flags);
  630. rdev->raid_disk = desc->raid_disk;
  631. }
  632. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  633. set_bit(WriteMostly, &rdev->flags);
  634. } else /* MULTIPATH are always insync */
  635. set_bit(In_sync, &rdev->flags);
  636. return 0;
  637. }
  638. /*
  639. * sync_super for 0.90.0
  640. */
  641. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  642. {
  643. mdp_super_t *sb;
  644. struct list_head *tmp;
  645. mdk_rdev_t *rdev2;
  646. int next_spare = mddev->raid_disks;
  647. /* make rdev->sb match mddev data..
  648. *
  649. * 1/ zero out disks
  650. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  651. * 3/ any empty disks < next_spare become removed
  652. *
  653. * disks[0] gets initialised to REMOVED because
  654. * we cannot be sure from other fields if it has
  655. * been initialised or not.
  656. */
  657. int i;
  658. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  659. rdev->sb_size = MD_SB_BYTES;
  660. sb = (mdp_super_t*)page_address(rdev->sb_page);
  661. memset(sb, 0, sizeof(*sb));
  662. sb->md_magic = MD_SB_MAGIC;
  663. sb->major_version = mddev->major_version;
  664. sb->minor_version = mddev->minor_version;
  665. sb->patch_version = mddev->patch_version;
  666. sb->gvalid_words = 0; /* ignored */
  667. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  668. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  669. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  670. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  671. sb->ctime = mddev->ctime;
  672. sb->level = mddev->level;
  673. sb->size = mddev->size;
  674. sb->raid_disks = mddev->raid_disks;
  675. sb->md_minor = mddev->md_minor;
  676. sb->not_persistent = !mddev->persistent;
  677. sb->utime = mddev->utime;
  678. sb->state = 0;
  679. sb->events_hi = (mddev->events>>32);
  680. sb->events_lo = (u32)mddev->events;
  681. if (mddev->in_sync)
  682. {
  683. sb->recovery_cp = mddev->recovery_cp;
  684. sb->cp_events_hi = (mddev->events>>32);
  685. sb->cp_events_lo = (u32)mddev->events;
  686. if (mddev->recovery_cp == MaxSector)
  687. sb->state = (1<< MD_SB_CLEAN);
  688. } else
  689. sb->recovery_cp = 0;
  690. sb->layout = mddev->layout;
  691. sb->chunk_size = mddev->chunk_size;
  692. if (mddev->bitmap && mddev->bitmap_file == NULL)
  693. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  694. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  695. ITERATE_RDEV(mddev,rdev2,tmp) {
  696. mdp_disk_t *d;
  697. int desc_nr;
  698. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  699. && !test_bit(Faulty, &rdev2->flags))
  700. desc_nr = rdev2->raid_disk;
  701. else
  702. desc_nr = next_spare++;
  703. rdev2->desc_nr = desc_nr;
  704. d = &sb->disks[rdev2->desc_nr];
  705. nr_disks++;
  706. d->number = rdev2->desc_nr;
  707. d->major = MAJOR(rdev2->bdev->bd_dev);
  708. d->minor = MINOR(rdev2->bdev->bd_dev);
  709. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  710. && !test_bit(Faulty, &rdev2->flags))
  711. d->raid_disk = rdev2->raid_disk;
  712. else
  713. d->raid_disk = rdev2->desc_nr; /* compatibility */
  714. if (test_bit(Faulty, &rdev2->flags)) {
  715. d->state = (1<<MD_DISK_FAULTY);
  716. failed++;
  717. } else if (test_bit(In_sync, &rdev2->flags)) {
  718. d->state = (1<<MD_DISK_ACTIVE);
  719. d->state |= (1<<MD_DISK_SYNC);
  720. active++;
  721. working++;
  722. } else {
  723. d->state = 0;
  724. spare++;
  725. working++;
  726. }
  727. if (test_bit(WriteMostly, &rdev2->flags))
  728. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  729. }
  730. /* now set the "removed" and "faulty" bits on any missing devices */
  731. for (i=0 ; i < mddev->raid_disks ; i++) {
  732. mdp_disk_t *d = &sb->disks[i];
  733. if (d->state == 0 && d->number == 0) {
  734. d->number = i;
  735. d->raid_disk = i;
  736. d->state = (1<<MD_DISK_REMOVED);
  737. d->state |= (1<<MD_DISK_FAULTY);
  738. failed++;
  739. }
  740. }
  741. sb->nr_disks = nr_disks;
  742. sb->active_disks = active;
  743. sb->working_disks = working;
  744. sb->failed_disks = failed;
  745. sb->spare_disks = spare;
  746. sb->this_disk = sb->disks[rdev->desc_nr];
  747. sb->sb_csum = calc_sb_csum(sb);
  748. }
  749. /*
  750. * version 1 superblock
  751. */
  752. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  753. {
  754. unsigned int disk_csum, csum;
  755. unsigned long long newcsum;
  756. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  757. unsigned int *isuper = (unsigned int*)sb;
  758. int i;
  759. disk_csum = sb->sb_csum;
  760. sb->sb_csum = 0;
  761. newcsum = 0;
  762. for (i=0; size>=4; size -= 4 )
  763. newcsum += le32_to_cpu(*isuper++);
  764. if (size == 2)
  765. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  766. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  767. sb->sb_csum = disk_csum;
  768. return cpu_to_le32(csum);
  769. }
  770. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  771. {
  772. struct mdp_superblock_1 *sb;
  773. int ret;
  774. sector_t sb_offset;
  775. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  776. int bmask;
  777. /*
  778. * Calculate the position of the superblock.
  779. * It is always aligned to a 4K boundary and
  780. * depeding on minor_version, it can be:
  781. * 0: At least 8K, but less than 12K, from end of device
  782. * 1: At start of device
  783. * 2: 4K from start of device.
  784. */
  785. switch(minor_version) {
  786. case 0:
  787. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  788. sb_offset -= 8*2;
  789. sb_offset &= ~(sector_t)(4*2-1);
  790. /* convert from sectors to K */
  791. sb_offset /= 2;
  792. break;
  793. case 1:
  794. sb_offset = 0;
  795. break;
  796. case 2:
  797. sb_offset = 4;
  798. break;
  799. default:
  800. return -EINVAL;
  801. }
  802. rdev->sb_offset = sb_offset;
  803. /* superblock is rarely larger than 1K, but it can be larger,
  804. * and it is safe to read 4k, so we do that
  805. */
  806. ret = read_disk_sb(rdev, 4096);
  807. if (ret) return ret;
  808. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  809. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  810. sb->major_version != cpu_to_le32(1) ||
  811. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  812. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  813. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  814. return -EINVAL;
  815. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  816. printk("md: invalid superblock checksum on %s\n",
  817. bdevname(rdev->bdev,b));
  818. return -EINVAL;
  819. }
  820. if (le64_to_cpu(sb->data_size) < 10) {
  821. printk("md: data_size too small on %s\n",
  822. bdevname(rdev->bdev,b));
  823. return -EINVAL;
  824. }
  825. rdev->preferred_minor = 0xffff;
  826. rdev->data_offset = le64_to_cpu(sb->data_offset);
  827. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  828. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  829. if (rdev->sb_size & bmask)
  830. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  831. if (refdev == 0)
  832. return 1;
  833. else {
  834. __u64 ev1, ev2;
  835. struct mdp_superblock_1 *refsb =
  836. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  837. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  838. sb->level != refsb->level ||
  839. sb->layout != refsb->layout ||
  840. sb->chunksize != refsb->chunksize) {
  841. printk(KERN_WARNING "md: %s has strangely different"
  842. " superblock to %s\n",
  843. bdevname(rdev->bdev,b),
  844. bdevname(refdev->bdev,b2));
  845. return -EINVAL;
  846. }
  847. ev1 = le64_to_cpu(sb->events);
  848. ev2 = le64_to_cpu(refsb->events);
  849. if (ev1 > ev2)
  850. return 1;
  851. }
  852. if (minor_version)
  853. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  854. else
  855. rdev->size = rdev->sb_offset;
  856. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  857. return -EINVAL;
  858. rdev->size = le64_to_cpu(sb->data_size)/2;
  859. if (le32_to_cpu(sb->chunksize))
  860. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  861. return 0;
  862. }
  863. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  864. {
  865. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  866. rdev->raid_disk = -1;
  867. rdev->flags = 0;
  868. if (mddev->raid_disks == 0) {
  869. mddev->major_version = 1;
  870. mddev->patch_version = 0;
  871. mddev->persistent = 1;
  872. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  873. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  874. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  875. mddev->level = le32_to_cpu(sb->level);
  876. mddev->layout = le32_to_cpu(sb->layout);
  877. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  878. mddev->size = le64_to_cpu(sb->size)/2;
  879. mddev->events = le64_to_cpu(sb->events);
  880. mddev->bitmap_offset = 0;
  881. mddev->default_bitmap_offset = 0;
  882. mddev->default_bitmap_offset = 1024;
  883. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  884. memcpy(mddev->uuid, sb->set_uuid, 16);
  885. mddev->max_disks = (4096-256)/2;
  886. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  887. mddev->bitmap_file == NULL ) {
  888. if (mddev->level != 1) {
  889. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  890. return -EINVAL;
  891. }
  892. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  893. }
  894. } else if (mddev->pers == NULL) {
  895. /* Insist of good event counter while assembling */
  896. __u64 ev1 = le64_to_cpu(sb->events);
  897. ++ev1;
  898. if (ev1 < mddev->events)
  899. return -EINVAL;
  900. } else if (mddev->bitmap) {
  901. /* If adding to array with a bitmap, then we can accept an
  902. * older device, but not too old.
  903. */
  904. __u64 ev1 = le64_to_cpu(sb->events);
  905. if (ev1 < mddev->bitmap->events_cleared)
  906. return 0;
  907. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  908. return 0;
  909. if (mddev->level != LEVEL_MULTIPATH) {
  910. int role;
  911. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  912. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  913. switch(role) {
  914. case 0xffff: /* spare */
  915. break;
  916. case 0xfffe: /* faulty */
  917. set_bit(Faulty, &rdev->flags);
  918. break;
  919. default:
  920. set_bit(In_sync, &rdev->flags);
  921. rdev->raid_disk = role;
  922. break;
  923. }
  924. if (sb->devflags & WriteMostly1)
  925. set_bit(WriteMostly, &rdev->flags);
  926. } else /* MULTIPATH are always insync */
  927. set_bit(In_sync, &rdev->flags);
  928. return 0;
  929. }
  930. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  931. {
  932. struct mdp_superblock_1 *sb;
  933. struct list_head *tmp;
  934. mdk_rdev_t *rdev2;
  935. int max_dev, i;
  936. /* make rdev->sb match mddev and rdev data. */
  937. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  938. sb->feature_map = 0;
  939. sb->pad0 = 0;
  940. memset(sb->pad1, 0, sizeof(sb->pad1));
  941. memset(sb->pad2, 0, sizeof(sb->pad2));
  942. memset(sb->pad3, 0, sizeof(sb->pad3));
  943. sb->utime = cpu_to_le64((__u64)mddev->utime);
  944. sb->events = cpu_to_le64(mddev->events);
  945. if (mddev->in_sync)
  946. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  947. else
  948. sb->resync_offset = cpu_to_le64(0);
  949. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  950. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  951. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  952. }
  953. max_dev = 0;
  954. ITERATE_RDEV(mddev,rdev2,tmp)
  955. if (rdev2->desc_nr+1 > max_dev)
  956. max_dev = rdev2->desc_nr+1;
  957. sb->max_dev = cpu_to_le32(max_dev);
  958. for (i=0; i<max_dev;i++)
  959. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  960. ITERATE_RDEV(mddev,rdev2,tmp) {
  961. i = rdev2->desc_nr;
  962. if (test_bit(Faulty, &rdev2->flags))
  963. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  964. else if (test_bit(In_sync, &rdev2->flags))
  965. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  966. else
  967. sb->dev_roles[i] = cpu_to_le16(0xffff);
  968. }
  969. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  970. sb->sb_csum = calc_sb_1_csum(sb);
  971. }
  972. static struct super_type super_types[] = {
  973. [0] = {
  974. .name = "0.90.0",
  975. .owner = THIS_MODULE,
  976. .load_super = super_90_load,
  977. .validate_super = super_90_validate,
  978. .sync_super = super_90_sync,
  979. },
  980. [1] = {
  981. .name = "md-1",
  982. .owner = THIS_MODULE,
  983. .load_super = super_1_load,
  984. .validate_super = super_1_validate,
  985. .sync_super = super_1_sync,
  986. },
  987. };
  988. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  989. {
  990. struct list_head *tmp;
  991. mdk_rdev_t *rdev;
  992. ITERATE_RDEV(mddev,rdev,tmp)
  993. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  994. return rdev;
  995. return NULL;
  996. }
  997. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  998. {
  999. struct list_head *tmp;
  1000. mdk_rdev_t *rdev;
  1001. ITERATE_RDEV(mddev1,rdev,tmp)
  1002. if (match_dev_unit(mddev2, rdev))
  1003. return 1;
  1004. return 0;
  1005. }
  1006. static LIST_HEAD(pending_raid_disks);
  1007. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1008. {
  1009. mdk_rdev_t *same_pdev;
  1010. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1011. struct kobject *ko;
  1012. if (rdev->mddev) {
  1013. MD_BUG();
  1014. return -EINVAL;
  1015. }
  1016. same_pdev = match_dev_unit(mddev, rdev);
  1017. if (same_pdev)
  1018. printk(KERN_WARNING
  1019. "%s: WARNING: %s appears to be on the same physical"
  1020. " disk as %s. True\n protection against single-disk"
  1021. " failure might be compromised.\n",
  1022. mdname(mddev), bdevname(rdev->bdev,b),
  1023. bdevname(same_pdev->bdev,b2));
  1024. /* Verify rdev->desc_nr is unique.
  1025. * If it is -1, assign a free number, else
  1026. * check number is not in use
  1027. */
  1028. if (rdev->desc_nr < 0) {
  1029. int choice = 0;
  1030. if (mddev->pers) choice = mddev->raid_disks;
  1031. while (find_rdev_nr(mddev, choice))
  1032. choice++;
  1033. rdev->desc_nr = choice;
  1034. } else {
  1035. if (find_rdev_nr(mddev, rdev->desc_nr))
  1036. return -EBUSY;
  1037. }
  1038. bdevname(rdev->bdev,b);
  1039. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1040. return -ENOMEM;
  1041. list_add(&rdev->same_set, &mddev->disks);
  1042. rdev->mddev = mddev;
  1043. printk(KERN_INFO "md: bind<%s>\n", b);
  1044. rdev->kobj.parent = &mddev->kobj;
  1045. kobject_add(&rdev->kobj);
  1046. if (rdev->bdev->bd_part)
  1047. ko = &rdev->bdev->bd_part->kobj;
  1048. else
  1049. ko = &rdev->bdev->bd_disk->kobj;
  1050. sysfs_create_link(&rdev->kobj, ko, "block");
  1051. return 0;
  1052. }
  1053. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1054. {
  1055. char b[BDEVNAME_SIZE];
  1056. if (!rdev->mddev) {
  1057. MD_BUG();
  1058. return;
  1059. }
  1060. list_del_init(&rdev->same_set);
  1061. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1062. rdev->mddev = NULL;
  1063. sysfs_remove_link(&rdev->kobj, "block");
  1064. kobject_del(&rdev->kobj);
  1065. }
  1066. /*
  1067. * prevent the device from being mounted, repartitioned or
  1068. * otherwise reused by a RAID array (or any other kernel
  1069. * subsystem), by bd_claiming the device.
  1070. */
  1071. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1072. {
  1073. int err = 0;
  1074. struct block_device *bdev;
  1075. char b[BDEVNAME_SIZE];
  1076. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1077. if (IS_ERR(bdev)) {
  1078. printk(KERN_ERR "md: could not open %s.\n",
  1079. __bdevname(dev, b));
  1080. return PTR_ERR(bdev);
  1081. }
  1082. err = bd_claim(bdev, rdev);
  1083. if (err) {
  1084. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1085. bdevname(bdev, b));
  1086. blkdev_put(bdev);
  1087. return err;
  1088. }
  1089. rdev->bdev = bdev;
  1090. return err;
  1091. }
  1092. static void unlock_rdev(mdk_rdev_t *rdev)
  1093. {
  1094. struct block_device *bdev = rdev->bdev;
  1095. rdev->bdev = NULL;
  1096. if (!bdev)
  1097. MD_BUG();
  1098. bd_release(bdev);
  1099. blkdev_put(bdev);
  1100. }
  1101. void md_autodetect_dev(dev_t dev);
  1102. static void export_rdev(mdk_rdev_t * rdev)
  1103. {
  1104. char b[BDEVNAME_SIZE];
  1105. printk(KERN_INFO "md: export_rdev(%s)\n",
  1106. bdevname(rdev->bdev,b));
  1107. if (rdev->mddev)
  1108. MD_BUG();
  1109. free_disk_sb(rdev);
  1110. list_del_init(&rdev->same_set);
  1111. #ifndef MODULE
  1112. md_autodetect_dev(rdev->bdev->bd_dev);
  1113. #endif
  1114. unlock_rdev(rdev);
  1115. kobject_put(&rdev->kobj);
  1116. }
  1117. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1118. {
  1119. unbind_rdev_from_array(rdev);
  1120. export_rdev(rdev);
  1121. }
  1122. static void export_array(mddev_t *mddev)
  1123. {
  1124. struct list_head *tmp;
  1125. mdk_rdev_t *rdev;
  1126. ITERATE_RDEV(mddev,rdev,tmp) {
  1127. if (!rdev->mddev) {
  1128. MD_BUG();
  1129. continue;
  1130. }
  1131. kick_rdev_from_array(rdev);
  1132. }
  1133. if (!list_empty(&mddev->disks))
  1134. MD_BUG();
  1135. mddev->raid_disks = 0;
  1136. mddev->major_version = 0;
  1137. }
  1138. static void print_desc(mdp_disk_t *desc)
  1139. {
  1140. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1141. desc->major,desc->minor,desc->raid_disk,desc->state);
  1142. }
  1143. static void print_sb(mdp_super_t *sb)
  1144. {
  1145. int i;
  1146. printk(KERN_INFO
  1147. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1148. sb->major_version, sb->minor_version, sb->patch_version,
  1149. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1150. sb->ctime);
  1151. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1152. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1153. sb->md_minor, sb->layout, sb->chunk_size);
  1154. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1155. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1156. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1157. sb->failed_disks, sb->spare_disks,
  1158. sb->sb_csum, (unsigned long)sb->events_lo);
  1159. printk(KERN_INFO);
  1160. for (i = 0; i < MD_SB_DISKS; i++) {
  1161. mdp_disk_t *desc;
  1162. desc = sb->disks + i;
  1163. if (desc->number || desc->major || desc->minor ||
  1164. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1165. printk(" D %2d: ", i);
  1166. print_desc(desc);
  1167. }
  1168. }
  1169. printk(KERN_INFO "md: THIS: ");
  1170. print_desc(&sb->this_disk);
  1171. }
  1172. static void print_rdev(mdk_rdev_t *rdev)
  1173. {
  1174. char b[BDEVNAME_SIZE];
  1175. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1176. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1177. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1178. rdev->desc_nr);
  1179. if (rdev->sb_loaded) {
  1180. printk(KERN_INFO "md: rdev superblock:\n");
  1181. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1182. } else
  1183. printk(KERN_INFO "md: no rdev superblock!\n");
  1184. }
  1185. void md_print_devices(void)
  1186. {
  1187. struct list_head *tmp, *tmp2;
  1188. mdk_rdev_t *rdev;
  1189. mddev_t *mddev;
  1190. char b[BDEVNAME_SIZE];
  1191. printk("\n");
  1192. printk("md: **********************************\n");
  1193. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1194. printk("md: **********************************\n");
  1195. ITERATE_MDDEV(mddev,tmp) {
  1196. if (mddev->bitmap)
  1197. bitmap_print_sb(mddev->bitmap);
  1198. else
  1199. printk("%s: ", mdname(mddev));
  1200. ITERATE_RDEV(mddev,rdev,tmp2)
  1201. printk("<%s>", bdevname(rdev->bdev,b));
  1202. printk("\n");
  1203. ITERATE_RDEV(mddev,rdev,tmp2)
  1204. print_rdev(rdev);
  1205. }
  1206. printk("md: **********************************\n");
  1207. printk("\n");
  1208. }
  1209. static void sync_sbs(mddev_t * mddev)
  1210. {
  1211. mdk_rdev_t *rdev;
  1212. struct list_head *tmp;
  1213. ITERATE_RDEV(mddev,rdev,tmp) {
  1214. super_types[mddev->major_version].
  1215. sync_super(mddev, rdev);
  1216. rdev->sb_loaded = 1;
  1217. }
  1218. }
  1219. static void md_update_sb(mddev_t * mddev)
  1220. {
  1221. int err;
  1222. struct list_head *tmp;
  1223. mdk_rdev_t *rdev;
  1224. int sync_req;
  1225. repeat:
  1226. spin_lock_irq(&mddev->write_lock);
  1227. sync_req = mddev->in_sync;
  1228. mddev->utime = get_seconds();
  1229. mddev->events ++;
  1230. if (!mddev->events) {
  1231. /*
  1232. * oops, this 64-bit counter should never wrap.
  1233. * Either we are in around ~1 trillion A.C., assuming
  1234. * 1 reboot per second, or we have a bug:
  1235. */
  1236. MD_BUG();
  1237. mddev->events --;
  1238. }
  1239. mddev->sb_dirty = 2;
  1240. sync_sbs(mddev);
  1241. /*
  1242. * do not write anything to disk if using
  1243. * nonpersistent superblocks
  1244. */
  1245. if (!mddev->persistent) {
  1246. mddev->sb_dirty = 0;
  1247. spin_unlock_irq(&mddev->write_lock);
  1248. wake_up(&mddev->sb_wait);
  1249. return;
  1250. }
  1251. spin_unlock_irq(&mddev->write_lock);
  1252. dprintk(KERN_INFO
  1253. "md: updating %s RAID superblock on device (in sync %d)\n",
  1254. mdname(mddev),mddev->in_sync);
  1255. err = bitmap_update_sb(mddev->bitmap);
  1256. ITERATE_RDEV(mddev,rdev,tmp) {
  1257. char b[BDEVNAME_SIZE];
  1258. dprintk(KERN_INFO "md: ");
  1259. if (test_bit(Faulty, &rdev->flags))
  1260. dprintk("(skipping faulty ");
  1261. dprintk("%s ", bdevname(rdev->bdev,b));
  1262. if (!test_bit(Faulty, &rdev->flags)) {
  1263. md_super_write(mddev,rdev,
  1264. rdev->sb_offset<<1, rdev->sb_size,
  1265. rdev->sb_page);
  1266. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1267. bdevname(rdev->bdev,b),
  1268. (unsigned long long)rdev->sb_offset);
  1269. } else
  1270. dprintk(")\n");
  1271. if (mddev->level == LEVEL_MULTIPATH)
  1272. /* only need to write one superblock... */
  1273. break;
  1274. }
  1275. md_super_wait(mddev);
  1276. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1277. spin_lock_irq(&mddev->write_lock);
  1278. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1279. /* have to write it out again */
  1280. spin_unlock_irq(&mddev->write_lock);
  1281. goto repeat;
  1282. }
  1283. mddev->sb_dirty = 0;
  1284. spin_unlock_irq(&mddev->write_lock);
  1285. wake_up(&mddev->sb_wait);
  1286. }
  1287. struct rdev_sysfs_entry {
  1288. struct attribute attr;
  1289. ssize_t (*show)(mdk_rdev_t *, char *);
  1290. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1291. };
  1292. static ssize_t
  1293. state_show(mdk_rdev_t *rdev, char *page)
  1294. {
  1295. char *sep = "";
  1296. int len=0;
  1297. if (test_bit(Faulty, &rdev->flags)) {
  1298. len+= sprintf(page+len, "%sfaulty",sep);
  1299. sep = ",";
  1300. }
  1301. if (test_bit(In_sync, &rdev->flags)) {
  1302. len += sprintf(page+len, "%sin_sync",sep);
  1303. sep = ",";
  1304. }
  1305. if (!test_bit(Faulty, &rdev->flags) &&
  1306. !test_bit(In_sync, &rdev->flags)) {
  1307. len += sprintf(page+len, "%sspare", sep);
  1308. sep = ",";
  1309. }
  1310. return len+sprintf(page+len, "\n");
  1311. }
  1312. static struct rdev_sysfs_entry
  1313. rdev_state = __ATTR_RO(state);
  1314. static ssize_t
  1315. super_show(mdk_rdev_t *rdev, char *page)
  1316. {
  1317. if (rdev->sb_loaded && rdev->sb_size) {
  1318. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1319. return rdev->sb_size;
  1320. } else
  1321. return 0;
  1322. }
  1323. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1324. static struct attribute *rdev_default_attrs[] = {
  1325. &rdev_state.attr,
  1326. &rdev_super.attr,
  1327. NULL,
  1328. };
  1329. static ssize_t
  1330. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1331. {
  1332. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1333. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1334. if (!entry->show)
  1335. return -EIO;
  1336. return entry->show(rdev, page);
  1337. }
  1338. static ssize_t
  1339. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1340. const char *page, size_t length)
  1341. {
  1342. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1343. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1344. if (!entry->store)
  1345. return -EIO;
  1346. return entry->store(rdev, page, length);
  1347. }
  1348. static void rdev_free(struct kobject *ko)
  1349. {
  1350. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1351. kfree(rdev);
  1352. }
  1353. static struct sysfs_ops rdev_sysfs_ops = {
  1354. .show = rdev_attr_show,
  1355. .store = rdev_attr_store,
  1356. };
  1357. static struct kobj_type rdev_ktype = {
  1358. .release = rdev_free,
  1359. .sysfs_ops = &rdev_sysfs_ops,
  1360. .default_attrs = rdev_default_attrs,
  1361. };
  1362. /*
  1363. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1364. *
  1365. * mark the device faulty if:
  1366. *
  1367. * - the device is nonexistent (zero size)
  1368. * - the device has no valid superblock
  1369. *
  1370. * a faulty rdev _never_ has rdev->sb set.
  1371. */
  1372. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1373. {
  1374. char b[BDEVNAME_SIZE];
  1375. int err;
  1376. mdk_rdev_t *rdev;
  1377. sector_t size;
  1378. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1379. if (!rdev) {
  1380. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1381. return ERR_PTR(-ENOMEM);
  1382. }
  1383. memset(rdev, 0, sizeof(*rdev));
  1384. if ((err = alloc_disk_sb(rdev)))
  1385. goto abort_free;
  1386. err = lock_rdev(rdev, newdev);
  1387. if (err)
  1388. goto abort_free;
  1389. rdev->kobj.parent = NULL;
  1390. rdev->kobj.ktype = &rdev_ktype;
  1391. kobject_init(&rdev->kobj);
  1392. rdev->desc_nr = -1;
  1393. rdev->flags = 0;
  1394. rdev->data_offset = 0;
  1395. atomic_set(&rdev->nr_pending, 0);
  1396. atomic_set(&rdev->read_errors, 0);
  1397. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1398. if (!size) {
  1399. printk(KERN_WARNING
  1400. "md: %s has zero or unknown size, marking faulty!\n",
  1401. bdevname(rdev->bdev,b));
  1402. err = -EINVAL;
  1403. goto abort_free;
  1404. }
  1405. if (super_format >= 0) {
  1406. err = super_types[super_format].
  1407. load_super(rdev, NULL, super_minor);
  1408. if (err == -EINVAL) {
  1409. printk(KERN_WARNING
  1410. "md: %s has invalid sb, not importing!\n",
  1411. bdevname(rdev->bdev,b));
  1412. goto abort_free;
  1413. }
  1414. if (err < 0) {
  1415. printk(KERN_WARNING
  1416. "md: could not read %s's sb, not importing!\n",
  1417. bdevname(rdev->bdev,b));
  1418. goto abort_free;
  1419. }
  1420. }
  1421. INIT_LIST_HEAD(&rdev->same_set);
  1422. return rdev;
  1423. abort_free:
  1424. if (rdev->sb_page) {
  1425. if (rdev->bdev)
  1426. unlock_rdev(rdev);
  1427. free_disk_sb(rdev);
  1428. }
  1429. kfree(rdev);
  1430. return ERR_PTR(err);
  1431. }
  1432. /*
  1433. * Check a full RAID array for plausibility
  1434. */
  1435. static void analyze_sbs(mddev_t * mddev)
  1436. {
  1437. int i;
  1438. struct list_head *tmp;
  1439. mdk_rdev_t *rdev, *freshest;
  1440. char b[BDEVNAME_SIZE];
  1441. freshest = NULL;
  1442. ITERATE_RDEV(mddev,rdev,tmp)
  1443. switch (super_types[mddev->major_version].
  1444. load_super(rdev, freshest, mddev->minor_version)) {
  1445. case 1:
  1446. freshest = rdev;
  1447. break;
  1448. case 0:
  1449. break;
  1450. default:
  1451. printk( KERN_ERR \
  1452. "md: fatal superblock inconsistency in %s"
  1453. " -- removing from array\n",
  1454. bdevname(rdev->bdev,b));
  1455. kick_rdev_from_array(rdev);
  1456. }
  1457. super_types[mddev->major_version].
  1458. validate_super(mddev, freshest);
  1459. i = 0;
  1460. ITERATE_RDEV(mddev,rdev,tmp) {
  1461. if (rdev != freshest)
  1462. if (super_types[mddev->major_version].
  1463. validate_super(mddev, rdev)) {
  1464. printk(KERN_WARNING "md: kicking non-fresh %s"
  1465. " from array!\n",
  1466. bdevname(rdev->bdev,b));
  1467. kick_rdev_from_array(rdev);
  1468. continue;
  1469. }
  1470. if (mddev->level == LEVEL_MULTIPATH) {
  1471. rdev->desc_nr = i++;
  1472. rdev->raid_disk = rdev->desc_nr;
  1473. set_bit(In_sync, &rdev->flags);
  1474. }
  1475. }
  1476. if (mddev->recovery_cp != MaxSector &&
  1477. mddev->level >= 1)
  1478. printk(KERN_ERR "md: %s: raid array is not clean"
  1479. " -- starting background reconstruction\n",
  1480. mdname(mddev));
  1481. }
  1482. static ssize_t
  1483. level_show(mddev_t *mddev, char *page)
  1484. {
  1485. mdk_personality_t *p = mddev->pers;
  1486. if (p == NULL)
  1487. return 0;
  1488. if (mddev->level >= 0)
  1489. return sprintf(page, "RAID-%d\n", mddev->level);
  1490. else
  1491. return sprintf(page, "%s\n", p->name);
  1492. }
  1493. static struct md_sysfs_entry md_level = __ATTR_RO(level);
  1494. static ssize_t
  1495. raid_disks_show(mddev_t *mddev, char *page)
  1496. {
  1497. return sprintf(page, "%d\n", mddev->raid_disks);
  1498. }
  1499. static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
  1500. static ssize_t
  1501. md_show_scan(mddev_t *mddev, char *page)
  1502. {
  1503. char *type = "none";
  1504. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1505. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  1506. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1507. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1508. type = "resync";
  1509. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1510. type = "check";
  1511. else
  1512. type = "repair";
  1513. } else
  1514. type = "recover";
  1515. }
  1516. return sprintf(page, "%s\n", type);
  1517. }
  1518. static ssize_t
  1519. md_store_scan(mddev_t *mddev, const char *page, size_t len)
  1520. {
  1521. int canscan=0;
  1522. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1523. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  1524. return -EBUSY;
  1525. if (mddev->pers && mddev->pers->sync_request)
  1526. canscan=1;
  1527. if (!canscan)
  1528. return -EINVAL;
  1529. if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
  1530. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  1531. else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
  1532. return -EINVAL;
  1533. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  1534. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  1535. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1536. md_wakeup_thread(mddev->thread);
  1537. return len;
  1538. }
  1539. static ssize_t
  1540. mismatch_cnt_show(mddev_t *mddev, char *page)
  1541. {
  1542. return sprintf(page, "%llu\n",
  1543. (unsigned long long) mddev->resync_mismatches);
  1544. }
  1545. static struct md_sysfs_entry
  1546. md_scan_mode = __ATTR(scan_mode, S_IRUGO|S_IWUSR, md_show_scan, md_store_scan);
  1547. static struct md_sysfs_entry
  1548. md_mismatches = __ATTR_RO(mismatch_cnt);
  1549. static struct attribute *md_default_attrs[] = {
  1550. &md_level.attr,
  1551. &md_raid_disks.attr,
  1552. NULL,
  1553. };
  1554. static struct attribute *md_redundancy_attrs[] = {
  1555. &md_scan_mode.attr,
  1556. &md_mismatches.attr,
  1557. NULL,
  1558. };
  1559. static struct attribute_group md_redundancy_group = {
  1560. .name = NULL,
  1561. .attrs = md_redundancy_attrs,
  1562. };
  1563. static ssize_t
  1564. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1565. {
  1566. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1567. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1568. ssize_t rv;
  1569. if (!entry->show)
  1570. return -EIO;
  1571. mddev_lock(mddev);
  1572. rv = entry->show(mddev, page);
  1573. mddev_unlock(mddev);
  1574. return rv;
  1575. }
  1576. static ssize_t
  1577. md_attr_store(struct kobject *kobj, struct attribute *attr,
  1578. const char *page, size_t length)
  1579. {
  1580. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1581. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1582. ssize_t rv;
  1583. if (!entry->store)
  1584. return -EIO;
  1585. mddev_lock(mddev);
  1586. rv = entry->store(mddev, page, length);
  1587. mddev_unlock(mddev);
  1588. return rv;
  1589. }
  1590. static void md_free(struct kobject *ko)
  1591. {
  1592. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  1593. kfree(mddev);
  1594. }
  1595. static struct sysfs_ops md_sysfs_ops = {
  1596. .show = md_attr_show,
  1597. .store = md_attr_store,
  1598. };
  1599. static struct kobj_type md_ktype = {
  1600. .release = md_free,
  1601. .sysfs_ops = &md_sysfs_ops,
  1602. .default_attrs = md_default_attrs,
  1603. };
  1604. int mdp_major = 0;
  1605. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1606. {
  1607. static DECLARE_MUTEX(disks_sem);
  1608. mddev_t *mddev = mddev_find(dev);
  1609. struct gendisk *disk;
  1610. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1611. int shift = partitioned ? MdpMinorShift : 0;
  1612. int unit = MINOR(dev) >> shift;
  1613. if (!mddev)
  1614. return NULL;
  1615. down(&disks_sem);
  1616. if (mddev->gendisk) {
  1617. up(&disks_sem);
  1618. mddev_put(mddev);
  1619. return NULL;
  1620. }
  1621. disk = alloc_disk(1 << shift);
  1622. if (!disk) {
  1623. up(&disks_sem);
  1624. mddev_put(mddev);
  1625. return NULL;
  1626. }
  1627. disk->major = MAJOR(dev);
  1628. disk->first_minor = unit << shift;
  1629. if (partitioned) {
  1630. sprintf(disk->disk_name, "md_d%d", unit);
  1631. sprintf(disk->devfs_name, "md/d%d", unit);
  1632. } else {
  1633. sprintf(disk->disk_name, "md%d", unit);
  1634. sprintf(disk->devfs_name, "md/%d", unit);
  1635. }
  1636. disk->fops = &md_fops;
  1637. disk->private_data = mddev;
  1638. disk->queue = mddev->queue;
  1639. add_disk(disk);
  1640. mddev->gendisk = disk;
  1641. up(&disks_sem);
  1642. mddev->kobj.parent = &disk->kobj;
  1643. mddev->kobj.k_name = NULL;
  1644. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  1645. mddev->kobj.ktype = &md_ktype;
  1646. kobject_register(&mddev->kobj);
  1647. return NULL;
  1648. }
  1649. void md_wakeup_thread(mdk_thread_t *thread);
  1650. static void md_safemode_timeout(unsigned long data)
  1651. {
  1652. mddev_t *mddev = (mddev_t *) data;
  1653. mddev->safemode = 1;
  1654. md_wakeup_thread(mddev->thread);
  1655. }
  1656. static int do_md_run(mddev_t * mddev)
  1657. {
  1658. int pnum, err;
  1659. int chunk_size;
  1660. struct list_head *tmp;
  1661. mdk_rdev_t *rdev;
  1662. struct gendisk *disk;
  1663. char b[BDEVNAME_SIZE];
  1664. if (list_empty(&mddev->disks))
  1665. /* cannot run an array with no devices.. */
  1666. return -EINVAL;
  1667. if (mddev->pers)
  1668. return -EBUSY;
  1669. /*
  1670. * Analyze all RAID superblock(s)
  1671. */
  1672. if (!mddev->raid_disks)
  1673. analyze_sbs(mddev);
  1674. chunk_size = mddev->chunk_size;
  1675. pnum = level_to_pers(mddev->level);
  1676. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1677. if (!chunk_size) {
  1678. /*
  1679. * 'default chunksize' in the old md code used to
  1680. * be PAGE_SIZE, baaad.
  1681. * we abort here to be on the safe side. We don't
  1682. * want to continue the bad practice.
  1683. */
  1684. printk(KERN_ERR
  1685. "no chunksize specified, see 'man raidtab'\n");
  1686. return -EINVAL;
  1687. }
  1688. if (chunk_size > MAX_CHUNK_SIZE) {
  1689. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1690. chunk_size, MAX_CHUNK_SIZE);
  1691. return -EINVAL;
  1692. }
  1693. /*
  1694. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1695. */
  1696. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1697. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1698. return -EINVAL;
  1699. }
  1700. if (chunk_size < PAGE_SIZE) {
  1701. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1702. chunk_size, PAGE_SIZE);
  1703. return -EINVAL;
  1704. }
  1705. /* devices must have minimum size of one chunk */
  1706. ITERATE_RDEV(mddev,rdev,tmp) {
  1707. if (test_bit(Faulty, &rdev->flags))
  1708. continue;
  1709. if (rdev->size < chunk_size / 1024) {
  1710. printk(KERN_WARNING
  1711. "md: Dev %s smaller than chunk_size:"
  1712. " %lluk < %dk\n",
  1713. bdevname(rdev->bdev,b),
  1714. (unsigned long long)rdev->size,
  1715. chunk_size / 1024);
  1716. return -EINVAL;
  1717. }
  1718. }
  1719. }
  1720. #ifdef CONFIG_KMOD
  1721. if (!pers[pnum])
  1722. {
  1723. request_module("md-personality-%d", pnum);
  1724. }
  1725. #endif
  1726. /*
  1727. * Drop all container device buffers, from now on
  1728. * the only valid external interface is through the md
  1729. * device.
  1730. * Also find largest hardsector size
  1731. */
  1732. ITERATE_RDEV(mddev,rdev,tmp) {
  1733. if (test_bit(Faulty, &rdev->flags))
  1734. continue;
  1735. sync_blockdev(rdev->bdev);
  1736. invalidate_bdev(rdev->bdev, 0);
  1737. }
  1738. md_probe(mddev->unit, NULL, NULL);
  1739. disk = mddev->gendisk;
  1740. if (!disk)
  1741. return -ENOMEM;
  1742. spin_lock(&pers_lock);
  1743. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1744. spin_unlock(&pers_lock);
  1745. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1746. pnum);
  1747. return -EINVAL;
  1748. }
  1749. mddev->pers = pers[pnum];
  1750. spin_unlock(&pers_lock);
  1751. mddev->recovery = 0;
  1752. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1753. mddev->barriers_work = 1;
  1754. if (start_readonly)
  1755. mddev->ro = 2; /* read-only, but switch on first write */
  1756. /* before we start the array running, initialise the bitmap */
  1757. err = bitmap_create(mddev);
  1758. if (err)
  1759. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1760. mdname(mddev), err);
  1761. else
  1762. err = mddev->pers->run(mddev);
  1763. if (err) {
  1764. printk(KERN_ERR "md: pers->run() failed ...\n");
  1765. module_put(mddev->pers->owner);
  1766. mddev->pers = NULL;
  1767. bitmap_destroy(mddev);
  1768. return err;
  1769. }
  1770. if (mddev->pers->sync_request)
  1771. sysfs_create_group(&mddev->kobj, &md_redundancy_group);
  1772. atomic_set(&mddev->writes_pending,0);
  1773. mddev->safemode = 0;
  1774. mddev->safemode_timer.function = md_safemode_timeout;
  1775. mddev->safemode_timer.data = (unsigned long) mddev;
  1776. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1777. mddev->in_sync = 1;
  1778. ITERATE_RDEV(mddev,rdev,tmp)
  1779. if (rdev->raid_disk >= 0) {
  1780. char nm[20];
  1781. sprintf(nm, "rd%d", rdev->raid_disk);
  1782. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  1783. }
  1784. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1785. md_wakeup_thread(mddev->thread);
  1786. if (mddev->sb_dirty)
  1787. md_update_sb(mddev);
  1788. set_capacity(disk, mddev->array_size<<1);
  1789. /* If we call blk_queue_make_request here, it will
  1790. * re-initialise max_sectors etc which may have been
  1791. * refined inside -> run. So just set the bits we need to set.
  1792. * Most initialisation happended when we called
  1793. * blk_queue_make_request(..., md_fail_request)
  1794. * earlier.
  1795. */
  1796. mddev->queue->queuedata = mddev;
  1797. mddev->queue->make_request_fn = mddev->pers->make_request;
  1798. mddev->changed = 1;
  1799. return 0;
  1800. }
  1801. static int restart_array(mddev_t *mddev)
  1802. {
  1803. struct gendisk *disk = mddev->gendisk;
  1804. int err;
  1805. /*
  1806. * Complain if it has no devices
  1807. */
  1808. err = -ENXIO;
  1809. if (list_empty(&mddev->disks))
  1810. goto out;
  1811. if (mddev->pers) {
  1812. err = -EBUSY;
  1813. if (!mddev->ro)
  1814. goto out;
  1815. mddev->safemode = 0;
  1816. mddev->ro = 0;
  1817. set_disk_ro(disk, 0);
  1818. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1819. mdname(mddev));
  1820. /*
  1821. * Kick recovery or resync if necessary
  1822. */
  1823. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1824. md_wakeup_thread(mddev->thread);
  1825. err = 0;
  1826. } else {
  1827. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1828. mdname(mddev));
  1829. err = -EINVAL;
  1830. }
  1831. out:
  1832. return err;
  1833. }
  1834. static int do_md_stop(mddev_t * mddev, int ro)
  1835. {
  1836. int err = 0;
  1837. struct gendisk *disk = mddev->gendisk;
  1838. if (mddev->pers) {
  1839. if (atomic_read(&mddev->active)>2) {
  1840. printk("md: %s still in use.\n",mdname(mddev));
  1841. return -EBUSY;
  1842. }
  1843. if (mddev->sync_thread) {
  1844. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1845. md_unregister_thread(mddev->sync_thread);
  1846. mddev->sync_thread = NULL;
  1847. }
  1848. del_timer_sync(&mddev->safemode_timer);
  1849. invalidate_partition(disk, 0);
  1850. if (ro) {
  1851. err = -ENXIO;
  1852. if (mddev->ro==1)
  1853. goto out;
  1854. mddev->ro = 1;
  1855. } else {
  1856. bitmap_flush(mddev);
  1857. md_super_wait(mddev);
  1858. if (mddev->ro)
  1859. set_disk_ro(disk, 0);
  1860. blk_queue_make_request(mddev->queue, md_fail_request);
  1861. mddev->pers->stop(mddev);
  1862. if (mddev->pers->sync_request)
  1863. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  1864. module_put(mddev->pers->owner);
  1865. mddev->pers = NULL;
  1866. if (mddev->ro)
  1867. mddev->ro = 0;
  1868. }
  1869. if (!mddev->in_sync) {
  1870. /* mark array as shutdown cleanly */
  1871. mddev->in_sync = 1;
  1872. md_update_sb(mddev);
  1873. }
  1874. if (ro)
  1875. set_disk_ro(disk, 1);
  1876. }
  1877. bitmap_destroy(mddev);
  1878. if (mddev->bitmap_file) {
  1879. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1880. fput(mddev->bitmap_file);
  1881. mddev->bitmap_file = NULL;
  1882. }
  1883. mddev->bitmap_offset = 0;
  1884. /*
  1885. * Free resources if final stop
  1886. */
  1887. if (!ro) {
  1888. mdk_rdev_t *rdev;
  1889. struct list_head *tmp;
  1890. struct gendisk *disk;
  1891. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1892. ITERATE_RDEV(mddev,rdev,tmp)
  1893. if (rdev->raid_disk >= 0) {
  1894. char nm[20];
  1895. sprintf(nm, "rd%d", rdev->raid_disk);
  1896. sysfs_remove_link(&mddev->kobj, nm);
  1897. }
  1898. export_array(mddev);
  1899. mddev->array_size = 0;
  1900. disk = mddev->gendisk;
  1901. if (disk)
  1902. set_capacity(disk, 0);
  1903. mddev->changed = 1;
  1904. } else
  1905. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1906. mdname(mddev));
  1907. err = 0;
  1908. out:
  1909. return err;
  1910. }
  1911. static void autorun_array(mddev_t *mddev)
  1912. {
  1913. mdk_rdev_t *rdev;
  1914. struct list_head *tmp;
  1915. int err;
  1916. if (list_empty(&mddev->disks))
  1917. return;
  1918. printk(KERN_INFO "md: running: ");
  1919. ITERATE_RDEV(mddev,rdev,tmp) {
  1920. char b[BDEVNAME_SIZE];
  1921. printk("<%s>", bdevname(rdev->bdev,b));
  1922. }
  1923. printk("\n");
  1924. err = do_md_run (mddev);
  1925. if (err) {
  1926. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1927. do_md_stop (mddev, 0);
  1928. }
  1929. }
  1930. /*
  1931. * lets try to run arrays based on all disks that have arrived
  1932. * until now. (those are in pending_raid_disks)
  1933. *
  1934. * the method: pick the first pending disk, collect all disks with
  1935. * the same UUID, remove all from the pending list and put them into
  1936. * the 'same_array' list. Then order this list based on superblock
  1937. * update time (freshest comes first), kick out 'old' disks and
  1938. * compare superblocks. If everything's fine then run it.
  1939. *
  1940. * If "unit" is allocated, then bump its reference count
  1941. */
  1942. static void autorun_devices(int part)
  1943. {
  1944. struct list_head candidates;
  1945. struct list_head *tmp;
  1946. mdk_rdev_t *rdev0, *rdev;
  1947. mddev_t *mddev;
  1948. char b[BDEVNAME_SIZE];
  1949. printk(KERN_INFO "md: autorun ...\n");
  1950. while (!list_empty(&pending_raid_disks)) {
  1951. dev_t dev;
  1952. rdev0 = list_entry(pending_raid_disks.next,
  1953. mdk_rdev_t, same_set);
  1954. printk(KERN_INFO "md: considering %s ...\n",
  1955. bdevname(rdev0->bdev,b));
  1956. INIT_LIST_HEAD(&candidates);
  1957. ITERATE_RDEV_PENDING(rdev,tmp)
  1958. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1959. printk(KERN_INFO "md: adding %s ...\n",
  1960. bdevname(rdev->bdev,b));
  1961. list_move(&rdev->same_set, &candidates);
  1962. }
  1963. /*
  1964. * now we have a set of devices, with all of them having
  1965. * mostly sane superblocks. It's time to allocate the
  1966. * mddev.
  1967. */
  1968. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1969. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1970. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1971. break;
  1972. }
  1973. if (part)
  1974. dev = MKDEV(mdp_major,
  1975. rdev0->preferred_minor << MdpMinorShift);
  1976. else
  1977. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1978. md_probe(dev, NULL, NULL);
  1979. mddev = mddev_find(dev);
  1980. if (!mddev) {
  1981. printk(KERN_ERR
  1982. "md: cannot allocate memory for md drive.\n");
  1983. break;
  1984. }
  1985. if (mddev_lock(mddev))
  1986. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1987. mdname(mddev));
  1988. else if (mddev->raid_disks || mddev->major_version
  1989. || !list_empty(&mddev->disks)) {
  1990. printk(KERN_WARNING
  1991. "md: %s already running, cannot run %s\n",
  1992. mdname(mddev), bdevname(rdev0->bdev,b));
  1993. mddev_unlock(mddev);
  1994. } else {
  1995. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1996. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1997. list_del_init(&rdev->same_set);
  1998. if (bind_rdev_to_array(rdev, mddev))
  1999. export_rdev(rdev);
  2000. }
  2001. autorun_array(mddev);
  2002. mddev_unlock(mddev);
  2003. }
  2004. /* on success, candidates will be empty, on error
  2005. * it won't...
  2006. */
  2007. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  2008. export_rdev(rdev);
  2009. mddev_put(mddev);
  2010. }
  2011. printk(KERN_INFO "md: ... autorun DONE.\n");
  2012. }
  2013. /*
  2014. * import RAID devices based on one partition
  2015. * if possible, the array gets run as well.
  2016. */
  2017. static int autostart_array(dev_t startdev)
  2018. {
  2019. char b[BDEVNAME_SIZE];
  2020. int err = -EINVAL, i;
  2021. mdp_super_t *sb = NULL;
  2022. mdk_rdev_t *start_rdev = NULL, *rdev;
  2023. start_rdev = md_import_device(startdev, 0, 0);
  2024. if (IS_ERR(start_rdev))
  2025. return err;
  2026. /* NOTE: this can only work for 0.90.0 superblocks */
  2027. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  2028. if (sb->major_version != 0 ||
  2029. sb->minor_version != 90 ) {
  2030. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  2031. export_rdev(start_rdev);
  2032. return err;
  2033. }
  2034. if (test_bit(Faulty, &start_rdev->flags)) {
  2035. printk(KERN_WARNING
  2036. "md: can not autostart based on faulty %s!\n",
  2037. bdevname(start_rdev->bdev,b));
  2038. export_rdev(start_rdev);
  2039. return err;
  2040. }
  2041. list_add(&start_rdev->same_set, &pending_raid_disks);
  2042. for (i = 0; i < MD_SB_DISKS; i++) {
  2043. mdp_disk_t *desc = sb->disks + i;
  2044. dev_t dev = MKDEV(desc->major, desc->minor);
  2045. if (!dev)
  2046. continue;
  2047. if (dev == startdev)
  2048. continue;
  2049. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  2050. continue;
  2051. rdev = md_import_device(dev, 0, 0);
  2052. if (IS_ERR(rdev))
  2053. continue;
  2054. list_add(&rdev->same_set, &pending_raid_disks);
  2055. }
  2056. /*
  2057. * possibly return codes
  2058. */
  2059. autorun_devices(0);
  2060. return 0;
  2061. }
  2062. static int get_version(void __user * arg)
  2063. {
  2064. mdu_version_t ver;
  2065. ver.major = MD_MAJOR_VERSION;
  2066. ver.minor = MD_MINOR_VERSION;
  2067. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  2068. if (copy_to_user(arg, &ver, sizeof(ver)))
  2069. return -EFAULT;
  2070. return 0;
  2071. }
  2072. static int get_array_info(mddev_t * mddev, void __user * arg)
  2073. {
  2074. mdu_array_info_t info;
  2075. int nr,working,active,failed,spare;
  2076. mdk_rdev_t *rdev;
  2077. struct list_head *tmp;
  2078. nr=working=active=failed=spare=0;
  2079. ITERATE_RDEV(mddev,rdev,tmp) {
  2080. nr++;
  2081. if (test_bit(Faulty, &rdev->flags))
  2082. failed++;
  2083. else {
  2084. working++;
  2085. if (test_bit(In_sync, &rdev->flags))
  2086. active++;
  2087. else
  2088. spare++;
  2089. }
  2090. }
  2091. info.major_version = mddev->major_version;
  2092. info.minor_version = mddev->minor_version;
  2093. info.patch_version = MD_PATCHLEVEL_VERSION;
  2094. info.ctime = mddev->ctime;
  2095. info.level = mddev->level;
  2096. info.size = mddev->size;
  2097. info.nr_disks = nr;
  2098. info.raid_disks = mddev->raid_disks;
  2099. info.md_minor = mddev->md_minor;
  2100. info.not_persistent= !mddev->persistent;
  2101. info.utime = mddev->utime;
  2102. info.state = 0;
  2103. if (mddev->in_sync)
  2104. info.state = (1<<MD_SB_CLEAN);
  2105. if (mddev->bitmap && mddev->bitmap_offset)
  2106. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2107. info.active_disks = active;
  2108. info.working_disks = working;
  2109. info.failed_disks = failed;
  2110. info.spare_disks = spare;
  2111. info.layout = mddev->layout;
  2112. info.chunk_size = mddev->chunk_size;
  2113. if (copy_to_user(arg, &info, sizeof(info)))
  2114. return -EFAULT;
  2115. return 0;
  2116. }
  2117. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2118. {
  2119. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2120. char *ptr, *buf = NULL;
  2121. int err = -ENOMEM;
  2122. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2123. if (!file)
  2124. goto out;
  2125. /* bitmap disabled, zero the first byte and copy out */
  2126. if (!mddev->bitmap || !mddev->bitmap->file) {
  2127. file->pathname[0] = '\0';
  2128. goto copy_out;
  2129. }
  2130. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2131. if (!buf)
  2132. goto out;
  2133. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2134. if (!ptr)
  2135. goto out;
  2136. strcpy(file->pathname, ptr);
  2137. copy_out:
  2138. err = 0;
  2139. if (copy_to_user(arg, file, sizeof(*file)))
  2140. err = -EFAULT;
  2141. out:
  2142. kfree(buf);
  2143. kfree(file);
  2144. return err;
  2145. }
  2146. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2147. {
  2148. mdu_disk_info_t info;
  2149. unsigned int nr;
  2150. mdk_rdev_t *rdev;
  2151. if (copy_from_user(&info, arg, sizeof(info)))
  2152. return -EFAULT;
  2153. nr = info.number;
  2154. rdev = find_rdev_nr(mddev, nr);
  2155. if (rdev) {
  2156. info.major = MAJOR(rdev->bdev->bd_dev);
  2157. info.minor = MINOR(rdev->bdev->bd_dev);
  2158. info.raid_disk = rdev->raid_disk;
  2159. info.state = 0;
  2160. if (test_bit(Faulty, &rdev->flags))
  2161. info.state |= (1<<MD_DISK_FAULTY);
  2162. else if (test_bit(In_sync, &rdev->flags)) {
  2163. info.state |= (1<<MD_DISK_ACTIVE);
  2164. info.state |= (1<<MD_DISK_SYNC);
  2165. }
  2166. if (test_bit(WriteMostly, &rdev->flags))
  2167. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2168. } else {
  2169. info.major = info.minor = 0;
  2170. info.raid_disk = -1;
  2171. info.state = (1<<MD_DISK_REMOVED);
  2172. }
  2173. if (copy_to_user(arg, &info, sizeof(info)))
  2174. return -EFAULT;
  2175. return 0;
  2176. }
  2177. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2178. {
  2179. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2180. mdk_rdev_t *rdev;
  2181. dev_t dev = MKDEV(info->major,info->minor);
  2182. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2183. return -EOVERFLOW;
  2184. if (!mddev->raid_disks) {
  2185. int err;
  2186. /* expecting a device which has a superblock */
  2187. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2188. if (IS_ERR(rdev)) {
  2189. printk(KERN_WARNING
  2190. "md: md_import_device returned %ld\n",
  2191. PTR_ERR(rdev));
  2192. return PTR_ERR(rdev);
  2193. }
  2194. if (!list_empty(&mddev->disks)) {
  2195. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2196. mdk_rdev_t, same_set);
  2197. int err = super_types[mddev->major_version]
  2198. .load_super(rdev, rdev0, mddev->minor_version);
  2199. if (err < 0) {
  2200. printk(KERN_WARNING
  2201. "md: %s has different UUID to %s\n",
  2202. bdevname(rdev->bdev,b),
  2203. bdevname(rdev0->bdev,b2));
  2204. export_rdev(rdev);
  2205. return -EINVAL;
  2206. }
  2207. }
  2208. err = bind_rdev_to_array(rdev, mddev);
  2209. if (err)
  2210. export_rdev(rdev);
  2211. return err;
  2212. }
  2213. /*
  2214. * add_new_disk can be used once the array is assembled
  2215. * to add "hot spares". They must already have a superblock
  2216. * written
  2217. */
  2218. if (mddev->pers) {
  2219. int err;
  2220. if (!mddev->pers->hot_add_disk) {
  2221. printk(KERN_WARNING
  2222. "%s: personality does not support diskops!\n",
  2223. mdname(mddev));
  2224. return -EINVAL;
  2225. }
  2226. if (mddev->persistent)
  2227. rdev = md_import_device(dev, mddev->major_version,
  2228. mddev->minor_version);
  2229. else
  2230. rdev = md_import_device(dev, -1, -1);
  2231. if (IS_ERR(rdev)) {
  2232. printk(KERN_WARNING
  2233. "md: md_import_device returned %ld\n",
  2234. PTR_ERR(rdev));
  2235. return PTR_ERR(rdev);
  2236. }
  2237. /* set save_raid_disk if appropriate */
  2238. if (!mddev->persistent) {
  2239. if (info->state & (1<<MD_DISK_SYNC) &&
  2240. info->raid_disk < mddev->raid_disks)
  2241. rdev->raid_disk = info->raid_disk;
  2242. else
  2243. rdev->raid_disk = -1;
  2244. } else
  2245. super_types[mddev->major_version].
  2246. validate_super(mddev, rdev);
  2247. rdev->saved_raid_disk = rdev->raid_disk;
  2248. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  2249. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2250. set_bit(WriteMostly, &rdev->flags);
  2251. rdev->raid_disk = -1;
  2252. err = bind_rdev_to_array(rdev, mddev);
  2253. if (err)
  2254. export_rdev(rdev);
  2255. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2256. md_wakeup_thread(mddev->thread);
  2257. return err;
  2258. }
  2259. /* otherwise, add_new_disk is only allowed
  2260. * for major_version==0 superblocks
  2261. */
  2262. if (mddev->major_version != 0) {
  2263. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2264. mdname(mddev));
  2265. return -EINVAL;
  2266. }
  2267. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2268. int err;
  2269. rdev = md_import_device (dev, -1, 0);
  2270. if (IS_ERR(rdev)) {
  2271. printk(KERN_WARNING
  2272. "md: error, md_import_device() returned %ld\n",
  2273. PTR_ERR(rdev));
  2274. return PTR_ERR(rdev);
  2275. }
  2276. rdev->desc_nr = info->number;
  2277. if (info->raid_disk < mddev->raid_disks)
  2278. rdev->raid_disk = info->raid_disk;
  2279. else
  2280. rdev->raid_disk = -1;
  2281. rdev->flags = 0;
  2282. if (rdev->raid_disk < mddev->raid_disks)
  2283. if (info->state & (1<<MD_DISK_SYNC))
  2284. set_bit(In_sync, &rdev->flags);
  2285. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2286. set_bit(WriteMostly, &rdev->flags);
  2287. err = bind_rdev_to_array(rdev, mddev);
  2288. if (err) {
  2289. export_rdev(rdev);
  2290. return err;
  2291. }
  2292. if (!mddev->persistent) {
  2293. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2294. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2295. } else
  2296. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2297. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2298. if (!mddev->size || (mddev->size > rdev->size))
  2299. mddev->size = rdev->size;
  2300. }
  2301. return 0;
  2302. }
  2303. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2304. {
  2305. char b[BDEVNAME_SIZE];
  2306. mdk_rdev_t *rdev;
  2307. if (!mddev->pers)
  2308. return -ENODEV;
  2309. rdev = find_rdev(mddev, dev);
  2310. if (!rdev)
  2311. return -ENXIO;
  2312. if (rdev->raid_disk >= 0)
  2313. goto busy;
  2314. kick_rdev_from_array(rdev);
  2315. md_update_sb(mddev);
  2316. return 0;
  2317. busy:
  2318. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2319. bdevname(rdev->bdev,b), mdname(mddev));
  2320. return -EBUSY;
  2321. }
  2322. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2323. {
  2324. char b[BDEVNAME_SIZE];
  2325. int err;
  2326. unsigned int size;
  2327. mdk_rdev_t *rdev;
  2328. if (!mddev->pers)
  2329. return -ENODEV;
  2330. if (mddev->major_version != 0) {
  2331. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2332. " version-0 superblocks.\n",
  2333. mdname(mddev));
  2334. return -EINVAL;
  2335. }
  2336. if (!mddev->pers->hot_add_disk) {
  2337. printk(KERN_WARNING
  2338. "%s: personality does not support diskops!\n",
  2339. mdname(mddev));
  2340. return -EINVAL;
  2341. }
  2342. rdev = md_import_device (dev, -1, 0);
  2343. if (IS_ERR(rdev)) {
  2344. printk(KERN_WARNING
  2345. "md: error, md_import_device() returned %ld\n",
  2346. PTR_ERR(rdev));
  2347. return -EINVAL;
  2348. }
  2349. if (mddev->persistent)
  2350. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2351. else
  2352. rdev->sb_offset =
  2353. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2354. size = calc_dev_size(rdev, mddev->chunk_size);
  2355. rdev->size = size;
  2356. if (size < mddev->size) {
  2357. printk(KERN_WARNING
  2358. "%s: disk size %llu blocks < array size %llu\n",
  2359. mdname(mddev), (unsigned long long)size,
  2360. (unsigned long long)mddev->size);
  2361. err = -ENOSPC;
  2362. goto abort_export;
  2363. }
  2364. if (test_bit(Faulty, &rdev->flags)) {
  2365. printk(KERN_WARNING
  2366. "md: can not hot-add faulty %s disk to %s!\n",
  2367. bdevname(rdev->bdev,b), mdname(mddev));
  2368. err = -EINVAL;
  2369. goto abort_export;
  2370. }
  2371. clear_bit(In_sync, &rdev->flags);
  2372. rdev->desc_nr = -1;
  2373. bind_rdev_to_array(rdev, mddev);
  2374. /*
  2375. * The rest should better be atomic, we can have disk failures
  2376. * noticed in interrupt contexts ...
  2377. */
  2378. if (rdev->desc_nr == mddev->max_disks) {
  2379. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2380. mdname(mddev));
  2381. err = -EBUSY;
  2382. goto abort_unbind_export;
  2383. }
  2384. rdev->raid_disk = -1;
  2385. md_update_sb(mddev);
  2386. /*
  2387. * Kick recovery, maybe this spare has to be added to the
  2388. * array immediately.
  2389. */
  2390. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2391. md_wakeup_thread(mddev->thread);
  2392. return 0;
  2393. abort_unbind_export:
  2394. unbind_rdev_from_array(rdev);
  2395. abort_export:
  2396. export_rdev(rdev);
  2397. return err;
  2398. }
  2399. /* similar to deny_write_access, but accounts for our holding a reference
  2400. * to the file ourselves */
  2401. static int deny_bitmap_write_access(struct file * file)
  2402. {
  2403. struct inode *inode = file->f_mapping->host;
  2404. spin_lock(&inode->i_lock);
  2405. if (atomic_read(&inode->i_writecount) > 1) {
  2406. spin_unlock(&inode->i_lock);
  2407. return -ETXTBSY;
  2408. }
  2409. atomic_set(&inode->i_writecount, -1);
  2410. spin_unlock(&inode->i_lock);
  2411. return 0;
  2412. }
  2413. static int set_bitmap_file(mddev_t *mddev, int fd)
  2414. {
  2415. int err;
  2416. if (mddev->pers) {
  2417. if (!mddev->pers->quiesce)
  2418. return -EBUSY;
  2419. if (mddev->recovery || mddev->sync_thread)
  2420. return -EBUSY;
  2421. /* we should be able to change the bitmap.. */
  2422. }
  2423. if (fd >= 0) {
  2424. if (mddev->bitmap)
  2425. return -EEXIST; /* cannot add when bitmap is present */
  2426. mddev->bitmap_file = fget(fd);
  2427. if (mddev->bitmap_file == NULL) {
  2428. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2429. mdname(mddev));
  2430. return -EBADF;
  2431. }
  2432. err = deny_bitmap_write_access(mddev->bitmap_file);
  2433. if (err) {
  2434. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2435. mdname(mddev));
  2436. fput(mddev->bitmap_file);
  2437. mddev->bitmap_file = NULL;
  2438. return err;
  2439. }
  2440. mddev->bitmap_offset = 0; /* file overrides offset */
  2441. } else if (mddev->bitmap == NULL)
  2442. return -ENOENT; /* cannot remove what isn't there */
  2443. err = 0;
  2444. if (mddev->pers) {
  2445. mddev->pers->quiesce(mddev, 1);
  2446. if (fd >= 0)
  2447. err = bitmap_create(mddev);
  2448. if (fd < 0 || err)
  2449. bitmap_destroy(mddev);
  2450. mddev->pers->quiesce(mddev, 0);
  2451. } else if (fd < 0) {
  2452. if (mddev->bitmap_file)
  2453. fput(mddev->bitmap_file);
  2454. mddev->bitmap_file = NULL;
  2455. }
  2456. return err;
  2457. }
  2458. /*
  2459. * set_array_info is used two different ways
  2460. * The original usage is when creating a new array.
  2461. * In this usage, raid_disks is > 0 and it together with
  2462. * level, size, not_persistent,layout,chunksize determine the
  2463. * shape of the array.
  2464. * This will always create an array with a type-0.90.0 superblock.
  2465. * The newer usage is when assembling an array.
  2466. * In this case raid_disks will be 0, and the major_version field is
  2467. * use to determine which style super-blocks are to be found on the devices.
  2468. * The minor and patch _version numbers are also kept incase the
  2469. * super_block handler wishes to interpret them.
  2470. */
  2471. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2472. {
  2473. if (info->raid_disks == 0) {
  2474. /* just setting version number for superblock loading */
  2475. if (info->major_version < 0 ||
  2476. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2477. super_types[info->major_version].name == NULL) {
  2478. /* maybe try to auto-load a module? */
  2479. printk(KERN_INFO
  2480. "md: superblock version %d not known\n",
  2481. info->major_version);
  2482. return -EINVAL;
  2483. }
  2484. mddev->major_version = info->major_version;
  2485. mddev->minor_version = info->minor_version;
  2486. mddev->patch_version = info->patch_version;
  2487. return 0;
  2488. }
  2489. mddev->major_version = MD_MAJOR_VERSION;
  2490. mddev->minor_version = MD_MINOR_VERSION;
  2491. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2492. mddev->ctime = get_seconds();
  2493. mddev->level = info->level;
  2494. mddev->size = info->size;
  2495. mddev->raid_disks = info->raid_disks;
  2496. /* don't set md_minor, it is determined by which /dev/md* was
  2497. * openned
  2498. */
  2499. if (info->state & (1<<MD_SB_CLEAN))
  2500. mddev->recovery_cp = MaxSector;
  2501. else
  2502. mddev->recovery_cp = 0;
  2503. mddev->persistent = ! info->not_persistent;
  2504. mddev->layout = info->layout;
  2505. mddev->chunk_size = info->chunk_size;
  2506. mddev->max_disks = MD_SB_DISKS;
  2507. mddev->sb_dirty = 1;
  2508. /*
  2509. * Generate a 128 bit UUID
  2510. */
  2511. get_random_bytes(mddev->uuid, 16);
  2512. return 0;
  2513. }
  2514. /*
  2515. * update_array_info is used to change the configuration of an
  2516. * on-line array.
  2517. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2518. * fields in the info are checked against the array.
  2519. * Any differences that cannot be handled will cause an error.
  2520. * Normally, only one change can be managed at a time.
  2521. */
  2522. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2523. {
  2524. int rv = 0;
  2525. int cnt = 0;
  2526. int state = 0;
  2527. /* calculate expected state,ignoring low bits */
  2528. if (mddev->bitmap && mddev->bitmap_offset)
  2529. state |= (1 << MD_SB_BITMAP_PRESENT);
  2530. if (mddev->major_version != info->major_version ||
  2531. mddev->minor_version != info->minor_version ||
  2532. /* mddev->patch_version != info->patch_version || */
  2533. mddev->ctime != info->ctime ||
  2534. mddev->level != info->level ||
  2535. /* mddev->layout != info->layout || */
  2536. !mddev->persistent != info->not_persistent||
  2537. mddev->chunk_size != info->chunk_size ||
  2538. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2539. ((state^info->state) & 0xfffffe00)
  2540. )
  2541. return -EINVAL;
  2542. /* Check there is only one change */
  2543. if (mddev->size != info->size) cnt++;
  2544. if (mddev->raid_disks != info->raid_disks) cnt++;
  2545. if (mddev->layout != info->layout) cnt++;
  2546. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2547. if (cnt == 0) return 0;
  2548. if (cnt > 1) return -EINVAL;
  2549. if (mddev->layout != info->layout) {
  2550. /* Change layout
  2551. * we don't need to do anything at the md level, the
  2552. * personality will take care of it all.
  2553. */
  2554. if (mddev->pers->reconfig == NULL)
  2555. return -EINVAL;
  2556. else
  2557. return mddev->pers->reconfig(mddev, info->layout, -1);
  2558. }
  2559. if (mddev->size != info->size) {
  2560. mdk_rdev_t * rdev;
  2561. struct list_head *tmp;
  2562. if (mddev->pers->resize == NULL)
  2563. return -EINVAL;
  2564. /* The "size" is the amount of each device that is used.
  2565. * This can only make sense for arrays with redundancy.
  2566. * linear and raid0 always use whatever space is available
  2567. * We can only consider changing the size if no resync
  2568. * or reconstruction is happening, and if the new size
  2569. * is acceptable. It must fit before the sb_offset or,
  2570. * if that is <data_offset, it must fit before the
  2571. * size of each device.
  2572. * If size is zero, we find the largest size that fits.
  2573. */
  2574. if (mddev->sync_thread)
  2575. return -EBUSY;
  2576. ITERATE_RDEV(mddev,rdev,tmp) {
  2577. sector_t avail;
  2578. int fit = (info->size == 0);
  2579. if (rdev->sb_offset > rdev->data_offset)
  2580. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2581. else
  2582. avail = get_capacity(rdev->bdev->bd_disk)
  2583. - rdev->data_offset;
  2584. if (fit && (info->size == 0 || info->size > avail/2))
  2585. info->size = avail/2;
  2586. if (avail < ((sector_t)info->size << 1))
  2587. return -ENOSPC;
  2588. }
  2589. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2590. if (!rv) {
  2591. struct block_device *bdev;
  2592. bdev = bdget_disk(mddev->gendisk, 0);
  2593. if (bdev) {
  2594. down(&bdev->bd_inode->i_sem);
  2595. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2596. up(&bdev->bd_inode->i_sem);
  2597. bdput(bdev);
  2598. }
  2599. }
  2600. }
  2601. if (mddev->raid_disks != info->raid_disks) {
  2602. /* change the number of raid disks */
  2603. if (mddev->pers->reshape == NULL)
  2604. return -EINVAL;
  2605. if (info->raid_disks <= 0 ||
  2606. info->raid_disks >= mddev->max_disks)
  2607. return -EINVAL;
  2608. if (mddev->sync_thread)
  2609. return -EBUSY;
  2610. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2611. if (!rv) {
  2612. struct block_device *bdev;
  2613. bdev = bdget_disk(mddev->gendisk, 0);
  2614. if (bdev) {
  2615. down(&bdev->bd_inode->i_sem);
  2616. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2617. up(&bdev->bd_inode->i_sem);
  2618. bdput(bdev);
  2619. }
  2620. }
  2621. }
  2622. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2623. if (mddev->pers->quiesce == NULL)
  2624. return -EINVAL;
  2625. if (mddev->recovery || mddev->sync_thread)
  2626. return -EBUSY;
  2627. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2628. /* add the bitmap */
  2629. if (mddev->bitmap)
  2630. return -EEXIST;
  2631. if (mddev->default_bitmap_offset == 0)
  2632. return -EINVAL;
  2633. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2634. mddev->pers->quiesce(mddev, 1);
  2635. rv = bitmap_create(mddev);
  2636. if (rv)
  2637. bitmap_destroy(mddev);
  2638. mddev->pers->quiesce(mddev, 0);
  2639. } else {
  2640. /* remove the bitmap */
  2641. if (!mddev->bitmap)
  2642. return -ENOENT;
  2643. if (mddev->bitmap->file)
  2644. return -EINVAL;
  2645. mddev->pers->quiesce(mddev, 1);
  2646. bitmap_destroy(mddev);
  2647. mddev->pers->quiesce(mddev, 0);
  2648. mddev->bitmap_offset = 0;
  2649. }
  2650. }
  2651. md_update_sb(mddev);
  2652. return rv;
  2653. }
  2654. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2655. {
  2656. mdk_rdev_t *rdev;
  2657. if (mddev->pers == NULL)
  2658. return -ENODEV;
  2659. rdev = find_rdev(mddev, dev);
  2660. if (!rdev)
  2661. return -ENODEV;
  2662. md_error(mddev, rdev);
  2663. return 0;
  2664. }
  2665. static int md_ioctl(struct inode *inode, struct file *file,
  2666. unsigned int cmd, unsigned long arg)
  2667. {
  2668. int err = 0;
  2669. void __user *argp = (void __user *)arg;
  2670. struct hd_geometry __user *loc = argp;
  2671. mddev_t *mddev = NULL;
  2672. if (!capable(CAP_SYS_ADMIN))
  2673. return -EACCES;
  2674. /*
  2675. * Commands dealing with the RAID driver but not any
  2676. * particular array:
  2677. */
  2678. switch (cmd)
  2679. {
  2680. case RAID_VERSION:
  2681. err = get_version(argp);
  2682. goto done;
  2683. case PRINT_RAID_DEBUG:
  2684. err = 0;
  2685. md_print_devices();
  2686. goto done;
  2687. #ifndef MODULE
  2688. case RAID_AUTORUN:
  2689. err = 0;
  2690. autostart_arrays(arg);
  2691. goto done;
  2692. #endif
  2693. default:;
  2694. }
  2695. /*
  2696. * Commands creating/starting a new array:
  2697. */
  2698. mddev = inode->i_bdev->bd_disk->private_data;
  2699. if (!mddev) {
  2700. BUG();
  2701. goto abort;
  2702. }
  2703. if (cmd == START_ARRAY) {
  2704. /* START_ARRAY doesn't need to lock the array as autostart_array
  2705. * does the locking, and it could even be a different array
  2706. */
  2707. static int cnt = 3;
  2708. if (cnt > 0 ) {
  2709. printk(KERN_WARNING
  2710. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2711. "This will not be supported beyond 2.6\n",
  2712. current->comm, current->pid);
  2713. cnt--;
  2714. }
  2715. err = autostart_array(new_decode_dev(arg));
  2716. if (err) {
  2717. printk(KERN_WARNING "md: autostart failed!\n");
  2718. goto abort;
  2719. }
  2720. goto done;
  2721. }
  2722. err = mddev_lock(mddev);
  2723. if (err) {
  2724. printk(KERN_INFO
  2725. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2726. err, cmd);
  2727. goto abort;
  2728. }
  2729. switch (cmd)
  2730. {
  2731. case SET_ARRAY_INFO:
  2732. {
  2733. mdu_array_info_t info;
  2734. if (!arg)
  2735. memset(&info, 0, sizeof(info));
  2736. else if (copy_from_user(&info, argp, sizeof(info))) {
  2737. err = -EFAULT;
  2738. goto abort_unlock;
  2739. }
  2740. if (mddev->pers) {
  2741. err = update_array_info(mddev, &info);
  2742. if (err) {
  2743. printk(KERN_WARNING "md: couldn't update"
  2744. " array info. %d\n", err);
  2745. goto abort_unlock;
  2746. }
  2747. goto done_unlock;
  2748. }
  2749. if (!list_empty(&mddev->disks)) {
  2750. printk(KERN_WARNING
  2751. "md: array %s already has disks!\n",
  2752. mdname(mddev));
  2753. err = -EBUSY;
  2754. goto abort_unlock;
  2755. }
  2756. if (mddev->raid_disks) {
  2757. printk(KERN_WARNING
  2758. "md: array %s already initialised!\n",
  2759. mdname(mddev));
  2760. err = -EBUSY;
  2761. goto abort_unlock;
  2762. }
  2763. err = set_array_info(mddev, &info);
  2764. if (err) {
  2765. printk(KERN_WARNING "md: couldn't set"
  2766. " array info. %d\n", err);
  2767. goto abort_unlock;
  2768. }
  2769. }
  2770. goto done_unlock;
  2771. default:;
  2772. }
  2773. /*
  2774. * Commands querying/configuring an existing array:
  2775. */
  2776. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2777. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2778. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2779. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2780. err = -ENODEV;
  2781. goto abort_unlock;
  2782. }
  2783. /*
  2784. * Commands even a read-only array can execute:
  2785. */
  2786. switch (cmd)
  2787. {
  2788. case GET_ARRAY_INFO:
  2789. err = get_array_info(mddev, argp);
  2790. goto done_unlock;
  2791. case GET_BITMAP_FILE:
  2792. err = get_bitmap_file(mddev, argp);
  2793. goto done_unlock;
  2794. case GET_DISK_INFO:
  2795. err = get_disk_info(mddev, argp);
  2796. goto done_unlock;
  2797. case RESTART_ARRAY_RW:
  2798. err = restart_array(mddev);
  2799. goto done_unlock;
  2800. case STOP_ARRAY:
  2801. err = do_md_stop (mddev, 0);
  2802. goto done_unlock;
  2803. case STOP_ARRAY_RO:
  2804. err = do_md_stop (mddev, 1);
  2805. goto done_unlock;
  2806. /*
  2807. * We have a problem here : there is no easy way to give a CHS
  2808. * virtual geometry. We currently pretend that we have a 2 heads
  2809. * 4 sectors (with a BIG number of cylinders...). This drives
  2810. * dosfs just mad... ;-)
  2811. */
  2812. case HDIO_GETGEO:
  2813. if (!loc) {
  2814. err = -EINVAL;
  2815. goto abort_unlock;
  2816. }
  2817. err = put_user (2, (char __user *) &loc->heads);
  2818. if (err)
  2819. goto abort_unlock;
  2820. err = put_user (4, (char __user *) &loc->sectors);
  2821. if (err)
  2822. goto abort_unlock;
  2823. err = put_user(get_capacity(mddev->gendisk)/8,
  2824. (short __user *) &loc->cylinders);
  2825. if (err)
  2826. goto abort_unlock;
  2827. err = put_user (get_start_sect(inode->i_bdev),
  2828. (long __user *) &loc->start);
  2829. goto done_unlock;
  2830. }
  2831. /*
  2832. * The remaining ioctls are changing the state of the
  2833. * superblock, so we do not allow them on read-only arrays.
  2834. * However non-MD ioctls (e.g. get-size) will still come through
  2835. * here and hit the 'default' below, so only disallow
  2836. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  2837. */
  2838. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  2839. mddev->ro && mddev->pers) {
  2840. if (mddev->ro == 2) {
  2841. mddev->ro = 0;
  2842. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2843. md_wakeup_thread(mddev->thread);
  2844. } else {
  2845. err = -EROFS;
  2846. goto abort_unlock;
  2847. }
  2848. }
  2849. switch (cmd)
  2850. {
  2851. case ADD_NEW_DISK:
  2852. {
  2853. mdu_disk_info_t info;
  2854. if (copy_from_user(&info, argp, sizeof(info)))
  2855. err = -EFAULT;
  2856. else
  2857. err = add_new_disk(mddev, &info);
  2858. goto done_unlock;
  2859. }
  2860. case HOT_REMOVE_DISK:
  2861. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2862. goto done_unlock;
  2863. case HOT_ADD_DISK:
  2864. err = hot_add_disk(mddev, new_decode_dev(arg));
  2865. goto done_unlock;
  2866. case SET_DISK_FAULTY:
  2867. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2868. goto done_unlock;
  2869. case RUN_ARRAY:
  2870. err = do_md_run (mddev);
  2871. goto done_unlock;
  2872. case SET_BITMAP_FILE:
  2873. err = set_bitmap_file(mddev, (int)arg);
  2874. goto done_unlock;
  2875. default:
  2876. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2877. printk(KERN_WARNING "md: %s(pid %d) used"
  2878. " obsolete MD ioctl, upgrade your"
  2879. " software to use new ictls.\n",
  2880. current->comm, current->pid);
  2881. err = -EINVAL;
  2882. goto abort_unlock;
  2883. }
  2884. done_unlock:
  2885. abort_unlock:
  2886. mddev_unlock(mddev);
  2887. return err;
  2888. done:
  2889. if (err)
  2890. MD_BUG();
  2891. abort:
  2892. return err;
  2893. }
  2894. static int md_open(struct inode *inode, struct file *file)
  2895. {
  2896. /*
  2897. * Succeed if we can lock the mddev, which confirms that
  2898. * it isn't being stopped right now.
  2899. */
  2900. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2901. int err;
  2902. if ((err = mddev_lock(mddev)))
  2903. goto out;
  2904. err = 0;
  2905. mddev_get(mddev);
  2906. mddev_unlock(mddev);
  2907. check_disk_change(inode->i_bdev);
  2908. out:
  2909. return err;
  2910. }
  2911. static int md_release(struct inode *inode, struct file * file)
  2912. {
  2913. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2914. if (!mddev)
  2915. BUG();
  2916. mddev_put(mddev);
  2917. return 0;
  2918. }
  2919. static int md_media_changed(struct gendisk *disk)
  2920. {
  2921. mddev_t *mddev = disk->private_data;
  2922. return mddev->changed;
  2923. }
  2924. static int md_revalidate(struct gendisk *disk)
  2925. {
  2926. mddev_t *mddev = disk->private_data;
  2927. mddev->changed = 0;
  2928. return 0;
  2929. }
  2930. static struct block_device_operations md_fops =
  2931. {
  2932. .owner = THIS_MODULE,
  2933. .open = md_open,
  2934. .release = md_release,
  2935. .ioctl = md_ioctl,
  2936. .media_changed = md_media_changed,
  2937. .revalidate_disk= md_revalidate,
  2938. };
  2939. static int md_thread(void * arg)
  2940. {
  2941. mdk_thread_t *thread = arg;
  2942. /*
  2943. * md_thread is a 'system-thread', it's priority should be very
  2944. * high. We avoid resource deadlocks individually in each
  2945. * raid personality. (RAID5 does preallocation) We also use RR and
  2946. * the very same RT priority as kswapd, thus we will never get
  2947. * into a priority inversion deadlock.
  2948. *
  2949. * we definitely have to have equal or higher priority than
  2950. * bdflush, otherwise bdflush will deadlock if there are too
  2951. * many dirty RAID5 blocks.
  2952. */
  2953. allow_signal(SIGKILL);
  2954. complete(thread->event);
  2955. while (!kthread_should_stop()) {
  2956. void (*run)(mddev_t *);
  2957. wait_event_interruptible_timeout(thread->wqueue,
  2958. test_bit(THREAD_WAKEUP, &thread->flags)
  2959. || kthread_should_stop(),
  2960. thread->timeout);
  2961. try_to_freeze();
  2962. clear_bit(THREAD_WAKEUP, &thread->flags);
  2963. run = thread->run;
  2964. if (run)
  2965. run(thread->mddev);
  2966. }
  2967. return 0;
  2968. }
  2969. void md_wakeup_thread(mdk_thread_t *thread)
  2970. {
  2971. if (thread) {
  2972. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2973. set_bit(THREAD_WAKEUP, &thread->flags);
  2974. wake_up(&thread->wqueue);
  2975. }
  2976. }
  2977. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2978. const char *name)
  2979. {
  2980. mdk_thread_t *thread;
  2981. struct completion event;
  2982. thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  2983. if (!thread)
  2984. return NULL;
  2985. memset(thread, 0, sizeof(mdk_thread_t));
  2986. init_waitqueue_head(&thread->wqueue);
  2987. init_completion(&event);
  2988. thread->event = &event;
  2989. thread->run = run;
  2990. thread->mddev = mddev;
  2991. thread->name = name;
  2992. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2993. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  2994. if (IS_ERR(thread->tsk)) {
  2995. kfree(thread);
  2996. return NULL;
  2997. }
  2998. wait_for_completion(&event);
  2999. return thread;
  3000. }
  3001. void md_unregister_thread(mdk_thread_t *thread)
  3002. {
  3003. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  3004. kthread_stop(thread->tsk);
  3005. kfree(thread);
  3006. }
  3007. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  3008. {
  3009. if (!mddev) {
  3010. MD_BUG();
  3011. return;
  3012. }
  3013. if (!rdev || test_bit(Faulty, &rdev->flags))
  3014. return;
  3015. /*
  3016. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  3017. mdname(mddev),
  3018. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  3019. __builtin_return_address(0),__builtin_return_address(1),
  3020. __builtin_return_address(2),__builtin_return_address(3));
  3021. */
  3022. if (!mddev->pers->error_handler)
  3023. return;
  3024. mddev->pers->error_handler(mddev,rdev);
  3025. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3026. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3027. md_wakeup_thread(mddev->thread);
  3028. }
  3029. /* seq_file implementation /proc/mdstat */
  3030. static void status_unused(struct seq_file *seq)
  3031. {
  3032. int i = 0;
  3033. mdk_rdev_t *rdev;
  3034. struct list_head *tmp;
  3035. seq_printf(seq, "unused devices: ");
  3036. ITERATE_RDEV_PENDING(rdev,tmp) {
  3037. char b[BDEVNAME_SIZE];
  3038. i++;
  3039. seq_printf(seq, "%s ",
  3040. bdevname(rdev->bdev,b));
  3041. }
  3042. if (!i)
  3043. seq_printf(seq, "<none>");
  3044. seq_printf(seq, "\n");
  3045. }
  3046. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  3047. {
  3048. unsigned long max_blocks, resync, res, dt, db, rt;
  3049. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  3050. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3051. max_blocks = mddev->resync_max_sectors >> 1;
  3052. else
  3053. max_blocks = mddev->size;
  3054. /*
  3055. * Should not happen.
  3056. */
  3057. if (!max_blocks) {
  3058. MD_BUG();
  3059. return;
  3060. }
  3061. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  3062. {
  3063. int i, x = res/50, y = 20-x;
  3064. seq_printf(seq, "[");
  3065. for (i = 0; i < x; i++)
  3066. seq_printf(seq, "=");
  3067. seq_printf(seq, ">");
  3068. for (i = 0; i < y; i++)
  3069. seq_printf(seq, ".");
  3070. seq_printf(seq, "] ");
  3071. }
  3072. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  3073. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  3074. "resync" : "recovery"),
  3075. res/10, res % 10, resync, max_blocks);
  3076. /*
  3077. * We do not want to overflow, so the order of operands and
  3078. * the * 100 / 100 trick are important. We do a +1 to be
  3079. * safe against division by zero. We only estimate anyway.
  3080. *
  3081. * dt: time from mark until now
  3082. * db: blocks written from mark until now
  3083. * rt: remaining time
  3084. */
  3085. dt = ((jiffies - mddev->resync_mark) / HZ);
  3086. if (!dt) dt++;
  3087. db = resync - (mddev->resync_mark_cnt/2);
  3088. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  3089. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  3090. seq_printf(seq, " speed=%ldK/sec", db/dt);
  3091. }
  3092. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  3093. {
  3094. struct list_head *tmp;
  3095. loff_t l = *pos;
  3096. mddev_t *mddev;
  3097. if (l >= 0x10000)
  3098. return NULL;
  3099. if (!l--)
  3100. /* header */
  3101. return (void*)1;
  3102. spin_lock(&all_mddevs_lock);
  3103. list_for_each(tmp,&all_mddevs)
  3104. if (!l--) {
  3105. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3106. mddev_get(mddev);
  3107. spin_unlock(&all_mddevs_lock);
  3108. return mddev;
  3109. }
  3110. spin_unlock(&all_mddevs_lock);
  3111. if (!l--)
  3112. return (void*)2;/* tail */
  3113. return NULL;
  3114. }
  3115. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3116. {
  3117. struct list_head *tmp;
  3118. mddev_t *next_mddev, *mddev = v;
  3119. ++*pos;
  3120. if (v == (void*)2)
  3121. return NULL;
  3122. spin_lock(&all_mddevs_lock);
  3123. if (v == (void*)1)
  3124. tmp = all_mddevs.next;
  3125. else
  3126. tmp = mddev->all_mddevs.next;
  3127. if (tmp != &all_mddevs)
  3128. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3129. else {
  3130. next_mddev = (void*)2;
  3131. *pos = 0x10000;
  3132. }
  3133. spin_unlock(&all_mddevs_lock);
  3134. if (v != (void*)1)
  3135. mddev_put(mddev);
  3136. return next_mddev;
  3137. }
  3138. static void md_seq_stop(struct seq_file *seq, void *v)
  3139. {
  3140. mddev_t *mddev = v;
  3141. if (mddev && v != (void*)1 && v != (void*)2)
  3142. mddev_put(mddev);
  3143. }
  3144. static int md_seq_show(struct seq_file *seq, void *v)
  3145. {
  3146. mddev_t *mddev = v;
  3147. sector_t size;
  3148. struct list_head *tmp2;
  3149. mdk_rdev_t *rdev;
  3150. int i;
  3151. struct bitmap *bitmap;
  3152. if (v == (void*)1) {
  3153. seq_printf(seq, "Personalities : ");
  3154. spin_lock(&pers_lock);
  3155. for (i = 0; i < MAX_PERSONALITY; i++)
  3156. if (pers[i])
  3157. seq_printf(seq, "[%s] ", pers[i]->name);
  3158. spin_unlock(&pers_lock);
  3159. seq_printf(seq, "\n");
  3160. return 0;
  3161. }
  3162. if (v == (void*)2) {
  3163. status_unused(seq);
  3164. return 0;
  3165. }
  3166. if (mddev_lock(mddev)!=0)
  3167. return -EINTR;
  3168. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3169. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3170. mddev->pers ? "" : "in");
  3171. if (mddev->pers) {
  3172. if (mddev->ro==1)
  3173. seq_printf(seq, " (read-only)");
  3174. if (mddev->ro==2)
  3175. seq_printf(seq, "(auto-read-only)");
  3176. seq_printf(seq, " %s", mddev->pers->name);
  3177. }
  3178. size = 0;
  3179. ITERATE_RDEV(mddev,rdev,tmp2) {
  3180. char b[BDEVNAME_SIZE];
  3181. seq_printf(seq, " %s[%d]",
  3182. bdevname(rdev->bdev,b), rdev->desc_nr);
  3183. if (test_bit(WriteMostly, &rdev->flags))
  3184. seq_printf(seq, "(W)");
  3185. if (test_bit(Faulty, &rdev->flags)) {
  3186. seq_printf(seq, "(F)");
  3187. continue;
  3188. } else if (rdev->raid_disk < 0)
  3189. seq_printf(seq, "(S)"); /* spare */
  3190. size += rdev->size;
  3191. }
  3192. if (!list_empty(&mddev->disks)) {
  3193. if (mddev->pers)
  3194. seq_printf(seq, "\n %llu blocks",
  3195. (unsigned long long)mddev->array_size);
  3196. else
  3197. seq_printf(seq, "\n %llu blocks",
  3198. (unsigned long long)size);
  3199. }
  3200. if (mddev->persistent) {
  3201. if (mddev->major_version != 0 ||
  3202. mddev->minor_version != 90) {
  3203. seq_printf(seq," super %d.%d",
  3204. mddev->major_version,
  3205. mddev->minor_version);
  3206. }
  3207. } else
  3208. seq_printf(seq, " super non-persistent");
  3209. if (mddev->pers) {
  3210. mddev->pers->status (seq, mddev);
  3211. seq_printf(seq, "\n ");
  3212. if (mddev->pers->sync_request) {
  3213. if (mddev->curr_resync > 2) {
  3214. status_resync (seq, mddev);
  3215. seq_printf(seq, "\n ");
  3216. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3217. seq_printf(seq, "\tresync=DELAYED\n ");
  3218. else if (mddev->recovery_cp < MaxSector)
  3219. seq_printf(seq, "\tresync=PENDING\n ");
  3220. }
  3221. } else
  3222. seq_printf(seq, "\n ");
  3223. if ((bitmap = mddev->bitmap)) {
  3224. unsigned long chunk_kb;
  3225. unsigned long flags;
  3226. spin_lock_irqsave(&bitmap->lock, flags);
  3227. chunk_kb = bitmap->chunksize >> 10;
  3228. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3229. "%lu%s chunk",
  3230. bitmap->pages - bitmap->missing_pages,
  3231. bitmap->pages,
  3232. (bitmap->pages - bitmap->missing_pages)
  3233. << (PAGE_SHIFT - 10),
  3234. chunk_kb ? chunk_kb : bitmap->chunksize,
  3235. chunk_kb ? "KB" : "B");
  3236. if (bitmap->file) {
  3237. seq_printf(seq, ", file: ");
  3238. seq_path(seq, bitmap->file->f_vfsmnt,
  3239. bitmap->file->f_dentry," \t\n");
  3240. }
  3241. seq_printf(seq, "\n");
  3242. spin_unlock_irqrestore(&bitmap->lock, flags);
  3243. }
  3244. seq_printf(seq, "\n");
  3245. }
  3246. mddev_unlock(mddev);
  3247. return 0;
  3248. }
  3249. static struct seq_operations md_seq_ops = {
  3250. .start = md_seq_start,
  3251. .next = md_seq_next,
  3252. .stop = md_seq_stop,
  3253. .show = md_seq_show,
  3254. };
  3255. static int md_seq_open(struct inode *inode, struct file *file)
  3256. {
  3257. int error;
  3258. error = seq_open(file, &md_seq_ops);
  3259. return error;
  3260. }
  3261. static struct file_operations md_seq_fops = {
  3262. .open = md_seq_open,
  3263. .read = seq_read,
  3264. .llseek = seq_lseek,
  3265. .release = seq_release,
  3266. };
  3267. int register_md_personality(int pnum, mdk_personality_t *p)
  3268. {
  3269. if (pnum >= MAX_PERSONALITY) {
  3270. printk(KERN_ERR
  3271. "md: tried to install personality %s as nr %d, but max is %lu\n",
  3272. p->name, pnum, MAX_PERSONALITY-1);
  3273. return -EINVAL;
  3274. }
  3275. spin_lock(&pers_lock);
  3276. if (pers[pnum]) {
  3277. spin_unlock(&pers_lock);
  3278. return -EBUSY;
  3279. }
  3280. pers[pnum] = p;
  3281. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  3282. spin_unlock(&pers_lock);
  3283. return 0;
  3284. }
  3285. int unregister_md_personality(int pnum)
  3286. {
  3287. if (pnum >= MAX_PERSONALITY)
  3288. return -EINVAL;
  3289. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  3290. spin_lock(&pers_lock);
  3291. pers[pnum] = NULL;
  3292. spin_unlock(&pers_lock);
  3293. return 0;
  3294. }
  3295. static int is_mddev_idle(mddev_t *mddev)
  3296. {
  3297. mdk_rdev_t * rdev;
  3298. struct list_head *tmp;
  3299. int idle;
  3300. unsigned long curr_events;
  3301. idle = 1;
  3302. ITERATE_RDEV(mddev,rdev,tmp) {
  3303. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3304. curr_events = disk_stat_read(disk, sectors[0]) +
  3305. disk_stat_read(disk, sectors[1]) -
  3306. atomic_read(&disk->sync_io);
  3307. /* Allow some slack between valud of curr_events and last_events,
  3308. * as there are some uninteresting races.
  3309. * Note: the following is an unsigned comparison.
  3310. */
  3311. if ((curr_events - rdev->last_events + 32) > 64) {
  3312. rdev->last_events = curr_events;
  3313. idle = 0;
  3314. }
  3315. }
  3316. return idle;
  3317. }
  3318. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3319. {
  3320. /* another "blocks" (512byte) blocks have been synced */
  3321. atomic_sub(blocks, &mddev->recovery_active);
  3322. wake_up(&mddev->recovery_wait);
  3323. if (!ok) {
  3324. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3325. md_wakeup_thread(mddev->thread);
  3326. // stop recovery, signal do_sync ....
  3327. }
  3328. }
  3329. /* md_write_start(mddev, bi)
  3330. * If we need to update some array metadata (e.g. 'active' flag
  3331. * in superblock) before writing, schedule a superblock update
  3332. * and wait for it to complete.
  3333. */
  3334. void md_write_start(mddev_t *mddev, struct bio *bi)
  3335. {
  3336. if (bio_data_dir(bi) != WRITE)
  3337. return;
  3338. BUG_ON(mddev->ro == 1);
  3339. if (mddev->ro == 2) {
  3340. /* need to switch to read/write */
  3341. mddev->ro = 0;
  3342. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3343. md_wakeup_thread(mddev->thread);
  3344. }
  3345. atomic_inc(&mddev->writes_pending);
  3346. if (mddev->in_sync) {
  3347. spin_lock_irq(&mddev->write_lock);
  3348. if (mddev->in_sync) {
  3349. mddev->in_sync = 0;
  3350. mddev->sb_dirty = 1;
  3351. md_wakeup_thread(mddev->thread);
  3352. }
  3353. spin_unlock_irq(&mddev->write_lock);
  3354. }
  3355. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3356. }
  3357. void md_write_end(mddev_t *mddev)
  3358. {
  3359. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3360. if (mddev->safemode == 2)
  3361. md_wakeup_thread(mddev->thread);
  3362. else
  3363. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3364. }
  3365. }
  3366. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3367. #define SYNC_MARKS 10
  3368. #define SYNC_MARK_STEP (3*HZ)
  3369. static void md_do_sync(mddev_t *mddev)
  3370. {
  3371. mddev_t *mddev2;
  3372. unsigned int currspeed = 0,
  3373. window;
  3374. sector_t max_sectors,j, io_sectors;
  3375. unsigned long mark[SYNC_MARKS];
  3376. sector_t mark_cnt[SYNC_MARKS];
  3377. int last_mark,m;
  3378. struct list_head *tmp;
  3379. sector_t last_check;
  3380. int skipped = 0;
  3381. /* just incase thread restarts... */
  3382. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3383. return;
  3384. /* we overload curr_resync somewhat here.
  3385. * 0 == not engaged in resync at all
  3386. * 2 == checking that there is no conflict with another sync
  3387. * 1 == like 2, but have yielded to allow conflicting resync to
  3388. * commense
  3389. * other == active in resync - this many blocks
  3390. *
  3391. * Before starting a resync we must have set curr_resync to
  3392. * 2, and then checked that every "conflicting" array has curr_resync
  3393. * less than ours. When we find one that is the same or higher
  3394. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3395. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3396. * This will mean we have to start checking from the beginning again.
  3397. *
  3398. */
  3399. do {
  3400. mddev->curr_resync = 2;
  3401. try_again:
  3402. if (signal_pending(current) ||
  3403. kthread_should_stop()) {
  3404. flush_signals(current);
  3405. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3406. goto skip;
  3407. }
  3408. ITERATE_MDDEV(mddev2,tmp) {
  3409. if (mddev2 == mddev)
  3410. continue;
  3411. if (mddev2->curr_resync &&
  3412. match_mddev_units(mddev,mddev2)) {
  3413. DEFINE_WAIT(wq);
  3414. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3415. /* arbitrarily yield */
  3416. mddev->curr_resync = 1;
  3417. wake_up(&resync_wait);
  3418. }
  3419. if (mddev > mddev2 && mddev->curr_resync == 1)
  3420. /* no need to wait here, we can wait the next
  3421. * time 'round when curr_resync == 2
  3422. */
  3423. continue;
  3424. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3425. if (!signal_pending(current) &&
  3426. !kthread_should_stop() &&
  3427. mddev2->curr_resync >= mddev->curr_resync) {
  3428. printk(KERN_INFO "md: delaying resync of %s"
  3429. " until %s has finished resync (they"
  3430. " share one or more physical units)\n",
  3431. mdname(mddev), mdname(mddev2));
  3432. mddev_put(mddev2);
  3433. schedule();
  3434. finish_wait(&resync_wait, &wq);
  3435. goto try_again;
  3436. }
  3437. finish_wait(&resync_wait, &wq);
  3438. }
  3439. }
  3440. } while (mddev->curr_resync < 2);
  3441. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3442. /* resync follows the size requested by the personality,
  3443. * which defaults to physical size, but can be virtual size
  3444. */
  3445. max_sectors = mddev->resync_max_sectors;
  3446. mddev->resync_mismatches = 0;
  3447. } else
  3448. /* recovery follows the physical size of devices */
  3449. max_sectors = mddev->size << 1;
  3450. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3451. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3452. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3453. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  3454. "(but not more than %d KB/sec) for reconstruction.\n",
  3455. sysctl_speed_limit_max);
  3456. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3457. /* we don't use the checkpoint if there's a bitmap */
  3458. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
  3459. && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3460. j = mddev->recovery_cp;
  3461. else
  3462. j = 0;
  3463. io_sectors = 0;
  3464. for (m = 0; m < SYNC_MARKS; m++) {
  3465. mark[m] = jiffies;
  3466. mark_cnt[m] = io_sectors;
  3467. }
  3468. last_mark = 0;
  3469. mddev->resync_mark = mark[last_mark];
  3470. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3471. /*
  3472. * Tune reconstruction:
  3473. */
  3474. window = 32*(PAGE_SIZE/512);
  3475. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3476. window/2,(unsigned long long) max_sectors/2);
  3477. atomic_set(&mddev->recovery_active, 0);
  3478. init_waitqueue_head(&mddev->recovery_wait);
  3479. last_check = 0;
  3480. if (j>2) {
  3481. printk(KERN_INFO
  3482. "md: resuming recovery of %s from checkpoint.\n",
  3483. mdname(mddev));
  3484. mddev->curr_resync = j;
  3485. }
  3486. while (j < max_sectors) {
  3487. sector_t sectors;
  3488. skipped = 0;
  3489. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3490. currspeed < sysctl_speed_limit_min);
  3491. if (sectors == 0) {
  3492. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3493. goto out;
  3494. }
  3495. if (!skipped) { /* actual IO requested */
  3496. io_sectors += sectors;
  3497. atomic_add(sectors, &mddev->recovery_active);
  3498. }
  3499. j += sectors;
  3500. if (j>1) mddev->curr_resync = j;
  3501. if (last_check + window > io_sectors || j == max_sectors)
  3502. continue;
  3503. last_check = io_sectors;
  3504. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3505. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3506. break;
  3507. repeat:
  3508. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3509. /* step marks */
  3510. int next = (last_mark+1) % SYNC_MARKS;
  3511. mddev->resync_mark = mark[next];
  3512. mddev->resync_mark_cnt = mark_cnt[next];
  3513. mark[next] = jiffies;
  3514. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3515. last_mark = next;
  3516. }
  3517. if (signal_pending(current) || kthread_should_stop()) {
  3518. /*
  3519. * got a signal, exit.
  3520. */
  3521. printk(KERN_INFO
  3522. "md: md_do_sync() got signal ... exiting\n");
  3523. flush_signals(current);
  3524. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3525. goto out;
  3526. }
  3527. /*
  3528. * this loop exits only if either when we are slower than
  3529. * the 'hard' speed limit, or the system was IO-idle for
  3530. * a jiffy.
  3531. * the system might be non-idle CPU-wise, but we only care
  3532. * about not overloading the IO subsystem. (things like an
  3533. * e2fsck being done on the RAID array should execute fast)
  3534. */
  3535. mddev->queue->unplug_fn(mddev->queue);
  3536. cond_resched();
  3537. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3538. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3539. if (currspeed > sysctl_speed_limit_min) {
  3540. if ((currspeed > sysctl_speed_limit_max) ||
  3541. !is_mddev_idle(mddev)) {
  3542. msleep_interruptible(250);
  3543. goto repeat;
  3544. }
  3545. }
  3546. }
  3547. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3548. /*
  3549. * this also signals 'finished resyncing' to md_stop
  3550. */
  3551. out:
  3552. mddev->queue->unplug_fn(mddev->queue);
  3553. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3554. /* tell personality that we are finished */
  3555. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3556. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3557. mddev->curr_resync > 2 &&
  3558. mddev->curr_resync >= mddev->recovery_cp) {
  3559. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3560. printk(KERN_INFO
  3561. "md: checkpointing recovery of %s.\n",
  3562. mdname(mddev));
  3563. mddev->recovery_cp = mddev->curr_resync;
  3564. } else
  3565. mddev->recovery_cp = MaxSector;
  3566. }
  3567. skip:
  3568. mddev->curr_resync = 0;
  3569. wake_up(&resync_wait);
  3570. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3571. md_wakeup_thread(mddev->thread);
  3572. }
  3573. /*
  3574. * This routine is regularly called by all per-raid-array threads to
  3575. * deal with generic issues like resync and super-block update.
  3576. * Raid personalities that don't have a thread (linear/raid0) do not
  3577. * need this as they never do any recovery or update the superblock.
  3578. *
  3579. * It does not do any resync itself, but rather "forks" off other threads
  3580. * to do that as needed.
  3581. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3582. * "->recovery" and create a thread at ->sync_thread.
  3583. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3584. * and wakeups up this thread which will reap the thread and finish up.
  3585. * This thread also removes any faulty devices (with nr_pending == 0).
  3586. *
  3587. * The overall approach is:
  3588. * 1/ if the superblock needs updating, update it.
  3589. * 2/ If a recovery thread is running, don't do anything else.
  3590. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3591. * 4/ If there are any faulty devices, remove them.
  3592. * 5/ If array is degraded, try to add spares devices
  3593. * 6/ If array has spares or is not in-sync, start a resync thread.
  3594. */
  3595. void md_check_recovery(mddev_t *mddev)
  3596. {
  3597. mdk_rdev_t *rdev;
  3598. struct list_head *rtmp;
  3599. if (mddev->bitmap)
  3600. bitmap_daemon_work(mddev->bitmap);
  3601. if (mddev->ro)
  3602. return;
  3603. if (signal_pending(current)) {
  3604. if (mddev->pers->sync_request) {
  3605. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3606. mdname(mddev));
  3607. mddev->safemode = 2;
  3608. }
  3609. flush_signals(current);
  3610. }
  3611. if ( ! (
  3612. mddev->sb_dirty ||
  3613. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3614. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3615. (mddev->safemode == 1) ||
  3616. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3617. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3618. ))
  3619. return;
  3620. if (mddev_trylock(mddev)==0) {
  3621. int spares =0;
  3622. spin_lock_irq(&mddev->write_lock);
  3623. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3624. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3625. mddev->in_sync = 1;
  3626. mddev->sb_dirty = 1;
  3627. }
  3628. if (mddev->safemode == 1)
  3629. mddev->safemode = 0;
  3630. spin_unlock_irq(&mddev->write_lock);
  3631. if (mddev->sb_dirty)
  3632. md_update_sb(mddev);
  3633. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3634. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3635. /* resync/recovery still happening */
  3636. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3637. goto unlock;
  3638. }
  3639. if (mddev->sync_thread) {
  3640. /* resync has finished, collect result */
  3641. md_unregister_thread(mddev->sync_thread);
  3642. mddev->sync_thread = NULL;
  3643. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3644. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3645. /* success...*/
  3646. /* activate any spares */
  3647. mddev->pers->spare_active(mddev);
  3648. }
  3649. md_update_sb(mddev);
  3650. /* if array is no-longer degraded, then any saved_raid_disk
  3651. * information must be scrapped
  3652. */
  3653. if (!mddev->degraded)
  3654. ITERATE_RDEV(mddev,rdev,rtmp)
  3655. rdev->saved_raid_disk = -1;
  3656. mddev->recovery = 0;
  3657. /* flag recovery needed just to double check */
  3658. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3659. goto unlock;
  3660. }
  3661. /* Clear some bits that don't mean anything, but
  3662. * might be left set
  3663. */
  3664. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3665. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3666. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3667. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3668. /* no recovery is running.
  3669. * remove any failed drives, then
  3670. * add spares if possible.
  3671. * Spare are also removed and re-added, to allow
  3672. * the personality to fail the re-add.
  3673. */
  3674. ITERATE_RDEV(mddev,rdev,rtmp)
  3675. if (rdev->raid_disk >= 0 &&
  3676. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  3677. atomic_read(&rdev->nr_pending)==0) {
  3678. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  3679. char nm[20];
  3680. sprintf(nm,"rd%d", rdev->raid_disk);
  3681. sysfs_remove_link(&mddev->kobj, nm);
  3682. rdev->raid_disk = -1;
  3683. }
  3684. }
  3685. if (mddev->degraded) {
  3686. ITERATE_RDEV(mddev,rdev,rtmp)
  3687. if (rdev->raid_disk < 0
  3688. && !test_bit(Faulty, &rdev->flags)) {
  3689. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  3690. char nm[20];
  3691. sprintf(nm, "rd%d", rdev->raid_disk);
  3692. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  3693. spares++;
  3694. } else
  3695. break;
  3696. }
  3697. }
  3698. if (spares) {
  3699. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3700. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3701. } else if (mddev->recovery_cp < MaxSector) {
  3702. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3703. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3704. /* nothing to be done ... */
  3705. goto unlock;
  3706. if (mddev->pers->sync_request) {
  3707. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3708. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3709. /* We are adding a device or devices to an array
  3710. * which has the bitmap stored on all devices.
  3711. * So make sure all bitmap pages get written
  3712. */
  3713. bitmap_write_all(mddev->bitmap);
  3714. }
  3715. mddev->sync_thread = md_register_thread(md_do_sync,
  3716. mddev,
  3717. "%s_resync");
  3718. if (!mddev->sync_thread) {
  3719. printk(KERN_ERR "%s: could not start resync"
  3720. " thread...\n",
  3721. mdname(mddev));
  3722. /* leave the spares where they are, it shouldn't hurt */
  3723. mddev->recovery = 0;
  3724. } else {
  3725. md_wakeup_thread(mddev->sync_thread);
  3726. }
  3727. }
  3728. unlock:
  3729. mddev_unlock(mddev);
  3730. }
  3731. }
  3732. static int md_notify_reboot(struct notifier_block *this,
  3733. unsigned long code, void *x)
  3734. {
  3735. struct list_head *tmp;
  3736. mddev_t *mddev;
  3737. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3738. printk(KERN_INFO "md: stopping all md devices.\n");
  3739. ITERATE_MDDEV(mddev,tmp)
  3740. if (mddev_trylock(mddev)==0)
  3741. do_md_stop (mddev, 1);
  3742. /*
  3743. * certain more exotic SCSI devices are known to be
  3744. * volatile wrt too early system reboots. While the
  3745. * right place to handle this issue is the given
  3746. * driver, we do want to have a safe RAID driver ...
  3747. */
  3748. mdelay(1000*1);
  3749. }
  3750. return NOTIFY_DONE;
  3751. }
  3752. static struct notifier_block md_notifier = {
  3753. .notifier_call = md_notify_reboot,
  3754. .next = NULL,
  3755. .priority = INT_MAX, /* before any real devices */
  3756. };
  3757. static void md_geninit(void)
  3758. {
  3759. struct proc_dir_entry *p;
  3760. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3761. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3762. if (p)
  3763. p->proc_fops = &md_seq_fops;
  3764. }
  3765. static int __init md_init(void)
  3766. {
  3767. int minor;
  3768. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3769. " MD_SB_DISKS=%d\n",
  3770. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3771. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3772. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  3773. BITMAP_MINOR);
  3774. if (register_blkdev(MAJOR_NR, "md"))
  3775. return -1;
  3776. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3777. unregister_blkdev(MAJOR_NR, "md");
  3778. return -1;
  3779. }
  3780. devfs_mk_dir("md");
  3781. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3782. md_probe, NULL, NULL);
  3783. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3784. md_probe, NULL, NULL);
  3785. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3786. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3787. S_IFBLK|S_IRUSR|S_IWUSR,
  3788. "md/%d", minor);
  3789. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3790. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3791. S_IFBLK|S_IRUSR|S_IWUSR,
  3792. "md/mdp%d", minor);
  3793. register_reboot_notifier(&md_notifier);
  3794. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3795. md_geninit();
  3796. return (0);
  3797. }
  3798. #ifndef MODULE
  3799. /*
  3800. * Searches all registered partitions for autorun RAID arrays
  3801. * at boot time.
  3802. */
  3803. static dev_t detected_devices[128];
  3804. static int dev_cnt;
  3805. void md_autodetect_dev(dev_t dev)
  3806. {
  3807. if (dev_cnt >= 0 && dev_cnt < 127)
  3808. detected_devices[dev_cnt++] = dev;
  3809. }
  3810. static void autostart_arrays(int part)
  3811. {
  3812. mdk_rdev_t *rdev;
  3813. int i;
  3814. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3815. for (i = 0; i < dev_cnt; i++) {
  3816. dev_t dev = detected_devices[i];
  3817. rdev = md_import_device(dev,0, 0);
  3818. if (IS_ERR(rdev))
  3819. continue;
  3820. if (test_bit(Faulty, &rdev->flags)) {
  3821. MD_BUG();
  3822. continue;
  3823. }
  3824. list_add(&rdev->same_set, &pending_raid_disks);
  3825. }
  3826. dev_cnt = 0;
  3827. autorun_devices(part);
  3828. }
  3829. #endif
  3830. static __exit void md_exit(void)
  3831. {
  3832. mddev_t *mddev;
  3833. struct list_head *tmp;
  3834. int i;
  3835. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3836. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3837. for (i=0; i < MAX_MD_DEVS; i++)
  3838. devfs_remove("md/%d", i);
  3839. for (i=0; i < MAX_MD_DEVS; i++)
  3840. devfs_remove("md/d%d", i);
  3841. devfs_remove("md");
  3842. unregister_blkdev(MAJOR_NR,"md");
  3843. unregister_blkdev(mdp_major, "mdp");
  3844. unregister_reboot_notifier(&md_notifier);
  3845. unregister_sysctl_table(raid_table_header);
  3846. remove_proc_entry("mdstat", NULL);
  3847. ITERATE_MDDEV(mddev,tmp) {
  3848. struct gendisk *disk = mddev->gendisk;
  3849. if (!disk)
  3850. continue;
  3851. export_array(mddev);
  3852. del_gendisk(disk);
  3853. put_disk(disk);
  3854. mddev->gendisk = NULL;
  3855. mddev_put(mddev);
  3856. }
  3857. }
  3858. module_init(md_init)
  3859. module_exit(md_exit)
  3860. static int get_ro(char *buffer, struct kernel_param *kp)
  3861. {
  3862. return sprintf(buffer, "%d", start_readonly);
  3863. }
  3864. static int set_ro(const char *val, struct kernel_param *kp)
  3865. {
  3866. char *e;
  3867. int num = simple_strtoul(val, &e, 10);
  3868. if (*val && (*e == '\0' || *e == '\n')) {
  3869. start_readonly = num;
  3870. return 0;;
  3871. }
  3872. return -EINVAL;
  3873. }
  3874. module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
  3875. EXPORT_SYMBOL(register_md_personality);
  3876. EXPORT_SYMBOL(unregister_md_personality);
  3877. EXPORT_SYMBOL(md_error);
  3878. EXPORT_SYMBOL(md_done_sync);
  3879. EXPORT_SYMBOL(md_write_start);
  3880. EXPORT_SYMBOL(md_write_end);
  3881. EXPORT_SYMBOL(md_register_thread);
  3882. EXPORT_SYMBOL(md_unregister_thread);
  3883. EXPORT_SYMBOL(md_wakeup_thread);
  3884. EXPORT_SYMBOL(md_print_devices);
  3885. EXPORT_SYMBOL(md_check_recovery);
  3886. MODULE_LICENSE("GPL");
  3887. MODULE_ALIAS("md");
  3888. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);