cfq-iosched.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. struct rb_node *active;
  79. };
  80. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  81. .count = 0, .min_vdisktime = 0, }
  82. /*
  83. * Per process-grouping structure
  84. */
  85. struct cfq_queue {
  86. /* reference count */
  87. atomic_t ref;
  88. /* various state flags, see below */
  89. unsigned int flags;
  90. /* parent cfq_data */
  91. struct cfq_data *cfqd;
  92. /* service_tree member */
  93. struct rb_node rb_node;
  94. /* service_tree key */
  95. unsigned long rb_key;
  96. /* prio tree member */
  97. struct rb_node p_node;
  98. /* prio tree root we belong to, if any */
  99. struct rb_root *p_root;
  100. /* sorted list of pending requests */
  101. struct rb_root sort_list;
  102. /* if fifo isn't expired, next request to serve */
  103. struct request *next_rq;
  104. /* requests queued in sort_list */
  105. int queued[2];
  106. /* currently allocated requests */
  107. int allocated[2];
  108. /* fifo list of requests in sort_list */
  109. struct list_head fifo;
  110. /* time when queue got scheduled in to dispatch first request. */
  111. unsigned long dispatch_start;
  112. unsigned int allocated_slice;
  113. unsigned int slice_dispatch;
  114. /* time when first request from queue completed and slice started. */
  115. unsigned long slice_start;
  116. unsigned long slice_end;
  117. long slice_resid;
  118. /* pending metadata requests */
  119. int meta_pending;
  120. /* number of requests that are on the dispatch list or inside driver */
  121. int dispatched;
  122. /* io prio of this group */
  123. unsigned short ioprio, org_ioprio;
  124. unsigned short ioprio_class, org_ioprio_class;
  125. pid_t pid;
  126. u32 seek_history;
  127. sector_t last_request_pos;
  128. struct cfq_rb_root *service_tree;
  129. struct cfq_queue *new_cfqq;
  130. struct cfq_group *cfqg;
  131. struct cfq_group *orig_cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. };
  144. /*
  145. * Second index in the service_trees.
  146. */
  147. enum wl_type_t {
  148. ASYNC_WORKLOAD = 0,
  149. SYNC_NOIDLE_WORKLOAD = 1,
  150. SYNC_WORKLOAD = 2
  151. };
  152. /* This is per cgroup per device grouping structure */
  153. struct cfq_group {
  154. /* group service_tree member */
  155. struct rb_node rb_node;
  156. /* group service_tree key */
  157. u64 vdisktime;
  158. unsigned int weight;
  159. bool on_st;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /* Per group busy queus average. Useful for workload slice calc. */
  163. unsigned int busy_queues_avg[2];
  164. /*
  165. * rr lists of queues with requests, onle rr for each priority class.
  166. * Counts are embedded in the cfq_rb_root
  167. */
  168. struct cfq_rb_root service_trees[2][3];
  169. struct cfq_rb_root service_tree_idle;
  170. unsigned long saved_workload_slice;
  171. enum wl_type_t saved_workload;
  172. enum wl_prio_t saved_serving_prio;
  173. struct blkio_group blkg;
  174. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  175. struct hlist_node cfqd_node;
  176. atomic_t ref;
  177. #endif
  178. /* number of requests that are on the dispatch list or inside driver */
  179. int dispatched;
  180. };
  181. /*
  182. * Per block device queue structure
  183. */
  184. struct cfq_data {
  185. struct request_queue *queue;
  186. /* Root service tree for cfq_groups */
  187. struct cfq_rb_root grp_service_tree;
  188. struct cfq_group root_group;
  189. /*
  190. * The priority currently being served
  191. */
  192. enum wl_prio_t serving_prio;
  193. enum wl_type_t serving_type;
  194. unsigned long workload_expires;
  195. struct cfq_group *serving_group;
  196. bool noidle_tree_requires_idle;
  197. /*
  198. * Each priority tree is sorted by next_request position. These
  199. * trees are used when determining if two or more queues are
  200. * interleaving requests (see cfq_close_cooperator).
  201. */
  202. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  203. unsigned int busy_queues;
  204. int rq_in_driver;
  205. int rq_in_flight[2];
  206. /*
  207. * queue-depth detection
  208. */
  209. int rq_queued;
  210. int hw_tag;
  211. /*
  212. * hw_tag can be
  213. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  214. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  215. * 0 => no NCQ
  216. */
  217. int hw_tag_est_depth;
  218. unsigned int hw_tag_samples;
  219. /*
  220. * idle window management
  221. */
  222. struct timer_list idle_slice_timer;
  223. struct work_struct unplug_work;
  224. struct cfq_queue *active_queue;
  225. struct cfq_io_context *active_cic;
  226. /*
  227. * async queue for each priority case
  228. */
  229. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  230. struct cfq_queue *async_idle_cfqq;
  231. sector_t last_position;
  232. /*
  233. * tunables, see top of file
  234. */
  235. unsigned int cfq_quantum;
  236. unsigned int cfq_fifo_expire[2];
  237. unsigned int cfq_back_penalty;
  238. unsigned int cfq_back_max;
  239. unsigned int cfq_slice[2];
  240. unsigned int cfq_slice_async_rq;
  241. unsigned int cfq_slice_idle;
  242. unsigned int cfq_group_idle;
  243. unsigned int cfq_latency;
  244. unsigned int cfq_group_isolation;
  245. unsigned int cic_index;
  246. struct list_head cic_list;
  247. /*
  248. * Fallback dummy cfqq for extreme OOM conditions
  249. */
  250. struct cfq_queue oom_cfqq;
  251. unsigned long last_delayed_sync;
  252. /* List of cfq groups being managed on this device*/
  253. struct hlist_head cfqg_list;
  254. struct rcu_head rcu;
  255. };
  256. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  257. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  258. enum wl_prio_t prio,
  259. enum wl_type_t type)
  260. {
  261. if (!cfqg)
  262. return NULL;
  263. if (prio == IDLE_WORKLOAD)
  264. return &cfqg->service_tree_idle;
  265. return &cfqg->service_trees[prio][type];
  266. }
  267. enum cfqq_state_flags {
  268. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  269. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  270. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  271. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  272. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  273. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  274. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  275. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  276. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  277. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  278. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  279. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  280. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  281. };
  282. #define CFQ_CFQQ_FNS(name) \
  283. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  284. { \
  285. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  286. } \
  287. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  288. { \
  289. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  290. } \
  291. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  292. { \
  293. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  294. }
  295. CFQ_CFQQ_FNS(on_rr);
  296. CFQ_CFQQ_FNS(wait_request);
  297. CFQ_CFQQ_FNS(must_dispatch);
  298. CFQ_CFQQ_FNS(must_alloc_slice);
  299. CFQ_CFQQ_FNS(fifo_expire);
  300. CFQ_CFQQ_FNS(idle_window);
  301. CFQ_CFQQ_FNS(prio_changed);
  302. CFQ_CFQQ_FNS(slice_new);
  303. CFQ_CFQQ_FNS(sync);
  304. CFQ_CFQQ_FNS(coop);
  305. CFQ_CFQQ_FNS(split_coop);
  306. CFQ_CFQQ_FNS(deep);
  307. CFQ_CFQQ_FNS(wait_busy);
  308. #undef CFQ_CFQQ_FNS
  309. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  310. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  311. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  312. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  313. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  314. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  315. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  316. blkg_path(&(cfqg)->blkg), ##args); \
  317. #else
  318. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  319. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  320. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  321. #endif
  322. #define cfq_log(cfqd, fmt, args...) \
  323. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  324. /* Traverses through cfq group service trees */
  325. #define for_each_cfqg_st(cfqg, i, j, st) \
  326. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  327. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  328. : &cfqg->service_tree_idle; \
  329. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  330. (i == IDLE_WORKLOAD && j == 0); \
  331. j++, st = i < IDLE_WORKLOAD ? \
  332. &cfqg->service_trees[i][j]: NULL) \
  333. static inline bool iops_mode(struct cfq_data *cfqd)
  334. {
  335. /*
  336. * If we are not idling on queues and it is a NCQ drive, parallel
  337. * execution of requests is on and measuring time is not possible
  338. * in most of the cases until and unless we drive shallower queue
  339. * depths and that becomes a performance bottleneck. In such cases
  340. * switch to start providing fairness in terms of number of IOs.
  341. */
  342. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  343. return true;
  344. else
  345. return false;
  346. }
  347. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  348. {
  349. if (cfq_class_idle(cfqq))
  350. return IDLE_WORKLOAD;
  351. if (cfq_class_rt(cfqq))
  352. return RT_WORKLOAD;
  353. return BE_WORKLOAD;
  354. }
  355. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  356. {
  357. if (!cfq_cfqq_sync(cfqq))
  358. return ASYNC_WORKLOAD;
  359. if (!cfq_cfqq_idle_window(cfqq))
  360. return SYNC_NOIDLE_WORKLOAD;
  361. return SYNC_WORKLOAD;
  362. }
  363. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  364. struct cfq_data *cfqd,
  365. struct cfq_group *cfqg)
  366. {
  367. if (wl == IDLE_WORKLOAD)
  368. return cfqg->service_tree_idle.count;
  369. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  370. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  371. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  372. }
  373. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  374. struct cfq_group *cfqg)
  375. {
  376. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  377. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  378. }
  379. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  380. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  381. struct io_context *, gfp_t);
  382. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  383. struct io_context *);
  384. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  385. bool is_sync)
  386. {
  387. return cic->cfqq[is_sync];
  388. }
  389. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  390. struct cfq_queue *cfqq, bool is_sync)
  391. {
  392. cic->cfqq[is_sync] = cfqq;
  393. }
  394. #define CIC_DEAD_KEY 1ul
  395. #define CIC_DEAD_INDEX_SHIFT 1
  396. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  397. {
  398. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  399. }
  400. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  401. {
  402. struct cfq_data *cfqd = cic->key;
  403. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  404. return NULL;
  405. return cfqd;
  406. }
  407. /*
  408. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  409. * set (in which case it could also be direct WRITE).
  410. */
  411. static inline bool cfq_bio_sync(struct bio *bio)
  412. {
  413. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  414. }
  415. /*
  416. * scheduler run of queue, if there are requests pending and no one in the
  417. * driver that will restart queueing
  418. */
  419. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  420. {
  421. if (cfqd->busy_queues) {
  422. cfq_log(cfqd, "schedule dispatch");
  423. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  424. }
  425. }
  426. static int cfq_queue_empty(struct request_queue *q)
  427. {
  428. struct cfq_data *cfqd = q->elevator->elevator_data;
  429. return !cfqd->rq_queued;
  430. }
  431. /*
  432. * Scale schedule slice based on io priority. Use the sync time slice only
  433. * if a queue is marked sync and has sync io queued. A sync queue with async
  434. * io only, should not get full sync slice length.
  435. */
  436. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  437. unsigned short prio)
  438. {
  439. const int base_slice = cfqd->cfq_slice[sync];
  440. WARN_ON(prio >= IOPRIO_BE_NR);
  441. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  442. }
  443. static inline int
  444. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  445. {
  446. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  447. }
  448. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  449. {
  450. u64 d = delta << CFQ_SERVICE_SHIFT;
  451. d = d * BLKIO_WEIGHT_DEFAULT;
  452. do_div(d, cfqg->weight);
  453. return d;
  454. }
  455. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  456. {
  457. s64 delta = (s64)(vdisktime - min_vdisktime);
  458. if (delta > 0)
  459. min_vdisktime = vdisktime;
  460. return min_vdisktime;
  461. }
  462. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  463. {
  464. s64 delta = (s64)(vdisktime - min_vdisktime);
  465. if (delta < 0)
  466. min_vdisktime = vdisktime;
  467. return min_vdisktime;
  468. }
  469. static void update_min_vdisktime(struct cfq_rb_root *st)
  470. {
  471. u64 vdisktime = st->min_vdisktime;
  472. struct cfq_group *cfqg;
  473. if (st->active) {
  474. cfqg = rb_entry_cfqg(st->active);
  475. vdisktime = cfqg->vdisktime;
  476. }
  477. if (st->left) {
  478. cfqg = rb_entry_cfqg(st->left);
  479. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  480. }
  481. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  482. }
  483. /*
  484. * get averaged number of queues of RT/BE priority.
  485. * average is updated, with a formula that gives more weight to higher numbers,
  486. * to quickly follows sudden increases and decrease slowly
  487. */
  488. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  489. struct cfq_group *cfqg, bool rt)
  490. {
  491. unsigned min_q, max_q;
  492. unsigned mult = cfq_hist_divisor - 1;
  493. unsigned round = cfq_hist_divisor / 2;
  494. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  495. min_q = min(cfqg->busy_queues_avg[rt], busy);
  496. max_q = max(cfqg->busy_queues_avg[rt], busy);
  497. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  498. cfq_hist_divisor;
  499. return cfqg->busy_queues_avg[rt];
  500. }
  501. static inline unsigned
  502. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  503. {
  504. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  505. return cfq_target_latency * cfqg->weight / st->total_weight;
  506. }
  507. static inline void
  508. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  509. {
  510. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  511. if (cfqd->cfq_latency) {
  512. /*
  513. * interested queues (we consider only the ones with the same
  514. * priority class in the cfq group)
  515. */
  516. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  517. cfq_class_rt(cfqq));
  518. unsigned sync_slice = cfqd->cfq_slice[1];
  519. unsigned expect_latency = sync_slice * iq;
  520. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  521. if (expect_latency > group_slice) {
  522. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  523. /* scale low_slice according to IO priority
  524. * and sync vs async */
  525. unsigned low_slice =
  526. min(slice, base_low_slice * slice / sync_slice);
  527. /* the adapted slice value is scaled to fit all iqs
  528. * into the target latency */
  529. slice = max(slice * group_slice / expect_latency,
  530. low_slice);
  531. }
  532. }
  533. cfqq->slice_start = jiffies;
  534. cfqq->slice_end = jiffies + slice;
  535. cfqq->allocated_slice = slice;
  536. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  537. }
  538. /*
  539. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  540. * isn't valid until the first request from the dispatch is activated
  541. * and the slice time set.
  542. */
  543. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  544. {
  545. if (cfq_cfqq_slice_new(cfqq))
  546. return false;
  547. if (time_before(jiffies, cfqq->slice_end))
  548. return false;
  549. return true;
  550. }
  551. /*
  552. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  553. * We choose the request that is closest to the head right now. Distance
  554. * behind the head is penalized and only allowed to a certain extent.
  555. */
  556. static struct request *
  557. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  558. {
  559. sector_t s1, s2, d1 = 0, d2 = 0;
  560. unsigned long back_max;
  561. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  562. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  563. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  564. if (rq1 == NULL || rq1 == rq2)
  565. return rq2;
  566. if (rq2 == NULL)
  567. return rq1;
  568. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  569. return rq1;
  570. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  571. return rq2;
  572. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  573. return rq1;
  574. else if ((rq2->cmd_flags & REQ_META) &&
  575. !(rq1->cmd_flags & REQ_META))
  576. return rq2;
  577. s1 = blk_rq_pos(rq1);
  578. s2 = blk_rq_pos(rq2);
  579. /*
  580. * by definition, 1KiB is 2 sectors
  581. */
  582. back_max = cfqd->cfq_back_max * 2;
  583. /*
  584. * Strict one way elevator _except_ in the case where we allow
  585. * short backward seeks which are biased as twice the cost of a
  586. * similar forward seek.
  587. */
  588. if (s1 >= last)
  589. d1 = s1 - last;
  590. else if (s1 + back_max >= last)
  591. d1 = (last - s1) * cfqd->cfq_back_penalty;
  592. else
  593. wrap |= CFQ_RQ1_WRAP;
  594. if (s2 >= last)
  595. d2 = s2 - last;
  596. else if (s2 + back_max >= last)
  597. d2 = (last - s2) * cfqd->cfq_back_penalty;
  598. else
  599. wrap |= CFQ_RQ2_WRAP;
  600. /* Found required data */
  601. /*
  602. * By doing switch() on the bit mask "wrap" we avoid having to
  603. * check two variables for all permutations: --> faster!
  604. */
  605. switch (wrap) {
  606. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  607. if (d1 < d2)
  608. return rq1;
  609. else if (d2 < d1)
  610. return rq2;
  611. else {
  612. if (s1 >= s2)
  613. return rq1;
  614. else
  615. return rq2;
  616. }
  617. case CFQ_RQ2_WRAP:
  618. return rq1;
  619. case CFQ_RQ1_WRAP:
  620. return rq2;
  621. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  622. default:
  623. /*
  624. * Since both rqs are wrapped,
  625. * start with the one that's further behind head
  626. * (--> only *one* back seek required),
  627. * since back seek takes more time than forward.
  628. */
  629. if (s1 <= s2)
  630. return rq1;
  631. else
  632. return rq2;
  633. }
  634. }
  635. /*
  636. * The below is leftmost cache rbtree addon
  637. */
  638. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  639. {
  640. /* Service tree is empty */
  641. if (!root->count)
  642. return NULL;
  643. if (!root->left)
  644. root->left = rb_first(&root->rb);
  645. if (root->left)
  646. return rb_entry(root->left, struct cfq_queue, rb_node);
  647. return NULL;
  648. }
  649. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  650. {
  651. if (!root->left)
  652. root->left = rb_first(&root->rb);
  653. if (root->left)
  654. return rb_entry_cfqg(root->left);
  655. return NULL;
  656. }
  657. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  658. {
  659. rb_erase(n, root);
  660. RB_CLEAR_NODE(n);
  661. }
  662. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  663. {
  664. if (root->left == n)
  665. root->left = NULL;
  666. rb_erase_init(n, &root->rb);
  667. --root->count;
  668. }
  669. /*
  670. * would be nice to take fifo expire time into account as well
  671. */
  672. static struct request *
  673. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  674. struct request *last)
  675. {
  676. struct rb_node *rbnext = rb_next(&last->rb_node);
  677. struct rb_node *rbprev = rb_prev(&last->rb_node);
  678. struct request *next = NULL, *prev = NULL;
  679. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  680. if (rbprev)
  681. prev = rb_entry_rq(rbprev);
  682. if (rbnext)
  683. next = rb_entry_rq(rbnext);
  684. else {
  685. rbnext = rb_first(&cfqq->sort_list);
  686. if (rbnext && rbnext != &last->rb_node)
  687. next = rb_entry_rq(rbnext);
  688. }
  689. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  690. }
  691. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  692. struct cfq_queue *cfqq)
  693. {
  694. /*
  695. * just an approximation, should be ok.
  696. */
  697. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  698. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  699. }
  700. static inline s64
  701. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  702. {
  703. return cfqg->vdisktime - st->min_vdisktime;
  704. }
  705. static void
  706. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  707. {
  708. struct rb_node **node = &st->rb.rb_node;
  709. struct rb_node *parent = NULL;
  710. struct cfq_group *__cfqg;
  711. s64 key = cfqg_key(st, cfqg);
  712. int left = 1;
  713. while (*node != NULL) {
  714. parent = *node;
  715. __cfqg = rb_entry_cfqg(parent);
  716. if (key < cfqg_key(st, __cfqg))
  717. node = &parent->rb_left;
  718. else {
  719. node = &parent->rb_right;
  720. left = 0;
  721. }
  722. }
  723. if (left)
  724. st->left = &cfqg->rb_node;
  725. rb_link_node(&cfqg->rb_node, parent, node);
  726. rb_insert_color(&cfqg->rb_node, &st->rb);
  727. }
  728. static void
  729. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  730. {
  731. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  732. struct cfq_group *__cfqg;
  733. struct rb_node *n;
  734. cfqg->nr_cfqq++;
  735. if (cfqg->on_st)
  736. return;
  737. /*
  738. * Currently put the group at the end. Later implement something
  739. * so that groups get lesser vtime based on their weights, so that
  740. * if group does not loose all if it was not continously backlogged.
  741. */
  742. n = rb_last(&st->rb);
  743. if (n) {
  744. __cfqg = rb_entry_cfqg(n);
  745. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  746. } else
  747. cfqg->vdisktime = st->min_vdisktime;
  748. __cfq_group_service_tree_add(st, cfqg);
  749. cfqg->on_st = true;
  750. st->total_weight += cfqg->weight;
  751. }
  752. static void
  753. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  754. {
  755. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  756. if (st->active == &cfqg->rb_node)
  757. st->active = NULL;
  758. BUG_ON(cfqg->nr_cfqq < 1);
  759. cfqg->nr_cfqq--;
  760. /* If there are other cfq queues under this group, don't delete it */
  761. if (cfqg->nr_cfqq)
  762. return;
  763. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  764. cfqg->on_st = false;
  765. st->total_weight -= cfqg->weight;
  766. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  767. cfq_rb_erase(&cfqg->rb_node, st);
  768. cfqg->saved_workload_slice = 0;
  769. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  770. }
  771. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  772. {
  773. unsigned int slice_used;
  774. /*
  775. * Queue got expired before even a single request completed or
  776. * got expired immediately after first request completion.
  777. */
  778. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  779. /*
  780. * Also charge the seek time incurred to the group, otherwise
  781. * if there are mutiple queues in the group, each can dispatch
  782. * a single request on seeky media and cause lots of seek time
  783. * and group will never know it.
  784. */
  785. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  786. 1);
  787. } else {
  788. slice_used = jiffies - cfqq->slice_start;
  789. if (slice_used > cfqq->allocated_slice)
  790. slice_used = cfqq->allocated_slice;
  791. }
  792. return slice_used;
  793. }
  794. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  795. struct cfq_queue *cfqq)
  796. {
  797. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  798. unsigned int used_sl, charge;
  799. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  800. - cfqg->service_tree_idle.count;
  801. BUG_ON(nr_sync < 0);
  802. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  803. if (iops_mode(cfqd))
  804. charge = cfqq->slice_dispatch;
  805. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  806. charge = cfqq->allocated_slice;
  807. /* Can't update vdisktime while group is on service tree */
  808. cfq_rb_erase(&cfqg->rb_node, st);
  809. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  810. __cfq_group_service_tree_add(st, cfqg);
  811. /* This group is being expired. Save the context */
  812. if (time_after(cfqd->workload_expires, jiffies)) {
  813. cfqg->saved_workload_slice = cfqd->workload_expires
  814. - jiffies;
  815. cfqg->saved_workload = cfqd->serving_type;
  816. cfqg->saved_serving_prio = cfqd->serving_prio;
  817. } else
  818. cfqg->saved_workload_slice = 0;
  819. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  820. st->min_vdisktime);
  821. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  822. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  823. iops_mode(cfqd), cfqq->nr_sectors);
  824. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  825. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  826. }
  827. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  828. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  829. {
  830. if (blkg)
  831. return container_of(blkg, struct cfq_group, blkg);
  832. return NULL;
  833. }
  834. void
  835. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  836. {
  837. cfqg_of_blkg(blkg)->weight = weight;
  838. }
  839. static struct cfq_group *
  840. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  841. {
  842. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  843. struct cfq_group *cfqg = NULL;
  844. void *key = cfqd;
  845. int i, j;
  846. struct cfq_rb_root *st;
  847. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  848. unsigned int major, minor;
  849. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  850. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  851. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  852. cfqg->blkg.dev = MKDEV(major, minor);
  853. goto done;
  854. }
  855. if (cfqg || !create)
  856. goto done;
  857. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  858. if (!cfqg)
  859. goto done;
  860. for_each_cfqg_st(cfqg, i, j, st)
  861. *st = CFQ_RB_ROOT;
  862. RB_CLEAR_NODE(&cfqg->rb_node);
  863. /*
  864. * Take the initial reference that will be released on destroy
  865. * This can be thought of a joint reference by cgroup and
  866. * elevator which will be dropped by either elevator exit
  867. * or cgroup deletion path depending on who is exiting first.
  868. */
  869. atomic_set(&cfqg->ref, 1);
  870. /*
  871. * Add group onto cgroup list. It might happen that bdi->dev is
  872. * not initiliazed yet. Initialize this new group without major
  873. * and minor info and this info will be filled in once a new thread
  874. * comes for IO. See code above.
  875. */
  876. if (bdi->dev) {
  877. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  878. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  879. MKDEV(major, minor));
  880. } else
  881. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  882. 0);
  883. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  884. /* Add group on cfqd list */
  885. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  886. done:
  887. return cfqg;
  888. }
  889. /*
  890. * Search for the cfq group current task belongs to. If create = 1, then also
  891. * create the cfq group if it does not exist. request_queue lock must be held.
  892. */
  893. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  894. {
  895. struct cgroup *cgroup;
  896. struct cfq_group *cfqg = NULL;
  897. rcu_read_lock();
  898. cgroup = task_cgroup(current, blkio_subsys_id);
  899. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  900. if (!cfqg && create)
  901. cfqg = &cfqd->root_group;
  902. rcu_read_unlock();
  903. return cfqg;
  904. }
  905. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  906. {
  907. atomic_inc(&cfqg->ref);
  908. return cfqg;
  909. }
  910. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  911. {
  912. /* Currently, all async queues are mapped to root group */
  913. if (!cfq_cfqq_sync(cfqq))
  914. cfqg = &cfqq->cfqd->root_group;
  915. cfqq->cfqg = cfqg;
  916. /* cfqq reference on cfqg */
  917. atomic_inc(&cfqq->cfqg->ref);
  918. }
  919. static void cfq_put_cfqg(struct cfq_group *cfqg)
  920. {
  921. struct cfq_rb_root *st;
  922. int i, j;
  923. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  924. if (!atomic_dec_and_test(&cfqg->ref))
  925. return;
  926. for_each_cfqg_st(cfqg, i, j, st)
  927. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  928. kfree(cfqg);
  929. }
  930. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  931. {
  932. /* Something wrong if we are trying to remove same group twice */
  933. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  934. hlist_del_init(&cfqg->cfqd_node);
  935. /*
  936. * Put the reference taken at the time of creation so that when all
  937. * queues are gone, group can be destroyed.
  938. */
  939. cfq_put_cfqg(cfqg);
  940. }
  941. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  942. {
  943. struct hlist_node *pos, *n;
  944. struct cfq_group *cfqg;
  945. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  946. /*
  947. * If cgroup removal path got to blk_group first and removed
  948. * it from cgroup list, then it will take care of destroying
  949. * cfqg also.
  950. */
  951. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  952. cfq_destroy_cfqg(cfqd, cfqg);
  953. }
  954. }
  955. /*
  956. * Blk cgroup controller notification saying that blkio_group object is being
  957. * delinked as associated cgroup object is going away. That also means that
  958. * no new IO will come in this group. So get rid of this group as soon as
  959. * any pending IO in the group is finished.
  960. *
  961. * This function is called under rcu_read_lock(). key is the rcu protected
  962. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  963. * read lock.
  964. *
  965. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  966. * it should not be NULL as even if elevator was exiting, cgroup deltion
  967. * path got to it first.
  968. */
  969. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  970. {
  971. unsigned long flags;
  972. struct cfq_data *cfqd = key;
  973. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  974. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  975. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  976. }
  977. #else /* GROUP_IOSCHED */
  978. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  979. {
  980. return &cfqd->root_group;
  981. }
  982. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  983. {
  984. return cfqg;
  985. }
  986. static inline void
  987. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  988. cfqq->cfqg = cfqg;
  989. }
  990. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  991. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  992. #endif /* GROUP_IOSCHED */
  993. /*
  994. * The cfqd->service_trees holds all pending cfq_queue's that have
  995. * requests waiting to be processed. It is sorted in the order that
  996. * we will service the queues.
  997. */
  998. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  999. bool add_front)
  1000. {
  1001. struct rb_node **p, *parent;
  1002. struct cfq_queue *__cfqq;
  1003. unsigned long rb_key;
  1004. struct cfq_rb_root *service_tree;
  1005. int left;
  1006. int new_cfqq = 1;
  1007. int group_changed = 0;
  1008. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  1009. if (!cfqd->cfq_group_isolation
  1010. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  1011. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  1012. /* Move this cfq to root group */
  1013. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  1014. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1015. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1016. cfqq->orig_cfqg = cfqq->cfqg;
  1017. cfqq->cfqg = &cfqd->root_group;
  1018. atomic_inc(&cfqd->root_group.ref);
  1019. group_changed = 1;
  1020. } else if (!cfqd->cfq_group_isolation
  1021. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1022. /* cfqq is sequential now needs to go to its original group */
  1023. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1024. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1025. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1026. cfq_put_cfqg(cfqq->cfqg);
  1027. cfqq->cfqg = cfqq->orig_cfqg;
  1028. cfqq->orig_cfqg = NULL;
  1029. group_changed = 1;
  1030. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1031. }
  1032. #endif
  1033. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1034. cfqq_type(cfqq));
  1035. if (cfq_class_idle(cfqq)) {
  1036. rb_key = CFQ_IDLE_DELAY;
  1037. parent = rb_last(&service_tree->rb);
  1038. if (parent && parent != &cfqq->rb_node) {
  1039. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1040. rb_key += __cfqq->rb_key;
  1041. } else
  1042. rb_key += jiffies;
  1043. } else if (!add_front) {
  1044. /*
  1045. * Get our rb key offset. Subtract any residual slice
  1046. * value carried from last service. A negative resid
  1047. * count indicates slice overrun, and this should position
  1048. * the next service time further away in the tree.
  1049. */
  1050. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1051. rb_key -= cfqq->slice_resid;
  1052. cfqq->slice_resid = 0;
  1053. } else {
  1054. rb_key = -HZ;
  1055. __cfqq = cfq_rb_first(service_tree);
  1056. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1057. }
  1058. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1059. new_cfqq = 0;
  1060. /*
  1061. * same position, nothing more to do
  1062. */
  1063. if (rb_key == cfqq->rb_key &&
  1064. cfqq->service_tree == service_tree)
  1065. return;
  1066. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1067. cfqq->service_tree = NULL;
  1068. }
  1069. left = 1;
  1070. parent = NULL;
  1071. cfqq->service_tree = service_tree;
  1072. p = &service_tree->rb.rb_node;
  1073. while (*p) {
  1074. struct rb_node **n;
  1075. parent = *p;
  1076. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1077. /*
  1078. * sort by key, that represents service time.
  1079. */
  1080. if (time_before(rb_key, __cfqq->rb_key))
  1081. n = &(*p)->rb_left;
  1082. else {
  1083. n = &(*p)->rb_right;
  1084. left = 0;
  1085. }
  1086. p = n;
  1087. }
  1088. if (left)
  1089. service_tree->left = &cfqq->rb_node;
  1090. cfqq->rb_key = rb_key;
  1091. rb_link_node(&cfqq->rb_node, parent, p);
  1092. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1093. service_tree->count++;
  1094. if ((add_front || !new_cfqq) && !group_changed)
  1095. return;
  1096. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1097. }
  1098. static struct cfq_queue *
  1099. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1100. sector_t sector, struct rb_node **ret_parent,
  1101. struct rb_node ***rb_link)
  1102. {
  1103. struct rb_node **p, *parent;
  1104. struct cfq_queue *cfqq = NULL;
  1105. parent = NULL;
  1106. p = &root->rb_node;
  1107. while (*p) {
  1108. struct rb_node **n;
  1109. parent = *p;
  1110. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1111. /*
  1112. * Sort strictly based on sector. Smallest to the left,
  1113. * largest to the right.
  1114. */
  1115. if (sector > blk_rq_pos(cfqq->next_rq))
  1116. n = &(*p)->rb_right;
  1117. else if (sector < blk_rq_pos(cfqq->next_rq))
  1118. n = &(*p)->rb_left;
  1119. else
  1120. break;
  1121. p = n;
  1122. cfqq = NULL;
  1123. }
  1124. *ret_parent = parent;
  1125. if (rb_link)
  1126. *rb_link = p;
  1127. return cfqq;
  1128. }
  1129. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1130. {
  1131. struct rb_node **p, *parent;
  1132. struct cfq_queue *__cfqq;
  1133. if (cfqq->p_root) {
  1134. rb_erase(&cfqq->p_node, cfqq->p_root);
  1135. cfqq->p_root = NULL;
  1136. }
  1137. if (cfq_class_idle(cfqq))
  1138. return;
  1139. if (!cfqq->next_rq)
  1140. return;
  1141. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1142. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1143. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1144. if (!__cfqq) {
  1145. rb_link_node(&cfqq->p_node, parent, p);
  1146. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1147. } else
  1148. cfqq->p_root = NULL;
  1149. }
  1150. /*
  1151. * Update cfqq's position in the service tree.
  1152. */
  1153. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1154. {
  1155. /*
  1156. * Resorting requires the cfqq to be on the RR list already.
  1157. */
  1158. if (cfq_cfqq_on_rr(cfqq)) {
  1159. cfq_service_tree_add(cfqd, cfqq, 0);
  1160. cfq_prio_tree_add(cfqd, cfqq);
  1161. }
  1162. }
  1163. /*
  1164. * add to busy list of queues for service, trying to be fair in ordering
  1165. * the pending list according to last request service
  1166. */
  1167. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1168. {
  1169. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1170. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1171. cfq_mark_cfqq_on_rr(cfqq);
  1172. cfqd->busy_queues++;
  1173. cfq_resort_rr_list(cfqd, cfqq);
  1174. }
  1175. /*
  1176. * Called when the cfqq no longer has requests pending, remove it from
  1177. * the service tree.
  1178. */
  1179. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1180. {
  1181. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1182. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1183. cfq_clear_cfqq_on_rr(cfqq);
  1184. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1185. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1186. cfqq->service_tree = NULL;
  1187. }
  1188. if (cfqq->p_root) {
  1189. rb_erase(&cfqq->p_node, cfqq->p_root);
  1190. cfqq->p_root = NULL;
  1191. }
  1192. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1193. BUG_ON(!cfqd->busy_queues);
  1194. cfqd->busy_queues--;
  1195. }
  1196. /*
  1197. * rb tree support functions
  1198. */
  1199. static void cfq_del_rq_rb(struct request *rq)
  1200. {
  1201. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1202. const int sync = rq_is_sync(rq);
  1203. BUG_ON(!cfqq->queued[sync]);
  1204. cfqq->queued[sync]--;
  1205. elv_rb_del(&cfqq->sort_list, rq);
  1206. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1207. /*
  1208. * Queue will be deleted from service tree when we actually
  1209. * expire it later. Right now just remove it from prio tree
  1210. * as it is empty.
  1211. */
  1212. if (cfqq->p_root) {
  1213. rb_erase(&cfqq->p_node, cfqq->p_root);
  1214. cfqq->p_root = NULL;
  1215. }
  1216. }
  1217. }
  1218. static void cfq_add_rq_rb(struct request *rq)
  1219. {
  1220. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1221. struct cfq_data *cfqd = cfqq->cfqd;
  1222. struct request *__alias, *prev;
  1223. cfqq->queued[rq_is_sync(rq)]++;
  1224. /*
  1225. * looks a little odd, but the first insert might return an alias.
  1226. * if that happens, put the alias on the dispatch list
  1227. */
  1228. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1229. cfq_dispatch_insert(cfqd->queue, __alias);
  1230. if (!cfq_cfqq_on_rr(cfqq))
  1231. cfq_add_cfqq_rr(cfqd, cfqq);
  1232. /*
  1233. * check if this request is a better next-serve candidate
  1234. */
  1235. prev = cfqq->next_rq;
  1236. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1237. /*
  1238. * adjust priority tree position, if ->next_rq changes
  1239. */
  1240. if (prev != cfqq->next_rq)
  1241. cfq_prio_tree_add(cfqd, cfqq);
  1242. BUG_ON(!cfqq->next_rq);
  1243. }
  1244. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1245. {
  1246. elv_rb_del(&cfqq->sort_list, rq);
  1247. cfqq->queued[rq_is_sync(rq)]--;
  1248. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1249. rq_data_dir(rq), rq_is_sync(rq));
  1250. cfq_add_rq_rb(rq);
  1251. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1252. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1253. rq_is_sync(rq));
  1254. }
  1255. static struct request *
  1256. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1257. {
  1258. struct task_struct *tsk = current;
  1259. struct cfq_io_context *cic;
  1260. struct cfq_queue *cfqq;
  1261. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1262. if (!cic)
  1263. return NULL;
  1264. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1265. if (cfqq) {
  1266. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1267. return elv_rb_find(&cfqq->sort_list, sector);
  1268. }
  1269. return NULL;
  1270. }
  1271. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1272. {
  1273. struct cfq_data *cfqd = q->elevator->elevator_data;
  1274. cfqd->rq_in_driver++;
  1275. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1276. cfqd->rq_in_driver);
  1277. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1278. }
  1279. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1280. {
  1281. struct cfq_data *cfqd = q->elevator->elevator_data;
  1282. WARN_ON(!cfqd->rq_in_driver);
  1283. cfqd->rq_in_driver--;
  1284. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1285. cfqd->rq_in_driver);
  1286. }
  1287. static void cfq_remove_request(struct request *rq)
  1288. {
  1289. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1290. if (cfqq->next_rq == rq)
  1291. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1292. list_del_init(&rq->queuelist);
  1293. cfq_del_rq_rb(rq);
  1294. cfqq->cfqd->rq_queued--;
  1295. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1296. rq_data_dir(rq), rq_is_sync(rq));
  1297. if (rq->cmd_flags & REQ_META) {
  1298. WARN_ON(!cfqq->meta_pending);
  1299. cfqq->meta_pending--;
  1300. }
  1301. }
  1302. static int cfq_merge(struct request_queue *q, struct request **req,
  1303. struct bio *bio)
  1304. {
  1305. struct cfq_data *cfqd = q->elevator->elevator_data;
  1306. struct request *__rq;
  1307. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1308. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1309. *req = __rq;
  1310. return ELEVATOR_FRONT_MERGE;
  1311. }
  1312. return ELEVATOR_NO_MERGE;
  1313. }
  1314. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1315. int type)
  1316. {
  1317. if (type == ELEVATOR_FRONT_MERGE) {
  1318. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1319. cfq_reposition_rq_rb(cfqq, req);
  1320. }
  1321. }
  1322. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1323. struct bio *bio)
  1324. {
  1325. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1326. bio_data_dir(bio), cfq_bio_sync(bio));
  1327. }
  1328. static void
  1329. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1330. struct request *next)
  1331. {
  1332. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1333. /*
  1334. * reposition in fifo if next is older than rq
  1335. */
  1336. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1337. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1338. list_move(&rq->queuelist, &next->queuelist);
  1339. rq_set_fifo_time(rq, rq_fifo_time(next));
  1340. }
  1341. if (cfqq->next_rq == next)
  1342. cfqq->next_rq = rq;
  1343. cfq_remove_request(next);
  1344. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1345. rq_data_dir(next), rq_is_sync(next));
  1346. }
  1347. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1348. struct bio *bio)
  1349. {
  1350. struct cfq_data *cfqd = q->elevator->elevator_data;
  1351. struct cfq_io_context *cic;
  1352. struct cfq_queue *cfqq;
  1353. /*
  1354. * Disallow merge of a sync bio into an async request.
  1355. */
  1356. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1357. return false;
  1358. /*
  1359. * Lookup the cfqq that this bio will be queued with. Allow
  1360. * merge only if rq is queued there.
  1361. */
  1362. cic = cfq_cic_lookup(cfqd, current->io_context);
  1363. if (!cic)
  1364. return false;
  1365. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1366. return cfqq == RQ_CFQQ(rq);
  1367. }
  1368. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1369. {
  1370. del_timer(&cfqd->idle_slice_timer);
  1371. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1372. }
  1373. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1374. struct cfq_queue *cfqq)
  1375. {
  1376. if (cfqq) {
  1377. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1378. cfqd->serving_prio, cfqd->serving_type);
  1379. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1380. cfqq->slice_start = 0;
  1381. cfqq->dispatch_start = jiffies;
  1382. cfqq->allocated_slice = 0;
  1383. cfqq->slice_end = 0;
  1384. cfqq->slice_dispatch = 0;
  1385. cfqq->nr_sectors = 0;
  1386. cfq_clear_cfqq_wait_request(cfqq);
  1387. cfq_clear_cfqq_must_dispatch(cfqq);
  1388. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1389. cfq_clear_cfqq_fifo_expire(cfqq);
  1390. cfq_mark_cfqq_slice_new(cfqq);
  1391. cfq_del_timer(cfqd, cfqq);
  1392. }
  1393. cfqd->active_queue = cfqq;
  1394. }
  1395. /*
  1396. * current cfqq expired its slice (or was too idle), select new one
  1397. */
  1398. static void
  1399. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1400. bool timed_out)
  1401. {
  1402. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1403. if (cfq_cfqq_wait_request(cfqq))
  1404. cfq_del_timer(cfqd, cfqq);
  1405. cfq_clear_cfqq_wait_request(cfqq);
  1406. cfq_clear_cfqq_wait_busy(cfqq);
  1407. /*
  1408. * If this cfqq is shared between multiple processes, check to
  1409. * make sure that those processes are still issuing I/Os within
  1410. * the mean seek distance. If not, it may be time to break the
  1411. * queues apart again.
  1412. */
  1413. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1414. cfq_mark_cfqq_split_coop(cfqq);
  1415. /*
  1416. * store what was left of this slice, if the queue idled/timed out
  1417. */
  1418. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1419. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1420. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1421. }
  1422. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1423. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1424. cfq_del_cfqq_rr(cfqd, cfqq);
  1425. cfq_resort_rr_list(cfqd, cfqq);
  1426. if (cfqq == cfqd->active_queue)
  1427. cfqd->active_queue = NULL;
  1428. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1429. cfqd->grp_service_tree.active = NULL;
  1430. if (cfqd->active_cic) {
  1431. put_io_context(cfqd->active_cic->ioc);
  1432. cfqd->active_cic = NULL;
  1433. }
  1434. }
  1435. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1436. {
  1437. struct cfq_queue *cfqq = cfqd->active_queue;
  1438. if (cfqq)
  1439. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1440. }
  1441. /*
  1442. * Get next queue for service. Unless we have a queue preemption,
  1443. * we'll simply select the first cfqq in the service tree.
  1444. */
  1445. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1446. {
  1447. struct cfq_rb_root *service_tree =
  1448. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1449. cfqd->serving_type);
  1450. if (!cfqd->rq_queued)
  1451. return NULL;
  1452. /* There is nothing to dispatch */
  1453. if (!service_tree)
  1454. return NULL;
  1455. if (RB_EMPTY_ROOT(&service_tree->rb))
  1456. return NULL;
  1457. return cfq_rb_first(service_tree);
  1458. }
  1459. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1460. {
  1461. struct cfq_group *cfqg;
  1462. struct cfq_queue *cfqq;
  1463. int i, j;
  1464. struct cfq_rb_root *st;
  1465. if (!cfqd->rq_queued)
  1466. return NULL;
  1467. cfqg = cfq_get_next_cfqg(cfqd);
  1468. if (!cfqg)
  1469. return NULL;
  1470. for_each_cfqg_st(cfqg, i, j, st)
  1471. if ((cfqq = cfq_rb_first(st)) != NULL)
  1472. return cfqq;
  1473. return NULL;
  1474. }
  1475. /*
  1476. * Get and set a new active queue for service.
  1477. */
  1478. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1479. struct cfq_queue *cfqq)
  1480. {
  1481. if (!cfqq)
  1482. cfqq = cfq_get_next_queue(cfqd);
  1483. __cfq_set_active_queue(cfqd, cfqq);
  1484. return cfqq;
  1485. }
  1486. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1487. struct request *rq)
  1488. {
  1489. if (blk_rq_pos(rq) >= cfqd->last_position)
  1490. return blk_rq_pos(rq) - cfqd->last_position;
  1491. else
  1492. return cfqd->last_position - blk_rq_pos(rq);
  1493. }
  1494. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1495. struct request *rq)
  1496. {
  1497. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1498. }
  1499. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1500. struct cfq_queue *cur_cfqq)
  1501. {
  1502. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1503. struct rb_node *parent, *node;
  1504. struct cfq_queue *__cfqq;
  1505. sector_t sector = cfqd->last_position;
  1506. if (RB_EMPTY_ROOT(root))
  1507. return NULL;
  1508. /*
  1509. * First, if we find a request starting at the end of the last
  1510. * request, choose it.
  1511. */
  1512. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1513. if (__cfqq)
  1514. return __cfqq;
  1515. /*
  1516. * If the exact sector wasn't found, the parent of the NULL leaf
  1517. * will contain the closest sector.
  1518. */
  1519. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1520. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1521. return __cfqq;
  1522. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1523. node = rb_next(&__cfqq->p_node);
  1524. else
  1525. node = rb_prev(&__cfqq->p_node);
  1526. if (!node)
  1527. return NULL;
  1528. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1529. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1530. return __cfqq;
  1531. return NULL;
  1532. }
  1533. /*
  1534. * cfqd - obvious
  1535. * cur_cfqq - passed in so that we don't decide that the current queue is
  1536. * closely cooperating with itself.
  1537. *
  1538. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1539. * one request, and that cfqd->last_position reflects a position on the disk
  1540. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1541. * assumption.
  1542. */
  1543. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1544. struct cfq_queue *cur_cfqq)
  1545. {
  1546. struct cfq_queue *cfqq;
  1547. if (cfq_class_idle(cur_cfqq))
  1548. return NULL;
  1549. if (!cfq_cfqq_sync(cur_cfqq))
  1550. return NULL;
  1551. if (CFQQ_SEEKY(cur_cfqq))
  1552. return NULL;
  1553. /*
  1554. * Don't search priority tree if it's the only queue in the group.
  1555. */
  1556. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1557. return NULL;
  1558. /*
  1559. * We should notice if some of the queues are cooperating, eg
  1560. * working closely on the same area of the disk. In that case,
  1561. * we can group them together and don't waste time idling.
  1562. */
  1563. cfqq = cfqq_close(cfqd, cur_cfqq);
  1564. if (!cfqq)
  1565. return NULL;
  1566. /* If new queue belongs to different cfq_group, don't choose it */
  1567. if (cur_cfqq->cfqg != cfqq->cfqg)
  1568. return NULL;
  1569. /*
  1570. * It only makes sense to merge sync queues.
  1571. */
  1572. if (!cfq_cfqq_sync(cfqq))
  1573. return NULL;
  1574. if (CFQQ_SEEKY(cfqq))
  1575. return NULL;
  1576. /*
  1577. * Do not merge queues of different priority classes
  1578. */
  1579. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1580. return NULL;
  1581. return cfqq;
  1582. }
  1583. /*
  1584. * Determine whether we should enforce idle window for this queue.
  1585. */
  1586. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1587. {
  1588. enum wl_prio_t prio = cfqq_prio(cfqq);
  1589. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1590. BUG_ON(!service_tree);
  1591. BUG_ON(!service_tree->count);
  1592. if (!cfqd->cfq_slice_idle)
  1593. return false;
  1594. /* We never do for idle class queues. */
  1595. if (prio == IDLE_WORKLOAD)
  1596. return false;
  1597. /* We do for queues that were marked with idle window flag. */
  1598. if (cfq_cfqq_idle_window(cfqq) &&
  1599. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1600. return true;
  1601. /*
  1602. * Otherwise, we do only if they are the last ones
  1603. * in their service tree.
  1604. */
  1605. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1606. return true;
  1607. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1608. service_tree->count);
  1609. return false;
  1610. }
  1611. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1612. {
  1613. struct cfq_queue *cfqq = cfqd->active_queue;
  1614. struct cfq_io_context *cic;
  1615. unsigned long sl, group_idle = 0;
  1616. /*
  1617. * SSD device without seek penalty, disable idling. But only do so
  1618. * for devices that support queuing, otherwise we still have a problem
  1619. * with sync vs async workloads.
  1620. */
  1621. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1622. return;
  1623. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1624. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1625. /*
  1626. * idle is disabled, either manually or by past process history
  1627. */
  1628. if (!cfq_should_idle(cfqd, cfqq)) {
  1629. /* no queue idling. Check for group idling */
  1630. if (cfqd->cfq_group_idle)
  1631. group_idle = cfqd->cfq_group_idle;
  1632. else
  1633. return;
  1634. }
  1635. /*
  1636. * still active requests from this queue, don't idle
  1637. */
  1638. if (cfqq->dispatched)
  1639. return;
  1640. /*
  1641. * task has exited, don't wait
  1642. */
  1643. cic = cfqd->active_cic;
  1644. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1645. return;
  1646. /*
  1647. * If our average think time is larger than the remaining time
  1648. * slice, then don't idle. This avoids overrunning the allotted
  1649. * time slice.
  1650. */
  1651. if (sample_valid(cic->ttime_samples) &&
  1652. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1653. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1654. cic->ttime_mean);
  1655. return;
  1656. }
  1657. /* There are other queues in the group, don't do group idle */
  1658. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1659. return;
  1660. cfq_mark_cfqq_wait_request(cfqq);
  1661. if (group_idle)
  1662. sl = cfqd->cfq_group_idle;
  1663. else
  1664. sl = cfqd->cfq_slice_idle;
  1665. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1666. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1667. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1668. group_idle ? 1 : 0);
  1669. }
  1670. /*
  1671. * Move request from internal lists to the request queue dispatch list.
  1672. */
  1673. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1674. {
  1675. struct cfq_data *cfqd = q->elevator->elevator_data;
  1676. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1677. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1678. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1679. cfq_remove_request(rq);
  1680. cfqq->dispatched++;
  1681. (RQ_CFQG(rq))->dispatched++;
  1682. elv_dispatch_sort(q, rq);
  1683. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1684. cfqq->nr_sectors += blk_rq_sectors(rq);
  1685. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1686. rq_data_dir(rq), rq_is_sync(rq));
  1687. }
  1688. /*
  1689. * return expired entry, or NULL to just start from scratch in rbtree
  1690. */
  1691. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1692. {
  1693. struct request *rq = NULL;
  1694. if (cfq_cfqq_fifo_expire(cfqq))
  1695. return NULL;
  1696. cfq_mark_cfqq_fifo_expire(cfqq);
  1697. if (list_empty(&cfqq->fifo))
  1698. return NULL;
  1699. rq = rq_entry_fifo(cfqq->fifo.next);
  1700. if (time_before(jiffies, rq_fifo_time(rq)))
  1701. rq = NULL;
  1702. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1703. return rq;
  1704. }
  1705. static inline int
  1706. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1707. {
  1708. const int base_rq = cfqd->cfq_slice_async_rq;
  1709. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1710. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1711. }
  1712. /*
  1713. * Must be called with the queue_lock held.
  1714. */
  1715. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1716. {
  1717. int process_refs, io_refs;
  1718. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1719. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1720. BUG_ON(process_refs < 0);
  1721. return process_refs;
  1722. }
  1723. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1724. {
  1725. int process_refs, new_process_refs;
  1726. struct cfq_queue *__cfqq;
  1727. /*
  1728. * If there are no process references on the new_cfqq, then it is
  1729. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1730. * chain may have dropped their last reference (not just their
  1731. * last process reference).
  1732. */
  1733. if (!cfqq_process_refs(new_cfqq))
  1734. return;
  1735. /* Avoid a circular list and skip interim queue merges */
  1736. while ((__cfqq = new_cfqq->new_cfqq)) {
  1737. if (__cfqq == cfqq)
  1738. return;
  1739. new_cfqq = __cfqq;
  1740. }
  1741. process_refs = cfqq_process_refs(cfqq);
  1742. new_process_refs = cfqq_process_refs(new_cfqq);
  1743. /*
  1744. * If the process for the cfqq has gone away, there is no
  1745. * sense in merging the queues.
  1746. */
  1747. if (process_refs == 0 || new_process_refs == 0)
  1748. return;
  1749. /*
  1750. * Merge in the direction of the lesser amount of work.
  1751. */
  1752. if (new_process_refs >= process_refs) {
  1753. cfqq->new_cfqq = new_cfqq;
  1754. atomic_add(process_refs, &new_cfqq->ref);
  1755. } else {
  1756. new_cfqq->new_cfqq = cfqq;
  1757. atomic_add(new_process_refs, &cfqq->ref);
  1758. }
  1759. }
  1760. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1761. struct cfq_group *cfqg, enum wl_prio_t prio)
  1762. {
  1763. struct cfq_queue *queue;
  1764. int i;
  1765. bool key_valid = false;
  1766. unsigned long lowest_key = 0;
  1767. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1768. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1769. /* select the one with lowest rb_key */
  1770. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1771. if (queue &&
  1772. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1773. lowest_key = queue->rb_key;
  1774. cur_best = i;
  1775. key_valid = true;
  1776. }
  1777. }
  1778. return cur_best;
  1779. }
  1780. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1781. {
  1782. unsigned slice;
  1783. unsigned count;
  1784. struct cfq_rb_root *st;
  1785. unsigned group_slice;
  1786. if (!cfqg) {
  1787. cfqd->serving_prio = IDLE_WORKLOAD;
  1788. cfqd->workload_expires = jiffies + 1;
  1789. return;
  1790. }
  1791. /* Choose next priority. RT > BE > IDLE */
  1792. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1793. cfqd->serving_prio = RT_WORKLOAD;
  1794. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1795. cfqd->serving_prio = BE_WORKLOAD;
  1796. else {
  1797. cfqd->serving_prio = IDLE_WORKLOAD;
  1798. cfqd->workload_expires = jiffies + 1;
  1799. return;
  1800. }
  1801. /*
  1802. * For RT and BE, we have to choose also the type
  1803. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1804. * expiration time
  1805. */
  1806. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1807. count = st->count;
  1808. /*
  1809. * check workload expiration, and that we still have other queues ready
  1810. */
  1811. if (count && !time_after(jiffies, cfqd->workload_expires))
  1812. return;
  1813. /* otherwise select new workload type */
  1814. cfqd->serving_type =
  1815. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1816. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1817. count = st->count;
  1818. /*
  1819. * the workload slice is computed as a fraction of target latency
  1820. * proportional to the number of queues in that workload, over
  1821. * all the queues in the same priority class
  1822. */
  1823. group_slice = cfq_group_slice(cfqd, cfqg);
  1824. slice = group_slice * count /
  1825. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1826. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1827. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1828. unsigned int tmp;
  1829. /*
  1830. * Async queues are currently system wide. Just taking
  1831. * proportion of queues with-in same group will lead to higher
  1832. * async ratio system wide as generally root group is going
  1833. * to have higher weight. A more accurate thing would be to
  1834. * calculate system wide asnc/sync ratio.
  1835. */
  1836. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1837. tmp = tmp/cfqd->busy_queues;
  1838. slice = min_t(unsigned, slice, tmp);
  1839. /* async workload slice is scaled down according to
  1840. * the sync/async slice ratio. */
  1841. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1842. } else
  1843. /* sync workload slice is at least 2 * cfq_slice_idle */
  1844. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1845. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1846. cfq_log(cfqd, "workload slice:%d", slice);
  1847. cfqd->workload_expires = jiffies + slice;
  1848. cfqd->noidle_tree_requires_idle = false;
  1849. }
  1850. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1851. {
  1852. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1853. struct cfq_group *cfqg;
  1854. if (RB_EMPTY_ROOT(&st->rb))
  1855. return NULL;
  1856. cfqg = cfq_rb_first_group(st);
  1857. st->active = &cfqg->rb_node;
  1858. update_min_vdisktime(st);
  1859. return cfqg;
  1860. }
  1861. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1862. {
  1863. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1864. cfqd->serving_group = cfqg;
  1865. /* Restore the workload type data */
  1866. if (cfqg->saved_workload_slice) {
  1867. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1868. cfqd->serving_type = cfqg->saved_workload;
  1869. cfqd->serving_prio = cfqg->saved_serving_prio;
  1870. } else
  1871. cfqd->workload_expires = jiffies - 1;
  1872. choose_service_tree(cfqd, cfqg);
  1873. }
  1874. /*
  1875. * Select a queue for service. If we have a current active queue,
  1876. * check whether to continue servicing it, or retrieve and set a new one.
  1877. */
  1878. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1879. {
  1880. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1881. cfqq = cfqd->active_queue;
  1882. if (!cfqq)
  1883. goto new_queue;
  1884. if (!cfqd->rq_queued)
  1885. return NULL;
  1886. /*
  1887. * We were waiting for group to get backlogged. Expire the queue
  1888. */
  1889. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1890. goto expire;
  1891. /*
  1892. * The active queue has run out of time, expire it and select new.
  1893. */
  1894. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1895. /*
  1896. * If slice had not expired at the completion of last request
  1897. * we might not have turned on wait_busy flag. Don't expire
  1898. * the queue yet. Allow the group to get backlogged.
  1899. *
  1900. * The very fact that we have used the slice, that means we
  1901. * have been idling all along on this queue and it should be
  1902. * ok to wait for this request to complete.
  1903. */
  1904. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1905. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1906. cfqq = NULL;
  1907. goto keep_queue;
  1908. } else
  1909. goto check_group_idle;
  1910. }
  1911. /*
  1912. * The active queue has requests and isn't expired, allow it to
  1913. * dispatch.
  1914. */
  1915. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1916. goto keep_queue;
  1917. /*
  1918. * If another queue has a request waiting within our mean seek
  1919. * distance, let it run. The expire code will check for close
  1920. * cooperators and put the close queue at the front of the service
  1921. * tree. If possible, merge the expiring queue with the new cfqq.
  1922. */
  1923. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1924. if (new_cfqq) {
  1925. if (!cfqq->new_cfqq)
  1926. cfq_setup_merge(cfqq, new_cfqq);
  1927. goto expire;
  1928. }
  1929. /*
  1930. * No requests pending. If the active queue still has requests in
  1931. * flight or is idling for a new request, allow either of these
  1932. * conditions to happen (or time out) before selecting a new queue.
  1933. */
  1934. if (timer_pending(&cfqd->idle_slice_timer)) {
  1935. cfqq = NULL;
  1936. goto keep_queue;
  1937. }
  1938. /*
  1939. * This is a deep seek queue, but the device is much faster than
  1940. * the queue can deliver, don't idle
  1941. **/
  1942. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1943. (cfq_cfqq_slice_new(cfqq) ||
  1944. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1945. cfq_clear_cfqq_deep(cfqq);
  1946. cfq_clear_cfqq_idle_window(cfqq);
  1947. }
  1948. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1949. cfqq = NULL;
  1950. goto keep_queue;
  1951. }
  1952. /*
  1953. * If group idle is enabled and there are requests dispatched from
  1954. * this group, wait for requests to complete.
  1955. */
  1956. check_group_idle:
  1957. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1958. && cfqq->cfqg->dispatched) {
  1959. cfqq = NULL;
  1960. goto keep_queue;
  1961. }
  1962. expire:
  1963. cfq_slice_expired(cfqd, 0);
  1964. new_queue:
  1965. /*
  1966. * Current queue expired. Check if we have to switch to a new
  1967. * service tree
  1968. */
  1969. if (!new_cfqq)
  1970. cfq_choose_cfqg(cfqd);
  1971. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1972. keep_queue:
  1973. return cfqq;
  1974. }
  1975. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1976. {
  1977. int dispatched = 0;
  1978. while (cfqq->next_rq) {
  1979. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1980. dispatched++;
  1981. }
  1982. BUG_ON(!list_empty(&cfqq->fifo));
  1983. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1984. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1985. return dispatched;
  1986. }
  1987. /*
  1988. * Drain our current requests. Used for barriers and when switching
  1989. * io schedulers on-the-fly.
  1990. */
  1991. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1992. {
  1993. struct cfq_queue *cfqq;
  1994. int dispatched = 0;
  1995. /* Expire the timeslice of the current active queue first */
  1996. cfq_slice_expired(cfqd, 0);
  1997. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1998. __cfq_set_active_queue(cfqd, cfqq);
  1999. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2000. }
  2001. BUG_ON(cfqd->busy_queues);
  2002. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2003. return dispatched;
  2004. }
  2005. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2006. struct cfq_queue *cfqq)
  2007. {
  2008. /* the queue hasn't finished any request, can't estimate */
  2009. if (cfq_cfqq_slice_new(cfqq))
  2010. return true;
  2011. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2012. cfqq->slice_end))
  2013. return true;
  2014. return false;
  2015. }
  2016. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2017. {
  2018. unsigned int max_dispatch;
  2019. /*
  2020. * Drain async requests before we start sync IO
  2021. */
  2022. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2023. return false;
  2024. /*
  2025. * If this is an async queue and we have sync IO in flight, let it wait
  2026. */
  2027. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2028. return false;
  2029. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2030. if (cfq_class_idle(cfqq))
  2031. max_dispatch = 1;
  2032. /*
  2033. * Does this cfqq already have too much IO in flight?
  2034. */
  2035. if (cfqq->dispatched >= max_dispatch) {
  2036. /*
  2037. * idle queue must always only have a single IO in flight
  2038. */
  2039. if (cfq_class_idle(cfqq))
  2040. return false;
  2041. /*
  2042. * We have other queues, don't allow more IO from this one
  2043. */
  2044. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  2045. return false;
  2046. /*
  2047. * Sole queue user, no limit
  2048. */
  2049. if (cfqd->busy_queues == 1)
  2050. max_dispatch = -1;
  2051. else
  2052. /*
  2053. * Normally we start throttling cfqq when cfq_quantum/2
  2054. * requests have been dispatched. But we can drive
  2055. * deeper queue depths at the beginning of slice
  2056. * subjected to upper limit of cfq_quantum.
  2057. * */
  2058. max_dispatch = cfqd->cfq_quantum;
  2059. }
  2060. /*
  2061. * Async queues must wait a bit before being allowed dispatch.
  2062. * We also ramp up the dispatch depth gradually for async IO,
  2063. * based on the last sync IO we serviced
  2064. */
  2065. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2066. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2067. unsigned int depth;
  2068. depth = last_sync / cfqd->cfq_slice[1];
  2069. if (!depth && !cfqq->dispatched)
  2070. depth = 1;
  2071. if (depth < max_dispatch)
  2072. max_dispatch = depth;
  2073. }
  2074. /*
  2075. * If we're below the current max, allow a dispatch
  2076. */
  2077. return cfqq->dispatched < max_dispatch;
  2078. }
  2079. /*
  2080. * Dispatch a request from cfqq, moving them to the request queue
  2081. * dispatch list.
  2082. */
  2083. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2084. {
  2085. struct request *rq;
  2086. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2087. if (!cfq_may_dispatch(cfqd, cfqq))
  2088. return false;
  2089. /*
  2090. * follow expired path, else get first next available
  2091. */
  2092. rq = cfq_check_fifo(cfqq);
  2093. if (!rq)
  2094. rq = cfqq->next_rq;
  2095. /*
  2096. * insert request into driver dispatch list
  2097. */
  2098. cfq_dispatch_insert(cfqd->queue, rq);
  2099. if (!cfqd->active_cic) {
  2100. struct cfq_io_context *cic = RQ_CIC(rq);
  2101. atomic_long_inc(&cic->ioc->refcount);
  2102. cfqd->active_cic = cic;
  2103. }
  2104. return true;
  2105. }
  2106. /*
  2107. * Find the cfqq that we need to service and move a request from that to the
  2108. * dispatch list
  2109. */
  2110. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2111. {
  2112. struct cfq_data *cfqd = q->elevator->elevator_data;
  2113. struct cfq_queue *cfqq;
  2114. if (!cfqd->busy_queues)
  2115. return 0;
  2116. if (unlikely(force))
  2117. return cfq_forced_dispatch(cfqd);
  2118. cfqq = cfq_select_queue(cfqd);
  2119. if (!cfqq)
  2120. return 0;
  2121. /*
  2122. * Dispatch a request from this cfqq, if it is allowed
  2123. */
  2124. if (!cfq_dispatch_request(cfqd, cfqq))
  2125. return 0;
  2126. cfqq->slice_dispatch++;
  2127. cfq_clear_cfqq_must_dispatch(cfqq);
  2128. /*
  2129. * expire an async queue immediately if it has used up its slice. idle
  2130. * queue always expire after 1 dispatch round.
  2131. */
  2132. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2133. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2134. cfq_class_idle(cfqq))) {
  2135. cfqq->slice_end = jiffies + 1;
  2136. cfq_slice_expired(cfqd, 0);
  2137. }
  2138. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2139. return 1;
  2140. }
  2141. /*
  2142. * task holds one reference to the queue, dropped when task exits. each rq
  2143. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2144. *
  2145. * Each cfq queue took a reference on the parent group. Drop it now.
  2146. * queue lock must be held here.
  2147. */
  2148. static void cfq_put_queue(struct cfq_queue *cfqq)
  2149. {
  2150. struct cfq_data *cfqd = cfqq->cfqd;
  2151. struct cfq_group *cfqg, *orig_cfqg;
  2152. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2153. if (!atomic_dec_and_test(&cfqq->ref))
  2154. return;
  2155. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2156. BUG_ON(rb_first(&cfqq->sort_list));
  2157. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2158. cfqg = cfqq->cfqg;
  2159. orig_cfqg = cfqq->orig_cfqg;
  2160. if (unlikely(cfqd->active_queue == cfqq)) {
  2161. __cfq_slice_expired(cfqd, cfqq, 0);
  2162. cfq_schedule_dispatch(cfqd);
  2163. }
  2164. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2165. kmem_cache_free(cfq_pool, cfqq);
  2166. cfq_put_cfqg(cfqg);
  2167. if (orig_cfqg)
  2168. cfq_put_cfqg(orig_cfqg);
  2169. }
  2170. /*
  2171. * Must always be called with the rcu_read_lock() held
  2172. */
  2173. static void
  2174. __call_for_each_cic(struct io_context *ioc,
  2175. void (*func)(struct io_context *, struct cfq_io_context *))
  2176. {
  2177. struct cfq_io_context *cic;
  2178. struct hlist_node *n;
  2179. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2180. func(ioc, cic);
  2181. }
  2182. /*
  2183. * Call func for each cic attached to this ioc.
  2184. */
  2185. static void
  2186. call_for_each_cic(struct io_context *ioc,
  2187. void (*func)(struct io_context *, struct cfq_io_context *))
  2188. {
  2189. rcu_read_lock();
  2190. __call_for_each_cic(ioc, func);
  2191. rcu_read_unlock();
  2192. }
  2193. static void cfq_cic_free_rcu(struct rcu_head *head)
  2194. {
  2195. struct cfq_io_context *cic;
  2196. cic = container_of(head, struct cfq_io_context, rcu_head);
  2197. kmem_cache_free(cfq_ioc_pool, cic);
  2198. elv_ioc_count_dec(cfq_ioc_count);
  2199. if (ioc_gone) {
  2200. /*
  2201. * CFQ scheduler is exiting, grab exit lock and check
  2202. * the pending io context count. If it hits zero,
  2203. * complete ioc_gone and set it back to NULL
  2204. */
  2205. spin_lock(&ioc_gone_lock);
  2206. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2207. complete(ioc_gone);
  2208. ioc_gone = NULL;
  2209. }
  2210. spin_unlock(&ioc_gone_lock);
  2211. }
  2212. }
  2213. static void cfq_cic_free(struct cfq_io_context *cic)
  2214. {
  2215. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2216. }
  2217. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2218. {
  2219. unsigned long flags;
  2220. unsigned long dead_key = (unsigned long) cic->key;
  2221. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2222. spin_lock_irqsave(&ioc->lock, flags);
  2223. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2224. hlist_del_rcu(&cic->cic_list);
  2225. spin_unlock_irqrestore(&ioc->lock, flags);
  2226. cfq_cic_free(cic);
  2227. }
  2228. /*
  2229. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2230. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2231. * and ->trim() which is called with the task lock held
  2232. */
  2233. static void cfq_free_io_context(struct io_context *ioc)
  2234. {
  2235. /*
  2236. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2237. * so no more cic's are allowed to be linked into this ioc. So it
  2238. * should be ok to iterate over the known list, we will see all cic's
  2239. * since no new ones are added.
  2240. */
  2241. __call_for_each_cic(ioc, cic_free_func);
  2242. }
  2243. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2244. {
  2245. struct cfq_queue *__cfqq, *next;
  2246. /*
  2247. * If this queue was scheduled to merge with another queue, be
  2248. * sure to drop the reference taken on that queue (and others in
  2249. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2250. */
  2251. __cfqq = cfqq->new_cfqq;
  2252. while (__cfqq) {
  2253. if (__cfqq == cfqq) {
  2254. WARN(1, "cfqq->new_cfqq loop detected\n");
  2255. break;
  2256. }
  2257. next = __cfqq->new_cfqq;
  2258. cfq_put_queue(__cfqq);
  2259. __cfqq = next;
  2260. }
  2261. }
  2262. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2263. {
  2264. if (unlikely(cfqq == cfqd->active_queue)) {
  2265. __cfq_slice_expired(cfqd, cfqq, 0);
  2266. cfq_schedule_dispatch(cfqd);
  2267. }
  2268. cfq_put_cooperator(cfqq);
  2269. cfq_put_queue(cfqq);
  2270. }
  2271. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2272. struct cfq_io_context *cic)
  2273. {
  2274. struct io_context *ioc = cic->ioc;
  2275. list_del_init(&cic->queue_list);
  2276. /*
  2277. * Make sure dead mark is seen for dead queues
  2278. */
  2279. smp_wmb();
  2280. cic->key = cfqd_dead_key(cfqd);
  2281. if (ioc->ioc_data == cic)
  2282. rcu_assign_pointer(ioc->ioc_data, NULL);
  2283. if (cic->cfqq[BLK_RW_ASYNC]) {
  2284. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2285. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2286. }
  2287. if (cic->cfqq[BLK_RW_SYNC]) {
  2288. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2289. cic->cfqq[BLK_RW_SYNC] = NULL;
  2290. }
  2291. }
  2292. static void cfq_exit_single_io_context(struct io_context *ioc,
  2293. struct cfq_io_context *cic)
  2294. {
  2295. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2296. if (cfqd) {
  2297. struct request_queue *q = cfqd->queue;
  2298. unsigned long flags;
  2299. spin_lock_irqsave(q->queue_lock, flags);
  2300. /*
  2301. * Ensure we get a fresh copy of the ->key to prevent
  2302. * race between exiting task and queue
  2303. */
  2304. smp_read_barrier_depends();
  2305. if (cic->key == cfqd)
  2306. __cfq_exit_single_io_context(cfqd, cic);
  2307. spin_unlock_irqrestore(q->queue_lock, flags);
  2308. }
  2309. }
  2310. /*
  2311. * The process that ioc belongs to has exited, we need to clean up
  2312. * and put the internal structures we have that belongs to that process.
  2313. */
  2314. static void cfq_exit_io_context(struct io_context *ioc)
  2315. {
  2316. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2317. }
  2318. static struct cfq_io_context *
  2319. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2320. {
  2321. struct cfq_io_context *cic;
  2322. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2323. cfqd->queue->node);
  2324. if (cic) {
  2325. cic->last_end_request = jiffies;
  2326. INIT_LIST_HEAD(&cic->queue_list);
  2327. INIT_HLIST_NODE(&cic->cic_list);
  2328. cic->dtor = cfq_free_io_context;
  2329. cic->exit = cfq_exit_io_context;
  2330. elv_ioc_count_inc(cfq_ioc_count);
  2331. }
  2332. return cic;
  2333. }
  2334. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2335. {
  2336. struct task_struct *tsk = current;
  2337. int ioprio_class;
  2338. if (!cfq_cfqq_prio_changed(cfqq))
  2339. return;
  2340. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2341. switch (ioprio_class) {
  2342. default:
  2343. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2344. case IOPRIO_CLASS_NONE:
  2345. /*
  2346. * no prio set, inherit CPU scheduling settings
  2347. */
  2348. cfqq->ioprio = task_nice_ioprio(tsk);
  2349. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2350. break;
  2351. case IOPRIO_CLASS_RT:
  2352. cfqq->ioprio = task_ioprio(ioc);
  2353. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2354. break;
  2355. case IOPRIO_CLASS_BE:
  2356. cfqq->ioprio = task_ioprio(ioc);
  2357. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2358. break;
  2359. case IOPRIO_CLASS_IDLE:
  2360. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2361. cfqq->ioprio = 7;
  2362. cfq_clear_cfqq_idle_window(cfqq);
  2363. break;
  2364. }
  2365. /*
  2366. * keep track of original prio settings in case we have to temporarily
  2367. * elevate the priority of this queue
  2368. */
  2369. cfqq->org_ioprio = cfqq->ioprio;
  2370. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2371. cfq_clear_cfqq_prio_changed(cfqq);
  2372. }
  2373. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2374. {
  2375. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2376. struct cfq_queue *cfqq;
  2377. unsigned long flags;
  2378. if (unlikely(!cfqd))
  2379. return;
  2380. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2381. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2382. if (cfqq) {
  2383. struct cfq_queue *new_cfqq;
  2384. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2385. GFP_ATOMIC);
  2386. if (new_cfqq) {
  2387. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2388. cfq_put_queue(cfqq);
  2389. }
  2390. }
  2391. cfqq = cic->cfqq[BLK_RW_SYNC];
  2392. if (cfqq)
  2393. cfq_mark_cfqq_prio_changed(cfqq);
  2394. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2395. }
  2396. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2397. {
  2398. call_for_each_cic(ioc, changed_ioprio);
  2399. ioc->ioprio_changed = 0;
  2400. }
  2401. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2402. pid_t pid, bool is_sync)
  2403. {
  2404. RB_CLEAR_NODE(&cfqq->rb_node);
  2405. RB_CLEAR_NODE(&cfqq->p_node);
  2406. INIT_LIST_HEAD(&cfqq->fifo);
  2407. atomic_set(&cfqq->ref, 0);
  2408. cfqq->cfqd = cfqd;
  2409. cfq_mark_cfqq_prio_changed(cfqq);
  2410. if (is_sync) {
  2411. if (!cfq_class_idle(cfqq))
  2412. cfq_mark_cfqq_idle_window(cfqq);
  2413. cfq_mark_cfqq_sync(cfqq);
  2414. }
  2415. cfqq->pid = pid;
  2416. }
  2417. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2418. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2419. {
  2420. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2421. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2422. unsigned long flags;
  2423. struct request_queue *q;
  2424. if (unlikely(!cfqd))
  2425. return;
  2426. q = cfqd->queue;
  2427. spin_lock_irqsave(q->queue_lock, flags);
  2428. if (sync_cfqq) {
  2429. /*
  2430. * Drop reference to sync queue. A new sync queue will be
  2431. * assigned in new group upon arrival of a fresh request.
  2432. */
  2433. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2434. cic_set_cfqq(cic, NULL, 1);
  2435. cfq_put_queue(sync_cfqq);
  2436. }
  2437. spin_unlock_irqrestore(q->queue_lock, flags);
  2438. }
  2439. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2440. {
  2441. call_for_each_cic(ioc, changed_cgroup);
  2442. ioc->cgroup_changed = 0;
  2443. }
  2444. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2445. static struct cfq_queue *
  2446. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2447. struct io_context *ioc, gfp_t gfp_mask)
  2448. {
  2449. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2450. struct cfq_io_context *cic;
  2451. struct cfq_group *cfqg;
  2452. retry:
  2453. cfqg = cfq_get_cfqg(cfqd, 1);
  2454. cic = cfq_cic_lookup(cfqd, ioc);
  2455. /* cic always exists here */
  2456. cfqq = cic_to_cfqq(cic, is_sync);
  2457. /*
  2458. * Always try a new alloc if we fell back to the OOM cfqq
  2459. * originally, since it should just be a temporary situation.
  2460. */
  2461. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2462. cfqq = NULL;
  2463. if (new_cfqq) {
  2464. cfqq = new_cfqq;
  2465. new_cfqq = NULL;
  2466. } else if (gfp_mask & __GFP_WAIT) {
  2467. spin_unlock_irq(cfqd->queue->queue_lock);
  2468. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2469. gfp_mask | __GFP_ZERO,
  2470. cfqd->queue->node);
  2471. spin_lock_irq(cfqd->queue->queue_lock);
  2472. if (new_cfqq)
  2473. goto retry;
  2474. } else {
  2475. cfqq = kmem_cache_alloc_node(cfq_pool,
  2476. gfp_mask | __GFP_ZERO,
  2477. cfqd->queue->node);
  2478. }
  2479. if (cfqq) {
  2480. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2481. cfq_init_prio_data(cfqq, ioc);
  2482. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2483. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2484. } else
  2485. cfqq = &cfqd->oom_cfqq;
  2486. }
  2487. if (new_cfqq)
  2488. kmem_cache_free(cfq_pool, new_cfqq);
  2489. return cfqq;
  2490. }
  2491. static struct cfq_queue **
  2492. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2493. {
  2494. switch (ioprio_class) {
  2495. case IOPRIO_CLASS_RT:
  2496. return &cfqd->async_cfqq[0][ioprio];
  2497. case IOPRIO_CLASS_BE:
  2498. return &cfqd->async_cfqq[1][ioprio];
  2499. case IOPRIO_CLASS_IDLE:
  2500. return &cfqd->async_idle_cfqq;
  2501. default:
  2502. BUG();
  2503. }
  2504. }
  2505. static struct cfq_queue *
  2506. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2507. gfp_t gfp_mask)
  2508. {
  2509. const int ioprio = task_ioprio(ioc);
  2510. const int ioprio_class = task_ioprio_class(ioc);
  2511. struct cfq_queue **async_cfqq = NULL;
  2512. struct cfq_queue *cfqq = NULL;
  2513. if (!is_sync) {
  2514. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2515. cfqq = *async_cfqq;
  2516. }
  2517. if (!cfqq)
  2518. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2519. /*
  2520. * pin the queue now that it's allocated, scheduler exit will prune it
  2521. */
  2522. if (!is_sync && !(*async_cfqq)) {
  2523. atomic_inc(&cfqq->ref);
  2524. *async_cfqq = cfqq;
  2525. }
  2526. atomic_inc(&cfqq->ref);
  2527. return cfqq;
  2528. }
  2529. /*
  2530. * We drop cfq io contexts lazily, so we may find a dead one.
  2531. */
  2532. static void
  2533. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2534. struct cfq_io_context *cic)
  2535. {
  2536. unsigned long flags;
  2537. WARN_ON(!list_empty(&cic->queue_list));
  2538. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2539. spin_lock_irqsave(&ioc->lock, flags);
  2540. BUG_ON(ioc->ioc_data == cic);
  2541. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2542. hlist_del_rcu(&cic->cic_list);
  2543. spin_unlock_irqrestore(&ioc->lock, flags);
  2544. cfq_cic_free(cic);
  2545. }
  2546. static struct cfq_io_context *
  2547. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2548. {
  2549. struct cfq_io_context *cic;
  2550. unsigned long flags;
  2551. if (unlikely(!ioc))
  2552. return NULL;
  2553. rcu_read_lock();
  2554. /*
  2555. * we maintain a last-hit cache, to avoid browsing over the tree
  2556. */
  2557. cic = rcu_dereference(ioc->ioc_data);
  2558. if (cic && cic->key == cfqd) {
  2559. rcu_read_unlock();
  2560. return cic;
  2561. }
  2562. do {
  2563. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2564. rcu_read_unlock();
  2565. if (!cic)
  2566. break;
  2567. if (unlikely(cic->key != cfqd)) {
  2568. cfq_drop_dead_cic(cfqd, ioc, cic);
  2569. rcu_read_lock();
  2570. continue;
  2571. }
  2572. spin_lock_irqsave(&ioc->lock, flags);
  2573. rcu_assign_pointer(ioc->ioc_data, cic);
  2574. spin_unlock_irqrestore(&ioc->lock, flags);
  2575. break;
  2576. } while (1);
  2577. return cic;
  2578. }
  2579. /*
  2580. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2581. * the process specific cfq io context when entered from the block layer.
  2582. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2583. */
  2584. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2585. struct cfq_io_context *cic, gfp_t gfp_mask)
  2586. {
  2587. unsigned long flags;
  2588. int ret;
  2589. ret = radix_tree_preload(gfp_mask);
  2590. if (!ret) {
  2591. cic->ioc = ioc;
  2592. cic->key = cfqd;
  2593. spin_lock_irqsave(&ioc->lock, flags);
  2594. ret = radix_tree_insert(&ioc->radix_root,
  2595. cfqd->cic_index, cic);
  2596. if (!ret)
  2597. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2598. spin_unlock_irqrestore(&ioc->lock, flags);
  2599. radix_tree_preload_end();
  2600. if (!ret) {
  2601. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2602. list_add(&cic->queue_list, &cfqd->cic_list);
  2603. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2604. }
  2605. }
  2606. if (ret)
  2607. printk(KERN_ERR "cfq: cic link failed!\n");
  2608. return ret;
  2609. }
  2610. /*
  2611. * Setup general io context and cfq io context. There can be several cfq
  2612. * io contexts per general io context, if this process is doing io to more
  2613. * than one device managed by cfq.
  2614. */
  2615. static struct cfq_io_context *
  2616. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2617. {
  2618. struct io_context *ioc = NULL;
  2619. struct cfq_io_context *cic;
  2620. might_sleep_if(gfp_mask & __GFP_WAIT);
  2621. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2622. if (!ioc)
  2623. return NULL;
  2624. cic = cfq_cic_lookup(cfqd, ioc);
  2625. if (cic)
  2626. goto out;
  2627. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2628. if (cic == NULL)
  2629. goto err;
  2630. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2631. goto err_free;
  2632. out:
  2633. smp_read_barrier_depends();
  2634. if (unlikely(ioc->ioprio_changed))
  2635. cfq_ioc_set_ioprio(ioc);
  2636. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2637. if (unlikely(ioc->cgroup_changed))
  2638. cfq_ioc_set_cgroup(ioc);
  2639. #endif
  2640. return cic;
  2641. err_free:
  2642. cfq_cic_free(cic);
  2643. err:
  2644. put_io_context(ioc);
  2645. return NULL;
  2646. }
  2647. static void
  2648. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2649. {
  2650. unsigned long elapsed = jiffies - cic->last_end_request;
  2651. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2652. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2653. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2654. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2655. }
  2656. static void
  2657. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2658. struct request *rq)
  2659. {
  2660. sector_t sdist = 0;
  2661. sector_t n_sec = blk_rq_sectors(rq);
  2662. if (cfqq->last_request_pos) {
  2663. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2664. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2665. else
  2666. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2667. }
  2668. cfqq->seek_history <<= 1;
  2669. if (blk_queue_nonrot(cfqd->queue))
  2670. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2671. else
  2672. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2673. }
  2674. /*
  2675. * Disable idle window if the process thinks too long or seeks so much that
  2676. * it doesn't matter
  2677. */
  2678. static void
  2679. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2680. struct cfq_io_context *cic)
  2681. {
  2682. int old_idle, enable_idle;
  2683. /*
  2684. * Don't idle for async or idle io prio class
  2685. */
  2686. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2687. return;
  2688. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2689. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2690. cfq_mark_cfqq_deep(cfqq);
  2691. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2692. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2693. enable_idle = 0;
  2694. else if (sample_valid(cic->ttime_samples)) {
  2695. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2696. enable_idle = 0;
  2697. else
  2698. enable_idle = 1;
  2699. }
  2700. if (old_idle != enable_idle) {
  2701. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2702. if (enable_idle)
  2703. cfq_mark_cfqq_idle_window(cfqq);
  2704. else
  2705. cfq_clear_cfqq_idle_window(cfqq);
  2706. }
  2707. }
  2708. /*
  2709. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2710. * no or if we aren't sure, a 1 will cause a preempt.
  2711. */
  2712. static bool
  2713. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2714. struct request *rq)
  2715. {
  2716. struct cfq_queue *cfqq;
  2717. cfqq = cfqd->active_queue;
  2718. if (!cfqq)
  2719. return false;
  2720. if (cfq_class_idle(new_cfqq))
  2721. return false;
  2722. if (cfq_class_idle(cfqq))
  2723. return true;
  2724. /*
  2725. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2726. */
  2727. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2728. return false;
  2729. /*
  2730. * if the new request is sync, but the currently running queue is
  2731. * not, let the sync request have priority.
  2732. */
  2733. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2734. return true;
  2735. if (new_cfqq->cfqg != cfqq->cfqg)
  2736. return false;
  2737. if (cfq_slice_used(cfqq))
  2738. return true;
  2739. /* Allow preemption only if we are idling on sync-noidle tree */
  2740. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2741. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2742. new_cfqq->service_tree->count == 2 &&
  2743. RB_EMPTY_ROOT(&cfqq->sort_list))
  2744. return true;
  2745. /*
  2746. * So both queues are sync. Let the new request get disk time if
  2747. * it's a metadata request and the current queue is doing regular IO.
  2748. */
  2749. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2750. return true;
  2751. /*
  2752. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2753. */
  2754. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2755. return true;
  2756. /* An idle queue should not be idle now for some reason */
  2757. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2758. return true;
  2759. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2760. return false;
  2761. /*
  2762. * if this request is as-good as one we would expect from the
  2763. * current cfqq, let it preempt
  2764. */
  2765. if (cfq_rq_close(cfqd, cfqq, rq))
  2766. return true;
  2767. return false;
  2768. }
  2769. /*
  2770. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2771. * let it have half of its nominal slice.
  2772. */
  2773. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2774. {
  2775. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2776. cfq_slice_expired(cfqd, 1);
  2777. /*
  2778. * Put the new queue at the front of the of the current list,
  2779. * so we know that it will be selected next.
  2780. */
  2781. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2782. cfq_service_tree_add(cfqd, cfqq, 1);
  2783. cfqq->slice_end = 0;
  2784. cfq_mark_cfqq_slice_new(cfqq);
  2785. }
  2786. /*
  2787. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2788. * something we should do about it
  2789. */
  2790. static void
  2791. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2792. struct request *rq)
  2793. {
  2794. struct cfq_io_context *cic = RQ_CIC(rq);
  2795. cfqd->rq_queued++;
  2796. if (rq->cmd_flags & REQ_META)
  2797. cfqq->meta_pending++;
  2798. cfq_update_io_thinktime(cfqd, cic);
  2799. cfq_update_io_seektime(cfqd, cfqq, rq);
  2800. cfq_update_idle_window(cfqd, cfqq, cic);
  2801. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2802. if (cfqq == cfqd->active_queue) {
  2803. /*
  2804. * Remember that we saw a request from this process, but
  2805. * don't start queuing just yet. Otherwise we risk seeing lots
  2806. * of tiny requests, because we disrupt the normal plugging
  2807. * and merging. If the request is already larger than a single
  2808. * page, let it rip immediately. For that case we assume that
  2809. * merging is already done. Ditto for a busy system that
  2810. * has other work pending, don't risk delaying until the
  2811. * idle timer unplug to continue working.
  2812. */
  2813. if (cfq_cfqq_wait_request(cfqq)) {
  2814. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2815. cfqd->busy_queues > 1) {
  2816. cfq_del_timer(cfqd, cfqq);
  2817. cfq_clear_cfqq_wait_request(cfqq);
  2818. __blk_run_queue(cfqd->queue);
  2819. } else {
  2820. cfq_blkiocg_update_idle_time_stats(
  2821. &cfqq->cfqg->blkg);
  2822. cfq_mark_cfqq_must_dispatch(cfqq);
  2823. }
  2824. }
  2825. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2826. /*
  2827. * not the active queue - expire current slice if it is
  2828. * idle and has expired it's mean thinktime or this new queue
  2829. * has some old slice time left and is of higher priority or
  2830. * this new queue is RT and the current one is BE
  2831. */
  2832. cfq_preempt_queue(cfqd, cfqq);
  2833. __blk_run_queue(cfqd->queue);
  2834. }
  2835. }
  2836. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2837. {
  2838. struct cfq_data *cfqd = q->elevator->elevator_data;
  2839. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2840. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2841. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2842. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2843. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2844. cfq_add_rq_rb(rq);
  2845. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2846. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2847. rq_is_sync(rq));
  2848. cfq_rq_enqueued(cfqd, cfqq, rq);
  2849. }
  2850. /*
  2851. * Update hw_tag based on peak queue depth over 50 samples under
  2852. * sufficient load.
  2853. */
  2854. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2855. {
  2856. struct cfq_queue *cfqq = cfqd->active_queue;
  2857. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2858. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2859. if (cfqd->hw_tag == 1)
  2860. return;
  2861. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2862. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2863. return;
  2864. /*
  2865. * If active queue hasn't enough requests and can idle, cfq might not
  2866. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2867. * case
  2868. */
  2869. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2870. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2871. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2872. return;
  2873. if (cfqd->hw_tag_samples++ < 50)
  2874. return;
  2875. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2876. cfqd->hw_tag = 1;
  2877. else
  2878. cfqd->hw_tag = 0;
  2879. }
  2880. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2881. {
  2882. struct cfq_io_context *cic = cfqd->active_cic;
  2883. /* If there are other queues in the group, don't wait */
  2884. if (cfqq->cfqg->nr_cfqq > 1)
  2885. return false;
  2886. if (cfq_slice_used(cfqq))
  2887. return true;
  2888. /* if slice left is less than think time, wait busy */
  2889. if (cic && sample_valid(cic->ttime_samples)
  2890. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2891. return true;
  2892. /*
  2893. * If think times is less than a jiffy than ttime_mean=0 and above
  2894. * will not be true. It might happen that slice has not expired yet
  2895. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2896. * case where think time is less than a jiffy, mark the queue wait
  2897. * busy if only 1 jiffy is left in the slice.
  2898. */
  2899. if (cfqq->slice_end - jiffies == 1)
  2900. return true;
  2901. return false;
  2902. }
  2903. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2904. {
  2905. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2906. struct cfq_data *cfqd = cfqq->cfqd;
  2907. const int sync = rq_is_sync(rq);
  2908. unsigned long now;
  2909. now = jiffies;
  2910. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2911. !!(rq->cmd_flags & REQ_NOIDLE));
  2912. cfq_update_hw_tag(cfqd);
  2913. WARN_ON(!cfqd->rq_in_driver);
  2914. WARN_ON(!cfqq->dispatched);
  2915. cfqd->rq_in_driver--;
  2916. cfqq->dispatched--;
  2917. (RQ_CFQG(rq))->dispatched--;
  2918. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2919. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2920. rq_data_dir(rq), rq_is_sync(rq));
  2921. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2922. if (sync) {
  2923. RQ_CIC(rq)->last_end_request = now;
  2924. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2925. cfqd->last_delayed_sync = now;
  2926. }
  2927. /*
  2928. * If this is the active queue, check if it needs to be expired,
  2929. * or if we want to idle in case it has no pending requests.
  2930. */
  2931. if (cfqd->active_queue == cfqq) {
  2932. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2933. if (cfq_cfqq_slice_new(cfqq)) {
  2934. cfq_set_prio_slice(cfqd, cfqq);
  2935. cfq_clear_cfqq_slice_new(cfqq);
  2936. }
  2937. /*
  2938. * Should we wait for next request to come in before we expire
  2939. * the queue.
  2940. */
  2941. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2942. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2943. if (!cfqd->cfq_slice_idle)
  2944. extend_sl = cfqd->cfq_group_idle;
  2945. cfqq->slice_end = jiffies + extend_sl;
  2946. cfq_mark_cfqq_wait_busy(cfqq);
  2947. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2948. }
  2949. /*
  2950. * Idling is not enabled on:
  2951. * - expired queues
  2952. * - idle-priority queues
  2953. * - async queues
  2954. * - queues with still some requests queued
  2955. * - when there is a close cooperator
  2956. */
  2957. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2958. cfq_slice_expired(cfqd, 1);
  2959. else if (sync && cfqq_empty &&
  2960. !cfq_close_cooperator(cfqd, cfqq)) {
  2961. cfqd->noidle_tree_requires_idle |=
  2962. !(rq->cmd_flags & REQ_NOIDLE);
  2963. /*
  2964. * Idling is enabled for SYNC_WORKLOAD.
  2965. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2966. * only if we processed at least one !REQ_NOIDLE request
  2967. */
  2968. if (cfqd->serving_type == SYNC_WORKLOAD
  2969. || cfqd->noidle_tree_requires_idle
  2970. || cfqq->cfqg->nr_cfqq == 1)
  2971. cfq_arm_slice_timer(cfqd);
  2972. }
  2973. }
  2974. if (!cfqd->rq_in_driver) {
  2975. cfq_schedule_dispatch(cfqd);
  2976. return;
  2977. }
  2978. /*
  2979. * A queue is idle at cfq_dispatch_requests(), but it gets noidle
  2980. * later. We schedule a dispatch if the queue has no requests,
  2981. * otherwise the disk is actually in idle till all requests
  2982. * are finished even cfq_arm_slice_timer doesn't make the queue idle
  2983. * */
  2984. cfqq = cfqd->active_queue;
  2985. if (!cfqq)
  2986. return;
  2987. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq) &&
  2988. (!cfqd->cfq_group_idle || cfqq->cfqg->nr_cfqq > 1)) {
  2989. cfq_del_timer(cfqd, cfqq);
  2990. cfq_schedule_dispatch(cfqd);
  2991. }
  2992. }
  2993. /*
  2994. * we temporarily boost lower priority queues if they are holding fs exclusive
  2995. * resources. they are boosted to normal prio (CLASS_BE/4)
  2996. */
  2997. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2998. {
  2999. if (has_fs_excl()) {
  3000. /*
  3001. * boost idle prio on transactions that would lock out other
  3002. * users of the filesystem
  3003. */
  3004. if (cfq_class_idle(cfqq))
  3005. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  3006. if (cfqq->ioprio > IOPRIO_NORM)
  3007. cfqq->ioprio = IOPRIO_NORM;
  3008. } else {
  3009. /*
  3010. * unboost the queue (if needed)
  3011. */
  3012. cfqq->ioprio_class = cfqq->org_ioprio_class;
  3013. cfqq->ioprio = cfqq->org_ioprio;
  3014. }
  3015. }
  3016. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3017. {
  3018. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3019. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3020. return ELV_MQUEUE_MUST;
  3021. }
  3022. return ELV_MQUEUE_MAY;
  3023. }
  3024. static int cfq_may_queue(struct request_queue *q, int rw)
  3025. {
  3026. struct cfq_data *cfqd = q->elevator->elevator_data;
  3027. struct task_struct *tsk = current;
  3028. struct cfq_io_context *cic;
  3029. struct cfq_queue *cfqq;
  3030. /*
  3031. * don't force setup of a queue from here, as a call to may_queue
  3032. * does not necessarily imply that a request actually will be queued.
  3033. * so just lookup a possibly existing queue, or return 'may queue'
  3034. * if that fails
  3035. */
  3036. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3037. if (!cic)
  3038. return ELV_MQUEUE_MAY;
  3039. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3040. if (cfqq) {
  3041. cfq_init_prio_data(cfqq, cic->ioc);
  3042. cfq_prio_boost(cfqq);
  3043. return __cfq_may_queue(cfqq);
  3044. }
  3045. return ELV_MQUEUE_MAY;
  3046. }
  3047. /*
  3048. * queue lock held here
  3049. */
  3050. static void cfq_put_request(struct request *rq)
  3051. {
  3052. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3053. if (cfqq) {
  3054. const int rw = rq_data_dir(rq);
  3055. BUG_ON(!cfqq->allocated[rw]);
  3056. cfqq->allocated[rw]--;
  3057. put_io_context(RQ_CIC(rq)->ioc);
  3058. rq->elevator_private = NULL;
  3059. rq->elevator_private2 = NULL;
  3060. /* Put down rq reference on cfqg */
  3061. cfq_put_cfqg(RQ_CFQG(rq));
  3062. rq->elevator_private3 = NULL;
  3063. cfq_put_queue(cfqq);
  3064. }
  3065. }
  3066. static struct cfq_queue *
  3067. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3068. struct cfq_queue *cfqq)
  3069. {
  3070. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3071. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3072. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3073. cfq_put_queue(cfqq);
  3074. return cic_to_cfqq(cic, 1);
  3075. }
  3076. /*
  3077. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3078. * was the last process referring to said cfqq.
  3079. */
  3080. static struct cfq_queue *
  3081. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3082. {
  3083. if (cfqq_process_refs(cfqq) == 1) {
  3084. cfqq->pid = current->pid;
  3085. cfq_clear_cfqq_coop(cfqq);
  3086. cfq_clear_cfqq_split_coop(cfqq);
  3087. return cfqq;
  3088. }
  3089. cic_set_cfqq(cic, NULL, 1);
  3090. cfq_put_cooperator(cfqq);
  3091. cfq_put_queue(cfqq);
  3092. return NULL;
  3093. }
  3094. /*
  3095. * Allocate cfq data structures associated with this request.
  3096. */
  3097. static int
  3098. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3099. {
  3100. struct cfq_data *cfqd = q->elevator->elevator_data;
  3101. struct cfq_io_context *cic;
  3102. const int rw = rq_data_dir(rq);
  3103. const bool is_sync = rq_is_sync(rq);
  3104. struct cfq_queue *cfqq;
  3105. unsigned long flags;
  3106. might_sleep_if(gfp_mask & __GFP_WAIT);
  3107. cic = cfq_get_io_context(cfqd, gfp_mask);
  3108. spin_lock_irqsave(q->queue_lock, flags);
  3109. if (!cic)
  3110. goto queue_fail;
  3111. new_queue:
  3112. cfqq = cic_to_cfqq(cic, is_sync);
  3113. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3114. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3115. cic_set_cfqq(cic, cfqq, is_sync);
  3116. } else {
  3117. /*
  3118. * If the queue was seeky for too long, break it apart.
  3119. */
  3120. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3121. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3122. cfqq = split_cfqq(cic, cfqq);
  3123. if (!cfqq)
  3124. goto new_queue;
  3125. }
  3126. /*
  3127. * Check to see if this queue is scheduled to merge with
  3128. * another, closely cooperating queue. The merging of
  3129. * queues happens here as it must be done in process context.
  3130. * The reference on new_cfqq was taken in merge_cfqqs.
  3131. */
  3132. if (cfqq->new_cfqq)
  3133. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3134. }
  3135. cfqq->allocated[rw]++;
  3136. atomic_inc(&cfqq->ref);
  3137. spin_unlock_irqrestore(q->queue_lock, flags);
  3138. rq->elevator_private = cic;
  3139. rq->elevator_private2 = cfqq;
  3140. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3141. return 0;
  3142. queue_fail:
  3143. if (cic)
  3144. put_io_context(cic->ioc);
  3145. cfq_schedule_dispatch(cfqd);
  3146. spin_unlock_irqrestore(q->queue_lock, flags);
  3147. cfq_log(cfqd, "set_request fail");
  3148. return 1;
  3149. }
  3150. static void cfq_kick_queue(struct work_struct *work)
  3151. {
  3152. struct cfq_data *cfqd =
  3153. container_of(work, struct cfq_data, unplug_work);
  3154. struct request_queue *q = cfqd->queue;
  3155. spin_lock_irq(q->queue_lock);
  3156. __blk_run_queue(cfqd->queue);
  3157. spin_unlock_irq(q->queue_lock);
  3158. }
  3159. /*
  3160. * Timer running if the active_queue is currently idling inside its time slice
  3161. */
  3162. static void cfq_idle_slice_timer(unsigned long data)
  3163. {
  3164. struct cfq_data *cfqd = (struct cfq_data *) data;
  3165. struct cfq_queue *cfqq;
  3166. unsigned long flags;
  3167. int timed_out = 1;
  3168. cfq_log(cfqd, "idle timer fired");
  3169. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3170. cfqq = cfqd->active_queue;
  3171. if (cfqq) {
  3172. timed_out = 0;
  3173. /*
  3174. * We saw a request before the queue expired, let it through
  3175. */
  3176. if (cfq_cfqq_must_dispatch(cfqq))
  3177. goto out_kick;
  3178. /*
  3179. * expired
  3180. */
  3181. if (cfq_slice_used(cfqq))
  3182. goto expire;
  3183. /*
  3184. * only expire and reinvoke request handler, if there are
  3185. * other queues with pending requests
  3186. */
  3187. if (!cfqd->busy_queues)
  3188. goto out_cont;
  3189. /*
  3190. * not expired and it has a request pending, let it dispatch
  3191. */
  3192. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3193. goto out_kick;
  3194. /*
  3195. * Queue depth flag is reset only when the idle didn't succeed
  3196. */
  3197. cfq_clear_cfqq_deep(cfqq);
  3198. }
  3199. expire:
  3200. cfq_slice_expired(cfqd, timed_out);
  3201. out_kick:
  3202. cfq_schedule_dispatch(cfqd);
  3203. out_cont:
  3204. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3205. }
  3206. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3207. {
  3208. del_timer_sync(&cfqd->idle_slice_timer);
  3209. cancel_work_sync(&cfqd->unplug_work);
  3210. }
  3211. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3212. {
  3213. int i;
  3214. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3215. if (cfqd->async_cfqq[0][i])
  3216. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3217. if (cfqd->async_cfqq[1][i])
  3218. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3219. }
  3220. if (cfqd->async_idle_cfqq)
  3221. cfq_put_queue(cfqd->async_idle_cfqq);
  3222. }
  3223. static void cfq_cfqd_free(struct rcu_head *head)
  3224. {
  3225. kfree(container_of(head, struct cfq_data, rcu));
  3226. }
  3227. static void cfq_exit_queue(struct elevator_queue *e)
  3228. {
  3229. struct cfq_data *cfqd = e->elevator_data;
  3230. struct request_queue *q = cfqd->queue;
  3231. cfq_shutdown_timer_wq(cfqd);
  3232. spin_lock_irq(q->queue_lock);
  3233. if (cfqd->active_queue)
  3234. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3235. while (!list_empty(&cfqd->cic_list)) {
  3236. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3237. struct cfq_io_context,
  3238. queue_list);
  3239. __cfq_exit_single_io_context(cfqd, cic);
  3240. }
  3241. cfq_put_async_queues(cfqd);
  3242. cfq_release_cfq_groups(cfqd);
  3243. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3244. spin_unlock_irq(q->queue_lock);
  3245. cfq_shutdown_timer_wq(cfqd);
  3246. spin_lock(&cic_index_lock);
  3247. ida_remove(&cic_index_ida, cfqd->cic_index);
  3248. spin_unlock(&cic_index_lock);
  3249. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3250. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3251. }
  3252. static int cfq_alloc_cic_index(void)
  3253. {
  3254. int index, error;
  3255. do {
  3256. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3257. return -ENOMEM;
  3258. spin_lock(&cic_index_lock);
  3259. error = ida_get_new(&cic_index_ida, &index);
  3260. spin_unlock(&cic_index_lock);
  3261. if (error && error != -EAGAIN)
  3262. return error;
  3263. } while (error);
  3264. return index;
  3265. }
  3266. static void *cfq_init_queue(struct request_queue *q)
  3267. {
  3268. struct cfq_data *cfqd;
  3269. int i, j;
  3270. struct cfq_group *cfqg;
  3271. struct cfq_rb_root *st;
  3272. i = cfq_alloc_cic_index();
  3273. if (i < 0)
  3274. return NULL;
  3275. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3276. if (!cfqd)
  3277. return NULL;
  3278. cfqd->cic_index = i;
  3279. /* Init root service tree */
  3280. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3281. /* Init root group */
  3282. cfqg = &cfqd->root_group;
  3283. for_each_cfqg_st(cfqg, i, j, st)
  3284. *st = CFQ_RB_ROOT;
  3285. RB_CLEAR_NODE(&cfqg->rb_node);
  3286. /* Give preference to root group over other groups */
  3287. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3288. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3289. /*
  3290. * Take a reference to root group which we never drop. This is just
  3291. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3292. */
  3293. atomic_set(&cfqg->ref, 1);
  3294. rcu_read_lock();
  3295. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3296. (void *)cfqd, 0);
  3297. rcu_read_unlock();
  3298. #endif
  3299. /*
  3300. * Not strictly needed (since RB_ROOT just clears the node and we
  3301. * zeroed cfqd on alloc), but better be safe in case someone decides
  3302. * to add magic to the rb code
  3303. */
  3304. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3305. cfqd->prio_trees[i] = RB_ROOT;
  3306. /*
  3307. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3308. * Grab a permanent reference to it, so that the normal code flow
  3309. * will not attempt to free it.
  3310. */
  3311. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3312. atomic_inc(&cfqd->oom_cfqq.ref);
  3313. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3314. INIT_LIST_HEAD(&cfqd->cic_list);
  3315. cfqd->queue = q;
  3316. init_timer(&cfqd->idle_slice_timer);
  3317. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3318. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3319. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3320. cfqd->cfq_quantum = cfq_quantum;
  3321. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3322. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3323. cfqd->cfq_back_max = cfq_back_max;
  3324. cfqd->cfq_back_penalty = cfq_back_penalty;
  3325. cfqd->cfq_slice[0] = cfq_slice_async;
  3326. cfqd->cfq_slice[1] = cfq_slice_sync;
  3327. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3328. cfqd->cfq_slice_idle = cfq_slice_idle;
  3329. cfqd->cfq_group_idle = cfq_group_idle;
  3330. cfqd->cfq_latency = 1;
  3331. cfqd->cfq_group_isolation = 0;
  3332. cfqd->hw_tag = -1;
  3333. /*
  3334. * we optimistically start assuming sync ops weren't delayed in last
  3335. * second, in order to have larger depth for async operations.
  3336. */
  3337. cfqd->last_delayed_sync = jiffies - HZ;
  3338. return cfqd;
  3339. }
  3340. static void cfq_slab_kill(void)
  3341. {
  3342. /*
  3343. * Caller already ensured that pending RCU callbacks are completed,
  3344. * so we should have no busy allocations at this point.
  3345. */
  3346. if (cfq_pool)
  3347. kmem_cache_destroy(cfq_pool);
  3348. if (cfq_ioc_pool)
  3349. kmem_cache_destroy(cfq_ioc_pool);
  3350. }
  3351. static int __init cfq_slab_setup(void)
  3352. {
  3353. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3354. if (!cfq_pool)
  3355. goto fail;
  3356. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3357. if (!cfq_ioc_pool)
  3358. goto fail;
  3359. return 0;
  3360. fail:
  3361. cfq_slab_kill();
  3362. return -ENOMEM;
  3363. }
  3364. /*
  3365. * sysfs parts below -->
  3366. */
  3367. static ssize_t
  3368. cfq_var_show(unsigned int var, char *page)
  3369. {
  3370. return sprintf(page, "%d\n", var);
  3371. }
  3372. static ssize_t
  3373. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3374. {
  3375. char *p = (char *) page;
  3376. *var = simple_strtoul(p, &p, 10);
  3377. return count;
  3378. }
  3379. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3380. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3381. { \
  3382. struct cfq_data *cfqd = e->elevator_data; \
  3383. unsigned int __data = __VAR; \
  3384. if (__CONV) \
  3385. __data = jiffies_to_msecs(__data); \
  3386. return cfq_var_show(__data, (page)); \
  3387. }
  3388. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3389. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3390. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3391. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3392. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3393. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3394. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3395. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3396. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3397. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3398. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3399. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3400. #undef SHOW_FUNCTION
  3401. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3402. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3403. { \
  3404. struct cfq_data *cfqd = e->elevator_data; \
  3405. unsigned int __data; \
  3406. int ret = cfq_var_store(&__data, (page), count); \
  3407. if (__data < (MIN)) \
  3408. __data = (MIN); \
  3409. else if (__data > (MAX)) \
  3410. __data = (MAX); \
  3411. if (__CONV) \
  3412. *(__PTR) = msecs_to_jiffies(__data); \
  3413. else \
  3414. *(__PTR) = __data; \
  3415. return ret; \
  3416. }
  3417. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3418. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3419. UINT_MAX, 1);
  3420. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3421. UINT_MAX, 1);
  3422. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3423. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3424. UINT_MAX, 0);
  3425. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3426. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3427. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3428. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3429. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3430. UINT_MAX, 0);
  3431. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3432. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3433. #undef STORE_FUNCTION
  3434. #define CFQ_ATTR(name) \
  3435. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3436. static struct elv_fs_entry cfq_attrs[] = {
  3437. CFQ_ATTR(quantum),
  3438. CFQ_ATTR(fifo_expire_sync),
  3439. CFQ_ATTR(fifo_expire_async),
  3440. CFQ_ATTR(back_seek_max),
  3441. CFQ_ATTR(back_seek_penalty),
  3442. CFQ_ATTR(slice_sync),
  3443. CFQ_ATTR(slice_async),
  3444. CFQ_ATTR(slice_async_rq),
  3445. CFQ_ATTR(slice_idle),
  3446. CFQ_ATTR(group_idle),
  3447. CFQ_ATTR(low_latency),
  3448. CFQ_ATTR(group_isolation),
  3449. __ATTR_NULL
  3450. };
  3451. static struct elevator_type iosched_cfq = {
  3452. .ops = {
  3453. .elevator_merge_fn = cfq_merge,
  3454. .elevator_merged_fn = cfq_merged_request,
  3455. .elevator_merge_req_fn = cfq_merged_requests,
  3456. .elevator_allow_merge_fn = cfq_allow_merge,
  3457. .elevator_bio_merged_fn = cfq_bio_merged,
  3458. .elevator_dispatch_fn = cfq_dispatch_requests,
  3459. .elevator_add_req_fn = cfq_insert_request,
  3460. .elevator_activate_req_fn = cfq_activate_request,
  3461. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3462. .elevator_queue_empty_fn = cfq_queue_empty,
  3463. .elevator_completed_req_fn = cfq_completed_request,
  3464. .elevator_former_req_fn = elv_rb_former_request,
  3465. .elevator_latter_req_fn = elv_rb_latter_request,
  3466. .elevator_set_req_fn = cfq_set_request,
  3467. .elevator_put_req_fn = cfq_put_request,
  3468. .elevator_may_queue_fn = cfq_may_queue,
  3469. .elevator_init_fn = cfq_init_queue,
  3470. .elevator_exit_fn = cfq_exit_queue,
  3471. .trim = cfq_free_io_context,
  3472. },
  3473. .elevator_attrs = cfq_attrs,
  3474. .elevator_name = "cfq",
  3475. .elevator_owner = THIS_MODULE,
  3476. };
  3477. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3478. static struct blkio_policy_type blkio_policy_cfq = {
  3479. .ops = {
  3480. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3481. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3482. },
  3483. };
  3484. #else
  3485. static struct blkio_policy_type blkio_policy_cfq;
  3486. #endif
  3487. static int __init cfq_init(void)
  3488. {
  3489. /*
  3490. * could be 0 on HZ < 1000 setups
  3491. */
  3492. if (!cfq_slice_async)
  3493. cfq_slice_async = 1;
  3494. if (!cfq_slice_idle)
  3495. cfq_slice_idle = 1;
  3496. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3497. if (!cfq_group_idle)
  3498. cfq_group_idle = 1;
  3499. #else
  3500. cfq_group_idle = 0;
  3501. #endif
  3502. if (cfq_slab_setup())
  3503. return -ENOMEM;
  3504. elv_register(&iosched_cfq);
  3505. blkio_policy_register(&blkio_policy_cfq);
  3506. return 0;
  3507. }
  3508. static void __exit cfq_exit(void)
  3509. {
  3510. DECLARE_COMPLETION_ONSTACK(all_gone);
  3511. blkio_policy_unregister(&blkio_policy_cfq);
  3512. elv_unregister(&iosched_cfq);
  3513. ioc_gone = &all_gone;
  3514. /* ioc_gone's update must be visible before reading ioc_count */
  3515. smp_wmb();
  3516. /*
  3517. * this also protects us from entering cfq_slab_kill() with
  3518. * pending RCU callbacks
  3519. */
  3520. if (elv_ioc_count_read(cfq_ioc_count))
  3521. wait_for_completion(&all_gone);
  3522. ida_destroy(&cic_index_ida);
  3523. cfq_slab_kill();
  3524. }
  3525. module_init(cfq_init);
  3526. module_exit(cfq_exit);
  3527. MODULE_AUTHOR("Jens Axboe");
  3528. MODULE_LICENSE("GPL");
  3529. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");