kprobes-decode.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781
  1. /*
  2. * arch/arm/kernel/kprobes-decode.c
  3. *
  4. * Copyright (C) 2006, 2007 Motorola Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. */
  15. /*
  16. * We do not have hardware single-stepping on ARM, This
  17. * effort is further complicated by the ARM not having a
  18. * "next PC" register. Instructions that change the PC
  19. * can't be safely single-stepped in a MP environment, so
  20. * we have a lot of work to do:
  21. *
  22. * In the prepare phase:
  23. * *) If it is an instruction that does anything
  24. * with the CPU mode, we reject it for a kprobe.
  25. * (This is out of laziness rather than need. The
  26. * instructions could be simulated.)
  27. *
  28. * *) Otherwise, decode the instruction rewriting its
  29. * registers to take fixed, ordered registers and
  30. * setting a handler for it to run the instruction.
  31. *
  32. * In the execution phase by an instruction's handler:
  33. *
  34. * *) If the PC is written to by the instruction, the
  35. * instruction must be fully simulated in software.
  36. * If it is a conditional instruction, the handler
  37. * will use insn[0] to copy its condition code to
  38. * set r0 to 1 and insn[1] to "mov pc, lr" to return.
  39. *
  40. * *) Otherwise, a modified form of the instruction is
  41. * directly executed. Its handler calls the
  42. * instruction in insn[0]. In insn[1] is a
  43. * "mov pc, lr" to return.
  44. *
  45. * Before calling, load up the reordered registers
  46. * from the original instruction's registers. If one
  47. * of the original input registers is the PC, compute
  48. * and adjust the appropriate input register.
  49. *
  50. * After call completes, copy the output registers to
  51. * the original instruction's original registers.
  52. *
  53. * We don't use a real breakpoint instruction since that
  54. * would have us in the kernel go from SVC mode to SVC
  55. * mode losing the link register. Instead we use an
  56. * undefined instruction. To simplify processing, the
  57. * undefined instruction used for kprobes must be reserved
  58. * exclusively for kprobes use.
  59. *
  60. * TODO: ifdef out some instruction decoding based on architecture.
  61. */
  62. #include <linux/kernel.h>
  63. #include <linux/kprobes.h>
  64. #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
  65. #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
  66. #define is_r15(insn, bitpos) (((insn) & (0xf << bitpos)) == (0xf << bitpos))
  67. /*
  68. * Test if load/store instructions writeback the address register.
  69. * if P (bit 24) == 0 or W (bit 21) == 1
  70. */
  71. #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
  72. #define PSR_fs (PSR_f|PSR_s)
  73. #define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */
  74. typedef long (insn_0arg_fn_t)(void);
  75. typedef long (insn_1arg_fn_t)(long);
  76. typedef long (insn_2arg_fn_t)(long, long);
  77. typedef long (insn_3arg_fn_t)(long, long, long);
  78. typedef long (insn_4arg_fn_t)(long, long, long, long);
  79. typedef long long (insn_llret_0arg_fn_t)(void);
  80. typedef long long (insn_llret_3arg_fn_t)(long, long, long);
  81. typedef long long (insn_llret_4arg_fn_t)(long, long, long, long);
  82. union reg_pair {
  83. long long dr;
  84. #ifdef __LITTLE_ENDIAN
  85. struct { long r0, r1; };
  86. #else
  87. struct { long r1, r0; };
  88. #endif
  89. };
  90. /*
  91. * For STR and STM instructions, an ARM core may choose to use either
  92. * a +8 or a +12 displacement from the current instruction's address.
  93. * Whichever value is chosen for a given core, it must be the same for
  94. * both instructions and may not change. This function measures it.
  95. */
  96. static int str_pc_offset;
  97. static void __init find_str_pc_offset(void)
  98. {
  99. int addr, scratch, ret;
  100. __asm__ (
  101. "sub %[ret], pc, #4 \n\t"
  102. "str pc, %[addr] \n\t"
  103. "ldr %[scr], %[addr] \n\t"
  104. "sub %[ret], %[scr], %[ret] \n\t"
  105. : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
  106. str_pc_offset = ret;
  107. }
  108. /*
  109. * The insnslot_?arg_r[w]flags() functions below are to keep the
  110. * msr -> *fn -> mrs instruction sequences indivisible so that
  111. * the state of the CPSR flags aren't inadvertently modified
  112. * just before or just after the call.
  113. */
  114. static inline long __kprobes
  115. insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn)
  116. {
  117. register long ret asm("r0");
  118. __asm__ __volatile__ (
  119. "msr cpsr_fs, %[cpsr] \n\t"
  120. "mov lr, pc \n\t"
  121. "mov pc, %[fn] \n\t"
  122. : "=r" (ret)
  123. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  124. : "lr", "cc"
  125. );
  126. return ret;
  127. }
  128. static inline long long __kprobes
  129. insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn)
  130. {
  131. register long ret0 asm("r0");
  132. register long ret1 asm("r1");
  133. union reg_pair fnr;
  134. __asm__ __volatile__ (
  135. "msr cpsr_fs, %[cpsr] \n\t"
  136. "mov lr, pc \n\t"
  137. "mov pc, %[fn] \n\t"
  138. : "=r" (ret0), "=r" (ret1)
  139. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  140. : "lr", "cc"
  141. );
  142. fnr.r0 = ret0;
  143. fnr.r1 = ret1;
  144. return fnr.dr;
  145. }
  146. static inline long __kprobes
  147. insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn)
  148. {
  149. register long rr0 asm("r0") = r0;
  150. register long ret asm("r0");
  151. __asm__ __volatile__ (
  152. "msr cpsr_fs, %[cpsr] \n\t"
  153. "mov lr, pc \n\t"
  154. "mov pc, %[fn] \n\t"
  155. : "=r" (ret)
  156. : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn)
  157. : "lr", "cc"
  158. );
  159. return ret;
  160. }
  161. static inline long __kprobes
  162. insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn)
  163. {
  164. register long rr0 asm("r0") = r0;
  165. register long rr1 asm("r1") = r1;
  166. register long ret asm("r0");
  167. __asm__ __volatile__ (
  168. "msr cpsr_fs, %[cpsr] \n\t"
  169. "mov lr, pc \n\t"
  170. "mov pc, %[fn] \n\t"
  171. : "=r" (ret)
  172. : "0" (rr0), "r" (rr1),
  173. [cpsr] "r" (cpsr), [fn] "r" (fn)
  174. : "lr", "cc"
  175. );
  176. return ret;
  177. }
  178. static inline long __kprobes
  179. insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn)
  180. {
  181. register long rr0 asm("r0") = r0;
  182. register long rr1 asm("r1") = r1;
  183. register long rr2 asm("r2") = r2;
  184. register long ret asm("r0");
  185. __asm__ __volatile__ (
  186. "msr cpsr_fs, %[cpsr] \n\t"
  187. "mov lr, pc \n\t"
  188. "mov pc, %[fn] \n\t"
  189. : "=r" (ret)
  190. : "0" (rr0), "r" (rr1), "r" (rr2),
  191. [cpsr] "r" (cpsr), [fn] "r" (fn)
  192. : "lr", "cc"
  193. );
  194. return ret;
  195. }
  196. static inline long long __kprobes
  197. insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr,
  198. insn_llret_3arg_fn_t *fn)
  199. {
  200. register long rr0 asm("r0") = r0;
  201. register long rr1 asm("r1") = r1;
  202. register long rr2 asm("r2") = r2;
  203. register long ret0 asm("r0");
  204. register long ret1 asm("r1");
  205. union reg_pair fnr;
  206. __asm__ __volatile__ (
  207. "msr cpsr_fs, %[cpsr] \n\t"
  208. "mov lr, pc \n\t"
  209. "mov pc, %[fn] \n\t"
  210. : "=r" (ret0), "=r" (ret1)
  211. : "0" (rr0), "r" (rr1), "r" (rr2),
  212. [cpsr] "r" (cpsr), [fn] "r" (fn)
  213. : "lr", "cc"
  214. );
  215. fnr.r0 = ret0;
  216. fnr.r1 = ret1;
  217. return fnr.dr;
  218. }
  219. static inline long __kprobes
  220. insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr,
  221. insn_4arg_fn_t *fn)
  222. {
  223. register long rr0 asm("r0") = r0;
  224. register long rr1 asm("r1") = r1;
  225. register long rr2 asm("r2") = r2;
  226. register long rr3 asm("r3") = r3;
  227. register long ret asm("r0");
  228. __asm__ __volatile__ (
  229. "msr cpsr_fs, %[cpsr] \n\t"
  230. "mov lr, pc \n\t"
  231. "mov pc, %[fn] \n\t"
  232. : "=r" (ret)
  233. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  234. [cpsr] "r" (cpsr), [fn] "r" (fn)
  235. : "lr", "cc"
  236. );
  237. return ret;
  238. }
  239. static inline long __kprobes
  240. insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn)
  241. {
  242. register long rr0 asm("r0") = r0;
  243. register long ret asm("r0");
  244. long oldcpsr = *cpsr;
  245. long newcpsr;
  246. __asm__ __volatile__ (
  247. "msr cpsr_fs, %[oldcpsr] \n\t"
  248. "mov lr, pc \n\t"
  249. "mov pc, %[fn] \n\t"
  250. "mrs %[newcpsr], cpsr \n\t"
  251. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  252. : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  253. : "lr", "cc"
  254. );
  255. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  256. return ret;
  257. }
  258. static inline long __kprobes
  259. insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn)
  260. {
  261. register long rr0 asm("r0") = r0;
  262. register long rr1 asm("r1") = r1;
  263. register long ret asm("r0");
  264. long oldcpsr = *cpsr;
  265. long newcpsr;
  266. __asm__ __volatile__ (
  267. "msr cpsr_fs, %[oldcpsr] \n\t"
  268. "mov lr, pc \n\t"
  269. "mov pc, %[fn] \n\t"
  270. "mrs %[newcpsr], cpsr \n\t"
  271. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  272. : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  273. : "lr", "cc"
  274. );
  275. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  276. return ret;
  277. }
  278. static inline long __kprobes
  279. insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr,
  280. insn_3arg_fn_t *fn)
  281. {
  282. register long rr0 asm("r0") = r0;
  283. register long rr1 asm("r1") = r1;
  284. register long rr2 asm("r2") = r2;
  285. register long ret asm("r0");
  286. long oldcpsr = *cpsr;
  287. long newcpsr;
  288. __asm__ __volatile__ (
  289. "msr cpsr_fs, %[oldcpsr] \n\t"
  290. "mov lr, pc \n\t"
  291. "mov pc, %[fn] \n\t"
  292. "mrs %[newcpsr], cpsr \n\t"
  293. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  294. : "0" (rr0), "r" (rr1), "r" (rr2),
  295. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  296. : "lr", "cc"
  297. );
  298. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  299. return ret;
  300. }
  301. static inline long __kprobes
  302. insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  303. insn_4arg_fn_t *fn)
  304. {
  305. register long rr0 asm("r0") = r0;
  306. register long rr1 asm("r1") = r1;
  307. register long rr2 asm("r2") = r2;
  308. register long rr3 asm("r3") = r3;
  309. register long ret asm("r0");
  310. long oldcpsr = *cpsr;
  311. long newcpsr;
  312. __asm__ __volatile__ (
  313. "msr cpsr_fs, %[oldcpsr] \n\t"
  314. "mov lr, pc \n\t"
  315. "mov pc, %[fn] \n\t"
  316. "mrs %[newcpsr], cpsr \n\t"
  317. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  318. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  319. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  320. : "lr", "cc"
  321. );
  322. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  323. return ret;
  324. }
  325. static inline long long __kprobes
  326. insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  327. insn_llret_4arg_fn_t *fn)
  328. {
  329. register long rr0 asm("r0") = r0;
  330. register long rr1 asm("r1") = r1;
  331. register long rr2 asm("r2") = r2;
  332. register long rr3 asm("r3") = r3;
  333. register long ret0 asm("r0");
  334. register long ret1 asm("r1");
  335. long oldcpsr = *cpsr;
  336. long newcpsr;
  337. union reg_pair fnr;
  338. __asm__ __volatile__ (
  339. "msr cpsr_fs, %[oldcpsr] \n\t"
  340. "mov lr, pc \n\t"
  341. "mov pc, %[fn] \n\t"
  342. "mrs %[newcpsr], cpsr \n\t"
  343. : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr)
  344. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  345. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  346. : "lr", "cc"
  347. );
  348. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  349. fnr.r0 = ret0;
  350. fnr.r1 = ret1;
  351. return fnr.dr;
  352. }
  353. /*
  354. * To avoid the complications of mimicing single-stepping on a
  355. * processor without a Next-PC or a single-step mode, and to
  356. * avoid having to deal with the side-effects of boosting, we
  357. * simulate or emulate (almost) all ARM instructions.
  358. *
  359. * "Simulation" is where the instruction's behavior is duplicated in
  360. * C code. "Emulation" is where the original instruction is rewritten
  361. * and executed, often by altering its registers.
  362. *
  363. * By having all behavior of the kprobe'd instruction completed before
  364. * returning from the kprobe_handler(), all locks (scheduler and
  365. * interrupt) can safely be released. There is no need for secondary
  366. * breakpoints, no race with MP or preemptable kernels, nor having to
  367. * clean up resources counts at a later time impacting overall system
  368. * performance. By rewriting the instruction, only the minimum registers
  369. * need to be loaded and saved back optimizing performance.
  370. *
  371. * Calling the insnslot_*_rwflags version of a function doesn't hurt
  372. * anything even when the CPSR flags aren't updated by the
  373. * instruction. It's just a little slower in return for saving
  374. * a little space by not having a duplicate function that doesn't
  375. * update the flags. (The same optimization can be said for
  376. * instructions that do or don't perform register writeback)
  377. * Also, instructions can either read the flags, only write the
  378. * flags, or read and write the flags. To save combinations
  379. * rather than for sheer performance, flag functions just assume
  380. * read and write of flags.
  381. */
  382. static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
  383. {
  384. kprobe_opcode_t insn = p->opcode;
  385. long iaddr = (long)p->addr;
  386. int disp = branch_displacement(insn);
  387. if (insn & (1 << 24))
  388. regs->ARM_lr = iaddr + 4;
  389. regs->ARM_pc = iaddr + 8 + disp;
  390. }
  391. static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
  392. {
  393. kprobe_opcode_t insn = p->opcode;
  394. long iaddr = (long)p->addr;
  395. int disp = branch_displacement(insn);
  396. regs->ARM_lr = iaddr + 4;
  397. regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
  398. regs->ARM_cpsr |= PSR_T_BIT;
  399. }
  400. static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
  401. {
  402. kprobe_opcode_t insn = p->opcode;
  403. int rm = insn & 0xf;
  404. long rmv = regs->uregs[rm];
  405. if (insn & (1 << 5))
  406. regs->ARM_lr = (long)p->addr + 4;
  407. regs->ARM_pc = rmv & ~0x1;
  408. regs->ARM_cpsr &= ~PSR_T_BIT;
  409. if (rmv & 0x1)
  410. regs->ARM_cpsr |= PSR_T_BIT;
  411. }
  412. static void __kprobes simulate_mrs(struct kprobe *p, struct pt_regs *regs)
  413. {
  414. kprobe_opcode_t insn = p->opcode;
  415. int rd = (insn >> 12) & 0xf;
  416. unsigned long mask = 0xf8ff03df; /* Mask out execution state */
  417. regs->uregs[rd] = regs->ARM_cpsr & mask;
  418. }
  419. static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
  420. {
  421. kprobe_opcode_t insn = p->opcode;
  422. int rn = (insn >> 16) & 0xf;
  423. int lbit = insn & (1 << 20);
  424. int wbit = insn & (1 << 21);
  425. int ubit = insn & (1 << 23);
  426. int pbit = insn & (1 << 24);
  427. long *addr = (long *)regs->uregs[rn];
  428. int reg_bit_vector;
  429. int reg_count;
  430. reg_count = 0;
  431. reg_bit_vector = insn & 0xffff;
  432. while (reg_bit_vector) {
  433. reg_bit_vector &= (reg_bit_vector - 1);
  434. ++reg_count;
  435. }
  436. if (!ubit)
  437. addr -= reg_count;
  438. addr += (!pbit == !ubit);
  439. reg_bit_vector = insn & 0xffff;
  440. while (reg_bit_vector) {
  441. int reg = __ffs(reg_bit_vector);
  442. reg_bit_vector &= (reg_bit_vector - 1);
  443. if (lbit)
  444. regs->uregs[reg] = *addr++;
  445. else
  446. *addr++ = regs->uregs[reg];
  447. }
  448. if (wbit) {
  449. if (!ubit)
  450. addr -= reg_count;
  451. addr -= (!pbit == !ubit);
  452. regs->uregs[rn] = (long)addr;
  453. }
  454. }
  455. static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
  456. {
  457. regs->ARM_pc = (long)p->addr + str_pc_offset;
  458. simulate_ldm1stm1(p, regs);
  459. regs->ARM_pc = (long)p->addr + 4;
  460. }
  461. static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
  462. {
  463. regs->uregs[12] = regs->uregs[13];
  464. }
  465. static void __kprobes emulate_ldcstc(struct kprobe *p, struct pt_regs *regs)
  466. {
  467. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  468. kprobe_opcode_t insn = p->opcode;
  469. int rn = (insn >> 16) & 0xf;
  470. long rnv = regs->uregs[rn];
  471. /* Save Rn in case of writeback. */
  472. regs->uregs[rn] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  473. }
  474. static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs)
  475. {
  476. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  477. kprobe_opcode_t insn = p->opcode;
  478. long ppc = (long)p->addr + 8;
  479. int rd = (insn >> 12) & 0xf;
  480. int rn = (insn >> 16) & 0xf;
  481. int rm = insn & 0xf; /* rm may be invalid, don't care. */
  482. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  483. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  484. /* Not following the C calling convention here, so need asm(). */
  485. __asm__ __volatile__ (
  486. "ldr r0, %[rn] \n\t"
  487. "ldr r1, %[rm] \n\t"
  488. "msr cpsr_fs, %[cpsr]\n\t"
  489. "mov lr, pc \n\t"
  490. "mov pc, %[i_fn] \n\t"
  491. "str r0, %[rn] \n\t" /* in case of writeback */
  492. "str r2, %[rd0] \n\t"
  493. "str r3, %[rd1] \n\t"
  494. : [rn] "+m" (rnv),
  495. [rd0] "=m" (regs->uregs[rd]),
  496. [rd1] "=m" (regs->uregs[rd+1])
  497. : [rm] "m" (rmv),
  498. [cpsr] "r" (regs->ARM_cpsr),
  499. [i_fn] "r" (i_fn)
  500. : "r0", "r1", "r2", "r3", "lr", "cc"
  501. );
  502. if (is_writeback(insn))
  503. regs->uregs[rn] = rnv;
  504. }
  505. static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs)
  506. {
  507. insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0];
  508. kprobe_opcode_t insn = p->opcode;
  509. long ppc = (long)p->addr + 8;
  510. int rd = (insn >> 12) & 0xf;
  511. int rn = (insn >> 16) & 0xf;
  512. int rm = insn & 0xf;
  513. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  514. /* rm/rmv may be invalid, don't care. */
  515. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  516. long rnv_wb;
  517. rnv_wb = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd],
  518. regs->uregs[rd+1],
  519. regs->ARM_cpsr, i_fn);
  520. if (is_writeback(insn))
  521. regs->uregs[rn] = rnv_wb;
  522. }
  523. static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs)
  524. {
  525. insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0];
  526. kprobe_opcode_t insn = p->opcode;
  527. long ppc = (long)p->addr + 8;
  528. union reg_pair fnr;
  529. int rd = (insn >> 12) & 0xf;
  530. int rn = (insn >> 16) & 0xf;
  531. int rm = insn & 0xf;
  532. long rdv;
  533. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  534. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  535. long cpsr = regs->ARM_cpsr;
  536. fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn);
  537. if (rn != 15)
  538. regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */
  539. rdv = fnr.r1;
  540. if (rd == 15) {
  541. #if __LINUX_ARM_ARCH__ >= 5
  542. cpsr &= ~PSR_T_BIT;
  543. if (rdv & 0x1)
  544. cpsr |= PSR_T_BIT;
  545. regs->ARM_cpsr = cpsr;
  546. rdv &= ~0x1;
  547. #else
  548. rdv &= ~0x2;
  549. #endif
  550. }
  551. regs->uregs[rd] = rdv;
  552. }
  553. static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs)
  554. {
  555. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  556. kprobe_opcode_t insn = p->opcode;
  557. long iaddr = (long)p->addr;
  558. int rd = (insn >> 12) & 0xf;
  559. int rn = (insn >> 16) & 0xf;
  560. int rm = insn & 0xf;
  561. long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd];
  562. long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn];
  563. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  564. long rnv_wb;
  565. rnv_wb = insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn);
  566. if (rn != 15)
  567. regs->uregs[rn] = rnv_wb; /* Save Rn in case of writeback. */
  568. }
  569. static void __kprobes emulate_mrrc(struct kprobe *p, struct pt_regs *regs)
  570. {
  571. insn_llret_0arg_fn_t *i_fn = (insn_llret_0arg_fn_t *)&p->ainsn.insn[0];
  572. kprobe_opcode_t insn = p->opcode;
  573. union reg_pair fnr;
  574. int rd = (insn >> 12) & 0xf;
  575. int rn = (insn >> 16) & 0xf;
  576. fnr.dr = insnslot_llret_0arg_rflags(regs->ARM_cpsr, i_fn);
  577. regs->uregs[rn] = fnr.r0;
  578. regs->uregs[rd] = fnr.r1;
  579. }
  580. static void __kprobes emulate_mcrr(struct kprobe *p, struct pt_regs *regs)
  581. {
  582. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  583. kprobe_opcode_t insn = p->opcode;
  584. int rd = (insn >> 12) & 0xf;
  585. int rn = (insn >> 16) & 0xf;
  586. long rnv = regs->uregs[rn];
  587. long rdv = regs->uregs[rd];
  588. insnslot_2arg_rflags(rnv, rdv, regs->ARM_cpsr, i_fn);
  589. }
  590. static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs)
  591. {
  592. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  593. kprobe_opcode_t insn = p->opcode;
  594. int rd = (insn >> 12) & 0xf;
  595. int rm = insn & 0xf;
  596. long rmv = regs->uregs[rm];
  597. /* Writes Q flag */
  598. regs->uregs[rd] = insnslot_1arg_rwflags(rmv, &regs->ARM_cpsr, i_fn);
  599. }
  600. static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs)
  601. {
  602. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  603. kprobe_opcode_t insn = p->opcode;
  604. int rd = (insn >> 12) & 0xf;
  605. int rn = (insn >> 16) & 0xf;
  606. int rm = insn & 0xf;
  607. long rnv = regs->uregs[rn];
  608. long rmv = regs->uregs[rm];
  609. /* Reads GE bits */
  610. regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn);
  611. }
  612. static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs)
  613. {
  614. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  615. insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  616. }
  617. static void __kprobes emulate_rd12(struct kprobe *p, struct pt_regs *regs)
  618. {
  619. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  620. kprobe_opcode_t insn = p->opcode;
  621. int rd = (insn >> 12) & 0xf;
  622. regs->uregs[rd] = insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  623. }
  624. static void __kprobes emulate_ird12(struct kprobe *p, struct pt_regs *regs)
  625. {
  626. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  627. kprobe_opcode_t insn = p->opcode;
  628. int ird = (insn >> 12) & 0xf;
  629. insnslot_1arg_rflags(regs->uregs[ird], regs->ARM_cpsr, i_fn);
  630. }
  631. static void __kprobes emulate_rn16(struct kprobe *p, struct pt_regs *regs)
  632. {
  633. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  634. kprobe_opcode_t insn = p->opcode;
  635. int rn = (insn >> 16) & 0xf;
  636. long rnv = regs->uregs[rn];
  637. insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  638. }
  639. static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs)
  640. {
  641. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  642. kprobe_opcode_t insn = p->opcode;
  643. int rd = (insn >> 12) & 0xf;
  644. int rm = insn & 0xf;
  645. long rmv = regs->uregs[rm];
  646. regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn);
  647. }
  648. static void __kprobes
  649. emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  650. {
  651. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  652. kprobe_opcode_t insn = p->opcode;
  653. int rd = (insn >> 12) & 0xf;
  654. int rn = (insn >> 16) & 0xf;
  655. int rm = insn & 0xf;
  656. long rnv = regs->uregs[rn];
  657. long rmv = regs->uregs[rm];
  658. regs->uregs[rd] =
  659. insnslot_2arg_rwflags(rnv, rmv, &regs->ARM_cpsr, i_fn);
  660. }
  661. static void __kprobes
  662. emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  663. {
  664. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  665. kprobe_opcode_t insn = p->opcode;
  666. int rd = (insn >> 16) & 0xf;
  667. int rn = (insn >> 12) & 0xf;
  668. int rs = (insn >> 8) & 0xf;
  669. int rm = insn & 0xf;
  670. long rnv = regs->uregs[rn];
  671. long rsv = regs->uregs[rs];
  672. long rmv = regs->uregs[rm];
  673. regs->uregs[rd] =
  674. insnslot_3arg_rwflags(rnv, rsv, rmv, &regs->ARM_cpsr, i_fn);
  675. }
  676. static void __kprobes
  677. emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  678. {
  679. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  680. kprobe_opcode_t insn = p->opcode;
  681. int rd = (insn >> 16) & 0xf;
  682. int rs = (insn >> 8) & 0xf;
  683. int rm = insn & 0xf;
  684. long rsv = regs->uregs[rs];
  685. long rmv = regs->uregs[rm];
  686. regs->uregs[rd] =
  687. insnslot_2arg_rwflags(rsv, rmv, &regs->ARM_cpsr, i_fn);
  688. }
  689. static void __kprobes
  690. emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  691. {
  692. insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0];
  693. kprobe_opcode_t insn = p->opcode;
  694. union reg_pair fnr;
  695. int rdhi = (insn >> 16) & 0xf;
  696. int rdlo = (insn >> 12) & 0xf;
  697. int rs = (insn >> 8) & 0xf;
  698. int rm = insn & 0xf;
  699. long rsv = regs->uregs[rs];
  700. long rmv = regs->uregs[rm];
  701. fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi],
  702. regs->uregs[rdlo], rsv, rmv,
  703. &regs->ARM_cpsr, i_fn);
  704. regs->uregs[rdhi] = fnr.r0;
  705. regs->uregs[rdlo] = fnr.r1;
  706. }
  707. static void __kprobes
  708. emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs)
  709. {
  710. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  711. kprobe_opcode_t insn = p->opcode;
  712. int rd = (insn >> 12) & 0xf;
  713. int rn = (insn >> 16) & 0xf;
  714. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  715. regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  716. }
  717. static void __kprobes
  718. emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs)
  719. {
  720. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  721. kprobe_opcode_t insn = p->opcode;
  722. int rd = (insn >> 12) & 0xf;
  723. int rn = (insn >> 16) & 0xf;
  724. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  725. regs->uregs[rd] = insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  726. }
  727. static void __kprobes
  728. emulate_alu_tests_imm(struct kprobe *p, struct pt_regs *regs)
  729. {
  730. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  731. kprobe_opcode_t insn = p->opcode;
  732. int rn = (insn >> 16) & 0xf;
  733. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  734. insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  735. }
  736. static void __kprobes
  737. emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs)
  738. {
  739. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  740. kprobe_opcode_t insn = p->opcode;
  741. long ppc = (long)p->addr + 8;
  742. int rd = (insn >> 12) & 0xf;
  743. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  744. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  745. int rm = insn & 0xf;
  746. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  747. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  748. long rsv = regs->uregs[rs];
  749. regs->uregs[rd] =
  750. insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn);
  751. }
  752. static void __kprobes
  753. emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs)
  754. {
  755. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  756. kprobe_opcode_t insn = p->opcode;
  757. long ppc = (long)p->addr + 8;
  758. int rd = (insn >> 12) & 0xf;
  759. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  760. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  761. int rm = insn & 0xf;
  762. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  763. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  764. long rsv = regs->uregs[rs];
  765. regs->uregs[rd] =
  766. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  767. }
  768. static void __kprobes
  769. emulate_alu_tests(struct kprobe *p, struct pt_regs *regs)
  770. {
  771. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  772. kprobe_opcode_t insn = p->opcode;
  773. long ppc = (long)p->addr + 8;
  774. int rn = (insn >> 16) & 0xf;
  775. int rs = (insn >> 8) & 0xf; /* rs/rsv may be invalid, don't care. */
  776. int rm = insn & 0xf;
  777. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  778. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  779. long rsv = regs->uregs[rs];
  780. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  781. }
  782. static enum kprobe_insn __kprobes
  783. prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  784. {
  785. int not_imm = (insn & (1 << 26)) ? (insn & (1 << 25))
  786. : (~insn & (1 << 22));
  787. if (is_writeback(insn) && is_r15(insn, 16))
  788. return INSN_REJECTED; /* Writeback to PC */
  789. insn &= 0xfff00fff;
  790. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  791. if (not_imm) {
  792. insn &= ~0xf;
  793. insn |= 2; /* Rm = r2 */
  794. }
  795. asi->insn[0] = insn;
  796. asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str;
  797. return INSN_GOOD;
  798. }
  799. static enum kprobe_insn __kprobes
  800. prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  801. {
  802. if (is_r15(insn, 12))
  803. return INSN_REJECTED; /* Rd is PC */
  804. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  805. asi->insn[0] = insn;
  806. asi->insn_handler = emulate_rd12rm0;
  807. return INSN_GOOD;
  808. }
  809. static enum kprobe_insn __kprobes
  810. prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn,
  811. struct arch_specific_insn *asi)
  812. {
  813. if (is_r15(insn, 12))
  814. return INSN_REJECTED; /* Rd is PC */
  815. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  816. insn |= 0x00000001; /* Rm = r1 */
  817. asi->insn[0] = insn;
  818. asi->insn_handler = emulate_rd12rn16rm0_rwflags;
  819. return INSN_GOOD;
  820. }
  821. static enum kprobe_insn __kprobes
  822. prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn,
  823. struct arch_specific_insn *asi)
  824. {
  825. if (is_r15(insn, 16))
  826. return INSN_REJECTED; /* Rd is PC */
  827. insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */
  828. insn |= 0x00000001; /* Rm = r1 */
  829. asi->insn[0] = insn;
  830. asi->insn_handler = emulate_rd16rs8rm0_rwflags;
  831. return INSN_GOOD;
  832. }
  833. static enum kprobe_insn __kprobes
  834. prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn,
  835. struct arch_specific_insn *asi)
  836. {
  837. if (is_r15(insn, 16))
  838. return INSN_REJECTED; /* Rd is PC */
  839. insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */
  840. insn |= 0x00000102; /* Rs = r1, Rm = r2 */
  841. asi->insn[0] = insn;
  842. asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags;
  843. return INSN_GOOD;
  844. }
  845. static enum kprobe_insn __kprobes
  846. prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn,
  847. struct arch_specific_insn *asi)
  848. {
  849. if (is_r15(insn, 16) || is_r15(insn, 12))
  850. return INSN_REJECTED; /* RdHi or RdLo is PC */
  851. insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */
  852. insn |= 0x00001203; /* Rs = r2, Rm = r3 */
  853. asi->insn[0] = insn;
  854. asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags;
  855. return INSN_GOOD;
  856. }
  857. /*
  858. * For the instruction masking and comparisons in all the "space_*"
  859. * functions below, Do _not_ rearrange the order of tests unless
  860. * you're very, very sure of what you are doing. For the sake of
  861. * efficiency, the masks for some tests sometimes assume other test
  862. * have been done prior to them so the number of patterns to test
  863. * for an instruction set can be as broad as possible to reduce the
  864. * number of tests needed.
  865. */
  866. static enum kprobe_insn __kprobes
  867. space_1111(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  868. {
  869. /* CPS mmod == 1 : 1111 0001 0000 xx10 xxxx xxxx xx0x xxxx */
  870. /* RFE : 1111 100x x0x1 xxxx xxxx 1010 xxxx xxxx */
  871. /* SRS : 1111 100x x1x0 1101 xxxx 0101 xxxx xxxx */
  872. if ((insn & 0xfff30020) == 0xf1020000 ||
  873. (insn & 0xfe500f00) == 0xf8100a00 ||
  874. (insn & 0xfe5f0f00) == 0xf84d0500)
  875. return INSN_REJECTED;
  876. /* PLD : 1111 01x1 x101 xxxx xxxx xxxx xxxx xxxx : */
  877. if ((insn & 0xfd700000) == 0xf4500000) {
  878. insn &= 0xfff0ffff; /* Rn = r0 */
  879. asi->insn[0] = insn;
  880. asi->insn_handler = emulate_rn16;
  881. return INSN_GOOD;
  882. }
  883. /* BLX(1) : 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx : */
  884. if ((insn & 0xfe000000) == 0xfa000000) {
  885. asi->insn_handler = simulate_blx1;
  886. return INSN_GOOD_NO_SLOT;
  887. }
  888. /* SETEND : 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
  889. /* CDP2 : 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  890. if ((insn & 0xffff00f0) == 0xf1010000 ||
  891. (insn & 0xff000010) == 0xfe000000) {
  892. asi->insn[0] = insn;
  893. asi->insn_handler = emulate_none;
  894. return INSN_GOOD;
  895. }
  896. /* MCRR2 : 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  897. /* MRRC2 : 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  898. if ((insn & 0xffe00000) == 0xfc400000) {
  899. insn &= 0xfff00fff; /* Rn = r0 */
  900. insn |= 0x00001000; /* Rd = r1 */
  901. asi->insn[0] = insn;
  902. asi->insn_handler =
  903. (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
  904. return INSN_GOOD;
  905. }
  906. /* LDC2 : 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  907. /* STC2 : 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  908. if ((insn & 0xfe000000) == 0xfc000000) {
  909. insn &= 0xfff0ffff; /* Rn = r0 */
  910. asi->insn[0] = insn;
  911. asi->insn_handler = emulate_ldcstc;
  912. return INSN_GOOD;
  913. }
  914. /* MCR2 : 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  915. /* MRC2 : 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  916. insn &= 0xffff0fff; /* Rd = r0 */
  917. asi->insn[0] = insn;
  918. asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
  919. return INSN_GOOD;
  920. }
  921. static enum kprobe_insn __kprobes
  922. space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  923. {
  924. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx xxx0 xxxx */
  925. if ((insn & 0x0f900010) == 0x01000000) {
  926. /* BXJ : cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
  927. /* MSR : cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
  928. /* MRS spsr : cccc 0001 0100 xxxx xxxx xxxx 0000 xxxx */
  929. if ((insn & 0x0ff000f0) == 0x01200020 ||
  930. (insn & 0x0fb000f0) == 0x01200000 ||
  931. (insn & 0x0ff000f0) == 0x01400000)
  932. return INSN_REJECTED;
  933. /* MRS cpsr : cccc 0001 0000 xxxx xxxx xxxx 0000 xxxx */
  934. if ((insn & 0x0ff000f0) == 0x01000000) {
  935. if (is_r15(insn, 12))
  936. return INSN_REJECTED; /* Rd is PC */
  937. asi->insn_handler = simulate_mrs;
  938. return INSN_GOOD_NO_SLOT;
  939. }
  940. /* SMLALxy : cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
  941. if ((insn & 0x0ff00090) == 0x01400080)
  942. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  943. /* SMULWy : cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
  944. /* SMULxy : cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
  945. if ((insn & 0x0ff000b0) == 0x012000a0 ||
  946. (insn & 0x0ff00090) == 0x01600080)
  947. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  948. /* SMLAxy : cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx : Q */
  949. /* SMLAWy : cccc 0001 0010 xxxx xxxx xxxx 1x00 xxxx : Q */
  950. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  951. }
  952. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx 0xx1 xxxx */
  953. else if ((insn & 0x0f900090) == 0x01000010) {
  954. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  955. if ((insn & 0xfff000f0) == 0xe1200070)
  956. return INSN_REJECTED;
  957. /* BLX(2) : cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
  958. /* BX : cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
  959. if ((insn & 0x0ff000d0) == 0x01200010) {
  960. if ((insn & 0x0ff000ff) == 0x0120003f)
  961. return INSN_REJECTED; /* BLX pc */
  962. asi->insn_handler = simulate_blx2bx;
  963. return INSN_GOOD_NO_SLOT;
  964. }
  965. /* CLZ : cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
  966. if ((insn & 0x0ff000f0) == 0x01600010)
  967. return prep_emulate_rd12rm0(insn, asi);
  968. /* QADD : cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx :Q */
  969. /* QSUB : cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx :Q */
  970. /* QDADD : cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx :Q */
  971. /* QDSUB : cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx :Q */
  972. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  973. }
  974. /* cccc 0000 xxxx xxxx xxxx xxxx xxxx 1001 xxxx */
  975. else if ((insn & 0x0f0000f0) == 0x00000090) {
  976. /* MUL : cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx : */
  977. /* MULS : cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx :cc */
  978. /* MLA : cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx : */
  979. /* MLAS : cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx :cc */
  980. /* UMAAL : cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx : */
  981. /* undef : cccc 0000 0101 xxxx xxxx xxxx 1001 xxxx : */
  982. /* MLS : cccc 0000 0110 xxxx xxxx xxxx 1001 xxxx : */
  983. /* undef : cccc 0000 0111 xxxx xxxx xxxx 1001 xxxx : */
  984. /* UMULL : cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx : */
  985. /* UMULLS : cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx :cc */
  986. /* UMLAL : cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx : */
  987. /* UMLALS : cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx :cc */
  988. /* SMULL : cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx : */
  989. /* SMULLS : cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx :cc */
  990. /* SMLAL : cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx : */
  991. /* SMLALS : cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx :cc */
  992. if ((insn & 0x00d00000) == 0x00500000) {
  993. return INSN_REJECTED;
  994. } else if ((insn & 0x00e00000) == 0x00000000) {
  995. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  996. } else if ((insn & 0x00a00000) == 0x00200000) {
  997. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  998. } else {
  999. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  1000. }
  1001. }
  1002. /* cccc 000x xxxx xxxx xxxx xxxx xxxx 1xx1 xxxx */
  1003. else if ((insn & 0x0e000090) == 0x00000090) {
  1004. /* SWP : cccc 0001 0000 xxxx xxxx xxxx 1001 xxxx */
  1005. /* SWPB : cccc 0001 0100 xxxx xxxx xxxx 1001 xxxx */
  1006. /* ??? : cccc 0001 0x01 xxxx xxxx xxxx 1001 xxxx */
  1007. /* ??? : cccc 0001 0x10 xxxx xxxx xxxx 1001 xxxx */
  1008. /* ??? : cccc 0001 0x11 xxxx xxxx xxxx 1001 xxxx */
  1009. /* STREX : cccc 0001 1000 xxxx xxxx xxxx 1001 xxxx */
  1010. /* LDREX : cccc 0001 1001 xxxx xxxx xxxx 1001 xxxx */
  1011. /* STREXD: cccc 0001 1010 xxxx xxxx xxxx 1001 xxxx */
  1012. /* LDREXD: cccc 0001 1011 xxxx xxxx xxxx 1001 xxxx */
  1013. /* STREXB: cccc 0001 1100 xxxx xxxx xxxx 1001 xxxx */
  1014. /* LDREXB: cccc 0001 1101 xxxx xxxx xxxx 1001 xxxx */
  1015. /* STREXH: cccc 0001 1110 xxxx xxxx xxxx 1001 xxxx */
  1016. /* LDREXH: cccc 0001 1111 xxxx xxxx xxxx 1001 xxxx */
  1017. /* LDRD : cccc 000x xxx0 xxxx xxxx xxxx 1101 xxxx */
  1018. /* STRD : cccc 000x xxx0 xxxx xxxx xxxx 1111 xxxx */
  1019. /* LDRH : cccc 000x xxx1 xxxx xxxx xxxx 1011 xxxx */
  1020. /* STRH : cccc 000x xxx0 xxxx xxxx xxxx 1011 xxxx */
  1021. /* LDRSB : cccc 000x xxx1 xxxx xxxx xxxx 1101 xxxx */
  1022. /* LDRSH : cccc 000x xxx1 xxxx xxxx xxxx 1111 xxxx */
  1023. if ((insn & 0x0f0000f0) == 0x01000090) {
  1024. if ((insn & 0x0fb000f0) == 0x01000090) {
  1025. /* SWP/SWPB */
  1026. return prep_emulate_rd12rn16rm0_wflags(insn,
  1027. asi);
  1028. } else {
  1029. /* STREX/LDREX variants and unallocaed space */
  1030. return INSN_REJECTED;
  1031. }
  1032. } else if ((insn & 0x0e1000d0) == 0x00000d0) {
  1033. /* STRD/LDRD */
  1034. if ((insn & 0x0000e000) == 0x0000e000)
  1035. return INSN_REJECTED; /* Rd is LR or PC */
  1036. if (is_writeback(insn) && is_r15(insn, 16))
  1037. return INSN_REJECTED; /* Writeback to PC */
  1038. insn &= 0xfff00fff;
  1039. insn |= 0x00002000; /* Rn = r0, Rd = r2 */
  1040. if (!(insn & (1 << 22))) {
  1041. /* Register index */
  1042. insn &= ~0xf;
  1043. insn |= 1; /* Rm = r1 */
  1044. }
  1045. asi->insn[0] = insn;
  1046. asi->insn_handler =
  1047. (insn & (1 << 5)) ? emulate_strd : emulate_ldrd;
  1048. return INSN_GOOD;
  1049. }
  1050. /* LDRH/STRH/LDRSB/LDRSH */
  1051. if (is_r15(insn, 12))
  1052. return INSN_REJECTED; /* Rd is PC */
  1053. return prep_emulate_ldr_str(insn, asi);
  1054. }
  1055. /* cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx xxxx */
  1056. /*
  1057. * ALU op with S bit and Rd == 15 :
  1058. * cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx
  1059. */
  1060. if ((insn & 0x0e10f000) == 0x0010f000)
  1061. return INSN_REJECTED;
  1062. /*
  1063. * "mov ip, sp" is the most common kprobe'd instruction by far.
  1064. * Check and optimize for it explicitly.
  1065. */
  1066. if (insn == 0xe1a0c00d) {
  1067. asi->insn_handler = simulate_mov_ipsp;
  1068. return INSN_GOOD_NO_SLOT;
  1069. }
  1070. /*
  1071. * Data processing: Immediate-shift / Register-shift
  1072. * ALU op : cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx
  1073. * CPY : cccc 0001 1010 xxxx xxxx 0000 0000 xxxx
  1074. * MOV : cccc 0001 101x xxxx xxxx xxxx xxxx xxxx
  1075. * *S (bit 20) updates condition codes
  1076. * ADC/SBC/RSC reads the C flag
  1077. */
  1078. insn &= 0xfff00ff0; /* Rn = r0, Rd = r0 */
  1079. insn |= 0x00000001; /* Rm = r1 */
  1080. if (insn & 0x010) {
  1081. insn &= 0xfffff0ff; /* register shift */
  1082. insn |= 0x00000200; /* Rs = r2 */
  1083. }
  1084. asi->insn[0] = insn;
  1085. if ((insn & 0x0f900000) == 0x01100000) {
  1086. /*
  1087. * TST : cccc 0001 0001 xxxx xxxx xxxx xxxx xxxx
  1088. * TEQ : cccc 0001 0011 xxxx xxxx xxxx xxxx xxxx
  1089. * CMP : cccc 0001 0101 xxxx xxxx xxxx xxxx xxxx
  1090. * CMN : cccc 0001 0111 xxxx xxxx xxxx xxxx xxxx
  1091. */
  1092. asi->insn_handler = emulate_alu_tests;
  1093. } else {
  1094. /* ALU ops which write to Rd */
  1095. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1096. emulate_alu_rwflags : emulate_alu_rflags;
  1097. }
  1098. return INSN_GOOD;
  1099. }
  1100. static enum kprobe_insn __kprobes
  1101. space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1102. {
  1103. /*
  1104. * MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx
  1105. * Undef : cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx
  1106. * ALU op with S bit and Rd == 15 :
  1107. * cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx
  1108. */
  1109. if ((insn & 0x0fb00000) == 0x03200000 || /* MSR */
  1110. (insn & 0x0ff00000) == 0x03400000 || /* Undef */
  1111. (insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */
  1112. return INSN_REJECTED;
  1113. /*
  1114. * Data processing: 32-bit Immediate
  1115. * ALU op : cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx
  1116. * MOV : cccc 0011 101x xxxx xxxx xxxx xxxx xxxx
  1117. * *S (bit 20) updates condition codes
  1118. * ADC/SBC/RSC reads the C flag
  1119. */
  1120. insn &= 0xfff00fff; /* Rn = r0 and Rd = r0 */
  1121. asi->insn[0] = insn;
  1122. if ((insn & 0x0f900000) == 0x03100000) {
  1123. /*
  1124. * TST : cccc 0011 0001 xxxx xxxx xxxx xxxx xxxx
  1125. * TEQ : cccc 0011 0011 xxxx xxxx xxxx xxxx xxxx
  1126. * CMP : cccc 0011 0101 xxxx xxxx xxxx xxxx xxxx
  1127. * CMN : cccc 0011 0111 xxxx xxxx xxxx xxxx xxxx
  1128. */
  1129. asi->insn_handler = emulate_alu_tests_imm;
  1130. } else {
  1131. /* ALU ops which write to Rd */
  1132. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1133. emulate_alu_imm_rwflags : emulate_alu_imm_rflags;
  1134. }
  1135. return INSN_GOOD;
  1136. }
  1137. static enum kprobe_insn __kprobes
  1138. space_cccc_0110__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1139. {
  1140. /* SEL : cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx GE: !!! */
  1141. if ((insn & 0x0ff000f0) == 0x068000b0) {
  1142. if (is_r15(insn, 12))
  1143. return INSN_REJECTED; /* Rd is PC */
  1144. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  1145. insn |= 0x00000001; /* Rm = r1 */
  1146. asi->insn[0] = insn;
  1147. asi->insn_handler = emulate_sel;
  1148. return INSN_GOOD;
  1149. }
  1150. /* SSAT : cccc 0110 101x xxxx xxxx xxxx xx01 xxxx :Q */
  1151. /* USAT : cccc 0110 111x xxxx xxxx xxxx xx01 xxxx :Q */
  1152. /* SSAT16 : cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx :Q */
  1153. /* USAT16 : cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx :Q */
  1154. if ((insn & 0x0fa00030) == 0x06a00010 ||
  1155. (insn & 0x0fb000f0) == 0x06a00030) {
  1156. if (is_r15(insn, 12))
  1157. return INSN_REJECTED; /* Rd is PC */
  1158. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  1159. asi->insn[0] = insn;
  1160. asi->insn_handler = emulate_sat;
  1161. return INSN_GOOD;
  1162. }
  1163. /* REV : cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
  1164. /* REV16 : cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
  1165. /* RBIT : cccc 0110 1111 xxxx xxxx xxxx 0011 xxxx */
  1166. /* REVSH : cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
  1167. if ((insn & 0x0ff00070) == 0x06b00030 ||
  1168. (insn & 0x0ff00070) == 0x06f00030)
  1169. return prep_emulate_rd12rm0(insn, asi);
  1170. /* ??? : cccc 0110 0000 xxxx xxxx xxxx xxx1 xxxx : */
  1171. /* SADD16 : cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx :GE */
  1172. /* SADDSUBX : cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx :GE */
  1173. /* SSUBADDX : cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx :GE */
  1174. /* SSUB16 : cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx :GE */
  1175. /* SADD8 : cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx :GE */
  1176. /* ??? : cccc 0110 0001 xxxx xxxx xxxx 1011 xxxx : */
  1177. /* ??? : cccc 0110 0001 xxxx xxxx xxxx 1101 xxxx : */
  1178. /* SSUB8 : cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx :GE */
  1179. /* QADD16 : cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx : */
  1180. /* QADDSUBX : cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx : */
  1181. /* QSUBADDX : cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx : */
  1182. /* QSUB16 : cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx : */
  1183. /* QADD8 : cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx : */
  1184. /* ??? : cccc 0110 0010 xxxx xxxx xxxx 1011 xxxx : */
  1185. /* ??? : cccc 0110 0010 xxxx xxxx xxxx 1101 xxxx : */
  1186. /* QSUB8 : cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx : */
  1187. /* SHADD16 : cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx : */
  1188. /* SHADDSUBX : cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx : */
  1189. /* SHSUBADDX : cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx : */
  1190. /* SHSUB16 : cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx : */
  1191. /* SHADD8 : cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx : */
  1192. /* ??? : cccc 0110 0011 xxxx xxxx xxxx 1011 xxxx : */
  1193. /* ??? : cccc 0110 0011 xxxx xxxx xxxx 1101 xxxx : */
  1194. /* SHSUB8 : cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx : */
  1195. /* ??? : cccc 0110 0100 xxxx xxxx xxxx xxx1 xxxx : */
  1196. /* UADD16 : cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx :GE */
  1197. /* UADDSUBX : cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx :GE */
  1198. /* USUBADDX : cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx :GE */
  1199. /* USUB16 : cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx :GE */
  1200. /* UADD8 : cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx :GE */
  1201. /* ??? : cccc 0110 0101 xxxx xxxx xxxx 1011 xxxx : */
  1202. /* ??? : cccc 0110 0101 xxxx xxxx xxxx 1101 xxxx : */
  1203. /* USUB8 : cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx :GE */
  1204. /* UQADD16 : cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx : */
  1205. /* UQADDSUBX : cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx : */
  1206. /* UQSUBADDX : cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx : */
  1207. /* UQSUB16 : cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx : */
  1208. /* UQADD8 : cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx : */
  1209. /* ??? : cccc 0110 0110 xxxx xxxx xxxx 1011 xxxx : */
  1210. /* ??? : cccc 0110 0110 xxxx xxxx xxxx 1101 xxxx : */
  1211. /* UQSUB8 : cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx : */
  1212. /* UHADD16 : cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx : */
  1213. /* UHADDSUBX : cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx : */
  1214. /* UHSUBADDX : cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx : */
  1215. /* UHSUB16 : cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx : */
  1216. /* UHADD8 : cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx : */
  1217. /* ??? : cccc 0110 0111 xxxx xxxx xxxx 1011 xxxx : */
  1218. /* ??? : cccc 0110 0111 xxxx xxxx xxxx 1101 xxxx : */
  1219. /* UHSUB8 : cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx : */
  1220. if ((insn & 0x0f800010) == 0x06000010) {
  1221. if ((insn & 0x00300000) == 0x00000000 ||
  1222. (insn & 0x000000e0) == 0x000000a0 ||
  1223. (insn & 0x000000e0) == 0x000000c0)
  1224. return INSN_REJECTED; /* Unallocated space */
  1225. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1226. }
  1227. /* PKHBT : cccc 0110 1000 xxxx xxxx xxxx x001 xxxx : */
  1228. /* PKHTB : cccc 0110 1000 xxxx xxxx xxxx x101 xxxx : */
  1229. if ((insn & 0x0ff00030) == 0x06800010)
  1230. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1231. /* SXTAB16 : cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx : */
  1232. /* SXTB16 : cccc 0110 1000 1111 xxxx xxxx 0111 xxxx : */
  1233. /* ??? : cccc 0110 1001 xxxx xxxx xxxx 0111 xxxx : */
  1234. /* SXTAB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
  1235. /* SXTB : cccc 0110 1010 1111 xxxx xxxx 0111 xxxx : */
  1236. /* SXTAH : cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx : */
  1237. /* SXTH : cccc 0110 1011 1111 xxxx xxxx 0111 xxxx : */
  1238. /* UXTAB16 : cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx : */
  1239. /* UXTB16 : cccc 0110 1100 1111 xxxx xxxx 0111 xxxx : */
  1240. /* ??? : cccc 0110 1101 xxxx xxxx xxxx 0111 xxxx : */
  1241. /* UXTAB : cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx : */
  1242. /* UXTB : cccc 0110 1110 1111 xxxx xxxx 0111 xxxx : */
  1243. /* UXTAH : cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx : */
  1244. /* UXTH : cccc 0110 1111 1111 xxxx xxxx 0111 xxxx : */
  1245. if ((insn & 0x0f8000f0) == 0x06800070) {
  1246. if ((insn & 0x00300000) == 0x00100000)
  1247. return INSN_REJECTED; /* Unallocated space */
  1248. if ((insn & 0x000f0000) == 0x000f0000) {
  1249. return prep_emulate_rd12rm0(insn, asi);
  1250. } else {
  1251. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1252. }
  1253. }
  1254. /* Other instruction encodings aren't yet defined */
  1255. return INSN_REJECTED;
  1256. }
  1257. static enum kprobe_insn __kprobes
  1258. space_cccc_0111__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1259. {
  1260. /* Undef : cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
  1261. if ((insn & 0x0ff000f0) == 0x03f000f0)
  1262. return INSN_REJECTED;
  1263. /* USADA8 : cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */
  1264. /* USAD8 : cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */
  1265. if ((insn & 0x0ff000f0) == 0x07800010)
  1266. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1267. /* SMLALD : cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
  1268. /* SMLSLD : cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
  1269. if ((insn & 0x0ff00090) == 0x07400010)
  1270. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  1271. /* SMLAD : cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx :Q */
  1272. /* SMLSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx :Q */
  1273. /* SMMLA : cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx : */
  1274. /* SMMLS : cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx : */
  1275. if ((insn & 0x0ff00090) == 0x07000010 ||
  1276. (insn & 0x0ff000d0) == 0x07500010 ||
  1277. (insn & 0x0ff000d0) == 0x075000d0)
  1278. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1279. /* SMUSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx : */
  1280. /* SMUAD : cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx :Q */
  1281. /* SMMUL : cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx : */
  1282. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  1283. }
  1284. static enum kprobe_insn __kprobes
  1285. space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1286. {
  1287. /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */
  1288. /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */
  1289. /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
  1290. /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
  1291. /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */
  1292. /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */
  1293. /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
  1294. /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
  1295. if ((insn & 0x00500000) == 0x00500000 && is_r15(insn, 12))
  1296. return INSN_REJECTED; /* LDRB into PC */
  1297. return prep_emulate_ldr_str(insn, asi);
  1298. }
  1299. static enum kprobe_insn __kprobes
  1300. space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1301. {
  1302. /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */
  1303. /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
  1304. if ((insn & 0x0e708000) == 0x85000000 ||
  1305. (insn & 0x0e508000) == 0x85010000)
  1306. return INSN_REJECTED;
  1307. /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
  1308. /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
  1309. asi->insn_handler = ((insn & 0x108000) == 0x008000) ? /* STM & R15 */
  1310. simulate_stm1_pc : simulate_ldm1stm1;
  1311. return INSN_GOOD_NO_SLOT;
  1312. }
  1313. static enum kprobe_insn __kprobes
  1314. space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1315. {
  1316. /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
  1317. /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
  1318. asi->insn_handler = simulate_bbl;
  1319. return INSN_GOOD_NO_SLOT;
  1320. }
  1321. static enum kprobe_insn __kprobes
  1322. space_cccc_1100_010x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1323. {
  1324. /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1325. /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1326. if (is_r15(insn, 16) || is_r15(insn, 12))
  1327. return INSN_REJECTED; /* Rn or Rd is PC */
  1328. insn &= 0xfff00fff;
  1329. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  1330. asi->insn[0] = insn;
  1331. asi->insn_handler = (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
  1332. return INSN_GOOD;
  1333. }
  1334. static enum kprobe_insn __kprobes
  1335. space_cccc_110x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1336. {
  1337. /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  1338. /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  1339. insn &= 0xfff0ffff; /* Rn = r0 */
  1340. asi->insn[0] = insn;
  1341. asi->insn_handler = emulate_ldcstc;
  1342. return INSN_GOOD;
  1343. }
  1344. static enum kprobe_insn __kprobes
  1345. space_cccc_111x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1346. {
  1347. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  1348. /* SWI : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
  1349. if ((insn & 0xfff000f0) == 0xe1200070 ||
  1350. (insn & 0x0f000000) == 0x0f000000)
  1351. return INSN_REJECTED;
  1352. /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  1353. if ((insn & 0x0f000010) == 0x0e000000) {
  1354. asi->insn[0] = insn;
  1355. asi->insn_handler = emulate_none;
  1356. return INSN_GOOD;
  1357. }
  1358. /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  1359. /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  1360. insn &= 0xffff0fff; /* Rd = r0 */
  1361. asi->insn[0] = insn;
  1362. asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
  1363. return INSN_GOOD;
  1364. }
  1365. static unsigned long __kprobes __check_eq(unsigned long cpsr)
  1366. {
  1367. return cpsr & PSR_Z_BIT;
  1368. }
  1369. static unsigned long __kprobes __check_ne(unsigned long cpsr)
  1370. {
  1371. return (~cpsr) & PSR_Z_BIT;
  1372. }
  1373. static unsigned long __kprobes __check_cs(unsigned long cpsr)
  1374. {
  1375. return cpsr & PSR_C_BIT;
  1376. }
  1377. static unsigned long __kprobes __check_cc(unsigned long cpsr)
  1378. {
  1379. return (~cpsr) & PSR_C_BIT;
  1380. }
  1381. static unsigned long __kprobes __check_mi(unsigned long cpsr)
  1382. {
  1383. return cpsr & PSR_N_BIT;
  1384. }
  1385. static unsigned long __kprobes __check_pl(unsigned long cpsr)
  1386. {
  1387. return (~cpsr) & PSR_N_BIT;
  1388. }
  1389. static unsigned long __kprobes __check_vs(unsigned long cpsr)
  1390. {
  1391. return cpsr & PSR_V_BIT;
  1392. }
  1393. static unsigned long __kprobes __check_vc(unsigned long cpsr)
  1394. {
  1395. return (~cpsr) & PSR_V_BIT;
  1396. }
  1397. static unsigned long __kprobes __check_hi(unsigned long cpsr)
  1398. {
  1399. cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
  1400. return cpsr & PSR_C_BIT;
  1401. }
  1402. static unsigned long __kprobes __check_ls(unsigned long cpsr)
  1403. {
  1404. cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
  1405. return (~cpsr) & PSR_C_BIT;
  1406. }
  1407. static unsigned long __kprobes __check_ge(unsigned long cpsr)
  1408. {
  1409. cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1410. return (~cpsr) & PSR_N_BIT;
  1411. }
  1412. static unsigned long __kprobes __check_lt(unsigned long cpsr)
  1413. {
  1414. cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1415. return cpsr & PSR_N_BIT;
  1416. }
  1417. static unsigned long __kprobes __check_gt(unsigned long cpsr)
  1418. {
  1419. unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1420. temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
  1421. return (~temp) & PSR_N_BIT;
  1422. }
  1423. static unsigned long __kprobes __check_le(unsigned long cpsr)
  1424. {
  1425. unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1426. temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
  1427. return temp & PSR_N_BIT;
  1428. }
  1429. static unsigned long __kprobes __check_al(unsigned long cpsr)
  1430. {
  1431. return true;
  1432. }
  1433. static kprobe_check_cc * const condition_checks[16] = {
  1434. &__check_eq, &__check_ne, &__check_cs, &__check_cc,
  1435. &__check_mi, &__check_pl, &__check_vs, &__check_vc,
  1436. &__check_hi, &__check_ls, &__check_ge, &__check_lt,
  1437. &__check_gt, &__check_le, &__check_al, &__check_al
  1438. };
  1439. /* Return:
  1440. * INSN_REJECTED If instruction is one not allowed to kprobe,
  1441. * INSN_GOOD If instruction is supported and uses instruction slot,
  1442. * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
  1443. *
  1444. * For instructions we don't want to kprobe (INSN_REJECTED return result):
  1445. * These are generally ones that modify the processor state making
  1446. * them "hard" to simulate such as switches processor modes or
  1447. * make accesses in alternate modes. Any of these could be simulated
  1448. * if the work was put into it, but low return considering they
  1449. * should also be very rare.
  1450. */
  1451. enum kprobe_insn __kprobes
  1452. arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1453. {
  1454. asi->insn_check_cc = condition_checks[insn>>28];
  1455. asi->insn[1] = KPROBE_RETURN_INSTRUCTION;
  1456. if ((insn & 0xf0000000) == 0xf0000000) {
  1457. return space_1111(insn, asi);
  1458. } else if ((insn & 0x0e000000) == 0x00000000) {
  1459. return space_cccc_000x(insn, asi);
  1460. } else if ((insn & 0x0e000000) == 0x02000000) {
  1461. return space_cccc_001x(insn, asi);
  1462. } else if ((insn & 0x0f000010) == 0x06000010) {
  1463. return space_cccc_0110__1(insn, asi);
  1464. } else if ((insn & 0x0f000010) == 0x07000010) {
  1465. return space_cccc_0111__1(insn, asi);
  1466. } else if ((insn & 0x0c000000) == 0x04000000) {
  1467. return space_cccc_01xx(insn, asi);
  1468. } else if ((insn & 0x0e000000) == 0x08000000) {
  1469. return space_cccc_100x(insn, asi);
  1470. } else if ((insn & 0x0e000000) == 0x0a000000) {
  1471. return space_cccc_101x(insn, asi);
  1472. } else if ((insn & 0x0fe00000) == 0x0c400000) {
  1473. return space_cccc_1100_010x(insn, asi);
  1474. } else if ((insn & 0x0e000000) == 0x0c000000) {
  1475. return space_cccc_110x(insn, asi);
  1476. }
  1477. return space_cccc_111x(insn, asi);
  1478. }
  1479. void __init arm_kprobe_decode_init(void)
  1480. {
  1481. find_str_pc_offset();
  1482. }
  1483. /*
  1484. * All ARM instructions listed below.
  1485. *
  1486. * Instructions and their general purpose registers are given.
  1487. * If a particular register may not use R15, it is prefixed with a "!".
  1488. * If marked with a "*" means the value returned by reading R15
  1489. * is implementation defined.
  1490. *
  1491. * ADC/ADD/AND/BIC/CMN/CMP/EOR/MOV/MVN/ORR/RSB/RSC/SBC/SUB/TEQ
  1492. * TST: Rd, Rn, Rm, !Rs
  1493. * BX: Rm
  1494. * BLX(2): !Rm
  1495. * BX: Rm (R15 legal, but discouraged)
  1496. * BXJ: !Rm,
  1497. * CLZ: !Rd, !Rm
  1498. * CPY: Rd, Rm
  1499. * LDC/2,STC/2 immediate offset & unindex: Rn
  1500. * LDC/2,STC/2 immediate pre/post-indexed: !Rn
  1501. * LDM(1/3): !Rn, register_list
  1502. * LDM(2): !Rn, !register_list
  1503. * LDR,STR,PLD immediate offset: Rd, Rn
  1504. * LDR,STR,PLD register offset: Rd, Rn, !Rm
  1505. * LDR,STR,PLD scaled register offset: Rd, !Rn, !Rm
  1506. * LDR,STR immediate pre/post-indexed: Rd, !Rn
  1507. * LDR,STR register pre/post-indexed: Rd, !Rn, !Rm
  1508. * LDR,STR scaled register pre/post-indexed: Rd, !Rn, !Rm
  1509. * LDRB,STRB immediate offset: !Rd, Rn
  1510. * LDRB,STRB register offset: !Rd, Rn, !Rm
  1511. * LDRB,STRB scaled register offset: !Rd, !Rn, !Rm
  1512. * LDRB,STRB immediate pre/post-indexed: !Rd, !Rn
  1513. * LDRB,STRB register pre/post-indexed: !Rd, !Rn, !Rm
  1514. * LDRB,STRB scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1515. * LDRT,LDRBT,STRBT immediate pre/post-indexed: !Rd, !Rn
  1516. * LDRT,LDRBT,STRBT register pre/post-indexed: !Rd, !Rn, !Rm
  1517. * LDRT,LDRBT,STRBT scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1518. * LDRH/SH/SB/D,STRH/SH/SB/D immediate offset: !Rd, Rn
  1519. * LDRH/SH/SB/D,STRH/SH/SB/D register offset: !Rd, Rn, !Rm
  1520. * LDRH/SH/SB/D,STRH/SH/SB/D immediate pre/post-indexed: !Rd, !Rn
  1521. * LDRH/SH/SB/D,STRH/SH/SB/D register pre/post-indexed: !Rd, !Rn, !Rm
  1522. * LDREX: !Rd, !Rn
  1523. * MCR/2: !Rd
  1524. * MCRR/2,MRRC/2: !Rd, !Rn
  1525. * MLA: !Rd, !Rn, !Rm, !Rs
  1526. * MOV: Rd
  1527. * MRC/2: !Rd (if Rd==15, only changes cond codes, not the register)
  1528. * MRS,MSR: !Rd
  1529. * MUL: !Rd, !Rm, !Rs
  1530. * PKH{BT,TB}: !Rd, !Rn, !Rm
  1531. * QDADD,[U]QADD/16/8/SUBX: !Rd, !Rm, !Rn
  1532. * QDSUB,[U]QSUB/16/8/ADDX: !Rd, !Rm, !Rn
  1533. * REV/16/SH: !Rd, !Rm
  1534. * RFE: !Rn
  1535. * {S,U}[H]ADD{16,8,SUBX},{S,U}[H]SUB{16,8,ADDX}: !Rd, !Rn, !Rm
  1536. * SEL: !Rd, !Rn, !Rm
  1537. * SMLA<x><y>,SMLA{D,W<y>},SMLSD,SMML{A,S}: !Rd, !Rn, !Rm, !Rs
  1538. * SMLAL<x><y>,SMLA{D,LD},SMLSLD,SMMULL,SMULW<y>: !RdHi, !RdLo, !Rm, !Rs
  1539. * SMMUL,SMUAD,SMUL<x><y>,SMUSD: !Rd, !Rm, !Rs
  1540. * SSAT/16: !Rd, !Rm
  1541. * STM(1/2): !Rn, register_list* (R15 in reg list not recommended)
  1542. * STRT immediate pre/post-indexed: Rd*, !Rn
  1543. * STRT register pre/post-indexed: Rd*, !Rn, !Rm
  1544. * STRT scaled register pre/post-indexed: Rd*, !Rn, !Rm
  1545. * STREX: !Rd, !Rn, !Rm
  1546. * SWP/B: !Rd, !Rn, !Rm
  1547. * {S,U}XTA{B,B16,H}: !Rd, !Rn, !Rm
  1548. * {S,U}XT{B,B16,H}: !Rd, !Rm
  1549. * UM{AA,LA,UL}L: !RdHi, !RdLo, !Rm, !Rs
  1550. * USA{D8,A8,T,T16}: !Rd, !Rm, !Rs
  1551. *
  1552. * May transfer control by writing R15 (possible mode changes or alternate
  1553. * mode accesses marked by "*"):
  1554. * ALU op (* with s-bit), B, BL, BKPT, BLX(1/2), BX, BXJ, CPS*, CPY,
  1555. * LDM(1), LDM(2/3)*, LDR, MOV, RFE*, SWI*
  1556. *
  1557. * Instructions that do not take general registers, nor transfer control:
  1558. * CDP/2, SETEND, SRS*
  1559. */