i915_gem.c 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  49. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  50. unsigned alignment);
  51. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  52. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file_priv);
  55. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  56. static LIST_HEAD(shrink_list);
  57. static DEFINE_SPINLOCK(shrink_list_lock);
  58. static inline bool
  59. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  60. {
  61. return obj_priv->gtt_space &&
  62. !obj_priv->active &&
  63. obj_priv->pin_count == 0;
  64. }
  65. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  66. unsigned long end)
  67. {
  68. drm_i915_private_t *dev_priv = dev->dev_private;
  69. if (start >= end ||
  70. (start & (PAGE_SIZE - 1)) != 0 ||
  71. (end & (PAGE_SIZE - 1)) != 0) {
  72. return -EINVAL;
  73. }
  74. drm_mm_init(&dev_priv->mm.gtt_space, start,
  75. end - start);
  76. dev->gtt_total = (uint32_t) (end - start);
  77. return 0;
  78. }
  79. int
  80. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  81. struct drm_file *file_priv)
  82. {
  83. struct drm_i915_gem_init *args = data;
  84. int ret;
  85. mutex_lock(&dev->struct_mutex);
  86. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  87. mutex_unlock(&dev->struct_mutex);
  88. return ret;
  89. }
  90. int
  91. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  92. struct drm_file *file_priv)
  93. {
  94. struct drm_i915_gem_get_aperture *args = data;
  95. if (!(dev->driver->driver_features & DRIVER_GEM))
  96. return -ENODEV;
  97. args->aper_size = dev->gtt_total;
  98. args->aper_available_size = (args->aper_size -
  99. atomic_read(&dev->pin_memory));
  100. return 0;
  101. }
  102. /**
  103. * Creates a new mm object and returns a handle to it.
  104. */
  105. int
  106. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  107. struct drm_file *file_priv)
  108. {
  109. struct drm_i915_gem_create *args = data;
  110. struct drm_gem_object *obj;
  111. int ret;
  112. u32 handle;
  113. args->size = roundup(args->size, PAGE_SIZE);
  114. /* Allocate the new object */
  115. obj = i915_gem_alloc_object(dev, args->size);
  116. if (obj == NULL)
  117. return -ENOMEM;
  118. ret = drm_gem_handle_create(file_priv, obj, &handle);
  119. if (ret) {
  120. drm_gem_object_unreference_unlocked(obj);
  121. return ret;
  122. }
  123. /* Sink the floating reference from kref_init(handlecount) */
  124. drm_gem_object_handle_unreference_unlocked(obj);
  125. args->handle = handle;
  126. return 0;
  127. }
  128. static inline int
  129. fast_shmem_read(struct page **pages,
  130. loff_t page_base, int page_offset,
  131. char __user *data,
  132. int length)
  133. {
  134. char __iomem *vaddr;
  135. int unwritten;
  136. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  137. if (vaddr == NULL)
  138. return -ENOMEM;
  139. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  140. kunmap_atomic(vaddr, KM_USER0);
  141. if (unwritten)
  142. return -EFAULT;
  143. return 0;
  144. }
  145. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  146. {
  147. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  148. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  149. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  150. obj_priv->tiling_mode != I915_TILING_NONE;
  151. }
  152. static inline void
  153. slow_shmem_copy(struct page *dst_page,
  154. int dst_offset,
  155. struct page *src_page,
  156. int src_offset,
  157. int length)
  158. {
  159. char *dst_vaddr, *src_vaddr;
  160. dst_vaddr = kmap(dst_page);
  161. src_vaddr = kmap(src_page);
  162. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  163. kunmap(src_page);
  164. kunmap(dst_page);
  165. }
  166. static inline void
  167. slow_shmem_bit17_copy(struct page *gpu_page,
  168. int gpu_offset,
  169. struct page *cpu_page,
  170. int cpu_offset,
  171. int length,
  172. int is_read)
  173. {
  174. char *gpu_vaddr, *cpu_vaddr;
  175. /* Use the unswizzled path if this page isn't affected. */
  176. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  177. if (is_read)
  178. return slow_shmem_copy(cpu_page, cpu_offset,
  179. gpu_page, gpu_offset, length);
  180. else
  181. return slow_shmem_copy(gpu_page, gpu_offset,
  182. cpu_page, cpu_offset, length);
  183. }
  184. gpu_vaddr = kmap(gpu_page);
  185. cpu_vaddr = kmap(cpu_page);
  186. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  187. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  188. */
  189. while (length > 0) {
  190. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  191. int this_length = min(cacheline_end - gpu_offset, length);
  192. int swizzled_gpu_offset = gpu_offset ^ 64;
  193. if (is_read) {
  194. memcpy(cpu_vaddr + cpu_offset,
  195. gpu_vaddr + swizzled_gpu_offset,
  196. this_length);
  197. } else {
  198. memcpy(gpu_vaddr + swizzled_gpu_offset,
  199. cpu_vaddr + cpu_offset,
  200. this_length);
  201. }
  202. cpu_offset += this_length;
  203. gpu_offset += this_length;
  204. length -= this_length;
  205. }
  206. kunmap(cpu_page);
  207. kunmap(gpu_page);
  208. }
  209. /**
  210. * This is the fast shmem pread path, which attempts to copy_from_user directly
  211. * from the backing pages of the object to the user's address space. On a
  212. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  213. */
  214. static int
  215. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  216. struct drm_i915_gem_pread *args,
  217. struct drm_file *file_priv)
  218. {
  219. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  220. ssize_t remain;
  221. loff_t offset, page_base;
  222. char __user *user_data;
  223. int page_offset, page_length;
  224. int ret;
  225. user_data = (char __user *) (uintptr_t) args->data_ptr;
  226. remain = args->size;
  227. mutex_lock(&dev->struct_mutex);
  228. ret = i915_gem_object_get_pages(obj, 0);
  229. if (ret != 0)
  230. goto fail_unlock;
  231. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  232. args->size);
  233. if (ret != 0)
  234. goto fail_put_pages;
  235. obj_priv = to_intel_bo(obj);
  236. offset = args->offset;
  237. while (remain > 0) {
  238. /* Operation in this page
  239. *
  240. * page_base = page offset within aperture
  241. * page_offset = offset within page
  242. * page_length = bytes to copy for this page
  243. */
  244. page_base = (offset & ~(PAGE_SIZE-1));
  245. page_offset = offset & (PAGE_SIZE-1);
  246. page_length = remain;
  247. if ((page_offset + remain) > PAGE_SIZE)
  248. page_length = PAGE_SIZE - page_offset;
  249. ret = fast_shmem_read(obj_priv->pages,
  250. page_base, page_offset,
  251. user_data, page_length);
  252. if (ret)
  253. goto fail_put_pages;
  254. remain -= page_length;
  255. user_data += page_length;
  256. offset += page_length;
  257. }
  258. fail_put_pages:
  259. i915_gem_object_put_pages(obj);
  260. fail_unlock:
  261. mutex_unlock(&dev->struct_mutex);
  262. return ret;
  263. }
  264. static int
  265. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  266. {
  267. int ret;
  268. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  269. /* If we've insufficient memory to map in the pages, attempt
  270. * to make some space by throwing out some old buffers.
  271. */
  272. if (ret == -ENOMEM) {
  273. struct drm_device *dev = obj->dev;
  274. ret = i915_gem_evict_something(dev, obj->size,
  275. i915_gem_get_gtt_alignment(obj));
  276. if (ret)
  277. return ret;
  278. ret = i915_gem_object_get_pages(obj, 0);
  279. }
  280. return ret;
  281. }
  282. /**
  283. * This is the fallback shmem pread path, which allocates temporary storage
  284. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  285. * can copy out of the object's backing pages while holding the struct mutex
  286. * and not take page faults.
  287. */
  288. static int
  289. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  290. struct drm_i915_gem_pread *args,
  291. struct drm_file *file_priv)
  292. {
  293. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  294. struct mm_struct *mm = current->mm;
  295. struct page **user_pages;
  296. ssize_t remain;
  297. loff_t offset, pinned_pages, i;
  298. loff_t first_data_page, last_data_page, num_pages;
  299. int shmem_page_index, shmem_page_offset;
  300. int data_page_index, data_page_offset;
  301. int page_length;
  302. int ret;
  303. uint64_t data_ptr = args->data_ptr;
  304. int do_bit17_swizzling;
  305. remain = args->size;
  306. /* Pin the user pages containing the data. We can't fault while
  307. * holding the struct mutex, yet we want to hold it while
  308. * dereferencing the user data.
  309. */
  310. first_data_page = data_ptr / PAGE_SIZE;
  311. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  312. num_pages = last_data_page - first_data_page + 1;
  313. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  314. if (user_pages == NULL)
  315. return -ENOMEM;
  316. down_read(&mm->mmap_sem);
  317. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  318. num_pages, 1, 0, user_pages, NULL);
  319. up_read(&mm->mmap_sem);
  320. if (pinned_pages < num_pages) {
  321. ret = -EFAULT;
  322. goto fail_put_user_pages;
  323. }
  324. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  325. mutex_lock(&dev->struct_mutex);
  326. ret = i915_gem_object_get_pages_or_evict(obj);
  327. if (ret)
  328. goto fail_unlock;
  329. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  330. args->size);
  331. if (ret != 0)
  332. goto fail_put_pages;
  333. obj_priv = to_intel_bo(obj);
  334. offset = args->offset;
  335. while (remain > 0) {
  336. /* Operation in this page
  337. *
  338. * shmem_page_index = page number within shmem file
  339. * shmem_page_offset = offset within page in shmem file
  340. * data_page_index = page number in get_user_pages return
  341. * data_page_offset = offset with data_page_index page.
  342. * page_length = bytes to copy for this page
  343. */
  344. shmem_page_index = offset / PAGE_SIZE;
  345. shmem_page_offset = offset & ~PAGE_MASK;
  346. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  347. data_page_offset = data_ptr & ~PAGE_MASK;
  348. page_length = remain;
  349. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  350. page_length = PAGE_SIZE - shmem_page_offset;
  351. if ((data_page_offset + page_length) > PAGE_SIZE)
  352. page_length = PAGE_SIZE - data_page_offset;
  353. if (do_bit17_swizzling) {
  354. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  355. shmem_page_offset,
  356. user_pages[data_page_index],
  357. data_page_offset,
  358. page_length,
  359. 1);
  360. } else {
  361. slow_shmem_copy(user_pages[data_page_index],
  362. data_page_offset,
  363. obj_priv->pages[shmem_page_index],
  364. shmem_page_offset,
  365. page_length);
  366. }
  367. remain -= page_length;
  368. data_ptr += page_length;
  369. offset += page_length;
  370. }
  371. fail_put_pages:
  372. i915_gem_object_put_pages(obj);
  373. fail_unlock:
  374. mutex_unlock(&dev->struct_mutex);
  375. fail_put_user_pages:
  376. for (i = 0; i < pinned_pages; i++) {
  377. SetPageDirty(user_pages[i]);
  378. page_cache_release(user_pages[i]);
  379. }
  380. drm_free_large(user_pages);
  381. return ret;
  382. }
  383. /**
  384. * Reads data from the object referenced by handle.
  385. *
  386. * On error, the contents of *data are undefined.
  387. */
  388. int
  389. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  390. struct drm_file *file_priv)
  391. {
  392. struct drm_i915_gem_pread *args = data;
  393. struct drm_gem_object *obj;
  394. struct drm_i915_gem_object *obj_priv;
  395. int ret;
  396. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  397. if (obj == NULL)
  398. return -ENOENT;
  399. obj_priv = to_intel_bo(obj);
  400. /* Bounds check source.
  401. *
  402. * XXX: This could use review for overflow issues...
  403. */
  404. if (args->offset > obj->size || args->size > obj->size ||
  405. args->offset + args->size > obj->size) {
  406. drm_gem_object_unreference_unlocked(obj);
  407. return -EINVAL;
  408. }
  409. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  410. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  411. } else {
  412. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  413. if (ret != 0)
  414. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  415. file_priv);
  416. }
  417. drm_gem_object_unreference_unlocked(obj);
  418. return ret;
  419. }
  420. /* This is the fast write path which cannot handle
  421. * page faults in the source data
  422. */
  423. static inline int
  424. fast_user_write(struct io_mapping *mapping,
  425. loff_t page_base, int page_offset,
  426. char __user *user_data,
  427. int length)
  428. {
  429. char *vaddr_atomic;
  430. unsigned long unwritten;
  431. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  432. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  433. user_data, length);
  434. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  435. if (unwritten)
  436. return -EFAULT;
  437. return 0;
  438. }
  439. /* Here's the write path which can sleep for
  440. * page faults
  441. */
  442. static inline void
  443. slow_kernel_write(struct io_mapping *mapping,
  444. loff_t gtt_base, int gtt_offset,
  445. struct page *user_page, int user_offset,
  446. int length)
  447. {
  448. char __iomem *dst_vaddr;
  449. char *src_vaddr;
  450. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  451. src_vaddr = kmap(user_page);
  452. memcpy_toio(dst_vaddr + gtt_offset,
  453. src_vaddr + user_offset,
  454. length);
  455. kunmap(user_page);
  456. io_mapping_unmap(dst_vaddr);
  457. }
  458. static inline int
  459. fast_shmem_write(struct page **pages,
  460. loff_t page_base, int page_offset,
  461. char __user *data,
  462. int length)
  463. {
  464. char __iomem *vaddr;
  465. unsigned long unwritten;
  466. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  467. if (vaddr == NULL)
  468. return -ENOMEM;
  469. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  470. kunmap_atomic(vaddr, KM_USER0);
  471. if (unwritten)
  472. return -EFAULT;
  473. return 0;
  474. }
  475. /**
  476. * This is the fast pwrite path, where we copy the data directly from the
  477. * user into the GTT, uncached.
  478. */
  479. static int
  480. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  481. struct drm_i915_gem_pwrite *args,
  482. struct drm_file *file_priv)
  483. {
  484. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  485. drm_i915_private_t *dev_priv = dev->dev_private;
  486. ssize_t remain;
  487. loff_t offset, page_base;
  488. char __user *user_data;
  489. int page_offset, page_length;
  490. int ret;
  491. user_data = (char __user *) (uintptr_t) args->data_ptr;
  492. remain = args->size;
  493. if (!access_ok(VERIFY_READ, user_data, remain))
  494. return -EFAULT;
  495. mutex_lock(&dev->struct_mutex);
  496. ret = i915_gem_object_pin(obj, 0);
  497. if (ret) {
  498. mutex_unlock(&dev->struct_mutex);
  499. return ret;
  500. }
  501. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  502. if (ret)
  503. goto fail;
  504. obj_priv = to_intel_bo(obj);
  505. offset = obj_priv->gtt_offset + args->offset;
  506. while (remain > 0) {
  507. /* Operation in this page
  508. *
  509. * page_base = page offset within aperture
  510. * page_offset = offset within page
  511. * page_length = bytes to copy for this page
  512. */
  513. page_base = (offset & ~(PAGE_SIZE-1));
  514. page_offset = offset & (PAGE_SIZE-1);
  515. page_length = remain;
  516. if ((page_offset + remain) > PAGE_SIZE)
  517. page_length = PAGE_SIZE - page_offset;
  518. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  519. page_offset, user_data, page_length);
  520. /* If we get a fault while copying data, then (presumably) our
  521. * source page isn't available. Return the error and we'll
  522. * retry in the slow path.
  523. */
  524. if (ret)
  525. goto fail;
  526. remain -= page_length;
  527. user_data += page_length;
  528. offset += page_length;
  529. }
  530. fail:
  531. i915_gem_object_unpin(obj);
  532. mutex_unlock(&dev->struct_mutex);
  533. return ret;
  534. }
  535. /**
  536. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  537. * the memory and maps it using kmap_atomic for copying.
  538. *
  539. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  540. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  541. */
  542. static int
  543. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  544. struct drm_i915_gem_pwrite *args,
  545. struct drm_file *file_priv)
  546. {
  547. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  548. drm_i915_private_t *dev_priv = dev->dev_private;
  549. ssize_t remain;
  550. loff_t gtt_page_base, offset;
  551. loff_t first_data_page, last_data_page, num_pages;
  552. loff_t pinned_pages, i;
  553. struct page **user_pages;
  554. struct mm_struct *mm = current->mm;
  555. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  556. int ret;
  557. uint64_t data_ptr = args->data_ptr;
  558. remain = args->size;
  559. /* Pin the user pages containing the data. We can't fault while
  560. * holding the struct mutex, and all of the pwrite implementations
  561. * want to hold it while dereferencing the user data.
  562. */
  563. first_data_page = data_ptr / PAGE_SIZE;
  564. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  565. num_pages = last_data_page - first_data_page + 1;
  566. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  567. if (user_pages == NULL)
  568. return -ENOMEM;
  569. down_read(&mm->mmap_sem);
  570. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  571. num_pages, 0, 0, user_pages, NULL);
  572. up_read(&mm->mmap_sem);
  573. if (pinned_pages < num_pages) {
  574. ret = -EFAULT;
  575. goto out_unpin_pages;
  576. }
  577. mutex_lock(&dev->struct_mutex);
  578. ret = i915_gem_object_pin(obj, 0);
  579. if (ret)
  580. goto out_unlock;
  581. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  582. if (ret)
  583. goto out_unpin_object;
  584. obj_priv = to_intel_bo(obj);
  585. offset = obj_priv->gtt_offset + args->offset;
  586. while (remain > 0) {
  587. /* Operation in this page
  588. *
  589. * gtt_page_base = page offset within aperture
  590. * gtt_page_offset = offset within page in aperture
  591. * data_page_index = page number in get_user_pages return
  592. * data_page_offset = offset with data_page_index page.
  593. * page_length = bytes to copy for this page
  594. */
  595. gtt_page_base = offset & PAGE_MASK;
  596. gtt_page_offset = offset & ~PAGE_MASK;
  597. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  598. data_page_offset = data_ptr & ~PAGE_MASK;
  599. page_length = remain;
  600. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  601. page_length = PAGE_SIZE - gtt_page_offset;
  602. if ((data_page_offset + page_length) > PAGE_SIZE)
  603. page_length = PAGE_SIZE - data_page_offset;
  604. slow_kernel_write(dev_priv->mm.gtt_mapping,
  605. gtt_page_base, gtt_page_offset,
  606. user_pages[data_page_index],
  607. data_page_offset,
  608. page_length);
  609. remain -= page_length;
  610. offset += page_length;
  611. data_ptr += page_length;
  612. }
  613. out_unpin_object:
  614. i915_gem_object_unpin(obj);
  615. out_unlock:
  616. mutex_unlock(&dev->struct_mutex);
  617. out_unpin_pages:
  618. for (i = 0; i < pinned_pages; i++)
  619. page_cache_release(user_pages[i]);
  620. drm_free_large(user_pages);
  621. return ret;
  622. }
  623. /**
  624. * This is the fast shmem pwrite path, which attempts to directly
  625. * copy_from_user into the kmapped pages backing the object.
  626. */
  627. static int
  628. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  629. struct drm_i915_gem_pwrite *args,
  630. struct drm_file *file_priv)
  631. {
  632. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  633. ssize_t remain;
  634. loff_t offset, page_base;
  635. char __user *user_data;
  636. int page_offset, page_length;
  637. int ret;
  638. user_data = (char __user *) (uintptr_t) args->data_ptr;
  639. remain = args->size;
  640. mutex_lock(&dev->struct_mutex);
  641. ret = i915_gem_object_get_pages(obj, 0);
  642. if (ret != 0)
  643. goto fail_unlock;
  644. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  645. if (ret != 0)
  646. goto fail_put_pages;
  647. obj_priv = to_intel_bo(obj);
  648. offset = args->offset;
  649. obj_priv->dirty = 1;
  650. while (remain > 0) {
  651. /* Operation in this page
  652. *
  653. * page_base = page offset within aperture
  654. * page_offset = offset within page
  655. * page_length = bytes to copy for this page
  656. */
  657. page_base = (offset & ~(PAGE_SIZE-1));
  658. page_offset = offset & (PAGE_SIZE-1);
  659. page_length = remain;
  660. if ((page_offset + remain) > PAGE_SIZE)
  661. page_length = PAGE_SIZE - page_offset;
  662. ret = fast_shmem_write(obj_priv->pages,
  663. page_base, page_offset,
  664. user_data, page_length);
  665. if (ret)
  666. goto fail_put_pages;
  667. remain -= page_length;
  668. user_data += page_length;
  669. offset += page_length;
  670. }
  671. fail_put_pages:
  672. i915_gem_object_put_pages(obj);
  673. fail_unlock:
  674. mutex_unlock(&dev->struct_mutex);
  675. return ret;
  676. }
  677. /**
  678. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  679. * the memory and maps it using kmap_atomic for copying.
  680. *
  681. * This avoids taking mmap_sem for faulting on the user's address while the
  682. * struct_mutex is held.
  683. */
  684. static int
  685. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  686. struct drm_i915_gem_pwrite *args,
  687. struct drm_file *file_priv)
  688. {
  689. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  690. struct mm_struct *mm = current->mm;
  691. struct page **user_pages;
  692. ssize_t remain;
  693. loff_t offset, pinned_pages, i;
  694. loff_t first_data_page, last_data_page, num_pages;
  695. int shmem_page_index, shmem_page_offset;
  696. int data_page_index, data_page_offset;
  697. int page_length;
  698. int ret;
  699. uint64_t data_ptr = args->data_ptr;
  700. int do_bit17_swizzling;
  701. remain = args->size;
  702. /* Pin the user pages containing the data. We can't fault while
  703. * holding the struct mutex, and all of the pwrite implementations
  704. * want to hold it while dereferencing the user data.
  705. */
  706. first_data_page = data_ptr / PAGE_SIZE;
  707. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  708. num_pages = last_data_page - first_data_page + 1;
  709. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  710. if (user_pages == NULL)
  711. return -ENOMEM;
  712. down_read(&mm->mmap_sem);
  713. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  714. num_pages, 0, 0, user_pages, NULL);
  715. up_read(&mm->mmap_sem);
  716. if (pinned_pages < num_pages) {
  717. ret = -EFAULT;
  718. goto fail_put_user_pages;
  719. }
  720. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  721. mutex_lock(&dev->struct_mutex);
  722. ret = i915_gem_object_get_pages_or_evict(obj);
  723. if (ret)
  724. goto fail_unlock;
  725. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  726. if (ret != 0)
  727. goto fail_put_pages;
  728. obj_priv = to_intel_bo(obj);
  729. offset = args->offset;
  730. obj_priv->dirty = 1;
  731. while (remain > 0) {
  732. /* Operation in this page
  733. *
  734. * shmem_page_index = page number within shmem file
  735. * shmem_page_offset = offset within page in shmem file
  736. * data_page_index = page number in get_user_pages return
  737. * data_page_offset = offset with data_page_index page.
  738. * page_length = bytes to copy for this page
  739. */
  740. shmem_page_index = offset / PAGE_SIZE;
  741. shmem_page_offset = offset & ~PAGE_MASK;
  742. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  743. data_page_offset = data_ptr & ~PAGE_MASK;
  744. page_length = remain;
  745. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  746. page_length = PAGE_SIZE - shmem_page_offset;
  747. if ((data_page_offset + page_length) > PAGE_SIZE)
  748. page_length = PAGE_SIZE - data_page_offset;
  749. if (do_bit17_swizzling) {
  750. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  751. shmem_page_offset,
  752. user_pages[data_page_index],
  753. data_page_offset,
  754. page_length,
  755. 0);
  756. } else {
  757. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  758. shmem_page_offset,
  759. user_pages[data_page_index],
  760. data_page_offset,
  761. page_length);
  762. }
  763. remain -= page_length;
  764. data_ptr += page_length;
  765. offset += page_length;
  766. }
  767. fail_put_pages:
  768. i915_gem_object_put_pages(obj);
  769. fail_unlock:
  770. mutex_unlock(&dev->struct_mutex);
  771. fail_put_user_pages:
  772. for (i = 0; i < pinned_pages; i++)
  773. page_cache_release(user_pages[i]);
  774. drm_free_large(user_pages);
  775. return ret;
  776. }
  777. /**
  778. * Writes data to the object referenced by handle.
  779. *
  780. * On error, the contents of the buffer that were to be modified are undefined.
  781. */
  782. int
  783. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  784. struct drm_file *file_priv)
  785. {
  786. struct drm_i915_gem_pwrite *args = data;
  787. struct drm_gem_object *obj;
  788. struct drm_i915_gem_object *obj_priv;
  789. int ret = 0;
  790. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  791. if (obj == NULL)
  792. return -ENOENT;
  793. obj_priv = to_intel_bo(obj);
  794. /* Bounds check destination.
  795. *
  796. * XXX: This could use review for overflow issues...
  797. */
  798. if (args->offset > obj->size || args->size > obj->size ||
  799. args->offset + args->size > obj->size) {
  800. drm_gem_object_unreference_unlocked(obj);
  801. return -EINVAL;
  802. }
  803. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  804. * it would end up going through the fenced access, and we'll get
  805. * different detiling behavior between reading and writing.
  806. * pread/pwrite currently are reading and writing from the CPU
  807. * perspective, requiring manual detiling by the client.
  808. */
  809. if (obj_priv->phys_obj)
  810. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  811. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  812. dev->gtt_total != 0 &&
  813. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  814. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  815. if (ret == -EFAULT) {
  816. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  817. file_priv);
  818. }
  819. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  820. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  821. } else {
  822. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  823. if (ret == -EFAULT) {
  824. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  825. file_priv);
  826. }
  827. }
  828. #if WATCH_PWRITE
  829. if (ret)
  830. DRM_INFO("pwrite failed %d\n", ret);
  831. #endif
  832. drm_gem_object_unreference_unlocked(obj);
  833. return ret;
  834. }
  835. /**
  836. * Called when user space prepares to use an object with the CPU, either
  837. * through the mmap ioctl's mapping or a GTT mapping.
  838. */
  839. int
  840. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  841. struct drm_file *file_priv)
  842. {
  843. struct drm_i915_private *dev_priv = dev->dev_private;
  844. struct drm_i915_gem_set_domain *args = data;
  845. struct drm_gem_object *obj;
  846. struct drm_i915_gem_object *obj_priv;
  847. uint32_t read_domains = args->read_domains;
  848. uint32_t write_domain = args->write_domain;
  849. int ret;
  850. if (!(dev->driver->driver_features & DRIVER_GEM))
  851. return -ENODEV;
  852. /* Only handle setting domains to types used by the CPU. */
  853. if (write_domain & I915_GEM_GPU_DOMAINS)
  854. return -EINVAL;
  855. if (read_domains & I915_GEM_GPU_DOMAINS)
  856. return -EINVAL;
  857. /* Having something in the write domain implies it's in the read
  858. * domain, and only that read domain. Enforce that in the request.
  859. */
  860. if (write_domain != 0 && read_domains != write_domain)
  861. return -EINVAL;
  862. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  863. if (obj == NULL)
  864. return -ENOENT;
  865. obj_priv = to_intel_bo(obj);
  866. mutex_lock(&dev->struct_mutex);
  867. intel_mark_busy(dev, obj);
  868. #if WATCH_BUF
  869. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  870. obj, obj->size, read_domains, write_domain);
  871. #endif
  872. if (read_domains & I915_GEM_DOMAIN_GTT) {
  873. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  874. /* Update the LRU on the fence for the CPU access that's
  875. * about to occur.
  876. */
  877. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  878. struct drm_i915_fence_reg *reg =
  879. &dev_priv->fence_regs[obj_priv->fence_reg];
  880. list_move_tail(&reg->lru_list,
  881. &dev_priv->mm.fence_list);
  882. }
  883. /* Silently promote "you're not bound, there was nothing to do"
  884. * to success, since the client was just asking us to
  885. * make sure everything was done.
  886. */
  887. if (ret == -EINVAL)
  888. ret = 0;
  889. } else {
  890. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  891. }
  892. /* Maintain LRU order of "inactive" objects */
  893. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  894. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  895. drm_gem_object_unreference(obj);
  896. mutex_unlock(&dev->struct_mutex);
  897. return ret;
  898. }
  899. /**
  900. * Called when user space has done writes to this buffer
  901. */
  902. int
  903. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  904. struct drm_file *file_priv)
  905. {
  906. struct drm_i915_gem_sw_finish *args = data;
  907. struct drm_gem_object *obj;
  908. struct drm_i915_gem_object *obj_priv;
  909. int ret = 0;
  910. if (!(dev->driver->driver_features & DRIVER_GEM))
  911. return -ENODEV;
  912. mutex_lock(&dev->struct_mutex);
  913. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  914. if (obj == NULL) {
  915. mutex_unlock(&dev->struct_mutex);
  916. return -ENOENT;
  917. }
  918. #if WATCH_BUF
  919. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  920. __func__, args->handle, obj, obj->size);
  921. #endif
  922. obj_priv = to_intel_bo(obj);
  923. /* Pinned buffers may be scanout, so flush the cache */
  924. if (obj_priv->pin_count)
  925. i915_gem_object_flush_cpu_write_domain(obj);
  926. drm_gem_object_unreference(obj);
  927. mutex_unlock(&dev->struct_mutex);
  928. return ret;
  929. }
  930. /**
  931. * Maps the contents of an object, returning the address it is mapped
  932. * into.
  933. *
  934. * While the mapping holds a reference on the contents of the object, it doesn't
  935. * imply a ref on the object itself.
  936. */
  937. int
  938. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  939. struct drm_file *file_priv)
  940. {
  941. struct drm_i915_gem_mmap *args = data;
  942. struct drm_gem_object *obj;
  943. loff_t offset;
  944. unsigned long addr;
  945. if (!(dev->driver->driver_features & DRIVER_GEM))
  946. return -ENODEV;
  947. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  948. if (obj == NULL)
  949. return -ENOENT;
  950. offset = args->offset;
  951. down_write(&current->mm->mmap_sem);
  952. addr = do_mmap(obj->filp, 0, args->size,
  953. PROT_READ | PROT_WRITE, MAP_SHARED,
  954. args->offset);
  955. up_write(&current->mm->mmap_sem);
  956. drm_gem_object_unreference_unlocked(obj);
  957. if (IS_ERR((void *)addr))
  958. return addr;
  959. args->addr_ptr = (uint64_t) addr;
  960. return 0;
  961. }
  962. /**
  963. * i915_gem_fault - fault a page into the GTT
  964. * vma: VMA in question
  965. * vmf: fault info
  966. *
  967. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  968. * from userspace. The fault handler takes care of binding the object to
  969. * the GTT (if needed), allocating and programming a fence register (again,
  970. * only if needed based on whether the old reg is still valid or the object
  971. * is tiled) and inserting a new PTE into the faulting process.
  972. *
  973. * Note that the faulting process may involve evicting existing objects
  974. * from the GTT and/or fence registers to make room. So performance may
  975. * suffer if the GTT working set is large or there are few fence registers
  976. * left.
  977. */
  978. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  979. {
  980. struct drm_gem_object *obj = vma->vm_private_data;
  981. struct drm_device *dev = obj->dev;
  982. drm_i915_private_t *dev_priv = dev->dev_private;
  983. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  984. pgoff_t page_offset;
  985. unsigned long pfn;
  986. int ret = 0;
  987. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  988. /* We don't use vmf->pgoff since that has the fake offset */
  989. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  990. PAGE_SHIFT;
  991. /* Now bind it into the GTT if needed */
  992. mutex_lock(&dev->struct_mutex);
  993. if (!obj_priv->gtt_space) {
  994. ret = i915_gem_object_bind_to_gtt(obj, 0);
  995. if (ret)
  996. goto unlock;
  997. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  998. if (ret)
  999. goto unlock;
  1000. }
  1001. /* Need a new fence register? */
  1002. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1003. ret = i915_gem_object_get_fence_reg(obj);
  1004. if (ret)
  1005. goto unlock;
  1006. }
  1007. if (i915_gem_object_is_inactive(obj_priv))
  1008. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1009. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1010. page_offset;
  1011. /* Finally, remap it using the new GTT offset */
  1012. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1013. unlock:
  1014. mutex_unlock(&dev->struct_mutex);
  1015. switch (ret) {
  1016. case 0:
  1017. case -ERESTARTSYS:
  1018. return VM_FAULT_NOPAGE;
  1019. case -ENOMEM:
  1020. case -EAGAIN:
  1021. return VM_FAULT_OOM;
  1022. default:
  1023. return VM_FAULT_SIGBUS;
  1024. }
  1025. }
  1026. /**
  1027. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1028. * @obj: obj in question
  1029. *
  1030. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1031. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1032. * up the object based on the offset and sets up the various memory mapping
  1033. * structures.
  1034. *
  1035. * This routine allocates and attaches a fake offset for @obj.
  1036. */
  1037. static int
  1038. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1039. {
  1040. struct drm_device *dev = obj->dev;
  1041. struct drm_gem_mm *mm = dev->mm_private;
  1042. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1043. struct drm_map_list *list;
  1044. struct drm_local_map *map;
  1045. int ret = 0;
  1046. /* Set the object up for mmap'ing */
  1047. list = &obj->map_list;
  1048. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1049. if (!list->map)
  1050. return -ENOMEM;
  1051. map = list->map;
  1052. map->type = _DRM_GEM;
  1053. map->size = obj->size;
  1054. map->handle = obj;
  1055. /* Get a DRM GEM mmap offset allocated... */
  1056. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1057. obj->size / PAGE_SIZE, 0, 0);
  1058. if (!list->file_offset_node) {
  1059. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1060. ret = -ENOMEM;
  1061. goto out_free_list;
  1062. }
  1063. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1064. obj->size / PAGE_SIZE, 0);
  1065. if (!list->file_offset_node) {
  1066. ret = -ENOMEM;
  1067. goto out_free_list;
  1068. }
  1069. list->hash.key = list->file_offset_node->start;
  1070. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1071. DRM_ERROR("failed to add to map hash\n");
  1072. ret = -ENOMEM;
  1073. goto out_free_mm;
  1074. }
  1075. /* By now we should be all set, any drm_mmap request on the offset
  1076. * below will get to our mmap & fault handler */
  1077. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1078. return 0;
  1079. out_free_mm:
  1080. drm_mm_put_block(list->file_offset_node);
  1081. out_free_list:
  1082. kfree(list->map);
  1083. return ret;
  1084. }
  1085. /**
  1086. * i915_gem_release_mmap - remove physical page mappings
  1087. * @obj: obj in question
  1088. *
  1089. * Preserve the reservation of the mmapping with the DRM core code, but
  1090. * relinquish ownership of the pages back to the system.
  1091. *
  1092. * It is vital that we remove the page mapping if we have mapped a tiled
  1093. * object through the GTT and then lose the fence register due to
  1094. * resource pressure. Similarly if the object has been moved out of the
  1095. * aperture, than pages mapped into userspace must be revoked. Removing the
  1096. * mapping will then trigger a page fault on the next user access, allowing
  1097. * fixup by i915_gem_fault().
  1098. */
  1099. void
  1100. i915_gem_release_mmap(struct drm_gem_object *obj)
  1101. {
  1102. struct drm_device *dev = obj->dev;
  1103. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1104. if (dev->dev_mapping)
  1105. unmap_mapping_range(dev->dev_mapping,
  1106. obj_priv->mmap_offset, obj->size, 1);
  1107. }
  1108. static void
  1109. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1110. {
  1111. struct drm_device *dev = obj->dev;
  1112. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1113. struct drm_gem_mm *mm = dev->mm_private;
  1114. struct drm_map_list *list;
  1115. list = &obj->map_list;
  1116. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1117. if (list->file_offset_node) {
  1118. drm_mm_put_block(list->file_offset_node);
  1119. list->file_offset_node = NULL;
  1120. }
  1121. if (list->map) {
  1122. kfree(list->map);
  1123. list->map = NULL;
  1124. }
  1125. obj_priv->mmap_offset = 0;
  1126. }
  1127. /**
  1128. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1129. * @obj: object to check
  1130. *
  1131. * Return the required GTT alignment for an object, taking into account
  1132. * potential fence register mapping if needed.
  1133. */
  1134. static uint32_t
  1135. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1136. {
  1137. struct drm_device *dev = obj->dev;
  1138. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1139. int start, i;
  1140. /*
  1141. * Minimum alignment is 4k (GTT page size), but might be greater
  1142. * if a fence register is needed for the object.
  1143. */
  1144. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1145. return 4096;
  1146. /*
  1147. * Previous chips need to be aligned to the size of the smallest
  1148. * fence register that can contain the object.
  1149. */
  1150. if (IS_I9XX(dev))
  1151. start = 1024*1024;
  1152. else
  1153. start = 512*1024;
  1154. for (i = start; i < obj->size; i <<= 1)
  1155. ;
  1156. return i;
  1157. }
  1158. /**
  1159. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1160. * @dev: DRM device
  1161. * @data: GTT mapping ioctl data
  1162. * @file_priv: GEM object info
  1163. *
  1164. * Simply returns the fake offset to userspace so it can mmap it.
  1165. * The mmap call will end up in drm_gem_mmap(), which will set things
  1166. * up so we can get faults in the handler above.
  1167. *
  1168. * The fault handler will take care of binding the object into the GTT
  1169. * (since it may have been evicted to make room for something), allocating
  1170. * a fence register, and mapping the appropriate aperture address into
  1171. * userspace.
  1172. */
  1173. int
  1174. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1175. struct drm_file *file_priv)
  1176. {
  1177. struct drm_i915_gem_mmap_gtt *args = data;
  1178. struct drm_gem_object *obj;
  1179. struct drm_i915_gem_object *obj_priv;
  1180. int ret;
  1181. if (!(dev->driver->driver_features & DRIVER_GEM))
  1182. return -ENODEV;
  1183. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1184. if (obj == NULL)
  1185. return -ENOENT;
  1186. mutex_lock(&dev->struct_mutex);
  1187. obj_priv = to_intel_bo(obj);
  1188. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1189. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1190. drm_gem_object_unreference(obj);
  1191. mutex_unlock(&dev->struct_mutex);
  1192. return -EINVAL;
  1193. }
  1194. if (!obj_priv->mmap_offset) {
  1195. ret = i915_gem_create_mmap_offset(obj);
  1196. if (ret) {
  1197. drm_gem_object_unreference(obj);
  1198. mutex_unlock(&dev->struct_mutex);
  1199. return ret;
  1200. }
  1201. }
  1202. args->offset = obj_priv->mmap_offset;
  1203. /*
  1204. * Pull it into the GTT so that we have a page list (makes the
  1205. * initial fault faster and any subsequent flushing possible).
  1206. */
  1207. if (!obj_priv->agp_mem) {
  1208. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1209. if (ret) {
  1210. drm_gem_object_unreference(obj);
  1211. mutex_unlock(&dev->struct_mutex);
  1212. return ret;
  1213. }
  1214. }
  1215. drm_gem_object_unreference(obj);
  1216. mutex_unlock(&dev->struct_mutex);
  1217. return 0;
  1218. }
  1219. void
  1220. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1221. {
  1222. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1223. int page_count = obj->size / PAGE_SIZE;
  1224. int i;
  1225. BUG_ON(obj_priv->pages_refcount == 0);
  1226. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1227. if (--obj_priv->pages_refcount != 0)
  1228. return;
  1229. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1230. i915_gem_object_save_bit_17_swizzle(obj);
  1231. if (obj_priv->madv == I915_MADV_DONTNEED)
  1232. obj_priv->dirty = 0;
  1233. for (i = 0; i < page_count; i++) {
  1234. if (obj_priv->dirty)
  1235. set_page_dirty(obj_priv->pages[i]);
  1236. if (obj_priv->madv == I915_MADV_WILLNEED)
  1237. mark_page_accessed(obj_priv->pages[i]);
  1238. page_cache_release(obj_priv->pages[i]);
  1239. }
  1240. obj_priv->dirty = 0;
  1241. drm_free_large(obj_priv->pages);
  1242. obj_priv->pages = NULL;
  1243. }
  1244. static uint32_t
  1245. i915_gem_next_request_seqno(struct drm_device *dev,
  1246. struct intel_ring_buffer *ring)
  1247. {
  1248. drm_i915_private_t *dev_priv = dev->dev_private;
  1249. ring->outstanding_lazy_request = true;
  1250. return dev_priv->next_seqno;
  1251. }
  1252. static void
  1253. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1254. struct intel_ring_buffer *ring)
  1255. {
  1256. struct drm_device *dev = obj->dev;
  1257. drm_i915_private_t *dev_priv = dev->dev_private;
  1258. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1259. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1260. BUG_ON(ring == NULL);
  1261. obj_priv->ring = ring;
  1262. /* Add a reference if we're newly entering the active list. */
  1263. if (!obj_priv->active) {
  1264. drm_gem_object_reference(obj);
  1265. obj_priv->active = 1;
  1266. }
  1267. /* Move from whatever list we were on to the tail of execution. */
  1268. spin_lock(&dev_priv->mm.active_list_lock);
  1269. list_move_tail(&obj_priv->list, &ring->active_list);
  1270. spin_unlock(&dev_priv->mm.active_list_lock);
  1271. obj_priv->last_rendering_seqno = seqno;
  1272. }
  1273. static void
  1274. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1275. {
  1276. struct drm_device *dev = obj->dev;
  1277. drm_i915_private_t *dev_priv = dev->dev_private;
  1278. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1279. BUG_ON(!obj_priv->active);
  1280. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1281. obj_priv->last_rendering_seqno = 0;
  1282. }
  1283. /* Immediately discard the backing storage */
  1284. static void
  1285. i915_gem_object_truncate(struct drm_gem_object *obj)
  1286. {
  1287. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1288. struct inode *inode;
  1289. /* Our goal here is to return as much of the memory as
  1290. * is possible back to the system as we are called from OOM.
  1291. * To do this we must instruct the shmfs to drop all of its
  1292. * backing pages, *now*. Here we mirror the actions taken
  1293. * when by shmem_delete_inode() to release the backing store.
  1294. */
  1295. inode = obj->filp->f_path.dentry->d_inode;
  1296. truncate_inode_pages(inode->i_mapping, 0);
  1297. if (inode->i_op->truncate_range)
  1298. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1299. obj_priv->madv = __I915_MADV_PURGED;
  1300. }
  1301. static inline int
  1302. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1303. {
  1304. return obj_priv->madv == I915_MADV_DONTNEED;
  1305. }
  1306. static void
  1307. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1308. {
  1309. struct drm_device *dev = obj->dev;
  1310. drm_i915_private_t *dev_priv = dev->dev_private;
  1311. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1312. i915_verify_inactive(dev, __FILE__, __LINE__);
  1313. if (obj_priv->pin_count != 0)
  1314. list_del_init(&obj_priv->list);
  1315. else
  1316. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1317. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1318. obj_priv->last_rendering_seqno = 0;
  1319. obj_priv->ring = NULL;
  1320. if (obj_priv->active) {
  1321. obj_priv->active = 0;
  1322. drm_gem_object_unreference(obj);
  1323. }
  1324. i915_verify_inactive(dev, __FILE__, __LINE__);
  1325. }
  1326. void
  1327. i915_gem_process_flushing_list(struct drm_device *dev,
  1328. uint32_t flush_domains,
  1329. struct intel_ring_buffer *ring)
  1330. {
  1331. drm_i915_private_t *dev_priv = dev->dev_private;
  1332. struct drm_i915_gem_object *obj_priv, *next;
  1333. list_for_each_entry_safe(obj_priv, next,
  1334. &dev_priv->mm.gpu_write_list,
  1335. gpu_write_list) {
  1336. struct drm_gem_object *obj = &obj_priv->base;
  1337. if ((obj->write_domain & flush_domains) ==
  1338. obj->write_domain &&
  1339. obj_priv->ring->ring_flag == ring->ring_flag) {
  1340. uint32_t old_write_domain = obj->write_domain;
  1341. obj->write_domain = 0;
  1342. list_del_init(&obj_priv->gpu_write_list);
  1343. i915_gem_object_move_to_active(obj, ring);
  1344. /* update the fence lru list */
  1345. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1346. struct drm_i915_fence_reg *reg =
  1347. &dev_priv->fence_regs[obj_priv->fence_reg];
  1348. list_move_tail(&reg->lru_list,
  1349. &dev_priv->mm.fence_list);
  1350. }
  1351. trace_i915_gem_object_change_domain(obj,
  1352. obj->read_domains,
  1353. old_write_domain);
  1354. }
  1355. }
  1356. }
  1357. uint32_t
  1358. i915_add_request(struct drm_device *dev,
  1359. struct drm_file *file_priv,
  1360. struct drm_i915_gem_request *request,
  1361. struct intel_ring_buffer *ring)
  1362. {
  1363. drm_i915_private_t *dev_priv = dev->dev_private;
  1364. struct drm_i915_file_private *i915_file_priv = NULL;
  1365. uint32_t seqno;
  1366. int was_empty;
  1367. if (file_priv != NULL)
  1368. i915_file_priv = file_priv->driver_priv;
  1369. if (request == NULL) {
  1370. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1371. if (request == NULL)
  1372. return 0;
  1373. }
  1374. seqno = ring->add_request(dev, ring, file_priv, 0);
  1375. request->seqno = seqno;
  1376. request->ring = ring;
  1377. request->emitted_jiffies = jiffies;
  1378. was_empty = list_empty(&ring->request_list);
  1379. list_add_tail(&request->list, &ring->request_list);
  1380. if (i915_file_priv) {
  1381. list_add_tail(&request->client_list,
  1382. &i915_file_priv->mm.request_list);
  1383. } else {
  1384. INIT_LIST_HEAD(&request->client_list);
  1385. }
  1386. if (!dev_priv->mm.suspended) {
  1387. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1388. if (was_empty)
  1389. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1390. }
  1391. return seqno;
  1392. }
  1393. /**
  1394. * Command execution barrier
  1395. *
  1396. * Ensures that all commands in the ring are finished
  1397. * before signalling the CPU
  1398. */
  1399. static void
  1400. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1401. {
  1402. uint32_t flush_domains = 0;
  1403. /* The sampler always gets flushed on i965 (sigh) */
  1404. if (IS_I965G(dev))
  1405. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1406. ring->flush(dev, ring,
  1407. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1408. }
  1409. /**
  1410. * Moves buffers associated only with the given active seqno from the active
  1411. * to inactive list, potentially freeing them.
  1412. */
  1413. static void
  1414. i915_gem_retire_request(struct drm_device *dev,
  1415. struct drm_i915_gem_request *request)
  1416. {
  1417. drm_i915_private_t *dev_priv = dev->dev_private;
  1418. trace_i915_gem_request_retire(dev, request->seqno);
  1419. /* Move any buffers on the active list that are no longer referenced
  1420. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1421. */
  1422. spin_lock(&dev_priv->mm.active_list_lock);
  1423. while (!list_empty(&request->ring->active_list)) {
  1424. struct drm_gem_object *obj;
  1425. struct drm_i915_gem_object *obj_priv;
  1426. obj_priv = list_first_entry(&request->ring->active_list,
  1427. struct drm_i915_gem_object,
  1428. list);
  1429. obj = &obj_priv->base;
  1430. /* If the seqno being retired doesn't match the oldest in the
  1431. * list, then the oldest in the list must still be newer than
  1432. * this seqno.
  1433. */
  1434. if (obj_priv->last_rendering_seqno != request->seqno)
  1435. goto out;
  1436. #if WATCH_LRU
  1437. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1438. __func__, request->seqno, obj);
  1439. #endif
  1440. if (obj->write_domain != 0)
  1441. i915_gem_object_move_to_flushing(obj);
  1442. else {
  1443. /* Take a reference on the object so it won't be
  1444. * freed while the spinlock is held. The list
  1445. * protection for this spinlock is safe when breaking
  1446. * the lock like this since the next thing we do
  1447. * is just get the head of the list again.
  1448. */
  1449. drm_gem_object_reference(obj);
  1450. i915_gem_object_move_to_inactive(obj);
  1451. spin_unlock(&dev_priv->mm.active_list_lock);
  1452. drm_gem_object_unreference(obj);
  1453. spin_lock(&dev_priv->mm.active_list_lock);
  1454. }
  1455. }
  1456. out:
  1457. spin_unlock(&dev_priv->mm.active_list_lock);
  1458. }
  1459. /**
  1460. * Returns true if seq1 is later than seq2.
  1461. */
  1462. bool
  1463. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1464. {
  1465. return (int32_t)(seq1 - seq2) >= 0;
  1466. }
  1467. uint32_t
  1468. i915_get_gem_seqno(struct drm_device *dev,
  1469. struct intel_ring_buffer *ring)
  1470. {
  1471. return ring->get_gem_seqno(dev, ring);
  1472. }
  1473. /**
  1474. * This function clears the request list as sequence numbers are passed.
  1475. */
  1476. static void
  1477. i915_gem_retire_requests_ring(struct drm_device *dev,
  1478. struct intel_ring_buffer *ring)
  1479. {
  1480. drm_i915_private_t *dev_priv = dev->dev_private;
  1481. uint32_t seqno;
  1482. if (!ring->status_page.page_addr
  1483. || list_empty(&ring->request_list))
  1484. return;
  1485. seqno = i915_get_gem_seqno(dev, ring);
  1486. while (!list_empty(&ring->request_list)) {
  1487. struct drm_i915_gem_request *request;
  1488. uint32_t retiring_seqno;
  1489. request = list_first_entry(&ring->request_list,
  1490. struct drm_i915_gem_request,
  1491. list);
  1492. retiring_seqno = request->seqno;
  1493. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1494. atomic_read(&dev_priv->mm.wedged)) {
  1495. i915_gem_retire_request(dev, request);
  1496. list_del(&request->list);
  1497. list_del(&request->client_list);
  1498. kfree(request);
  1499. } else
  1500. break;
  1501. }
  1502. if (unlikely (dev_priv->trace_irq_seqno &&
  1503. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1504. ring->user_irq_put(dev, ring);
  1505. dev_priv->trace_irq_seqno = 0;
  1506. }
  1507. }
  1508. void
  1509. i915_gem_retire_requests(struct drm_device *dev)
  1510. {
  1511. drm_i915_private_t *dev_priv = dev->dev_private;
  1512. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1513. struct drm_i915_gem_object *obj_priv, *tmp;
  1514. /* We must be careful that during unbind() we do not
  1515. * accidentally infinitely recurse into retire requests.
  1516. * Currently:
  1517. * retire -> free -> unbind -> wait -> retire_ring
  1518. */
  1519. list_for_each_entry_safe(obj_priv, tmp,
  1520. &dev_priv->mm.deferred_free_list,
  1521. list)
  1522. i915_gem_free_object_tail(&obj_priv->base);
  1523. }
  1524. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1525. if (HAS_BSD(dev))
  1526. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1527. }
  1528. static void
  1529. i915_gem_retire_work_handler(struct work_struct *work)
  1530. {
  1531. drm_i915_private_t *dev_priv;
  1532. struct drm_device *dev;
  1533. dev_priv = container_of(work, drm_i915_private_t,
  1534. mm.retire_work.work);
  1535. dev = dev_priv->dev;
  1536. mutex_lock(&dev->struct_mutex);
  1537. i915_gem_retire_requests(dev);
  1538. if (!dev_priv->mm.suspended &&
  1539. (!list_empty(&dev_priv->render_ring.request_list) ||
  1540. (HAS_BSD(dev) &&
  1541. !list_empty(&dev_priv->bsd_ring.request_list))))
  1542. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1543. mutex_unlock(&dev->struct_mutex);
  1544. }
  1545. int
  1546. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1547. bool interruptible, struct intel_ring_buffer *ring)
  1548. {
  1549. drm_i915_private_t *dev_priv = dev->dev_private;
  1550. u32 ier;
  1551. int ret = 0;
  1552. BUG_ON(seqno == 0);
  1553. if (seqno == dev_priv->next_seqno) {
  1554. seqno = i915_add_request(dev, NULL, NULL, ring);
  1555. if (seqno == 0)
  1556. return -ENOMEM;
  1557. }
  1558. if (atomic_read(&dev_priv->mm.wedged))
  1559. return -EIO;
  1560. if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
  1561. if (HAS_PCH_SPLIT(dev))
  1562. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1563. else
  1564. ier = I915_READ(IER);
  1565. if (!ier) {
  1566. DRM_ERROR("something (likely vbetool) disabled "
  1567. "interrupts, re-enabling\n");
  1568. i915_driver_irq_preinstall(dev);
  1569. i915_driver_irq_postinstall(dev);
  1570. }
  1571. trace_i915_gem_request_wait_begin(dev, seqno);
  1572. ring->waiting_gem_seqno = seqno;
  1573. ring->user_irq_get(dev, ring);
  1574. if (interruptible)
  1575. ret = wait_event_interruptible(ring->irq_queue,
  1576. i915_seqno_passed(
  1577. ring->get_gem_seqno(dev, ring), seqno)
  1578. || atomic_read(&dev_priv->mm.wedged));
  1579. else
  1580. wait_event(ring->irq_queue,
  1581. i915_seqno_passed(
  1582. ring->get_gem_seqno(dev, ring), seqno)
  1583. || atomic_read(&dev_priv->mm.wedged));
  1584. ring->user_irq_put(dev, ring);
  1585. ring->waiting_gem_seqno = 0;
  1586. trace_i915_gem_request_wait_end(dev, seqno);
  1587. }
  1588. if (atomic_read(&dev_priv->mm.wedged))
  1589. ret = -EIO;
  1590. if (ret && ret != -ERESTARTSYS)
  1591. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1592. __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
  1593. dev_priv->next_seqno);
  1594. /* Directly dispatch request retiring. While we have the work queue
  1595. * to handle this, the waiter on a request often wants an associated
  1596. * buffer to have made it to the inactive list, and we would need
  1597. * a separate wait queue to handle that.
  1598. */
  1599. if (ret == 0)
  1600. i915_gem_retire_requests_ring(dev, ring);
  1601. return ret;
  1602. }
  1603. /**
  1604. * Waits for a sequence number to be signaled, and cleans up the
  1605. * request and object lists appropriately for that event.
  1606. */
  1607. static int
  1608. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1609. struct intel_ring_buffer *ring)
  1610. {
  1611. return i915_do_wait_request(dev, seqno, 1, ring);
  1612. }
  1613. static void
  1614. i915_gem_flush(struct drm_device *dev,
  1615. uint32_t invalidate_domains,
  1616. uint32_t flush_domains)
  1617. {
  1618. drm_i915_private_t *dev_priv = dev->dev_private;
  1619. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1620. drm_agp_chipset_flush(dev);
  1621. dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
  1622. invalidate_domains,
  1623. flush_domains);
  1624. if (HAS_BSD(dev))
  1625. dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
  1626. invalidate_domains,
  1627. flush_domains);
  1628. }
  1629. /**
  1630. * Ensures that all rendering to the object has completed and the object is
  1631. * safe to unbind from the GTT or access from the CPU.
  1632. */
  1633. static int
  1634. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1635. {
  1636. struct drm_device *dev = obj->dev;
  1637. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1638. int ret;
  1639. /* This function only exists to support waiting for existing rendering,
  1640. * not for emitting required flushes.
  1641. */
  1642. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1643. /* If there is rendering queued on the buffer being evicted, wait for
  1644. * it.
  1645. */
  1646. if (obj_priv->active) {
  1647. #if WATCH_BUF
  1648. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1649. __func__, obj, obj_priv->last_rendering_seqno);
  1650. #endif
  1651. ret = i915_wait_request(dev,
  1652. obj_priv->last_rendering_seqno,
  1653. obj_priv->ring);
  1654. if (ret != 0)
  1655. return ret;
  1656. }
  1657. return 0;
  1658. }
  1659. /**
  1660. * Unbinds an object from the GTT aperture.
  1661. */
  1662. int
  1663. i915_gem_object_unbind(struct drm_gem_object *obj)
  1664. {
  1665. struct drm_device *dev = obj->dev;
  1666. drm_i915_private_t *dev_priv = dev->dev_private;
  1667. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1668. int ret = 0;
  1669. #if WATCH_BUF
  1670. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1671. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1672. #endif
  1673. if (obj_priv->gtt_space == NULL)
  1674. return 0;
  1675. if (obj_priv->pin_count != 0) {
  1676. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1677. return -EINVAL;
  1678. }
  1679. /* blow away mappings if mapped through GTT */
  1680. i915_gem_release_mmap(obj);
  1681. /* Move the object to the CPU domain to ensure that
  1682. * any possible CPU writes while it's not in the GTT
  1683. * are flushed when we go to remap it. This will
  1684. * also ensure that all pending GPU writes are finished
  1685. * before we unbind.
  1686. */
  1687. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1688. if (ret == -ERESTARTSYS)
  1689. return ret;
  1690. /* Continue on if we fail due to EIO, the GPU is hung so we
  1691. * should be safe and we need to cleanup or else we might
  1692. * cause memory corruption through use-after-free.
  1693. */
  1694. /* release the fence reg _after_ flushing */
  1695. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1696. i915_gem_clear_fence_reg(obj);
  1697. if (obj_priv->agp_mem != NULL) {
  1698. drm_unbind_agp(obj_priv->agp_mem);
  1699. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1700. obj_priv->agp_mem = NULL;
  1701. }
  1702. i915_gem_object_put_pages(obj);
  1703. BUG_ON(obj_priv->pages_refcount);
  1704. if (obj_priv->gtt_space) {
  1705. atomic_dec(&dev->gtt_count);
  1706. atomic_sub(obj->size, &dev->gtt_memory);
  1707. drm_mm_put_block(obj_priv->gtt_space);
  1708. obj_priv->gtt_space = NULL;
  1709. }
  1710. /* Remove ourselves from the LRU list if present. */
  1711. spin_lock(&dev_priv->mm.active_list_lock);
  1712. if (!list_empty(&obj_priv->list))
  1713. list_del_init(&obj_priv->list);
  1714. spin_unlock(&dev_priv->mm.active_list_lock);
  1715. if (i915_gem_object_is_purgeable(obj_priv))
  1716. i915_gem_object_truncate(obj);
  1717. trace_i915_gem_object_unbind(obj);
  1718. return ret;
  1719. }
  1720. int
  1721. i915_gpu_idle(struct drm_device *dev)
  1722. {
  1723. drm_i915_private_t *dev_priv = dev->dev_private;
  1724. bool lists_empty;
  1725. int ret;
  1726. spin_lock(&dev_priv->mm.active_list_lock);
  1727. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1728. list_empty(&dev_priv->render_ring.active_list) &&
  1729. (!HAS_BSD(dev) ||
  1730. list_empty(&dev_priv->bsd_ring.active_list)));
  1731. spin_unlock(&dev_priv->mm.active_list_lock);
  1732. if (lists_empty)
  1733. return 0;
  1734. /* Flush everything onto the inactive list. */
  1735. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1736. ret = i915_wait_request(dev,
  1737. i915_gem_next_request_seqno(dev, &dev_priv->render_ring),
  1738. &dev_priv->render_ring);
  1739. if (ret)
  1740. return ret;
  1741. if (HAS_BSD(dev)) {
  1742. ret = i915_wait_request(dev,
  1743. i915_gem_next_request_seqno(dev, &dev_priv->bsd_ring),
  1744. &dev_priv->bsd_ring);
  1745. if (ret)
  1746. return ret;
  1747. }
  1748. return 0;
  1749. }
  1750. int
  1751. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1752. gfp_t gfpmask)
  1753. {
  1754. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1755. int page_count, i;
  1756. struct address_space *mapping;
  1757. struct inode *inode;
  1758. struct page *page;
  1759. BUG_ON(obj_priv->pages_refcount
  1760. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1761. if (obj_priv->pages_refcount++ != 0)
  1762. return 0;
  1763. /* Get the list of pages out of our struct file. They'll be pinned
  1764. * at this point until we release them.
  1765. */
  1766. page_count = obj->size / PAGE_SIZE;
  1767. BUG_ON(obj_priv->pages != NULL);
  1768. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1769. if (obj_priv->pages == NULL) {
  1770. obj_priv->pages_refcount--;
  1771. return -ENOMEM;
  1772. }
  1773. inode = obj->filp->f_path.dentry->d_inode;
  1774. mapping = inode->i_mapping;
  1775. for (i = 0; i < page_count; i++) {
  1776. page = read_cache_page_gfp(mapping, i,
  1777. GFP_HIGHUSER |
  1778. __GFP_COLD |
  1779. __GFP_RECLAIMABLE |
  1780. gfpmask);
  1781. if (IS_ERR(page))
  1782. goto err_pages;
  1783. obj_priv->pages[i] = page;
  1784. }
  1785. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1786. i915_gem_object_do_bit_17_swizzle(obj);
  1787. return 0;
  1788. err_pages:
  1789. while (i--)
  1790. page_cache_release(obj_priv->pages[i]);
  1791. drm_free_large(obj_priv->pages);
  1792. obj_priv->pages = NULL;
  1793. obj_priv->pages_refcount--;
  1794. return PTR_ERR(page);
  1795. }
  1796. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1797. {
  1798. struct drm_gem_object *obj = reg->obj;
  1799. struct drm_device *dev = obj->dev;
  1800. drm_i915_private_t *dev_priv = dev->dev_private;
  1801. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1802. int regnum = obj_priv->fence_reg;
  1803. uint64_t val;
  1804. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1805. 0xfffff000) << 32;
  1806. val |= obj_priv->gtt_offset & 0xfffff000;
  1807. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1808. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1809. if (obj_priv->tiling_mode == I915_TILING_Y)
  1810. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1811. val |= I965_FENCE_REG_VALID;
  1812. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1813. }
  1814. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1815. {
  1816. struct drm_gem_object *obj = reg->obj;
  1817. struct drm_device *dev = obj->dev;
  1818. drm_i915_private_t *dev_priv = dev->dev_private;
  1819. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1820. int regnum = obj_priv->fence_reg;
  1821. uint64_t val;
  1822. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1823. 0xfffff000) << 32;
  1824. val |= obj_priv->gtt_offset & 0xfffff000;
  1825. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1826. if (obj_priv->tiling_mode == I915_TILING_Y)
  1827. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1828. val |= I965_FENCE_REG_VALID;
  1829. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1830. }
  1831. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1832. {
  1833. struct drm_gem_object *obj = reg->obj;
  1834. struct drm_device *dev = obj->dev;
  1835. drm_i915_private_t *dev_priv = dev->dev_private;
  1836. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1837. int regnum = obj_priv->fence_reg;
  1838. int tile_width;
  1839. uint32_t fence_reg, val;
  1840. uint32_t pitch_val;
  1841. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1842. (obj_priv->gtt_offset & (obj->size - 1))) {
  1843. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1844. __func__, obj_priv->gtt_offset, obj->size);
  1845. return;
  1846. }
  1847. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1848. HAS_128_BYTE_Y_TILING(dev))
  1849. tile_width = 128;
  1850. else
  1851. tile_width = 512;
  1852. /* Note: pitch better be a power of two tile widths */
  1853. pitch_val = obj_priv->stride / tile_width;
  1854. pitch_val = ffs(pitch_val) - 1;
  1855. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1856. HAS_128_BYTE_Y_TILING(dev))
  1857. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1858. else
  1859. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1860. val = obj_priv->gtt_offset;
  1861. if (obj_priv->tiling_mode == I915_TILING_Y)
  1862. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1863. val |= I915_FENCE_SIZE_BITS(obj->size);
  1864. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1865. val |= I830_FENCE_REG_VALID;
  1866. if (regnum < 8)
  1867. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1868. else
  1869. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1870. I915_WRITE(fence_reg, val);
  1871. }
  1872. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1873. {
  1874. struct drm_gem_object *obj = reg->obj;
  1875. struct drm_device *dev = obj->dev;
  1876. drm_i915_private_t *dev_priv = dev->dev_private;
  1877. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1878. int regnum = obj_priv->fence_reg;
  1879. uint32_t val;
  1880. uint32_t pitch_val;
  1881. uint32_t fence_size_bits;
  1882. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1883. (obj_priv->gtt_offset & (obj->size - 1))) {
  1884. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1885. __func__, obj_priv->gtt_offset);
  1886. return;
  1887. }
  1888. pitch_val = obj_priv->stride / 128;
  1889. pitch_val = ffs(pitch_val) - 1;
  1890. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1891. val = obj_priv->gtt_offset;
  1892. if (obj_priv->tiling_mode == I915_TILING_Y)
  1893. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1894. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1895. WARN_ON(fence_size_bits & ~0x00000f00);
  1896. val |= fence_size_bits;
  1897. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1898. val |= I830_FENCE_REG_VALID;
  1899. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1900. }
  1901. static int i915_find_fence_reg(struct drm_device *dev)
  1902. {
  1903. struct drm_i915_fence_reg *reg = NULL;
  1904. struct drm_i915_gem_object *obj_priv = NULL;
  1905. struct drm_i915_private *dev_priv = dev->dev_private;
  1906. struct drm_gem_object *obj = NULL;
  1907. int i, avail, ret;
  1908. /* First try to find a free reg */
  1909. avail = 0;
  1910. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1911. reg = &dev_priv->fence_regs[i];
  1912. if (!reg->obj)
  1913. return i;
  1914. obj_priv = to_intel_bo(reg->obj);
  1915. if (!obj_priv->pin_count)
  1916. avail++;
  1917. }
  1918. if (avail == 0)
  1919. return -ENOSPC;
  1920. /* None available, try to steal one or wait for a user to finish */
  1921. i = I915_FENCE_REG_NONE;
  1922. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1923. lru_list) {
  1924. obj = reg->obj;
  1925. obj_priv = to_intel_bo(obj);
  1926. if (obj_priv->pin_count)
  1927. continue;
  1928. /* found one! */
  1929. i = obj_priv->fence_reg;
  1930. break;
  1931. }
  1932. BUG_ON(i == I915_FENCE_REG_NONE);
  1933. /* We only have a reference on obj from the active list. put_fence_reg
  1934. * might drop that one, causing a use-after-free in it. So hold a
  1935. * private reference to obj like the other callers of put_fence_reg
  1936. * (set_tiling ioctl) do. */
  1937. drm_gem_object_reference(obj);
  1938. ret = i915_gem_object_put_fence_reg(obj);
  1939. drm_gem_object_unreference(obj);
  1940. if (ret != 0)
  1941. return ret;
  1942. return i;
  1943. }
  1944. /**
  1945. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1946. * @obj: object to map through a fence reg
  1947. *
  1948. * When mapping objects through the GTT, userspace wants to be able to write
  1949. * to them without having to worry about swizzling if the object is tiled.
  1950. *
  1951. * This function walks the fence regs looking for a free one for @obj,
  1952. * stealing one if it can't find any.
  1953. *
  1954. * It then sets up the reg based on the object's properties: address, pitch
  1955. * and tiling format.
  1956. */
  1957. int
  1958. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1959. {
  1960. struct drm_device *dev = obj->dev;
  1961. struct drm_i915_private *dev_priv = dev->dev_private;
  1962. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1963. struct drm_i915_fence_reg *reg = NULL;
  1964. int ret;
  1965. /* Just update our place in the LRU if our fence is getting used. */
  1966. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1967. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1968. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1969. return 0;
  1970. }
  1971. switch (obj_priv->tiling_mode) {
  1972. case I915_TILING_NONE:
  1973. WARN(1, "allocating a fence for non-tiled object?\n");
  1974. break;
  1975. case I915_TILING_X:
  1976. if (!obj_priv->stride)
  1977. return -EINVAL;
  1978. WARN((obj_priv->stride & (512 - 1)),
  1979. "object 0x%08x is X tiled but has non-512B pitch\n",
  1980. obj_priv->gtt_offset);
  1981. break;
  1982. case I915_TILING_Y:
  1983. if (!obj_priv->stride)
  1984. return -EINVAL;
  1985. WARN((obj_priv->stride & (128 - 1)),
  1986. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1987. obj_priv->gtt_offset);
  1988. break;
  1989. }
  1990. ret = i915_find_fence_reg(dev);
  1991. if (ret < 0)
  1992. return ret;
  1993. obj_priv->fence_reg = ret;
  1994. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1995. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1996. reg->obj = obj;
  1997. if (IS_GEN6(dev))
  1998. sandybridge_write_fence_reg(reg);
  1999. else if (IS_I965G(dev))
  2000. i965_write_fence_reg(reg);
  2001. else if (IS_I9XX(dev))
  2002. i915_write_fence_reg(reg);
  2003. else
  2004. i830_write_fence_reg(reg);
  2005. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2006. obj_priv->tiling_mode);
  2007. return 0;
  2008. }
  2009. /**
  2010. * i915_gem_clear_fence_reg - clear out fence register info
  2011. * @obj: object to clear
  2012. *
  2013. * Zeroes out the fence register itself and clears out the associated
  2014. * data structures in dev_priv and obj_priv.
  2015. */
  2016. static void
  2017. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2018. {
  2019. struct drm_device *dev = obj->dev;
  2020. drm_i915_private_t *dev_priv = dev->dev_private;
  2021. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2022. struct drm_i915_fence_reg *reg =
  2023. &dev_priv->fence_regs[obj_priv->fence_reg];
  2024. if (IS_GEN6(dev)) {
  2025. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2026. (obj_priv->fence_reg * 8), 0);
  2027. } else if (IS_I965G(dev)) {
  2028. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2029. } else {
  2030. uint32_t fence_reg;
  2031. if (obj_priv->fence_reg < 8)
  2032. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2033. else
  2034. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2035. 8) * 4;
  2036. I915_WRITE(fence_reg, 0);
  2037. }
  2038. reg->obj = NULL;
  2039. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2040. list_del_init(&reg->lru_list);
  2041. }
  2042. /**
  2043. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2044. * to the buffer to finish, and then resets the fence register.
  2045. * @obj: tiled object holding a fence register.
  2046. *
  2047. * Zeroes out the fence register itself and clears out the associated
  2048. * data structures in dev_priv and obj_priv.
  2049. */
  2050. int
  2051. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2052. {
  2053. struct drm_device *dev = obj->dev;
  2054. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2055. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2056. return 0;
  2057. /* If we've changed tiling, GTT-mappings of the object
  2058. * need to re-fault to ensure that the correct fence register
  2059. * setup is in place.
  2060. */
  2061. i915_gem_release_mmap(obj);
  2062. /* On the i915, GPU access to tiled buffers is via a fence,
  2063. * therefore we must wait for any outstanding access to complete
  2064. * before clearing the fence.
  2065. */
  2066. if (!IS_I965G(dev)) {
  2067. int ret;
  2068. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2069. if (ret != 0)
  2070. return ret;
  2071. }
  2072. i915_gem_object_flush_gtt_write_domain(obj);
  2073. i915_gem_clear_fence_reg (obj);
  2074. return 0;
  2075. }
  2076. /**
  2077. * Finds free space in the GTT aperture and binds the object there.
  2078. */
  2079. static int
  2080. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2081. {
  2082. struct drm_device *dev = obj->dev;
  2083. drm_i915_private_t *dev_priv = dev->dev_private;
  2084. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2085. struct drm_mm_node *free_space;
  2086. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2087. int ret;
  2088. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2089. DRM_ERROR("Attempting to bind a purgeable object\n");
  2090. return -EINVAL;
  2091. }
  2092. if (alignment == 0)
  2093. alignment = i915_gem_get_gtt_alignment(obj);
  2094. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2095. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2096. return -EINVAL;
  2097. }
  2098. /* If the object is bigger than the entire aperture, reject it early
  2099. * before evicting everything in a vain attempt to find space.
  2100. */
  2101. if (obj->size > dev->gtt_total) {
  2102. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2103. return -E2BIG;
  2104. }
  2105. search_free:
  2106. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2107. obj->size, alignment, 0);
  2108. if (free_space != NULL) {
  2109. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2110. alignment);
  2111. if (obj_priv->gtt_space != NULL)
  2112. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2113. }
  2114. if (obj_priv->gtt_space == NULL) {
  2115. /* If the gtt is empty and we're still having trouble
  2116. * fitting our object in, we're out of memory.
  2117. */
  2118. #if WATCH_LRU
  2119. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2120. #endif
  2121. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2122. if (ret)
  2123. return ret;
  2124. goto search_free;
  2125. }
  2126. #if WATCH_BUF
  2127. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2128. obj->size, obj_priv->gtt_offset);
  2129. #endif
  2130. ret = i915_gem_object_get_pages(obj, gfpmask);
  2131. if (ret) {
  2132. drm_mm_put_block(obj_priv->gtt_space);
  2133. obj_priv->gtt_space = NULL;
  2134. if (ret == -ENOMEM) {
  2135. /* first try to clear up some space from the GTT */
  2136. ret = i915_gem_evict_something(dev, obj->size,
  2137. alignment);
  2138. if (ret) {
  2139. /* now try to shrink everyone else */
  2140. if (gfpmask) {
  2141. gfpmask = 0;
  2142. goto search_free;
  2143. }
  2144. return ret;
  2145. }
  2146. goto search_free;
  2147. }
  2148. return ret;
  2149. }
  2150. /* Create an AGP memory structure pointing at our pages, and bind it
  2151. * into the GTT.
  2152. */
  2153. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2154. obj_priv->pages,
  2155. obj->size >> PAGE_SHIFT,
  2156. obj_priv->gtt_offset,
  2157. obj_priv->agp_type);
  2158. if (obj_priv->agp_mem == NULL) {
  2159. i915_gem_object_put_pages(obj);
  2160. drm_mm_put_block(obj_priv->gtt_space);
  2161. obj_priv->gtt_space = NULL;
  2162. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2163. if (ret)
  2164. return ret;
  2165. goto search_free;
  2166. }
  2167. atomic_inc(&dev->gtt_count);
  2168. atomic_add(obj->size, &dev->gtt_memory);
  2169. /* keep track of bounds object by adding it to the inactive list */
  2170. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2171. /* Assert that the object is not currently in any GPU domain. As it
  2172. * wasn't in the GTT, there shouldn't be any way it could have been in
  2173. * a GPU cache
  2174. */
  2175. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2176. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2177. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2178. return 0;
  2179. }
  2180. void
  2181. i915_gem_clflush_object(struct drm_gem_object *obj)
  2182. {
  2183. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2184. /* If we don't have a page list set up, then we're not pinned
  2185. * to GPU, and we can ignore the cache flush because it'll happen
  2186. * again at bind time.
  2187. */
  2188. if (obj_priv->pages == NULL)
  2189. return;
  2190. trace_i915_gem_object_clflush(obj);
  2191. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2192. }
  2193. /** Flushes any GPU write domain for the object if it's dirty. */
  2194. static int
  2195. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2196. bool pipelined)
  2197. {
  2198. struct drm_device *dev = obj->dev;
  2199. uint32_t old_write_domain;
  2200. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2201. return 0;
  2202. /* Queue the GPU write cache flushing we need. */
  2203. old_write_domain = obj->write_domain;
  2204. i915_gem_flush(dev, 0, obj->write_domain);
  2205. trace_i915_gem_object_change_domain(obj,
  2206. obj->read_domains,
  2207. old_write_domain);
  2208. if (pipelined)
  2209. return 0;
  2210. return i915_gem_object_wait_rendering(obj);
  2211. }
  2212. /** Flushes the GTT write domain for the object if it's dirty. */
  2213. static void
  2214. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2215. {
  2216. uint32_t old_write_domain;
  2217. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2218. return;
  2219. /* No actual flushing is required for the GTT write domain. Writes
  2220. * to it immediately go to main memory as far as we know, so there's
  2221. * no chipset flush. It also doesn't land in render cache.
  2222. */
  2223. old_write_domain = obj->write_domain;
  2224. obj->write_domain = 0;
  2225. trace_i915_gem_object_change_domain(obj,
  2226. obj->read_domains,
  2227. old_write_domain);
  2228. }
  2229. /** Flushes the CPU write domain for the object if it's dirty. */
  2230. static void
  2231. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2232. {
  2233. struct drm_device *dev = obj->dev;
  2234. uint32_t old_write_domain;
  2235. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2236. return;
  2237. i915_gem_clflush_object(obj);
  2238. drm_agp_chipset_flush(dev);
  2239. old_write_domain = obj->write_domain;
  2240. obj->write_domain = 0;
  2241. trace_i915_gem_object_change_domain(obj,
  2242. obj->read_domains,
  2243. old_write_domain);
  2244. }
  2245. int
  2246. i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
  2247. {
  2248. int ret = 0;
  2249. switch (obj->write_domain) {
  2250. case I915_GEM_DOMAIN_GTT:
  2251. i915_gem_object_flush_gtt_write_domain(obj);
  2252. break;
  2253. case I915_GEM_DOMAIN_CPU:
  2254. i915_gem_object_flush_cpu_write_domain(obj);
  2255. break;
  2256. default:
  2257. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2258. break;
  2259. }
  2260. return ret;
  2261. }
  2262. /**
  2263. * Moves a single object to the GTT read, and possibly write domain.
  2264. *
  2265. * This function returns when the move is complete, including waiting on
  2266. * flushes to occur.
  2267. */
  2268. int
  2269. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2270. {
  2271. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2272. uint32_t old_write_domain, old_read_domains;
  2273. int ret;
  2274. /* Not valid to be called on unbound objects. */
  2275. if (obj_priv->gtt_space == NULL)
  2276. return -EINVAL;
  2277. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2278. if (ret != 0)
  2279. return ret;
  2280. old_write_domain = obj->write_domain;
  2281. old_read_domains = obj->read_domains;
  2282. /* If we're writing through the GTT domain, then CPU and GPU caches
  2283. * will need to be invalidated at next use.
  2284. */
  2285. if (write) {
  2286. ret = i915_gem_object_wait_rendering(obj);
  2287. if (ret)
  2288. return ret;
  2289. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2290. }
  2291. i915_gem_object_flush_cpu_write_domain(obj);
  2292. /* It should now be out of any other write domains, and we can update
  2293. * the domain values for our changes.
  2294. */
  2295. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2296. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2297. if (write) {
  2298. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2299. obj_priv->dirty = 1;
  2300. }
  2301. trace_i915_gem_object_change_domain(obj,
  2302. old_read_domains,
  2303. old_write_domain);
  2304. return 0;
  2305. }
  2306. /*
  2307. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2308. * wait, as in modesetting process we're not supposed to be interrupted.
  2309. */
  2310. int
  2311. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
  2312. {
  2313. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2314. uint32_t old_read_domains;
  2315. int ret;
  2316. /* Not valid to be called on unbound objects. */
  2317. if (obj_priv->gtt_space == NULL)
  2318. return -EINVAL;
  2319. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2320. if (ret != 0)
  2321. return ret;
  2322. i915_gem_object_flush_cpu_write_domain(obj);
  2323. old_read_domains = obj->read_domains;
  2324. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2325. trace_i915_gem_object_change_domain(obj,
  2326. old_read_domains,
  2327. obj->write_domain);
  2328. return 0;
  2329. }
  2330. /**
  2331. * Moves a single object to the CPU read, and possibly write domain.
  2332. *
  2333. * This function returns when the move is complete, including waiting on
  2334. * flushes to occur.
  2335. */
  2336. static int
  2337. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2338. {
  2339. uint32_t old_write_domain, old_read_domains;
  2340. int ret;
  2341. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2342. if (ret != 0)
  2343. return ret;
  2344. i915_gem_object_flush_gtt_write_domain(obj);
  2345. /* If we have a partially-valid cache of the object in the CPU,
  2346. * finish invalidating it and free the per-page flags.
  2347. */
  2348. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2349. old_write_domain = obj->write_domain;
  2350. old_read_domains = obj->read_domains;
  2351. /* Flush the CPU cache if it's still invalid. */
  2352. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2353. i915_gem_clflush_object(obj);
  2354. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2355. }
  2356. /* It should now be out of any other write domains, and we can update
  2357. * the domain values for our changes.
  2358. */
  2359. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2360. /* If we're writing through the CPU, then the GPU read domains will
  2361. * need to be invalidated at next use.
  2362. */
  2363. if (write) {
  2364. ret = i915_gem_object_wait_rendering(obj);
  2365. if (ret)
  2366. return ret;
  2367. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2368. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2369. }
  2370. trace_i915_gem_object_change_domain(obj,
  2371. old_read_domains,
  2372. old_write_domain);
  2373. return 0;
  2374. }
  2375. /*
  2376. * Set the next domain for the specified object. This
  2377. * may not actually perform the necessary flushing/invaliding though,
  2378. * as that may want to be batched with other set_domain operations
  2379. *
  2380. * This is (we hope) the only really tricky part of gem. The goal
  2381. * is fairly simple -- track which caches hold bits of the object
  2382. * and make sure they remain coherent. A few concrete examples may
  2383. * help to explain how it works. For shorthand, we use the notation
  2384. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2385. * a pair of read and write domain masks.
  2386. *
  2387. * Case 1: the batch buffer
  2388. *
  2389. * 1. Allocated
  2390. * 2. Written by CPU
  2391. * 3. Mapped to GTT
  2392. * 4. Read by GPU
  2393. * 5. Unmapped from GTT
  2394. * 6. Freed
  2395. *
  2396. * Let's take these a step at a time
  2397. *
  2398. * 1. Allocated
  2399. * Pages allocated from the kernel may still have
  2400. * cache contents, so we set them to (CPU, CPU) always.
  2401. * 2. Written by CPU (using pwrite)
  2402. * The pwrite function calls set_domain (CPU, CPU) and
  2403. * this function does nothing (as nothing changes)
  2404. * 3. Mapped by GTT
  2405. * This function asserts that the object is not
  2406. * currently in any GPU-based read or write domains
  2407. * 4. Read by GPU
  2408. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2409. * As write_domain is zero, this function adds in the
  2410. * current read domains (CPU+COMMAND, 0).
  2411. * flush_domains is set to CPU.
  2412. * invalidate_domains is set to COMMAND
  2413. * clflush is run to get data out of the CPU caches
  2414. * then i915_dev_set_domain calls i915_gem_flush to
  2415. * emit an MI_FLUSH and drm_agp_chipset_flush
  2416. * 5. Unmapped from GTT
  2417. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2418. * flush_domains and invalidate_domains end up both zero
  2419. * so no flushing/invalidating happens
  2420. * 6. Freed
  2421. * yay, done
  2422. *
  2423. * Case 2: The shared render buffer
  2424. *
  2425. * 1. Allocated
  2426. * 2. Mapped to GTT
  2427. * 3. Read/written by GPU
  2428. * 4. set_domain to (CPU,CPU)
  2429. * 5. Read/written by CPU
  2430. * 6. Read/written by GPU
  2431. *
  2432. * 1. Allocated
  2433. * Same as last example, (CPU, CPU)
  2434. * 2. Mapped to GTT
  2435. * Nothing changes (assertions find that it is not in the GPU)
  2436. * 3. Read/written by GPU
  2437. * execbuffer calls set_domain (RENDER, RENDER)
  2438. * flush_domains gets CPU
  2439. * invalidate_domains gets GPU
  2440. * clflush (obj)
  2441. * MI_FLUSH and drm_agp_chipset_flush
  2442. * 4. set_domain (CPU, CPU)
  2443. * flush_domains gets GPU
  2444. * invalidate_domains gets CPU
  2445. * wait_rendering (obj) to make sure all drawing is complete.
  2446. * This will include an MI_FLUSH to get the data from GPU
  2447. * to memory
  2448. * clflush (obj) to invalidate the CPU cache
  2449. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2450. * 5. Read/written by CPU
  2451. * cache lines are loaded and dirtied
  2452. * 6. Read written by GPU
  2453. * Same as last GPU access
  2454. *
  2455. * Case 3: The constant buffer
  2456. *
  2457. * 1. Allocated
  2458. * 2. Written by CPU
  2459. * 3. Read by GPU
  2460. * 4. Updated (written) by CPU again
  2461. * 5. Read by GPU
  2462. *
  2463. * 1. Allocated
  2464. * (CPU, CPU)
  2465. * 2. Written by CPU
  2466. * (CPU, CPU)
  2467. * 3. Read by GPU
  2468. * (CPU+RENDER, 0)
  2469. * flush_domains = CPU
  2470. * invalidate_domains = RENDER
  2471. * clflush (obj)
  2472. * MI_FLUSH
  2473. * drm_agp_chipset_flush
  2474. * 4. Updated (written) by CPU again
  2475. * (CPU, CPU)
  2476. * flush_domains = 0 (no previous write domain)
  2477. * invalidate_domains = 0 (no new read domains)
  2478. * 5. Read by GPU
  2479. * (CPU+RENDER, 0)
  2480. * flush_domains = CPU
  2481. * invalidate_domains = RENDER
  2482. * clflush (obj)
  2483. * MI_FLUSH
  2484. * drm_agp_chipset_flush
  2485. */
  2486. static void
  2487. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2488. {
  2489. struct drm_device *dev = obj->dev;
  2490. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2491. uint32_t invalidate_domains = 0;
  2492. uint32_t flush_domains = 0;
  2493. uint32_t old_read_domains;
  2494. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2495. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2496. intel_mark_busy(dev, obj);
  2497. #if WATCH_BUF
  2498. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2499. __func__, obj,
  2500. obj->read_domains, obj->pending_read_domains,
  2501. obj->write_domain, obj->pending_write_domain);
  2502. #endif
  2503. /*
  2504. * If the object isn't moving to a new write domain,
  2505. * let the object stay in multiple read domains
  2506. */
  2507. if (obj->pending_write_domain == 0)
  2508. obj->pending_read_domains |= obj->read_domains;
  2509. else
  2510. obj_priv->dirty = 1;
  2511. /*
  2512. * Flush the current write domain if
  2513. * the new read domains don't match. Invalidate
  2514. * any read domains which differ from the old
  2515. * write domain
  2516. */
  2517. if (obj->write_domain &&
  2518. obj->write_domain != obj->pending_read_domains) {
  2519. flush_domains |= obj->write_domain;
  2520. invalidate_domains |=
  2521. obj->pending_read_domains & ~obj->write_domain;
  2522. }
  2523. /*
  2524. * Invalidate any read caches which may have
  2525. * stale data. That is, any new read domains.
  2526. */
  2527. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2528. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2529. #if WATCH_BUF
  2530. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2531. __func__, flush_domains, invalidate_domains);
  2532. #endif
  2533. i915_gem_clflush_object(obj);
  2534. }
  2535. old_read_domains = obj->read_domains;
  2536. /* The actual obj->write_domain will be updated with
  2537. * pending_write_domain after we emit the accumulated flush for all
  2538. * of our domain changes in execbuffers (which clears objects'
  2539. * write_domains). So if we have a current write domain that we
  2540. * aren't changing, set pending_write_domain to that.
  2541. */
  2542. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2543. obj->pending_write_domain = obj->write_domain;
  2544. obj->read_domains = obj->pending_read_domains;
  2545. dev->invalidate_domains |= invalidate_domains;
  2546. dev->flush_domains |= flush_domains;
  2547. #if WATCH_BUF
  2548. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2549. __func__,
  2550. obj->read_domains, obj->write_domain,
  2551. dev->invalidate_domains, dev->flush_domains);
  2552. #endif
  2553. trace_i915_gem_object_change_domain(obj,
  2554. old_read_domains,
  2555. obj->write_domain);
  2556. }
  2557. /**
  2558. * Moves the object from a partially CPU read to a full one.
  2559. *
  2560. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2561. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2562. */
  2563. static void
  2564. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2565. {
  2566. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2567. if (!obj_priv->page_cpu_valid)
  2568. return;
  2569. /* If we're partially in the CPU read domain, finish moving it in.
  2570. */
  2571. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2572. int i;
  2573. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2574. if (obj_priv->page_cpu_valid[i])
  2575. continue;
  2576. drm_clflush_pages(obj_priv->pages + i, 1);
  2577. }
  2578. }
  2579. /* Free the page_cpu_valid mappings which are now stale, whether
  2580. * or not we've got I915_GEM_DOMAIN_CPU.
  2581. */
  2582. kfree(obj_priv->page_cpu_valid);
  2583. obj_priv->page_cpu_valid = NULL;
  2584. }
  2585. /**
  2586. * Set the CPU read domain on a range of the object.
  2587. *
  2588. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2589. * not entirely valid. The page_cpu_valid member of the object flags which
  2590. * pages have been flushed, and will be respected by
  2591. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2592. * of the whole object.
  2593. *
  2594. * This function returns when the move is complete, including waiting on
  2595. * flushes to occur.
  2596. */
  2597. static int
  2598. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2599. uint64_t offset, uint64_t size)
  2600. {
  2601. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2602. uint32_t old_read_domains;
  2603. int i, ret;
  2604. if (offset == 0 && size == obj->size)
  2605. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2606. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2607. if (ret != 0)
  2608. return ret;
  2609. i915_gem_object_flush_gtt_write_domain(obj);
  2610. /* If we're already fully in the CPU read domain, we're done. */
  2611. if (obj_priv->page_cpu_valid == NULL &&
  2612. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2613. return 0;
  2614. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2615. * newly adding I915_GEM_DOMAIN_CPU
  2616. */
  2617. if (obj_priv->page_cpu_valid == NULL) {
  2618. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2619. GFP_KERNEL);
  2620. if (obj_priv->page_cpu_valid == NULL)
  2621. return -ENOMEM;
  2622. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2623. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2624. /* Flush the cache on any pages that are still invalid from the CPU's
  2625. * perspective.
  2626. */
  2627. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2628. i++) {
  2629. if (obj_priv->page_cpu_valid[i])
  2630. continue;
  2631. drm_clflush_pages(obj_priv->pages + i, 1);
  2632. obj_priv->page_cpu_valid[i] = 1;
  2633. }
  2634. /* It should now be out of any other write domains, and we can update
  2635. * the domain values for our changes.
  2636. */
  2637. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2638. old_read_domains = obj->read_domains;
  2639. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2640. trace_i915_gem_object_change_domain(obj,
  2641. old_read_domains,
  2642. obj->write_domain);
  2643. return 0;
  2644. }
  2645. /**
  2646. * Pin an object to the GTT and evaluate the relocations landing in it.
  2647. */
  2648. static int
  2649. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2650. struct drm_file *file_priv,
  2651. struct drm_i915_gem_exec_object2 *entry,
  2652. struct drm_i915_gem_relocation_entry *relocs)
  2653. {
  2654. struct drm_device *dev = obj->dev;
  2655. drm_i915_private_t *dev_priv = dev->dev_private;
  2656. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2657. int i, ret;
  2658. void __iomem *reloc_page;
  2659. bool need_fence;
  2660. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2661. obj_priv->tiling_mode != I915_TILING_NONE;
  2662. /* Check fence reg constraints and rebind if necessary */
  2663. if (need_fence &&
  2664. !i915_gem_object_fence_offset_ok(obj,
  2665. obj_priv->tiling_mode)) {
  2666. ret = i915_gem_object_unbind(obj);
  2667. if (ret)
  2668. return ret;
  2669. }
  2670. /* Choose the GTT offset for our buffer and put it there. */
  2671. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2672. if (ret)
  2673. return ret;
  2674. /*
  2675. * Pre-965 chips need a fence register set up in order to
  2676. * properly handle blits to/from tiled surfaces.
  2677. */
  2678. if (need_fence) {
  2679. ret = i915_gem_object_get_fence_reg(obj);
  2680. if (ret != 0) {
  2681. i915_gem_object_unpin(obj);
  2682. return ret;
  2683. }
  2684. }
  2685. entry->offset = obj_priv->gtt_offset;
  2686. /* Apply the relocations, using the GTT aperture to avoid cache
  2687. * flushing requirements.
  2688. */
  2689. for (i = 0; i < entry->relocation_count; i++) {
  2690. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2691. struct drm_gem_object *target_obj;
  2692. struct drm_i915_gem_object *target_obj_priv;
  2693. uint32_t reloc_val, reloc_offset;
  2694. uint32_t __iomem *reloc_entry;
  2695. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2696. reloc->target_handle);
  2697. if (target_obj == NULL) {
  2698. i915_gem_object_unpin(obj);
  2699. return -ENOENT;
  2700. }
  2701. target_obj_priv = to_intel_bo(target_obj);
  2702. #if WATCH_RELOC
  2703. DRM_INFO("%s: obj %p offset %08x target %d "
  2704. "read %08x write %08x gtt %08x "
  2705. "presumed %08x delta %08x\n",
  2706. __func__,
  2707. obj,
  2708. (int) reloc->offset,
  2709. (int) reloc->target_handle,
  2710. (int) reloc->read_domains,
  2711. (int) reloc->write_domain,
  2712. (int) target_obj_priv->gtt_offset,
  2713. (int) reloc->presumed_offset,
  2714. reloc->delta);
  2715. #endif
  2716. /* The target buffer should have appeared before us in the
  2717. * exec_object list, so it should have a GTT space bound by now.
  2718. */
  2719. if (target_obj_priv->gtt_space == NULL) {
  2720. DRM_ERROR("No GTT space found for object %d\n",
  2721. reloc->target_handle);
  2722. drm_gem_object_unreference(target_obj);
  2723. i915_gem_object_unpin(obj);
  2724. return -EINVAL;
  2725. }
  2726. /* Validate that the target is in a valid r/w GPU domain */
  2727. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2728. DRM_ERROR("reloc with multiple write domains: "
  2729. "obj %p target %d offset %d "
  2730. "read %08x write %08x",
  2731. obj, reloc->target_handle,
  2732. (int) reloc->offset,
  2733. reloc->read_domains,
  2734. reloc->write_domain);
  2735. return -EINVAL;
  2736. }
  2737. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2738. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2739. DRM_ERROR("reloc with read/write CPU domains: "
  2740. "obj %p target %d offset %d "
  2741. "read %08x write %08x",
  2742. obj, reloc->target_handle,
  2743. (int) reloc->offset,
  2744. reloc->read_domains,
  2745. reloc->write_domain);
  2746. drm_gem_object_unreference(target_obj);
  2747. i915_gem_object_unpin(obj);
  2748. return -EINVAL;
  2749. }
  2750. if (reloc->write_domain && target_obj->pending_write_domain &&
  2751. reloc->write_domain != target_obj->pending_write_domain) {
  2752. DRM_ERROR("Write domain conflict: "
  2753. "obj %p target %d offset %d "
  2754. "new %08x old %08x\n",
  2755. obj, reloc->target_handle,
  2756. (int) reloc->offset,
  2757. reloc->write_domain,
  2758. target_obj->pending_write_domain);
  2759. drm_gem_object_unreference(target_obj);
  2760. i915_gem_object_unpin(obj);
  2761. return -EINVAL;
  2762. }
  2763. target_obj->pending_read_domains |= reloc->read_domains;
  2764. target_obj->pending_write_domain |= reloc->write_domain;
  2765. /* If the relocation already has the right value in it, no
  2766. * more work needs to be done.
  2767. */
  2768. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2769. drm_gem_object_unreference(target_obj);
  2770. continue;
  2771. }
  2772. /* Check that the relocation address is valid... */
  2773. if (reloc->offset > obj->size - 4) {
  2774. DRM_ERROR("Relocation beyond object bounds: "
  2775. "obj %p target %d offset %d size %d.\n",
  2776. obj, reloc->target_handle,
  2777. (int) reloc->offset, (int) obj->size);
  2778. drm_gem_object_unreference(target_obj);
  2779. i915_gem_object_unpin(obj);
  2780. return -EINVAL;
  2781. }
  2782. if (reloc->offset & 3) {
  2783. DRM_ERROR("Relocation not 4-byte aligned: "
  2784. "obj %p target %d offset %d.\n",
  2785. obj, reloc->target_handle,
  2786. (int) reloc->offset);
  2787. drm_gem_object_unreference(target_obj);
  2788. i915_gem_object_unpin(obj);
  2789. return -EINVAL;
  2790. }
  2791. /* and points to somewhere within the target object. */
  2792. if (reloc->delta >= target_obj->size) {
  2793. DRM_ERROR("Relocation beyond target object bounds: "
  2794. "obj %p target %d delta %d size %d.\n",
  2795. obj, reloc->target_handle,
  2796. (int) reloc->delta, (int) target_obj->size);
  2797. drm_gem_object_unreference(target_obj);
  2798. i915_gem_object_unpin(obj);
  2799. return -EINVAL;
  2800. }
  2801. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2802. if (ret != 0) {
  2803. drm_gem_object_unreference(target_obj);
  2804. i915_gem_object_unpin(obj);
  2805. return -EINVAL;
  2806. }
  2807. /* Map the page containing the relocation we're going to
  2808. * perform.
  2809. */
  2810. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2811. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2812. (reloc_offset &
  2813. ~(PAGE_SIZE - 1)),
  2814. KM_USER0);
  2815. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2816. (reloc_offset & (PAGE_SIZE - 1)));
  2817. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2818. #if WATCH_BUF
  2819. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2820. obj, (unsigned int) reloc->offset,
  2821. readl(reloc_entry), reloc_val);
  2822. #endif
  2823. writel(reloc_val, reloc_entry);
  2824. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2825. /* The updated presumed offset for this entry will be
  2826. * copied back out to the user.
  2827. */
  2828. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2829. drm_gem_object_unreference(target_obj);
  2830. }
  2831. #if WATCH_BUF
  2832. if (0)
  2833. i915_gem_dump_object(obj, 128, __func__, ~0);
  2834. #endif
  2835. return 0;
  2836. }
  2837. /* Throttle our rendering by waiting until the ring has completed our requests
  2838. * emitted over 20 msec ago.
  2839. *
  2840. * Note that if we were to use the current jiffies each time around the loop,
  2841. * we wouldn't escape the function with any frames outstanding if the time to
  2842. * render a frame was over 20ms.
  2843. *
  2844. * This should get us reasonable parallelism between CPU and GPU but also
  2845. * relatively low latency when blocking on a particular request to finish.
  2846. */
  2847. static int
  2848. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2849. {
  2850. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2851. int ret = 0;
  2852. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2853. mutex_lock(&dev->struct_mutex);
  2854. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2855. struct drm_i915_gem_request *request;
  2856. request = list_first_entry(&i915_file_priv->mm.request_list,
  2857. struct drm_i915_gem_request,
  2858. client_list);
  2859. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2860. break;
  2861. ret = i915_wait_request(dev, request->seqno, request->ring);
  2862. if (ret != 0)
  2863. break;
  2864. }
  2865. mutex_unlock(&dev->struct_mutex);
  2866. return ret;
  2867. }
  2868. static int
  2869. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2870. uint32_t buffer_count,
  2871. struct drm_i915_gem_relocation_entry **relocs)
  2872. {
  2873. uint32_t reloc_count = 0, reloc_index = 0, i;
  2874. int ret;
  2875. *relocs = NULL;
  2876. for (i = 0; i < buffer_count; i++) {
  2877. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2878. return -EINVAL;
  2879. reloc_count += exec_list[i].relocation_count;
  2880. }
  2881. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2882. if (*relocs == NULL) {
  2883. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2884. return -ENOMEM;
  2885. }
  2886. for (i = 0; i < buffer_count; i++) {
  2887. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2888. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2889. ret = copy_from_user(&(*relocs)[reloc_index],
  2890. user_relocs,
  2891. exec_list[i].relocation_count *
  2892. sizeof(**relocs));
  2893. if (ret != 0) {
  2894. drm_free_large(*relocs);
  2895. *relocs = NULL;
  2896. return -EFAULT;
  2897. }
  2898. reloc_index += exec_list[i].relocation_count;
  2899. }
  2900. return 0;
  2901. }
  2902. static int
  2903. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2904. uint32_t buffer_count,
  2905. struct drm_i915_gem_relocation_entry *relocs)
  2906. {
  2907. uint32_t reloc_count = 0, i;
  2908. int ret = 0;
  2909. if (relocs == NULL)
  2910. return 0;
  2911. for (i = 0; i < buffer_count; i++) {
  2912. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2913. int unwritten;
  2914. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2915. unwritten = copy_to_user(user_relocs,
  2916. &relocs[reloc_count],
  2917. exec_list[i].relocation_count *
  2918. sizeof(*relocs));
  2919. if (unwritten) {
  2920. ret = -EFAULT;
  2921. goto err;
  2922. }
  2923. reloc_count += exec_list[i].relocation_count;
  2924. }
  2925. err:
  2926. drm_free_large(relocs);
  2927. return ret;
  2928. }
  2929. static int
  2930. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  2931. uint64_t exec_offset)
  2932. {
  2933. uint32_t exec_start, exec_len;
  2934. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2935. exec_len = (uint32_t) exec->batch_len;
  2936. if ((exec_start | exec_len) & 0x7)
  2937. return -EINVAL;
  2938. if (!exec_start)
  2939. return -EINVAL;
  2940. return 0;
  2941. }
  2942. static int
  2943. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  2944. struct drm_gem_object **object_list,
  2945. int count)
  2946. {
  2947. drm_i915_private_t *dev_priv = dev->dev_private;
  2948. struct drm_i915_gem_object *obj_priv;
  2949. DEFINE_WAIT(wait);
  2950. int i, ret = 0;
  2951. for (;;) {
  2952. prepare_to_wait(&dev_priv->pending_flip_queue,
  2953. &wait, TASK_INTERRUPTIBLE);
  2954. for (i = 0; i < count; i++) {
  2955. obj_priv = to_intel_bo(object_list[i]);
  2956. if (atomic_read(&obj_priv->pending_flip) > 0)
  2957. break;
  2958. }
  2959. if (i == count)
  2960. break;
  2961. if (!signal_pending(current)) {
  2962. mutex_unlock(&dev->struct_mutex);
  2963. schedule();
  2964. mutex_lock(&dev->struct_mutex);
  2965. continue;
  2966. }
  2967. ret = -ERESTARTSYS;
  2968. break;
  2969. }
  2970. finish_wait(&dev_priv->pending_flip_queue, &wait);
  2971. return ret;
  2972. }
  2973. static int
  2974. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  2975. struct drm_file *file_priv,
  2976. struct drm_i915_gem_execbuffer2 *args,
  2977. struct drm_i915_gem_exec_object2 *exec_list)
  2978. {
  2979. drm_i915_private_t *dev_priv = dev->dev_private;
  2980. struct drm_gem_object **object_list = NULL;
  2981. struct drm_gem_object *batch_obj;
  2982. struct drm_i915_gem_object *obj_priv;
  2983. struct drm_clip_rect *cliprects = NULL;
  2984. struct drm_i915_gem_relocation_entry *relocs = NULL;
  2985. struct drm_i915_gem_request *request = NULL;
  2986. int ret = 0, ret2, i, pinned = 0;
  2987. uint64_t exec_offset;
  2988. uint32_t seqno, reloc_index;
  2989. int pin_tries, flips;
  2990. struct intel_ring_buffer *ring = NULL;
  2991. #if WATCH_EXEC
  2992. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2993. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2994. #endif
  2995. if (args->flags & I915_EXEC_BSD) {
  2996. if (!HAS_BSD(dev)) {
  2997. DRM_ERROR("execbuf with wrong flag\n");
  2998. return -EINVAL;
  2999. }
  3000. ring = &dev_priv->bsd_ring;
  3001. } else {
  3002. ring = &dev_priv->render_ring;
  3003. }
  3004. if (args->buffer_count < 1) {
  3005. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3006. return -EINVAL;
  3007. }
  3008. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3009. if (object_list == NULL) {
  3010. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3011. args->buffer_count);
  3012. ret = -ENOMEM;
  3013. goto pre_mutex_err;
  3014. }
  3015. if (args->num_cliprects != 0) {
  3016. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3017. GFP_KERNEL);
  3018. if (cliprects == NULL) {
  3019. ret = -ENOMEM;
  3020. goto pre_mutex_err;
  3021. }
  3022. ret = copy_from_user(cliprects,
  3023. (struct drm_clip_rect __user *)
  3024. (uintptr_t) args->cliprects_ptr,
  3025. sizeof(*cliprects) * args->num_cliprects);
  3026. if (ret != 0) {
  3027. DRM_ERROR("copy %d cliprects failed: %d\n",
  3028. args->num_cliprects, ret);
  3029. ret = -EFAULT;
  3030. goto pre_mutex_err;
  3031. }
  3032. }
  3033. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3034. if (request == NULL) {
  3035. ret = -ENOMEM;
  3036. goto pre_mutex_err;
  3037. }
  3038. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3039. &relocs);
  3040. if (ret != 0)
  3041. goto pre_mutex_err;
  3042. mutex_lock(&dev->struct_mutex);
  3043. i915_verify_inactive(dev, __FILE__, __LINE__);
  3044. if (atomic_read(&dev_priv->mm.wedged)) {
  3045. mutex_unlock(&dev->struct_mutex);
  3046. ret = -EIO;
  3047. goto pre_mutex_err;
  3048. }
  3049. if (dev_priv->mm.suspended) {
  3050. mutex_unlock(&dev->struct_mutex);
  3051. ret = -EBUSY;
  3052. goto pre_mutex_err;
  3053. }
  3054. /* Look up object handles */
  3055. flips = 0;
  3056. for (i = 0; i < args->buffer_count; i++) {
  3057. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3058. exec_list[i].handle);
  3059. if (object_list[i] == NULL) {
  3060. DRM_ERROR("Invalid object handle %d at index %d\n",
  3061. exec_list[i].handle, i);
  3062. /* prevent error path from reading uninitialized data */
  3063. args->buffer_count = i + 1;
  3064. ret = -ENOENT;
  3065. goto err;
  3066. }
  3067. obj_priv = to_intel_bo(object_list[i]);
  3068. if (obj_priv->in_execbuffer) {
  3069. DRM_ERROR("Object %p appears more than once in object list\n",
  3070. object_list[i]);
  3071. /* prevent error path from reading uninitialized data */
  3072. args->buffer_count = i + 1;
  3073. ret = -EINVAL;
  3074. goto err;
  3075. }
  3076. obj_priv->in_execbuffer = true;
  3077. flips += atomic_read(&obj_priv->pending_flip);
  3078. }
  3079. if (flips > 0) {
  3080. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3081. args->buffer_count);
  3082. if (ret)
  3083. goto err;
  3084. }
  3085. /* Pin and relocate */
  3086. for (pin_tries = 0; ; pin_tries++) {
  3087. ret = 0;
  3088. reloc_index = 0;
  3089. for (i = 0; i < args->buffer_count; i++) {
  3090. object_list[i]->pending_read_domains = 0;
  3091. object_list[i]->pending_write_domain = 0;
  3092. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3093. file_priv,
  3094. &exec_list[i],
  3095. &relocs[reloc_index]);
  3096. if (ret)
  3097. break;
  3098. pinned = i + 1;
  3099. reloc_index += exec_list[i].relocation_count;
  3100. }
  3101. /* success */
  3102. if (ret == 0)
  3103. break;
  3104. /* error other than GTT full, or we've already tried again */
  3105. if (ret != -ENOSPC || pin_tries >= 1) {
  3106. if (ret != -ERESTARTSYS) {
  3107. unsigned long long total_size = 0;
  3108. int num_fences = 0;
  3109. for (i = 0; i < args->buffer_count; i++) {
  3110. obj_priv = to_intel_bo(object_list[i]);
  3111. total_size += object_list[i]->size;
  3112. num_fences +=
  3113. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3114. obj_priv->tiling_mode != I915_TILING_NONE;
  3115. }
  3116. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3117. pinned+1, args->buffer_count,
  3118. total_size, num_fences,
  3119. ret);
  3120. DRM_ERROR("%d objects [%d pinned], "
  3121. "%d object bytes [%d pinned], "
  3122. "%d/%d gtt bytes\n",
  3123. atomic_read(&dev->object_count),
  3124. atomic_read(&dev->pin_count),
  3125. atomic_read(&dev->object_memory),
  3126. atomic_read(&dev->pin_memory),
  3127. atomic_read(&dev->gtt_memory),
  3128. dev->gtt_total);
  3129. }
  3130. goto err;
  3131. }
  3132. /* unpin all of our buffers */
  3133. for (i = 0; i < pinned; i++)
  3134. i915_gem_object_unpin(object_list[i]);
  3135. pinned = 0;
  3136. /* evict everyone we can from the aperture */
  3137. ret = i915_gem_evict_everything(dev);
  3138. if (ret && ret != -ENOSPC)
  3139. goto err;
  3140. }
  3141. /* Set the pending read domains for the batch buffer to COMMAND */
  3142. batch_obj = object_list[args->buffer_count-1];
  3143. if (batch_obj->pending_write_domain) {
  3144. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3145. ret = -EINVAL;
  3146. goto err;
  3147. }
  3148. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3149. /* Sanity check the batch buffer, prior to moving objects */
  3150. exec_offset = exec_list[args->buffer_count - 1].offset;
  3151. ret = i915_gem_check_execbuffer (args, exec_offset);
  3152. if (ret != 0) {
  3153. DRM_ERROR("execbuf with invalid offset/length\n");
  3154. goto err;
  3155. }
  3156. i915_verify_inactive(dev, __FILE__, __LINE__);
  3157. /* Zero the global flush/invalidate flags. These
  3158. * will be modified as new domains are computed
  3159. * for each object
  3160. */
  3161. dev->invalidate_domains = 0;
  3162. dev->flush_domains = 0;
  3163. for (i = 0; i < args->buffer_count; i++) {
  3164. struct drm_gem_object *obj = object_list[i];
  3165. /* Compute new gpu domains and update invalidate/flush */
  3166. i915_gem_object_set_to_gpu_domain(obj);
  3167. }
  3168. i915_verify_inactive(dev, __FILE__, __LINE__);
  3169. if (dev->invalidate_domains | dev->flush_domains) {
  3170. #if WATCH_EXEC
  3171. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3172. __func__,
  3173. dev->invalidate_domains,
  3174. dev->flush_domains);
  3175. #endif
  3176. i915_gem_flush(dev,
  3177. dev->invalidate_domains,
  3178. dev->flush_domains);
  3179. }
  3180. if (dev_priv->render_ring.outstanding_lazy_request) {
  3181. (void)i915_add_request(dev, file_priv, NULL, &dev_priv->render_ring);
  3182. dev_priv->render_ring.outstanding_lazy_request = false;
  3183. }
  3184. if (dev_priv->bsd_ring.outstanding_lazy_request) {
  3185. (void)i915_add_request(dev, file_priv, NULL, &dev_priv->bsd_ring);
  3186. dev_priv->bsd_ring.outstanding_lazy_request = false;
  3187. }
  3188. for (i = 0; i < args->buffer_count; i++) {
  3189. struct drm_gem_object *obj = object_list[i];
  3190. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3191. uint32_t old_write_domain = obj->write_domain;
  3192. obj->write_domain = obj->pending_write_domain;
  3193. if (obj->write_domain)
  3194. list_move_tail(&obj_priv->gpu_write_list,
  3195. &dev_priv->mm.gpu_write_list);
  3196. else
  3197. list_del_init(&obj_priv->gpu_write_list);
  3198. trace_i915_gem_object_change_domain(obj,
  3199. obj->read_domains,
  3200. old_write_domain);
  3201. }
  3202. i915_verify_inactive(dev, __FILE__, __LINE__);
  3203. #if WATCH_COHERENCY
  3204. for (i = 0; i < args->buffer_count; i++) {
  3205. i915_gem_object_check_coherency(object_list[i],
  3206. exec_list[i].handle);
  3207. }
  3208. #endif
  3209. #if WATCH_EXEC
  3210. i915_gem_dump_object(batch_obj,
  3211. args->batch_len,
  3212. __func__,
  3213. ~0);
  3214. #endif
  3215. /* Exec the batchbuffer */
  3216. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3217. cliprects, exec_offset);
  3218. if (ret) {
  3219. DRM_ERROR("dispatch failed %d\n", ret);
  3220. goto err;
  3221. }
  3222. /*
  3223. * Ensure that the commands in the batch buffer are
  3224. * finished before the interrupt fires
  3225. */
  3226. i915_retire_commands(dev, ring);
  3227. i915_verify_inactive(dev, __FILE__, __LINE__);
  3228. for (i = 0; i < args->buffer_count; i++) {
  3229. struct drm_gem_object *obj = object_list[i];
  3230. obj_priv = to_intel_bo(obj);
  3231. i915_gem_object_move_to_active(obj, ring);
  3232. #if WATCH_LRU
  3233. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3234. #endif
  3235. }
  3236. /*
  3237. * Get a seqno representing the execution of the current buffer,
  3238. * which we can wait on. We would like to mitigate these interrupts,
  3239. * likely by only creating seqnos occasionally (so that we have
  3240. * *some* interrupts representing completion of buffers that we can
  3241. * wait on when trying to clear up gtt space).
  3242. */
  3243. seqno = i915_add_request(dev, file_priv, request, ring);
  3244. request = NULL;
  3245. #if WATCH_LRU
  3246. i915_dump_lru(dev, __func__);
  3247. #endif
  3248. i915_verify_inactive(dev, __FILE__, __LINE__);
  3249. err:
  3250. for (i = 0; i < pinned; i++)
  3251. i915_gem_object_unpin(object_list[i]);
  3252. for (i = 0; i < args->buffer_count; i++) {
  3253. if (object_list[i]) {
  3254. obj_priv = to_intel_bo(object_list[i]);
  3255. obj_priv->in_execbuffer = false;
  3256. }
  3257. drm_gem_object_unreference(object_list[i]);
  3258. }
  3259. mutex_unlock(&dev->struct_mutex);
  3260. pre_mutex_err:
  3261. /* Copy the updated relocations out regardless of current error
  3262. * state. Failure to update the relocs would mean that the next
  3263. * time userland calls execbuf, it would do so with presumed offset
  3264. * state that didn't match the actual object state.
  3265. */
  3266. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3267. relocs);
  3268. if (ret2 != 0) {
  3269. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3270. if (ret == 0)
  3271. ret = ret2;
  3272. }
  3273. drm_free_large(object_list);
  3274. kfree(cliprects);
  3275. kfree(request);
  3276. return ret;
  3277. }
  3278. /*
  3279. * Legacy execbuffer just creates an exec2 list from the original exec object
  3280. * list array and passes it to the real function.
  3281. */
  3282. int
  3283. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3284. struct drm_file *file_priv)
  3285. {
  3286. struct drm_i915_gem_execbuffer *args = data;
  3287. struct drm_i915_gem_execbuffer2 exec2;
  3288. struct drm_i915_gem_exec_object *exec_list = NULL;
  3289. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3290. int ret, i;
  3291. #if WATCH_EXEC
  3292. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3293. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3294. #endif
  3295. if (args->buffer_count < 1) {
  3296. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3297. return -EINVAL;
  3298. }
  3299. /* Copy in the exec list from userland */
  3300. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3301. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3302. if (exec_list == NULL || exec2_list == NULL) {
  3303. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3304. args->buffer_count);
  3305. drm_free_large(exec_list);
  3306. drm_free_large(exec2_list);
  3307. return -ENOMEM;
  3308. }
  3309. ret = copy_from_user(exec_list,
  3310. (struct drm_i915_relocation_entry __user *)
  3311. (uintptr_t) args->buffers_ptr,
  3312. sizeof(*exec_list) * args->buffer_count);
  3313. if (ret != 0) {
  3314. DRM_ERROR("copy %d exec entries failed %d\n",
  3315. args->buffer_count, ret);
  3316. drm_free_large(exec_list);
  3317. drm_free_large(exec2_list);
  3318. return -EFAULT;
  3319. }
  3320. for (i = 0; i < args->buffer_count; i++) {
  3321. exec2_list[i].handle = exec_list[i].handle;
  3322. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3323. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3324. exec2_list[i].alignment = exec_list[i].alignment;
  3325. exec2_list[i].offset = exec_list[i].offset;
  3326. if (!IS_I965G(dev))
  3327. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3328. else
  3329. exec2_list[i].flags = 0;
  3330. }
  3331. exec2.buffers_ptr = args->buffers_ptr;
  3332. exec2.buffer_count = args->buffer_count;
  3333. exec2.batch_start_offset = args->batch_start_offset;
  3334. exec2.batch_len = args->batch_len;
  3335. exec2.DR1 = args->DR1;
  3336. exec2.DR4 = args->DR4;
  3337. exec2.num_cliprects = args->num_cliprects;
  3338. exec2.cliprects_ptr = args->cliprects_ptr;
  3339. exec2.flags = I915_EXEC_RENDER;
  3340. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3341. if (!ret) {
  3342. /* Copy the new buffer offsets back to the user's exec list. */
  3343. for (i = 0; i < args->buffer_count; i++)
  3344. exec_list[i].offset = exec2_list[i].offset;
  3345. /* ... and back out to userspace */
  3346. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3347. (uintptr_t) args->buffers_ptr,
  3348. exec_list,
  3349. sizeof(*exec_list) * args->buffer_count);
  3350. if (ret) {
  3351. ret = -EFAULT;
  3352. DRM_ERROR("failed to copy %d exec entries "
  3353. "back to user (%d)\n",
  3354. args->buffer_count, ret);
  3355. }
  3356. }
  3357. drm_free_large(exec_list);
  3358. drm_free_large(exec2_list);
  3359. return ret;
  3360. }
  3361. int
  3362. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3363. struct drm_file *file_priv)
  3364. {
  3365. struct drm_i915_gem_execbuffer2 *args = data;
  3366. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3367. int ret;
  3368. #if WATCH_EXEC
  3369. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3370. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3371. #endif
  3372. if (args->buffer_count < 1) {
  3373. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3374. return -EINVAL;
  3375. }
  3376. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3377. if (exec2_list == NULL) {
  3378. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3379. args->buffer_count);
  3380. return -ENOMEM;
  3381. }
  3382. ret = copy_from_user(exec2_list,
  3383. (struct drm_i915_relocation_entry __user *)
  3384. (uintptr_t) args->buffers_ptr,
  3385. sizeof(*exec2_list) * args->buffer_count);
  3386. if (ret != 0) {
  3387. DRM_ERROR("copy %d exec entries failed %d\n",
  3388. args->buffer_count, ret);
  3389. drm_free_large(exec2_list);
  3390. return -EFAULT;
  3391. }
  3392. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3393. if (!ret) {
  3394. /* Copy the new buffer offsets back to the user's exec list. */
  3395. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3396. (uintptr_t) args->buffers_ptr,
  3397. exec2_list,
  3398. sizeof(*exec2_list) * args->buffer_count);
  3399. if (ret) {
  3400. ret = -EFAULT;
  3401. DRM_ERROR("failed to copy %d exec entries "
  3402. "back to user (%d)\n",
  3403. args->buffer_count, ret);
  3404. }
  3405. }
  3406. drm_free_large(exec2_list);
  3407. return ret;
  3408. }
  3409. int
  3410. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3411. {
  3412. struct drm_device *dev = obj->dev;
  3413. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3414. int ret;
  3415. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3416. i915_verify_inactive(dev, __FILE__, __LINE__);
  3417. if (obj_priv->gtt_space != NULL) {
  3418. if (alignment == 0)
  3419. alignment = i915_gem_get_gtt_alignment(obj);
  3420. if (obj_priv->gtt_offset & (alignment - 1)) {
  3421. WARN(obj_priv->pin_count,
  3422. "bo is already pinned with incorrect alignment:"
  3423. " offset=%x, req.alignment=%x\n",
  3424. obj_priv->gtt_offset, alignment);
  3425. ret = i915_gem_object_unbind(obj);
  3426. if (ret)
  3427. return ret;
  3428. }
  3429. }
  3430. if (obj_priv->gtt_space == NULL) {
  3431. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3432. if (ret)
  3433. return ret;
  3434. }
  3435. obj_priv->pin_count++;
  3436. /* If the object is not active and not pending a flush,
  3437. * remove it from the inactive list
  3438. */
  3439. if (obj_priv->pin_count == 1) {
  3440. atomic_inc(&dev->pin_count);
  3441. atomic_add(obj->size, &dev->pin_memory);
  3442. if (!obj_priv->active &&
  3443. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3444. list_del_init(&obj_priv->list);
  3445. }
  3446. i915_verify_inactive(dev, __FILE__, __LINE__);
  3447. return 0;
  3448. }
  3449. void
  3450. i915_gem_object_unpin(struct drm_gem_object *obj)
  3451. {
  3452. struct drm_device *dev = obj->dev;
  3453. drm_i915_private_t *dev_priv = dev->dev_private;
  3454. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3455. i915_verify_inactive(dev, __FILE__, __LINE__);
  3456. obj_priv->pin_count--;
  3457. BUG_ON(obj_priv->pin_count < 0);
  3458. BUG_ON(obj_priv->gtt_space == NULL);
  3459. /* If the object is no longer pinned, and is
  3460. * neither active nor being flushed, then stick it on
  3461. * the inactive list
  3462. */
  3463. if (obj_priv->pin_count == 0) {
  3464. if (!obj_priv->active &&
  3465. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3466. list_move_tail(&obj_priv->list,
  3467. &dev_priv->mm.inactive_list);
  3468. atomic_dec(&dev->pin_count);
  3469. atomic_sub(obj->size, &dev->pin_memory);
  3470. }
  3471. i915_verify_inactive(dev, __FILE__, __LINE__);
  3472. }
  3473. int
  3474. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3475. struct drm_file *file_priv)
  3476. {
  3477. struct drm_i915_gem_pin *args = data;
  3478. struct drm_gem_object *obj;
  3479. struct drm_i915_gem_object *obj_priv;
  3480. int ret;
  3481. mutex_lock(&dev->struct_mutex);
  3482. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3483. if (obj == NULL) {
  3484. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3485. args->handle);
  3486. mutex_unlock(&dev->struct_mutex);
  3487. return -ENOENT;
  3488. }
  3489. obj_priv = to_intel_bo(obj);
  3490. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3491. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3492. drm_gem_object_unreference(obj);
  3493. mutex_unlock(&dev->struct_mutex);
  3494. return -EINVAL;
  3495. }
  3496. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3497. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3498. args->handle);
  3499. drm_gem_object_unreference(obj);
  3500. mutex_unlock(&dev->struct_mutex);
  3501. return -EINVAL;
  3502. }
  3503. obj_priv->user_pin_count++;
  3504. obj_priv->pin_filp = file_priv;
  3505. if (obj_priv->user_pin_count == 1) {
  3506. ret = i915_gem_object_pin(obj, args->alignment);
  3507. if (ret != 0) {
  3508. drm_gem_object_unreference(obj);
  3509. mutex_unlock(&dev->struct_mutex);
  3510. return ret;
  3511. }
  3512. }
  3513. /* XXX - flush the CPU caches for pinned objects
  3514. * as the X server doesn't manage domains yet
  3515. */
  3516. i915_gem_object_flush_cpu_write_domain(obj);
  3517. args->offset = obj_priv->gtt_offset;
  3518. drm_gem_object_unreference(obj);
  3519. mutex_unlock(&dev->struct_mutex);
  3520. return 0;
  3521. }
  3522. int
  3523. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3524. struct drm_file *file_priv)
  3525. {
  3526. struct drm_i915_gem_pin *args = data;
  3527. struct drm_gem_object *obj;
  3528. struct drm_i915_gem_object *obj_priv;
  3529. mutex_lock(&dev->struct_mutex);
  3530. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3531. if (obj == NULL) {
  3532. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3533. args->handle);
  3534. mutex_unlock(&dev->struct_mutex);
  3535. return -ENOENT;
  3536. }
  3537. obj_priv = to_intel_bo(obj);
  3538. if (obj_priv->pin_filp != file_priv) {
  3539. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3540. args->handle);
  3541. drm_gem_object_unreference(obj);
  3542. mutex_unlock(&dev->struct_mutex);
  3543. return -EINVAL;
  3544. }
  3545. obj_priv->user_pin_count--;
  3546. if (obj_priv->user_pin_count == 0) {
  3547. obj_priv->pin_filp = NULL;
  3548. i915_gem_object_unpin(obj);
  3549. }
  3550. drm_gem_object_unreference(obj);
  3551. mutex_unlock(&dev->struct_mutex);
  3552. return 0;
  3553. }
  3554. int
  3555. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3556. struct drm_file *file_priv)
  3557. {
  3558. struct drm_i915_gem_busy *args = data;
  3559. struct drm_gem_object *obj;
  3560. struct drm_i915_gem_object *obj_priv;
  3561. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3562. if (obj == NULL) {
  3563. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3564. args->handle);
  3565. return -ENOENT;
  3566. }
  3567. mutex_lock(&dev->struct_mutex);
  3568. /* Count all active objects as busy, even if they are currently not used
  3569. * by the gpu. Users of this interface expect objects to eventually
  3570. * become non-busy without any further actions, therefore emit any
  3571. * necessary flushes here.
  3572. */
  3573. obj_priv = to_intel_bo(obj);
  3574. args->busy = obj_priv->active;
  3575. if (args->busy) {
  3576. /* Unconditionally flush objects, even when the gpu still uses this
  3577. * object. Userspace calling this function indicates that it wants to
  3578. * use this buffer rather sooner than later, so issuing the required
  3579. * flush earlier is beneficial.
  3580. */
  3581. if (obj->write_domain) {
  3582. i915_gem_flush(dev, 0, obj->write_domain);
  3583. (void)i915_add_request(dev, file_priv, NULL, obj_priv->ring);
  3584. }
  3585. /* Update the active list for the hardware's current position.
  3586. * Otherwise this only updates on a delayed timer or when irqs
  3587. * are actually unmasked, and our working set ends up being
  3588. * larger than required.
  3589. */
  3590. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3591. args->busy = obj_priv->active;
  3592. }
  3593. drm_gem_object_unreference(obj);
  3594. mutex_unlock(&dev->struct_mutex);
  3595. return 0;
  3596. }
  3597. int
  3598. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3599. struct drm_file *file_priv)
  3600. {
  3601. return i915_gem_ring_throttle(dev, file_priv);
  3602. }
  3603. int
  3604. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3605. struct drm_file *file_priv)
  3606. {
  3607. struct drm_i915_gem_madvise *args = data;
  3608. struct drm_gem_object *obj;
  3609. struct drm_i915_gem_object *obj_priv;
  3610. switch (args->madv) {
  3611. case I915_MADV_DONTNEED:
  3612. case I915_MADV_WILLNEED:
  3613. break;
  3614. default:
  3615. return -EINVAL;
  3616. }
  3617. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3618. if (obj == NULL) {
  3619. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3620. args->handle);
  3621. return -ENOENT;
  3622. }
  3623. mutex_lock(&dev->struct_mutex);
  3624. obj_priv = to_intel_bo(obj);
  3625. if (obj_priv->pin_count) {
  3626. drm_gem_object_unreference(obj);
  3627. mutex_unlock(&dev->struct_mutex);
  3628. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3629. return -EINVAL;
  3630. }
  3631. if (obj_priv->madv != __I915_MADV_PURGED)
  3632. obj_priv->madv = args->madv;
  3633. /* if the object is no longer bound, discard its backing storage */
  3634. if (i915_gem_object_is_purgeable(obj_priv) &&
  3635. obj_priv->gtt_space == NULL)
  3636. i915_gem_object_truncate(obj);
  3637. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3638. drm_gem_object_unreference(obj);
  3639. mutex_unlock(&dev->struct_mutex);
  3640. return 0;
  3641. }
  3642. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3643. size_t size)
  3644. {
  3645. struct drm_i915_gem_object *obj;
  3646. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3647. if (obj == NULL)
  3648. return NULL;
  3649. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3650. kfree(obj);
  3651. return NULL;
  3652. }
  3653. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3654. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3655. obj->agp_type = AGP_USER_MEMORY;
  3656. obj->base.driver_private = NULL;
  3657. obj->fence_reg = I915_FENCE_REG_NONE;
  3658. INIT_LIST_HEAD(&obj->list);
  3659. INIT_LIST_HEAD(&obj->gpu_write_list);
  3660. obj->madv = I915_MADV_WILLNEED;
  3661. trace_i915_gem_object_create(&obj->base);
  3662. return &obj->base;
  3663. }
  3664. int i915_gem_init_object(struct drm_gem_object *obj)
  3665. {
  3666. BUG();
  3667. return 0;
  3668. }
  3669. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3670. {
  3671. struct drm_device *dev = obj->dev;
  3672. drm_i915_private_t *dev_priv = dev->dev_private;
  3673. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3674. int ret;
  3675. ret = i915_gem_object_unbind(obj);
  3676. if (ret == -ERESTARTSYS) {
  3677. list_move(&obj_priv->list,
  3678. &dev_priv->mm.deferred_free_list);
  3679. return;
  3680. }
  3681. if (obj_priv->mmap_offset)
  3682. i915_gem_free_mmap_offset(obj);
  3683. drm_gem_object_release(obj);
  3684. kfree(obj_priv->page_cpu_valid);
  3685. kfree(obj_priv->bit_17);
  3686. kfree(obj_priv);
  3687. }
  3688. void i915_gem_free_object(struct drm_gem_object *obj)
  3689. {
  3690. struct drm_device *dev = obj->dev;
  3691. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3692. trace_i915_gem_object_destroy(obj);
  3693. while (obj_priv->pin_count > 0)
  3694. i915_gem_object_unpin(obj);
  3695. if (obj_priv->phys_obj)
  3696. i915_gem_detach_phys_object(dev, obj);
  3697. i915_gem_free_object_tail(obj);
  3698. }
  3699. int
  3700. i915_gem_idle(struct drm_device *dev)
  3701. {
  3702. drm_i915_private_t *dev_priv = dev->dev_private;
  3703. int ret;
  3704. mutex_lock(&dev->struct_mutex);
  3705. if (dev_priv->mm.suspended ||
  3706. (dev_priv->render_ring.gem_object == NULL) ||
  3707. (HAS_BSD(dev) &&
  3708. dev_priv->bsd_ring.gem_object == NULL)) {
  3709. mutex_unlock(&dev->struct_mutex);
  3710. return 0;
  3711. }
  3712. ret = i915_gpu_idle(dev);
  3713. if (ret) {
  3714. mutex_unlock(&dev->struct_mutex);
  3715. return ret;
  3716. }
  3717. /* Under UMS, be paranoid and evict. */
  3718. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3719. ret = i915_gem_evict_inactive(dev);
  3720. if (ret) {
  3721. mutex_unlock(&dev->struct_mutex);
  3722. return ret;
  3723. }
  3724. }
  3725. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3726. * We need to replace this with a semaphore, or something.
  3727. * And not confound mm.suspended!
  3728. */
  3729. dev_priv->mm.suspended = 1;
  3730. del_timer_sync(&dev_priv->hangcheck_timer);
  3731. i915_kernel_lost_context(dev);
  3732. i915_gem_cleanup_ringbuffer(dev);
  3733. mutex_unlock(&dev->struct_mutex);
  3734. /* Cancel the retire work handler, which should be idle now. */
  3735. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3736. return 0;
  3737. }
  3738. /*
  3739. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3740. * over cache flushing.
  3741. */
  3742. static int
  3743. i915_gem_init_pipe_control(struct drm_device *dev)
  3744. {
  3745. drm_i915_private_t *dev_priv = dev->dev_private;
  3746. struct drm_gem_object *obj;
  3747. struct drm_i915_gem_object *obj_priv;
  3748. int ret;
  3749. obj = i915_gem_alloc_object(dev, 4096);
  3750. if (obj == NULL) {
  3751. DRM_ERROR("Failed to allocate seqno page\n");
  3752. ret = -ENOMEM;
  3753. goto err;
  3754. }
  3755. obj_priv = to_intel_bo(obj);
  3756. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3757. ret = i915_gem_object_pin(obj, 4096);
  3758. if (ret)
  3759. goto err_unref;
  3760. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3761. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3762. if (dev_priv->seqno_page == NULL)
  3763. goto err_unpin;
  3764. dev_priv->seqno_obj = obj;
  3765. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3766. return 0;
  3767. err_unpin:
  3768. i915_gem_object_unpin(obj);
  3769. err_unref:
  3770. drm_gem_object_unreference(obj);
  3771. err:
  3772. return ret;
  3773. }
  3774. static void
  3775. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3776. {
  3777. drm_i915_private_t *dev_priv = dev->dev_private;
  3778. struct drm_gem_object *obj;
  3779. struct drm_i915_gem_object *obj_priv;
  3780. obj = dev_priv->seqno_obj;
  3781. obj_priv = to_intel_bo(obj);
  3782. kunmap(obj_priv->pages[0]);
  3783. i915_gem_object_unpin(obj);
  3784. drm_gem_object_unreference(obj);
  3785. dev_priv->seqno_obj = NULL;
  3786. dev_priv->seqno_page = NULL;
  3787. }
  3788. int
  3789. i915_gem_init_ringbuffer(struct drm_device *dev)
  3790. {
  3791. drm_i915_private_t *dev_priv = dev->dev_private;
  3792. int ret;
  3793. dev_priv->render_ring = render_ring;
  3794. if (!I915_NEED_GFX_HWS(dev)) {
  3795. dev_priv->render_ring.status_page.page_addr
  3796. = dev_priv->status_page_dmah->vaddr;
  3797. memset(dev_priv->render_ring.status_page.page_addr,
  3798. 0, PAGE_SIZE);
  3799. }
  3800. if (HAS_PIPE_CONTROL(dev)) {
  3801. ret = i915_gem_init_pipe_control(dev);
  3802. if (ret)
  3803. return ret;
  3804. }
  3805. ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
  3806. if (ret)
  3807. goto cleanup_pipe_control;
  3808. if (HAS_BSD(dev)) {
  3809. dev_priv->bsd_ring = bsd_ring;
  3810. ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
  3811. if (ret)
  3812. goto cleanup_render_ring;
  3813. }
  3814. dev_priv->next_seqno = 1;
  3815. return 0;
  3816. cleanup_render_ring:
  3817. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3818. cleanup_pipe_control:
  3819. if (HAS_PIPE_CONTROL(dev))
  3820. i915_gem_cleanup_pipe_control(dev);
  3821. return ret;
  3822. }
  3823. void
  3824. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3825. {
  3826. drm_i915_private_t *dev_priv = dev->dev_private;
  3827. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3828. if (HAS_BSD(dev))
  3829. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3830. if (HAS_PIPE_CONTROL(dev))
  3831. i915_gem_cleanup_pipe_control(dev);
  3832. }
  3833. int
  3834. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3835. struct drm_file *file_priv)
  3836. {
  3837. drm_i915_private_t *dev_priv = dev->dev_private;
  3838. int ret;
  3839. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3840. return 0;
  3841. if (atomic_read(&dev_priv->mm.wedged)) {
  3842. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3843. atomic_set(&dev_priv->mm.wedged, 0);
  3844. }
  3845. mutex_lock(&dev->struct_mutex);
  3846. dev_priv->mm.suspended = 0;
  3847. ret = i915_gem_init_ringbuffer(dev);
  3848. if (ret != 0) {
  3849. mutex_unlock(&dev->struct_mutex);
  3850. return ret;
  3851. }
  3852. spin_lock(&dev_priv->mm.active_list_lock);
  3853. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3854. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3855. spin_unlock(&dev_priv->mm.active_list_lock);
  3856. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3857. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3858. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3859. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3860. mutex_unlock(&dev->struct_mutex);
  3861. ret = drm_irq_install(dev);
  3862. if (ret)
  3863. goto cleanup_ringbuffer;
  3864. return 0;
  3865. cleanup_ringbuffer:
  3866. mutex_lock(&dev->struct_mutex);
  3867. i915_gem_cleanup_ringbuffer(dev);
  3868. dev_priv->mm.suspended = 1;
  3869. mutex_unlock(&dev->struct_mutex);
  3870. return ret;
  3871. }
  3872. int
  3873. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3874. struct drm_file *file_priv)
  3875. {
  3876. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3877. return 0;
  3878. drm_irq_uninstall(dev);
  3879. return i915_gem_idle(dev);
  3880. }
  3881. void
  3882. i915_gem_lastclose(struct drm_device *dev)
  3883. {
  3884. int ret;
  3885. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3886. return;
  3887. ret = i915_gem_idle(dev);
  3888. if (ret)
  3889. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3890. }
  3891. void
  3892. i915_gem_load(struct drm_device *dev)
  3893. {
  3894. int i;
  3895. drm_i915_private_t *dev_priv = dev->dev_private;
  3896. spin_lock_init(&dev_priv->mm.active_list_lock);
  3897. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3898. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3899. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3900. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3901. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3902. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3903. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3904. if (HAS_BSD(dev)) {
  3905. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3906. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3907. }
  3908. for (i = 0; i < 16; i++)
  3909. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3910. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3911. i915_gem_retire_work_handler);
  3912. spin_lock(&shrink_list_lock);
  3913. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3914. spin_unlock(&shrink_list_lock);
  3915. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3916. if (IS_GEN3(dev)) {
  3917. u32 tmp = I915_READ(MI_ARB_STATE);
  3918. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3919. /* arb state is a masked write, so set bit + bit in mask */
  3920. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3921. I915_WRITE(MI_ARB_STATE, tmp);
  3922. }
  3923. }
  3924. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3925. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3926. dev_priv->fence_reg_start = 3;
  3927. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3928. dev_priv->num_fence_regs = 16;
  3929. else
  3930. dev_priv->num_fence_regs = 8;
  3931. /* Initialize fence registers to zero */
  3932. if (IS_I965G(dev)) {
  3933. for (i = 0; i < 16; i++)
  3934. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3935. } else {
  3936. for (i = 0; i < 8; i++)
  3937. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3938. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3939. for (i = 0; i < 8; i++)
  3940. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3941. }
  3942. i915_gem_detect_bit_6_swizzle(dev);
  3943. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3944. }
  3945. /*
  3946. * Create a physically contiguous memory object for this object
  3947. * e.g. for cursor + overlay regs
  3948. */
  3949. int i915_gem_init_phys_object(struct drm_device *dev,
  3950. int id, int size, int align)
  3951. {
  3952. drm_i915_private_t *dev_priv = dev->dev_private;
  3953. struct drm_i915_gem_phys_object *phys_obj;
  3954. int ret;
  3955. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3956. return 0;
  3957. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3958. if (!phys_obj)
  3959. return -ENOMEM;
  3960. phys_obj->id = id;
  3961. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3962. if (!phys_obj->handle) {
  3963. ret = -ENOMEM;
  3964. goto kfree_obj;
  3965. }
  3966. #ifdef CONFIG_X86
  3967. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3968. #endif
  3969. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3970. return 0;
  3971. kfree_obj:
  3972. kfree(phys_obj);
  3973. return ret;
  3974. }
  3975. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3976. {
  3977. drm_i915_private_t *dev_priv = dev->dev_private;
  3978. struct drm_i915_gem_phys_object *phys_obj;
  3979. if (!dev_priv->mm.phys_objs[id - 1])
  3980. return;
  3981. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3982. if (phys_obj->cur_obj) {
  3983. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3984. }
  3985. #ifdef CONFIG_X86
  3986. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3987. #endif
  3988. drm_pci_free(dev, phys_obj->handle);
  3989. kfree(phys_obj);
  3990. dev_priv->mm.phys_objs[id - 1] = NULL;
  3991. }
  3992. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3993. {
  3994. int i;
  3995. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3996. i915_gem_free_phys_object(dev, i);
  3997. }
  3998. void i915_gem_detach_phys_object(struct drm_device *dev,
  3999. struct drm_gem_object *obj)
  4000. {
  4001. struct drm_i915_gem_object *obj_priv;
  4002. int i;
  4003. int ret;
  4004. int page_count;
  4005. obj_priv = to_intel_bo(obj);
  4006. if (!obj_priv->phys_obj)
  4007. return;
  4008. ret = i915_gem_object_get_pages(obj, 0);
  4009. if (ret)
  4010. goto out;
  4011. page_count = obj->size / PAGE_SIZE;
  4012. for (i = 0; i < page_count; i++) {
  4013. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4014. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4015. memcpy(dst, src, PAGE_SIZE);
  4016. kunmap_atomic(dst, KM_USER0);
  4017. }
  4018. drm_clflush_pages(obj_priv->pages, page_count);
  4019. drm_agp_chipset_flush(dev);
  4020. i915_gem_object_put_pages(obj);
  4021. out:
  4022. obj_priv->phys_obj->cur_obj = NULL;
  4023. obj_priv->phys_obj = NULL;
  4024. }
  4025. int
  4026. i915_gem_attach_phys_object(struct drm_device *dev,
  4027. struct drm_gem_object *obj,
  4028. int id,
  4029. int align)
  4030. {
  4031. drm_i915_private_t *dev_priv = dev->dev_private;
  4032. struct drm_i915_gem_object *obj_priv;
  4033. int ret = 0;
  4034. int page_count;
  4035. int i;
  4036. if (id > I915_MAX_PHYS_OBJECT)
  4037. return -EINVAL;
  4038. obj_priv = to_intel_bo(obj);
  4039. if (obj_priv->phys_obj) {
  4040. if (obj_priv->phys_obj->id == id)
  4041. return 0;
  4042. i915_gem_detach_phys_object(dev, obj);
  4043. }
  4044. /* create a new object */
  4045. if (!dev_priv->mm.phys_objs[id - 1]) {
  4046. ret = i915_gem_init_phys_object(dev, id,
  4047. obj->size, align);
  4048. if (ret) {
  4049. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4050. goto out;
  4051. }
  4052. }
  4053. /* bind to the object */
  4054. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4055. obj_priv->phys_obj->cur_obj = obj;
  4056. ret = i915_gem_object_get_pages(obj, 0);
  4057. if (ret) {
  4058. DRM_ERROR("failed to get page list\n");
  4059. goto out;
  4060. }
  4061. page_count = obj->size / PAGE_SIZE;
  4062. for (i = 0; i < page_count; i++) {
  4063. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4064. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4065. memcpy(dst, src, PAGE_SIZE);
  4066. kunmap_atomic(src, KM_USER0);
  4067. }
  4068. i915_gem_object_put_pages(obj);
  4069. return 0;
  4070. out:
  4071. return ret;
  4072. }
  4073. static int
  4074. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4075. struct drm_i915_gem_pwrite *args,
  4076. struct drm_file *file_priv)
  4077. {
  4078. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4079. void *obj_addr;
  4080. int ret;
  4081. char __user *user_data;
  4082. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4083. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4084. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4085. ret = copy_from_user(obj_addr, user_data, args->size);
  4086. if (ret)
  4087. return -EFAULT;
  4088. drm_agp_chipset_flush(dev);
  4089. return 0;
  4090. }
  4091. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4092. {
  4093. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4094. /* Clean up our request list when the client is going away, so that
  4095. * later retire_requests won't dereference our soon-to-be-gone
  4096. * file_priv.
  4097. */
  4098. mutex_lock(&dev->struct_mutex);
  4099. while (!list_empty(&i915_file_priv->mm.request_list))
  4100. list_del_init(i915_file_priv->mm.request_list.next);
  4101. mutex_unlock(&dev->struct_mutex);
  4102. }
  4103. static int
  4104. i915_gpu_is_active(struct drm_device *dev)
  4105. {
  4106. drm_i915_private_t *dev_priv = dev->dev_private;
  4107. int lists_empty;
  4108. spin_lock(&dev_priv->mm.active_list_lock);
  4109. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4110. list_empty(&dev_priv->render_ring.active_list);
  4111. if (HAS_BSD(dev))
  4112. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4113. spin_unlock(&dev_priv->mm.active_list_lock);
  4114. return !lists_empty;
  4115. }
  4116. static int
  4117. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4118. {
  4119. drm_i915_private_t *dev_priv, *next_dev;
  4120. struct drm_i915_gem_object *obj_priv, *next_obj;
  4121. int cnt = 0;
  4122. int would_deadlock = 1;
  4123. /* "fast-path" to count number of available objects */
  4124. if (nr_to_scan == 0) {
  4125. spin_lock(&shrink_list_lock);
  4126. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4127. struct drm_device *dev = dev_priv->dev;
  4128. if (mutex_trylock(&dev->struct_mutex)) {
  4129. list_for_each_entry(obj_priv,
  4130. &dev_priv->mm.inactive_list,
  4131. list)
  4132. cnt++;
  4133. mutex_unlock(&dev->struct_mutex);
  4134. }
  4135. }
  4136. spin_unlock(&shrink_list_lock);
  4137. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4138. }
  4139. spin_lock(&shrink_list_lock);
  4140. rescan:
  4141. /* first scan for clean buffers */
  4142. list_for_each_entry_safe(dev_priv, next_dev,
  4143. &shrink_list, mm.shrink_list) {
  4144. struct drm_device *dev = dev_priv->dev;
  4145. if (! mutex_trylock(&dev->struct_mutex))
  4146. continue;
  4147. spin_unlock(&shrink_list_lock);
  4148. i915_gem_retire_requests(dev);
  4149. list_for_each_entry_safe(obj_priv, next_obj,
  4150. &dev_priv->mm.inactive_list,
  4151. list) {
  4152. if (i915_gem_object_is_purgeable(obj_priv)) {
  4153. i915_gem_object_unbind(&obj_priv->base);
  4154. if (--nr_to_scan <= 0)
  4155. break;
  4156. }
  4157. }
  4158. spin_lock(&shrink_list_lock);
  4159. mutex_unlock(&dev->struct_mutex);
  4160. would_deadlock = 0;
  4161. if (nr_to_scan <= 0)
  4162. break;
  4163. }
  4164. /* second pass, evict/count anything still on the inactive list */
  4165. list_for_each_entry_safe(dev_priv, next_dev,
  4166. &shrink_list, mm.shrink_list) {
  4167. struct drm_device *dev = dev_priv->dev;
  4168. if (! mutex_trylock(&dev->struct_mutex))
  4169. continue;
  4170. spin_unlock(&shrink_list_lock);
  4171. list_for_each_entry_safe(obj_priv, next_obj,
  4172. &dev_priv->mm.inactive_list,
  4173. list) {
  4174. if (nr_to_scan > 0) {
  4175. i915_gem_object_unbind(&obj_priv->base);
  4176. nr_to_scan--;
  4177. } else
  4178. cnt++;
  4179. }
  4180. spin_lock(&shrink_list_lock);
  4181. mutex_unlock(&dev->struct_mutex);
  4182. would_deadlock = 0;
  4183. }
  4184. if (nr_to_scan) {
  4185. int active = 0;
  4186. /*
  4187. * We are desperate for pages, so as a last resort, wait
  4188. * for the GPU to finish and discard whatever we can.
  4189. * This has a dramatic impact to reduce the number of
  4190. * OOM-killer events whilst running the GPU aggressively.
  4191. */
  4192. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4193. struct drm_device *dev = dev_priv->dev;
  4194. if (!mutex_trylock(&dev->struct_mutex))
  4195. continue;
  4196. spin_unlock(&shrink_list_lock);
  4197. if (i915_gpu_is_active(dev)) {
  4198. i915_gpu_idle(dev);
  4199. active++;
  4200. }
  4201. spin_lock(&shrink_list_lock);
  4202. mutex_unlock(&dev->struct_mutex);
  4203. }
  4204. if (active)
  4205. goto rescan;
  4206. }
  4207. spin_unlock(&shrink_list_lock);
  4208. if (would_deadlock)
  4209. return -1;
  4210. else if (cnt > 0)
  4211. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4212. else
  4213. return 0;
  4214. }
  4215. static struct shrinker shrinker = {
  4216. .shrink = i915_gem_shrink,
  4217. .seeks = DEFAULT_SEEKS,
  4218. };
  4219. __init void
  4220. i915_gem_shrinker_init(void)
  4221. {
  4222. register_shrinker(&shrinker);
  4223. }
  4224. __exit void
  4225. i915_gem_shrinker_exit(void)
  4226. {
  4227. unregister_shrinker(&shrinker);
  4228. }