indirect.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759
  1. /*
  2. * linux/fs/ext4/indirect.c
  3. *
  4. * from
  5. *
  6. * linux/fs/ext4/inode.c
  7. *
  8. * Copyright (C) 1992, 1993, 1994, 1995
  9. * Remy Card (card@masi.ibp.fr)
  10. * Laboratoire MASI - Institut Blaise Pascal
  11. * Universite Pierre et Marie Curie (Paris VI)
  12. *
  13. * from
  14. *
  15. * linux/fs/minix/inode.c
  16. *
  17. * Copyright (C) 1991, 1992 Linus Torvalds
  18. *
  19. * Goal-directed block allocation by Stephen Tweedie
  20. * (sct@redhat.com), 1993, 1998
  21. */
  22. #include "ext4_jbd2.h"
  23. #include "truncate.h"
  24. #include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */
  25. #include <trace/events/ext4.h>
  26. typedef struct {
  27. __le32 *p;
  28. __le32 key;
  29. struct buffer_head *bh;
  30. } Indirect;
  31. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  32. {
  33. p->key = *(p->p = v);
  34. p->bh = bh;
  35. }
  36. /**
  37. * ext4_block_to_path - parse the block number into array of offsets
  38. * @inode: inode in question (we are only interested in its superblock)
  39. * @i_block: block number to be parsed
  40. * @offsets: array to store the offsets in
  41. * @boundary: set this non-zero if the referred-to block is likely to be
  42. * followed (on disk) by an indirect block.
  43. *
  44. * To store the locations of file's data ext4 uses a data structure common
  45. * for UNIX filesystems - tree of pointers anchored in the inode, with
  46. * data blocks at leaves and indirect blocks in intermediate nodes.
  47. * This function translates the block number into path in that tree -
  48. * return value is the path length and @offsets[n] is the offset of
  49. * pointer to (n+1)th node in the nth one. If @block is out of range
  50. * (negative or too large) warning is printed and zero returned.
  51. *
  52. * Note: function doesn't find node addresses, so no IO is needed. All
  53. * we need to know is the capacity of indirect blocks (taken from the
  54. * inode->i_sb).
  55. */
  56. /*
  57. * Portability note: the last comparison (check that we fit into triple
  58. * indirect block) is spelled differently, because otherwise on an
  59. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  60. * if our filesystem had 8Kb blocks. We might use long long, but that would
  61. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  62. * i_block would have to be negative in the very beginning, so we would not
  63. * get there at all.
  64. */
  65. static int ext4_block_to_path(struct inode *inode,
  66. ext4_lblk_t i_block,
  67. ext4_lblk_t offsets[4], int *boundary)
  68. {
  69. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  70. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  71. const long direct_blocks = EXT4_NDIR_BLOCKS,
  72. indirect_blocks = ptrs,
  73. double_blocks = (1 << (ptrs_bits * 2));
  74. int n = 0;
  75. int final = 0;
  76. if (i_block < direct_blocks) {
  77. offsets[n++] = i_block;
  78. final = direct_blocks;
  79. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  80. offsets[n++] = EXT4_IND_BLOCK;
  81. offsets[n++] = i_block;
  82. final = ptrs;
  83. } else if ((i_block -= indirect_blocks) < double_blocks) {
  84. offsets[n++] = EXT4_DIND_BLOCK;
  85. offsets[n++] = i_block >> ptrs_bits;
  86. offsets[n++] = i_block & (ptrs - 1);
  87. final = ptrs;
  88. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  89. offsets[n++] = EXT4_TIND_BLOCK;
  90. offsets[n++] = i_block >> (ptrs_bits * 2);
  91. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  92. offsets[n++] = i_block & (ptrs - 1);
  93. final = ptrs;
  94. } else {
  95. ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
  96. i_block + direct_blocks +
  97. indirect_blocks + double_blocks, inode->i_ino);
  98. }
  99. if (boundary)
  100. *boundary = final - 1 - (i_block & (ptrs - 1));
  101. return n;
  102. }
  103. /**
  104. * ext4_get_branch - read the chain of indirect blocks leading to data
  105. * @inode: inode in question
  106. * @depth: depth of the chain (1 - direct pointer, etc.)
  107. * @offsets: offsets of pointers in inode/indirect blocks
  108. * @chain: place to store the result
  109. * @err: here we store the error value
  110. *
  111. * Function fills the array of triples <key, p, bh> and returns %NULL
  112. * if everything went OK or the pointer to the last filled triple
  113. * (incomplete one) otherwise. Upon the return chain[i].key contains
  114. * the number of (i+1)-th block in the chain (as it is stored in memory,
  115. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  116. * number (it points into struct inode for i==0 and into the bh->b_data
  117. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  118. * block for i>0 and NULL for i==0. In other words, it holds the block
  119. * numbers of the chain, addresses they were taken from (and where we can
  120. * verify that chain did not change) and buffer_heads hosting these
  121. * numbers.
  122. *
  123. * Function stops when it stumbles upon zero pointer (absent block)
  124. * (pointer to last triple returned, *@err == 0)
  125. * or when it gets an IO error reading an indirect block
  126. * (ditto, *@err == -EIO)
  127. * or when it reads all @depth-1 indirect blocks successfully and finds
  128. * the whole chain, all way to the data (returns %NULL, *err == 0).
  129. *
  130. * Need to be called with
  131. * down_read(&EXT4_I(inode)->i_data_sem)
  132. */
  133. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  134. ext4_lblk_t *offsets,
  135. Indirect chain[4], int *err)
  136. {
  137. struct super_block *sb = inode->i_sb;
  138. Indirect *p = chain;
  139. struct buffer_head *bh;
  140. int ret = -EIO;
  141. *err = 0;
  142. /* i_data is not going away, no lock needed */
  143. add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
  144. if (!p->key)
  145. goto no_block;
  146. while (--depth) {
  147. bh = sb_getblk(sb, le32_to_cpu(p->key));
  148. if (unlikely(!bh)) {
  149. ret = -ENOMEM;
  150. goto failure;
  151. }
  152. if (!bh_uptodate_or_lock(bh)) {
  153. if (bh_submit_read(bh) < 0) {
  154. put_bh(bh);
  155. goto failure;
  156. }
  157. /* validate block references */
  158. if (ext4_check_indirect_blockref(inode, bh)) {
  159. put_bh(bh);
  160. goto failure;
  161. }
  162. }
  163. add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
  164. /* Reader: end */
  165. if (!p->key)
  166. goto no_block;
  167. }
  168. return NULL;
  169. failure:
  170. *err = ret;
  171. no_block:
  172. return p;
  173. }
  174. /**
  175. * ext4_find_near - find a place for allocation with sufficient locality
  176. * @inode: owner
  177. * @ind: descriptor of indirect block.
  178. *
  179. * This function returns the preferred place for block allocation.
  180. * It is used when heuristic for sequential allocation fails.
  181. * Rules are:
  182. * + if there is a block to the left of our position - allocate near it.
  183. * + if pointer will live in indirect block - allocate near that block.
  184. * + if pointer will live in inode - allocate in the same
  185. * cylinder group.
  186. *
  187. * In the latter case we colour the starting block by the callers PID to
  188. * prevent it from clashing with concurrent allocations for a different inode
  189. * in the same block group. The PID is used here so that functionally related
  190. * files will be close-by on-disk.
  191. *
  192. * Caller must make sure that @ind is valid and will stay that way.
  193. */
  194. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  195. {
  196. struct ext4_inode_info *ei = EXT4_I(inode);
  197. __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
  198. __le32 *p;
  199. /* Try to find previous block */
  200. for (p = ind->p - 1; p >= start; p--) {
  201. if (*p)
  202. return le32_to_cpu(*p);
  203. }
  204. /* No such thing, so let's try location of indirect block */
  205. if (ind->bh)
  206. return ind->bh->b_blocknr;
  207. /*
  208. * It is going to be referred to from the inode itself? OK, just put it
  209. * into the same cylinder group then.
  210. */
  211. return ext4_inode_to_goal_block(inode);
  212. }
  213. /**
  214. * ext4_find_goal - find a preferred place for allocation.
  215. * @inode: owner
  216. * @block: block we want
  217. * @partial: pointer to the last triple within a chain
  218. *
  219. * Normally this function find the preferred place for block allocation,
  220. * returns it.
  221. * Because this is only used for non-extent files, we limit the block nr
  222. * to 32 bits.
  223. */
  224. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  225. Indirect *partial)
  226. {
  227. ext4_fsblk_t goal;
  228. /*
  229. * XXX need to get goal block from mballoc's data structures
  230. */
  231. goal = ext4_find_near(inode, partial);
  232. goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
  233. return goal;
  234. }
  235. /**
  236. * ext4_blks_to_allocate - Look up the block map and count the number
  237. * of direct blocks need to be allocated for the given branch.
  238. *
  239. * @branch: chain of indirect blocks
  240. * @k: number of blocks need for indirect blocks
  241. * @blks: number of data blocks to be mapped.
  242. * @blocks_to_boundary: the offset in the indirect block
  243. *
  244. * return the total number of blocks to be allocate, including the
  245. * direct and indirect blocks.
  246. */
  247. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
  248. int blocks_to_boundary)
  249. {
  250. unsigned int count = 0;
  251. /*
  252. * Simple case, [t,d]Indirect block(s) has not allocated yet
  253. * then it's clear blocks on that path have not allocated
  254. */
  255. if (k > 0) {
  256. /* right now we don't handle cross boundary allocation */
  257. if (blks < blocks_to_boundary + 1)
  258. count += blks;
  259. else
  260. count += blocks_to_boundary + 1;
  261. return count;
  262. }
  263. count++;
  264. while (count < blks && count <= blocks_to_boundary &&
  265. le32_to_cpu(*(branch[0].p + count)) == 0) {
  266. count++;
  267. }
  268. return count;
  269. }
  270. /**
  271. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  272. * @handle: handle for this transaction
  273. * @inode: inode which needs allocated blocks
  274. * @iblock: the logical block to start allocated at
  275. * @goal: preferred physical block of allocation
  276. * @indirect_blks: the number of blocks need to allocate for indirect
  277. * blocks
  278. * @blks: number of desired blocks
  279. * @new_blocks: on return it will store the new block numbers for
  280. * the indirect blocks(if needed) and the first direct block,
  281. * @err: on return it will store the error code
  282. *
  283. * This function will return the number of blocks allocated as
  284. * requested by the passed-in parameters.
  285. */
  286. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  287. ext4_lblk_t iblock, ext4_fsblk_t goal,
  288. int indirect_blks, int blks,
  289. ext4_fsblk_t new_blocks[4], int *err)
  290. {
  291. struct ext4_allocation_request ar;
  292. int target, i;
  293. unsigned long count = 0, blk_allocated = 0;
  294. int index = 0;
  295. ext4_fsblk_t current_block = 0;
  296. int ret = 0;
  297. /*
  298. * Here we try to allocate the requested multiple blocks at once,
  299. * on a best-effort basis.
  300. * To build a branch, we should allocate blocks for
  301. * the indirect blocks(if not allocated yet), and at least
  302. * the first direct block of this branch. That's the
  303. * minimum number of blocks need to allocate(required)
  304. */
  305. /* first we try to allocate the indirect blocks */
  306. target = indirect_blks;
  307. while (target > 0) {
  308. count = target;
  309. /* allocating blocks for indirect blocks and direct blocks */
  310. current_block = ext4_new_meta_blocks(handle, inode, goal,
  311. 0, &count, err);
  312. if (*err)
  313. goto failed_out;
  314. if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
  315. EXT4_ERROR_INODE(inode,
  316. "current_block %llu + count %lu > %d!",
  317. current_block, count,
  318. EXT4_MAX_BLOCK_FILE_PHYS);
  319. *err = -EIO;
  320. goto failed_out;
  321. }
  322. target -= count;
  323. /* allocate blocks for indirect blocks */
  324. while (index < indirect_blks && count) {
  325. new_blocks[index++] = current_block++;
  326. count--;
  327. }
  328. if (count > 0) {
  329. /*
  330. * save the new block number
  331. * for the first direct block
  332. */
  333. new_blocks[index] = current_block;
  334. WARN(1, KERN_INFO "%s returned more blocks than "
  335. "requested\n", __func__);
  336. break;
  337. }
  338. }
  339. target = blks - count ;
  340. blk_allocated = count;
  341. if (!target)
  342. goto allocated;
  343. /* Now allocate data blocks */
  344. memset(&ar, 0, sizeof(ar));
  345. ar.inode = inode;
  346. ar.goal = goal;
  347. ar.len = target;
  348. ar.logical = iblock;
  349. if (S_ISREG(inode->i_mode))
  350. /* enable in-core preallocation only for regular files */
  351. ar.flags = EXT4_MB_HINT_DATA;
  352. current_block = ext4_mb_new_blocks(handle, &ar, err);
  353. if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
  354. EXT4_ERROR_INODE(inode,
  355. "current_block %llu + ar.len %d > %d!",
  356. current_block, ar.len,
  357. EXT4_MAX_BLOCK_FILE_PHYS);
  358. *err = -EIO;
  359. goto failed_out;
  360. }
  361. if (*err && (target == blks)) {
  362. /*
  363. * if the allocation failed and we didn't allocate
  364. * any blocks before
  365. */
  366. goto failed_out;
  367. }
  368. if (!*err) {
  369. if (target == blks) {
  370. /*
  371. * save the new block number
  372. * for the first direct block
  373. */
  374. new_blocks[index] = current_block;
  375. }
  376. blk_allocated += ar.len;
  377. }
  378. allocated:
  379. /* total number of blocks allocated for direct blocks */
  380. ret = blk_allocated;
  381. *err = 0;
  382. return ret;
  383. failed_out:
  384. for (i = 0; i < index; i++)
  385. ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
  386. return ret;
  387. }
  388. /**
  389. * ext4_alloc_branch - allocate and set up a chain of blocks.
  390. * @handle: handle for this transaction
  391. * @inode: owner
  392. * @indirect_blks: number of allocated indirect blocks
  393. * @blks: number of allocated direct blocks
  394. * @goal: preferred place for allocation
  395. * @offsets: offsets (in the blocks) to store the pointers to next.
  396. * @branch: place to store the chain in.
  397. *
  398. * This function allocates blocks, zeroes out all but the last one,
  399. * links them into chain and (if we are synchronous) writes them to disk.
  400. * In other words, it prepares a branch that can be spliced onto the
  401. * inode. It stores the information about that chain in the branch[], in
  402. * the same format as ext4_get_branch() would do. We are calling it after
  403. * we had read the existing part of chain and partial points to the last
  404. * triple of that (one with zero ->key). Upon the exit we have the same
  405. * picture as after the successful ext4_get_block(), except that in one
  406. * place chain is disconnected - *branch->p is still zero (we did not
  407. * set the last link), but branch->key contains the number that should
  408. * be placed into *branch->p to fill that gap.
  409. *
  410. * If allocation fails we free all blocks we've allocated (and forget
  411. * their buffer_heads) and return the error value the from failed
  412. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  413. * as described above and return 0.
  414. */
  415. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  416. ext4_lblk_t iblock, int indirect_blks,
  417. int *blks, ext4_fsblk_t goal,
  418. ext4_lblk_t *offsets, Indirect *branch)
  419. {
  420. int blocksize = inode->i_sb->s_blocksize;
  421. int i, n = 0;
  422. int err = 0;
  423. struct buffer_head *bh;
  424. int num;
  425. ext4_fsblk_t new_blocks[4];
  426. ext4_fsblk_t current_block;
  427. num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
  428. *blks, new_blocks, &err);
  429. if (err)
  430. return err;
  431. branch[0].key = cpu_to_le32(new_blocks[0]);
  432. /*
  433. * metadata blocks and data blocks are allocated.
  434. */
  435. for (n = 1; n <= indirect_blks; n++) {
  436. /*
  437. * Get buffer_head for parent block, zero it out
  438. * and set the pointer to new one, then send
  439. * parent to disk.
  440. */
  441. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  442. if (unlikely(!bh)) {
  443. err = -ENOMEM;
  444. goto failed;
  445. }
  446. branch[n].bh = bh;
  447. lock_buffer(bh);
  448. BUFFER_TRACE(bh, "call get_create_access");
  449. err = ext4_journal_get_create_access(handle, bh);
  450. if (err) {
  451. /* Don't brelse(bh) here; it's done in
  452. * ext4_journal_forget() below */
  453. unlock_buffer(bh);
  454. goto failed;
  455. }
  456. memset(bh->b_data, 0, blocksize);
  457. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  458. branch[n].key = cpu_to_le32(new_blocks[n]);
  459. *branch[n].p = branch[n].key;
  460. if (n == indirect_blks) {
  461. current_block = new_blocks[n];
  462. /*
  463. * End of chain, update the last new metablock of
  464. * the chain to point to the new allocated
  465. * data blocks numbers
  466. */
  467. for (i = 1; i < num; i++)
  468. *(branch[n].p + i) = cpu_to_le32(++current_block);
  469. }
  470. BUFFER_TRACE(bh, "marking uptodate");
  471. set_buffer_uptodate(bh);
  472. unlock_buffer(bh);
  473. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  474. err = ext4_handle_dirty_metadata(handle, inode, bh);
  475. if (err)
  476. goto failed;
  477. }
  478. *blks = num;
  479. return err;
  480. failed:
  481. /* Allocation failed, free what we already allocated */
  482. ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
  483. for (i = 1; i <= n ; i++) {
  484. /*
  485. * branch[i].bh is newly allocated, so there is no
  486. * need to revoke the block, which is why we don't
  487. * need to set EXT4_FREE_BLOCKS_METADATA.
  488. */
  489. ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
  490. EXT4_FREE_BLOCKS_FORGET);
  491. }
  492. for (i = n+1; i < indirect_blks; i++)
  493. ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
  494. ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
  495. return err;
  496. }
  497. /**
  498. * ext4_splice_branch - splice the allocated branch onto inode.
  499. * @handle: handle for this transaction
  500. * @inode: owner
  501. * @block: (logical) number of block we are adding
  502. * @chain: chain of indirect blocks (with a missing link - see
  503. * ext4_alloc_branch)
  504. * @where: location of missing link
  505. * @num: number of indirect blocks we are adding
  506. * @blks: number of direct blocks we are adding
  507. *
  508. * This function fills the missing link and does all housekeeping needed in
  509. * inode (->i_blocks, etc.). In case of success we end up with the full
  510. * chain to new block and return 0.
  511. */
  512. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  513. ext4_lblk_t block, Indirect *where, int num,
  514. int blks)
  515. {
  516. int i;
  517. int err = 0;
  518. ext4_fsblk_t current_block;
  519. /*
  520. * If we're splicing into a [td]indirect block (as opposed to the
  521. * inode) then we need to get write access to the [td]indirect block
  522. * before the splice.
  523. */
  524. if (where->bh) {
  525. BUFFER_TRACE(where->bh, "get_write_access");
  526. err = ext4_journal_get_write_access(handle, where->bh);
  527. if (err)
  528. goto err_out;
  529. }
  530. /* That's it */
  531. *where->p = where->key;
  532. /*
  533. * Update the host buffer_head or inode to point to more just allocated
  534. * direct blocks blocks
  535. */
  536. if (num == 0 && blks > 1) {
  537. current_block = le32_to_cpu(where->key) + 1;
  538. for (i = 1; i < blks; i++)
  539. *(where->p + i) = cpu_to_le32(current_block++);
  540. }
  541. /* We are done with atomic stuff, now do the rest of housekeeping */
  542. /* had we spliced it onto indirect block? */
  543. if (where->bh) {
  544. /*
  545. * If we spliced it onto an indirect block, we haven't
  546. * altered the inode. Note however that if it is being spliced
  547. * onto an indirect block at the very end of the file (the
  548. * file is growing) then we *will* alter the inode to reflect
  549. * the new i_size. But that is not done here - it is done in
  550. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  551. */
  552. jbd_debug(5, "splicing indirect only\n");
  553. BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
  554. err = ext4_handle_dirty_metadata(handle, inode, where->bh);
  555. if (err)
  556. goto err_out;
  557. } else {
  558. /*
  559. * OK, we spliced it into the inode itself on a direct block.
  560. */
  561. ext4_mark_inode_dirty(handle, inode);
  562. jbd_debug(5, "splicing direct\n");
  563. }
  564. return err;
  565. err_out:
  566. for (i = 1; i <= num; i++) {
  567. /*
  568. * branch[i].bh is newly allocated, so there is no
  569. * need to revoke the block, which is why we don't
  570. * need to set EXT4_FREE_BLOCKS_METADATA.
  571. */
  572. ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
  573. EXT4_FREE_BLOCKS_FORGET);
  574. }
  575. ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
  576. blks, 0);
  577. return err;
  578. }
  579. /*
  580. * The ext4_ind_map_blocks() function handles non-extents inodes
  581. * (i.e., using the traditional indirect/double-indirect i_blocks
  582. * scheme) for ext4_map_blocks().
  583. *
  584. * Allocation strategy is simple: if we have to allocate something, we will
  585. * have to go the whole way to leaf. So let's do it before attaching anything
  586. * to tree, set linkage between the newborn blocks, write them if sync is
  587. * required, recheck the path, free and repeat if check fails, otherwise
  588. * set the last missing link (that will protect us from any truncate-generated
  589. * removals - all blocks on the path are immune now) and possibly force the
  590. * write on the parent block.
  591. * That has a nice additional property: no special recovery from the failed
  592. * allocations is needed - we simply release blocks and do not touch anything
  593. * reachable from inode.
  594. *
  595. * `handle' can be NULL if create == 0.
  596. *
  597. * return > 0, # of blocks mapped or allocated.
  598. * return = 0, if plain lookup failed.
  599. * return < 0, error case.
  600. *
  601. * The ext4_ind_get_blocks() function should be called with
  602. * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
  603. * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
  604. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
  605. * blocks.
  606. */
  607. int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
  608. struct ext4_map_blocks *map,
  609. int flags)
  610. {
  611. int err = -EIO;
  612. ext4_lblk_t offsets[4];
  613. Indirect chain[4];
  614. Indirect *partial;
  615. ext4_fsblk_t goal;
  616. int indirect_blks;
  617. int blocks_to_boundary = 0;
  618. int depth;
  619. int count = 0;
  620. ext4_fsblk_t first_block = 0;
  621. trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
  622. J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
  623. J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
  624. depth = ext4_block_to_path(inode, map->m_lblk, offsets,
  625. &blocks_to_boundary);
  626. if (depth == 0)
  627. goto out;
  628. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  629. /* Simplest case - block found, no allocation needed */
  630. if (!partial) {
  631. first_block = le32_to_cpu(chain[depth - 1].key);
  632. count++;
  633. /*map more blocks*/
  634. while (count < map->m_len && count <= blocks_to_boundary) {
  635. ext4_fsblk_t blk;
  636. blk = le32_to_cpu(*(chain[depth-1].p + count));
  637. if (blk == first_block + count)
  638. count++;
  639. else
  640. break;
  641. }
  642. goto got_it;
  643. }
  644. /* Next simple case - plain lookup or failed read of indirect block */
  645. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
  646. goto cleanup;
  647. /*
  648. * Okay, we need to do block allocation.
  649. */
  650. if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  651. EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
  652. EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
  653. "non-extent mapped inodes with bigalloc");
  654. return -ENOSPC;
  655. }
  656. goal = ext4_find_goal(inode, map->m_lblk, partial);
  657. /* the number of blocks need to allocate for [d,t]indirect blocks */
  658. indirect_blks = (chain + depth) - partial - 1;
  659. /*
  660. * Next look up the indirect map to count the totoal number of
  661. * direct blocks to allocate for this branch.
  662. */
  663. count = ext4_blks_to_allocate(partial, indirect_blks,
  664. map->m_len, blocks_to_boundary);
  665. /*
  666. * Block out ext4_truncate while we alter the tree
  667. */
  668. err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
  669. &count, goal,
  670. offsets + (partial - chain), partial);
  671. /*
  672. * The ext4_splice_branch call will free and forget any buffers
  673. * on the new chain if there is a failure, but that risks using
  674. * up transaction credits, especially for bitmaps where the
  675. * credits cannot be returned. Can we handle this somehow? We
  676. * may need to return -EAGAIN upwards in the worst case. --sct
  677. */
  678. if (!err)
  679. err = ext4_splice_branch(handle, inode, map->m_lblk,
  680. partial, indirect_blks, count);
  681. if (err)
  682. goto cleanup;
  683. map->m_flags |= EXT4_MAP_NEW;
  684. ext4_update_inode_fsync_trans(handle, inode, 1);
  685. got_it:
  686. map->m_flags |= EXT4_MAP_MAPPED;
  687. map->m_pblk = le32_to_cpu(chain[depth-1].key);
  688. map->m_len = count;
  689. if (count > blocks_to_boundary)
  690. map->m_flags |= EXT4_MAP_BOUNDARY;
  691. err = count;
  692. /* Clean up and exit */
  693. partial = chain + depth - 1; /* the whole chain */
  694. cleanup:
  695. while (partial > chain) {
  696. BUFFER_TRACE(partial->bh, "call brelse");
  697. brelse(partial->bh);
  698. partial--;
  699. }
  700. out:
  701. trace_ext4_ind_map_blocks_exit(inode, map, err);
  702. return err;
  703. }
  704. /*
  705. * O_DIRECT for ext3 (or indirect map) based files
  706. *
  707. * If the O_DIRECT write will extend the file then add this inode to the
  708. * orphan list. So recovery will truncate it back to the original size
  709. * if the machine crashes during the write.
  710. *
  711. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  712. * crashes then stale disk data _may_ be exposed inside the file. But current
  713. * VFS code falls back into buffered path in that case so we are safe.
  714. */
  715. ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
  716. const struct iovec *iov, loff_t offset,
  717. unsigned long nr_segs)
  718. {
  719. struct file *file = iocb->ki_filp;
  720. struct inode *inode = file->f_mapping->host;
  721. struct ext4_inode_info *ei = EXT4_I(inode);
  722. handle_t *handle;
  723. ssize_t ret;
  724. int orphan = 0;
  725. size_t count = iov_length(iov, nr_segs);
  726. int retries = 0;
  727. if (rw == WRITE) {
  728. loff_t final_size = offset + count;
  729. if (final_size > inode->i_size) {
  730. /* Credits for sb + inode write */
  731. handle = ext4_journal_start(inode, 2);
  732. if (IS_ERR(handle)) {
  733. ret = PTR_ERR(handle);
  734. goto out;
  735. }
  736. ret = ext4_orphan_add(handle, inode);
  737. if (ret) {
  738. ext4_journal_stop(handle);
  739. goto out;
  740. }
  741. orphan = 1;
  742. ei->i_disksize = inode->i_size;
  743. ext4_journal_stop(handle);
  744. }
  745. }
  746. retry:
  747. if (rw == READ && ext4_should_dioread_nolock(inode)) {
  748. if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
  749. mutex_lock(&inode->i_mutex);
  750. ext4_flush_unwritten_io(inode);
  751. mutex_unlock(&inode->i_mutex);
  752. }
  753. /*
  754. * Nolock dioread optimization may be dynamically disabled
  755. * via ext4_inode_block_unlocked_dio(). Check inode's state
  756. * while holding extra i_dio_count ref.
  757. */
  758. atomic_inc(&inode->i_dio_count);
  759. smp_mb();
  760. if (unlikely(ext4_test_inode_state(inode,
  761. EXT4_STATE_DIOREAD_LOCK))) {
  762. inode_dio_done(inode);
  763. goto locked;
  764. }
  765. ret = __blockdev_direct_IO(rw, iocb, inode,
  766. inode->i_sb->s_bdev, iov,
  767. offset, nr_segs,
  768. ext4_get_block, NULL, NULL, 0);
  769. inode_dio_done(inode);
  770. } else {
  771. locked:
  772. ret = blockdev_direct_IO(rw, iocb, inode, iov,
  773. offset, nr_segs, ext4_get_block);
  774. if (unlikely((rw & WRITE) && ret < 0)) {
  775. loff_t isize = i_size_read(inode);
  776. loff_t end = offset + iov_length(iov, nr_segs);
  777. if (end > isize)
  778. ext4_truncate_failed_write(inode);
  779. }
  780. }
  781. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  782. goto retry;
  783. if (orphan) {
  784. int err;
  785. /* Credits for sb + inode write */
  786. handle = ext4_journal_start(inode, 2);
  787. if (IS_ERR(handle)) {
  788. /* This is really bad luck. We've written the data
  789. * but cannot extend i_size. Bail out and pretend
  790. * the write failed... */
  791. ret = PTR_ERR(handle);
  792. if (inode->i_nlink)
  793. ext4_orphan_del(NULL, inode);
  794. goto out;
  795. }
  796. if (inode->i_nlink)
  797. ext4_orphan_del(handle, inode);
  798. if (ret > 0) {
  799. loff_t end = offset + ret;
  800. if (end > inode->i_size) {
  801. ei->i_disksize = end;
  802. i_size_write(inode, end);
  803. /*
  804. * We're going to return a positive `ret'
  805. * here due to non-zero-length I/O, so there's
  806. * no way of reporting error returns from
  807. * ext4_mark_inode_dirty() to userspace. So
  808. * ignore it.
  809. */
  810. ext4_mark_inode_dirty(handle, inode);
  811. }
  812. }
  813. err = ext4_journal_stop(handle);
  814. if (ret == 0)
  815. ret = err;
  816. }
  817. out:
  818. return ret;
  819. }
  820. /*
  821. * Calculate the number of metadata blocks need to reserve
  822. * to allocate a new block at @lblocks for non extent file based file
  823. */
  824. int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
  825. {
  826. struct ext4_inode_info *ei = EXT4_I(inode);
  827. sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
  828. int blk_bits;
  829. if (lblock < EXT4_NDIR_BLOCKS)
  830. return 0;
  831. lblock -= EXT4_NDIR_BLOCKS;
  832. if (ei->i_da_metadata_calc_len &&
  833. (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
  834. ei->i_da_metadata_calc_len++;
  835. return 0;
  836. }
  837. ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
  838. ei->i_da_metadata_calc_len = 1;
  839. blk_bits = order_base_2(lblock);
  840. return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
  841. }
  842. int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  843. {
  844. int indirects;
  845. /* if nrblocks are contiguous */
  846. if (chunk) {
  847. /*
  848. * With N contiguous data blocks, we need at most
  849. * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
  850. * 2 dindirect blocks, and 1 tindirect block
  851. */
  852. return DIV_ROUND_UP(nrblocks,
  853. EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
  854. }
  855. /*
  856. * if nrblocks are not contiguous, worse case, each block touch
  857. * a indirect block, and each indirect block touch a double indirect
  858. * block, plus a triple indirect block
  859. */
  860. indirects = nrblocks * 2 + 1;
  861. return indirects;
  862. }
  863. /*
  864. * Truncate transactions can be complex and absolutely huge. So we need to
  865. * be able to restart the transaction at a conventient checkpoint to make
  866. * sure we don't overflow the journal.
  867. *
  868. * start_transaction gets us a new handle for a truncate transaction,
  869. * and extend_transaction tries to extend the existing one a bit. If
  870. * extend fails, we need to propagate the failure up and restart the
  871. * transaction in the top-level truncate loop. --sct
  872. */
  873. static handle_t *start_transaction(struct inode *inode)
  874. {
  875. handle_t *result;
  876. result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
  877. if (!IS_ERR(result))
  878. return result;
  879. ext4_std_error(inode->i_sb, PTR_ERR(result));
  880. return result;
  881. }
  882. /*
  883. * Try to extend this transaction for the purposes of truncation.
  884. *
  885. * Returns 0 if we managed to create more room. If we can't create more
  886. * room, and the transaction must be restarted we return 1.
  887. */
  888. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  889. {
  890. if (!ext4_handle_valid(handle))
  891. return 0;
  892. if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
  893. return 0;
  894. if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
  895. return 0;
  896. return 1;
  897. }
  898. /*
  899. * Probably it should be a library function... search for first non-zero word
  900. * or memcmp with zero_page, whatever is better for particular architecture.
  901. * Linus?
  902. */
  903. static inline int all_zeroes(__le32 *p, __le32 *q)
  904. {
  905. while (p < q)
  906. if (*p++)
  907. return 0;
  908. return 1;
  909. }
  910. /**
  911. * ext4_find_shared - find the indirect blocks for partial truncation.
  912. * @inode: inode in question
  913. * @depth: depth of the affected branch
  914. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  915. * @chain: place to store the pointers to partial indirect blocks
  916. * @top: place to the (detached) top of branch
  917. *
  918. * This is a helper function used by ext4_truncate().
  919. *
  920. * When we do truncate() we may have to clean the ends of several
  921. * indirect blocks but leave the blocks themselves alive. Block is
  922. * partially truncated if some data below the new i_size is referred
  923. * from it (and it is on the path to the first completely truncated
  924. * data block, indeed). We have to free the top of that path along
  925. * with everything to the right of the path. Since no allocation
  926. * past the truncation point is possible until ext4_truncate()
  927. * finishes, we may safely do the latter, but top of branch may
  928. * require special attention - pageout below the truncation point
  929. * might try to populate it.
  930. *
  931. * We atomically detach the top of branch from the tree, store the
  932. * block number of its root in *@top, pointers to buffer_heads of
  933. * partially truncated blocks - in @chain[].bh and pointers to
  934. * their last elements that should not be removed - in
  935. * @chain[].p. Return value is the pointer to last filled element
  936. * of @chain.
  937. *
  938. * The work left to caller to do the actual freeing of subtrees:
  939. * a) free the subtree starting from *@top
  940. * b) free the subtrees whose roots are stored in
  941. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  942. * c) free the subtrees growing from the inode past the @chain[0].
  943. * (no partially truncated stuff there). */
  944. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  945. ext4_lblk_t offsets[4], Indirect chain[4],
  946. __le32 *top)
  947. {
  948. Indirect *partial, *p;
  949. int k, err;
  950. *top = 0;
  951. /* Make k index the deepest non-null offset + 1 */
  952. for (k = depth; k > 1 && !offsets[k-1]; k--)
  953. ;
  954. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  955. /* Writer: pointers */
  956. if (!partial)
  957. partial = chain + k-1;
  958. /*
  959. * If the branch acquired continuation since we've looked at it -
  960. * fine, it should all survive and (new) top doesn't belong to us.
  961. */
  962. if (!partial->key && *partial->p)
  963. /* Writer: end */
  964. goto no_top;
  965. for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
  966. ;
  967. /*
  968. * OK, we've found the last block that must survive. The rest of our
  969. * branch should be detached before unlocking. However, if that rest
  970. * of branch is all ours and does not grow immediately from the inode
  971. * it's easier to cheat and just decrement partial->p.
  972. */
  973. if (p == chain + k - 1 && p > chain) {
  974. p->p--;
  975. } else {
  976. *top = *p->p;
  977. /* Nope, don't do this in ext4. Must leave the tree intact */
  978. #if 0
  979. *p->p = 0;
  980. #endif
  981. }
  982. /* Writer: end */
  983. while (partial > p) {
  984. brelse(partial->bh);
  985. partial--;
  986. }
  987. no_top:
  988. return partial;
  989. }
  990. /*
  991. * Zero a number of block pointers in either an inode or an indirect block.
  992. * If we restart the transaction we must again get write access to the
  993. * indirect block for further modification.
  994. *
  995. * We release `count' blocks on disk, but (last - first) may be greater
  996. * than `count' because there can be holes in there.
  997. *
  998. * Return 0 on success, 1 on invalid block range
  999. * and < 0 on fatal error.
  1000. */
  1001. static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
  1002. struct buffer_head *bh,
  1003. ext4_fsblk_t block_to_free,
  1004. unsigned long count, __le32 *first,
  1005. __le32 *last)
  1006. {
  1007. __le32 *p;
  1008. int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
  1009. int err;
  1010. if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
  1011. flags |= EXT4_FREE_BLOCKS_METADATA;
  1012. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
  1013. count)) {
  1014. EXT4_ERROR_INODE(inode, "attempt to clear invalid "
  1015. "blocks %llu len %lu",
  1016. (unsigned long long) block_to_free, count);
  1017. return 1;
  1018. }
  1019. if (try_to_extend_transaction(handle, inode)) {
  1020. if (bh) {
  1021. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  1022. err = ext4_handle_dirty_metadata(handle, inode, bh);
  1023. if (unlikely(err))
  1024. goto out_err;
  1025. }
  1026. err = ext4_mark_inode_dirty(handle, inode);
  1027. if (unlikely(err))
  1028. goto out_err;
  1029. err = ext4_truncate_restart_trans(handle, inode,
  1030. ext4_blocks_for_truncate(inode));
  1031. if (unlikely(err))
  1032. goto out_err;
  1033. if (bh) {
  1034. BUFFER_TRACE(bh, "retaking write access");
  1035. err = ext4_journal_get_write_access(handle, bh);
  1036. if (unlikely(err))
  1037. goto out_err;
  1038. }
  1039. }
  1040. for (p = first; p < last; p++)
  1041. *p = 0;
  1042. ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
  1043. return 0;
  1044. out_err:
  1045. ext4_std_error(inode->i_sb, err);
  1046. return err;
  1047. }
  1048. /**
  1049. * ext4_free_data - free a list of data blocks
  1050. * @handle: handle for this transaction
  1051. * @inode: inode we are dealing with
  1052. * @this_bh: indirect buffer_head which contains *@first and *@last
  1053. * @first: array of block numbers
  1054. * @last: points immediately past the end of array
  1055. *
  1056. * We are freeing all blocks referred from that array (numbers are stored as
  1057. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1058. *
  1059. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1060. * blocks are contiguous then releasing them at one time will only affect one
  1061. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1062. * actually use a lot of journal space.
  1063. *
  1064. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1065. * block pointers.
  1066. */
  1067. static void ext4_free_data(handle_t *handle, struct inode *inode,
  1068. struct buffer_head *this_bh,
  1069. __le32 *first, __le32 *last)
  1070. {
  1071. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1072. unsigned long count = 0; /* Number of blocks in the run */
  1073. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1074. corresponding to
  1075. block_to_free */
  1076. ext4_fsblk_t nr; /* Current block # */
  1077. __le32 *p; /* Pointer into inode/ind
  1078. for current block */
  1079. int err = 0;
  1080. if (this_bh) { /* For indirect block */
  1081. BUFFER_TRACE(this_bh, "get_write_access");
  1082. err = ext4_journal_get_write_access(handle, this_bh);
  1083. /* Important: if we can't update the indirect pointers
  1084. * to the blocks, we can't free them. */
  1085. if (err)
  1086. return;
  1087. }
  1088. for (p = first; p < last; p++) {
  1089. nr = le32_to_cpu(*p);
  1090. if (nr) {
  1091. /* accumulate blocks to free if they're contiguous */
  1092. if (count == 0) {
  1093. block_to_free = nr;
  1094. block_to_free_p = p;
  1095. count = 1;
  1096. } else if (nr == block_to_free + count) {
  1097. count++;
  1098. } else {
  1099. err = ext4_clear_blocks(handle, inode, this_bh,
  1100. block_to_free, count,
  1101. block_to_free_p, p);
  1102. if (err)
  1103. break;
  1104. block_to_free = nr;
  1105. block_to_free_p = p;
  1106. count = 1;
  1107. }
  1108. }
  1109. }
  1110. if (!err && count > 0)
  1111. err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  1112. count, block_to_free_p, p);
  1113. if (err < 0)
  1114. /* fatal error */
  1115. return;
  1116. if (this_bh) {
  1117. BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
  1118. /*
  1119. * The buffer head should have an attached journal head at this
  1120. * point. However, if the data is corrupted and an indirect
  1121. * block pointed to itself, it would have been detached when
  1122. * the block was cleared. Check for this instead of OOPSing.
  1123. */
  1124. if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
  1125. ext4_handle_dirty_metadata(handle, inode, this_bh);
  1126. else
  1127. EXT4_ERROR_INODE(inode,
  1128. "circular indirect block detected at "
  1129. "block %llu",
  1130. (unsigned long long) this_bh->b_blocknr);
  1131. }
  1132. }
  1133. /**
  1134. * ext4_free_branches - free an array of branches
  1135. * @handle: JBD handle for this transaction
  1136. * @inode: inode we are dealing with
  1137. * @parent_bh: the buffer_head which contains *@first and *@last
  1138. * @first: array of block numbers
  1139. * @last: pointer immediately past the end of array
  1140. * @depth: depth of the branches to free
  1141. *
  1142. * We are freeing all blocks referred from these branches (numbers are
  1143. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1144. * appropriately.
  1145. */
  1146. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  1147. struct buffer_head *parent_bh,
  1148. __le32 *first, __le32 *last, int depth)
  1149. {
  1150. ext4_fsblk_t nr;
  1151. __le32 *p;
  1152. if (ext4_handle_is_aborted(handle))
  1153. return;
  1154. if (depth--) {
  1155. struct buffer_head *bh;
  1156. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1157. p = last;
  1158. while (--p >= first) {
  1159. nr = le32_to_cpu(*p);
  1160. if (!nr)
  1161. continue; /* A hole */
  1162. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
  1163. nr, 1)) {
  1164. EXT4_ERROR_INODE(inode,
  1165. "invalid indirect mapped "
  1166. "block %lu (level %d)",
  1167. (unsigned long) nr, depth);
  1168. break;
  1169. }
  1170. /* Go read the buffer for the next level down */
  1171. bh = sb_bread(inode->i_sb, nr);
  1172. /*
  1173. * A read failure? Report error and clear slot
  1174. * (should be rare).
  1175. */
  1176. if (!bh) {
  1177. EXT4_ERROR_INODE_BLOCK(inode, nr,
  1178. "Read failure");
  1179. continue;
  1180. }
  1181. /* This zaps the entire block. Bottom up. */
  1182. BUFFER_TRACE(bh, "free child branches");
  1183. ext4_free_branches(handle, inode, bh,
  1184. (__le32 *) bh->b_data,
  1185. (__le32 *) bh->b_data + addr_per_block,
  1186. depth);
  1187. brelse(bh);
  1188. /*
  1189. * Everything below this this pointer has been
  1190. * released. Now let this top-of-subtree go.
  1191. *
  1192. * We want the freeing of this indirect block to be
  1193. * atomic in the journal with the updating of the
  1194. * bitmap block which owns it. So make some room in
  1195. * the journal.
  1196. *
  1197. * We zero the parent pointer *after* freeing its
  1198. * pointee in the bitmaps, so if extend_transaction()
  1199. * for some reason fails to put the bitmap changes and
  1200. * the release into the same transaction, recovery
  1201. * will merely complain about releasing a free block,
  1202. * rather than leaking blocks.
  1203. */
  1204. if (ext4_handle_is_aborted(handle))
  1205. return;
  1206. if (try_to_extend_transaction(handle, inode)) {
  1207. ext4_mark_inode_dirty(handle, inode);
  1208. ext4_truncate_restart_trans(handle, inode,
  1209. ext4_blocks_for_truncate(inode));
  1210. }
  1211. /*
  1212. * The forget flag here is critical because if
  1213. * we are journaling (and not doing data
  1214. * journaling), we have to make sure a revoke
  1215. * record is written to prevent the journal
  1216. * replay from overwriting the (former)
  1217. * indirect block if it gets reallocated as a
  1218. * data block. This must happen in the same
  1219. * transaction where the data blocks are
  1220. * actually freed.
  1221. */
  1222. ext4_free_blocks(handle, inode, NULL, nr, 1,
  1223. EXT4_FREE_BLOCKS_METADATA|
  1224. EXT4_FREE_BLOCKS_FORGET);
  1225. if (parent_bh) {
  1226. /*
  1227. * The block which we have just freed is
  1228. * pointed to by an indirect block: journal it
  1229. */
  1230. BUFFER_TRACE(parent_bh, "get_write_access");
  1231. if (!ext4_journal_get_write_access(handle,
  1232. parent_bh)){
  1233. *p = 0;
  1234. BUFFER_TRACE(parent_bh,
  1235. "call ext4_handle_dirty_metadata");
  1236. ext4_handle_dirty_metadata(handle,
  1237. inode,
  1238. parent_bh);
  1239. }
  1240. }
  1241. }
  1242. } else {
  1243. /* We have reached the bottom of the tree. */
  1244. BUFFER_TRACE(parent_bh, "free data blocks");
  1245. ext4_free_data(handle, inode, parent_bh, first, last);
  1246. }
  1247. }
  1248. void ext4_ind_truncate(struct inode *inode)
  1249. {
  1250. handle_t *handle;
  1251. struct ext4_inode_info *ei = EXT4_I(inode);
  1252. __le32 *i_data = ei->i_data;
  1253. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1254. struct address_space *mapping = inode->i_mapping;
  1255. ext4_lblk_t offsets[4];
  1256. Indirect chain[4];
  1257. Indirect *partial;
  1258. __le32 nr = 0;
  1259. int n = 0;
  1260. ext4_lblk_t last_block, max_block;
  1261. loff_t page_len;
  1262. unsigned blocksize = inode->i_sb->s_blocksize;
  1263. int err;
  1264. handle = start_transaction(inode);
  1265. if (IS_ERR(handle))
  1266. return; /* AKPM: return what? */
  1267. last_block = (inode->i_size + blocksize-1)
  1268. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  1269. max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
  1270. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  1271. if (inode->i_size % PAGE_CACHE_SIZE != 0) {
  1272. page_len = PAGE_CACHE_SIZE -
  1273. (inode->i_size & (PAGE_CACHE_SIZE - 1));
  1274. err = ext4_discard_partial_page_buffers(handle,
  1275. mapping, inode->i_size, page_len, 0);
  1276. if (err)
  1277. goto out_stop;
  1278. }
  1279. if (last_block != max_block) {
  1280. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  1281. if (n == 0)
  1282. goto out_stop; /* error */
  1283. }
  1284. /*
  1285. * OK. This truncate is going to happen. We add the inode to the
  1286. * orphan list, so that if this truncate spans multiple transactions,
  1287. * and we crash, we will resume the truncate when the filesystem
  1288. * recovers. It also marks the inode dirty, to catch the new size.
  1289. *
  1290. * Implication: the file must always be in a sane, consistent
  1291. * truncatable state while each transaction commits.
  1292. */
  1293. if (ext4_orphan_add(handle, inode))
  1294. goto out_stop;
  1295. /*
  1296. * From here we block out all ext4_get_block() callers who want to
  1297. * modify the block allocation tree.
  1298. */
  1299. down_write(&ei->i_data_sem);
  1300. ext4_discard_preallocations(inode);
  1301. ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
  1302. /*
  1303. * The orphan list entry will now protect us from any crash which
  1304. * occurs before the truncate completes, so it is now safe to propagate
  1305. * the new, shorter inode size (held for now in i_size) into the
  1306. * on-disk inode. We do this via i_disksize, which is the value which
  1307. * ext4 *really* writes onto the disk inode.
  1308. */
  1309. ei->i_disksize = inode->i_size;
  1310. if (last_block == max_block) {
  1311. /*
  1312. * It is unnecessary to free any data blocks if last_block is
  1313. * equal to the indirect block limit.
  1314. */
  1315. goto out_unlock;
  1316. } else if (n == 1) { /* direct blocks */
  1317. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  1318. i_data + EXT4_NDIR_BLOCKS);
  1319. goto do_indirects;
  1320. }
  1321. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  1322. /* Kill the top of shared branch (not detached) */
  1323. if (nr) {
  1324. if (partial == chain) {
  1325. /* Shared branch grows from the inode */
  1326. ext4_free_branches(handle, inode, NULL,
  1327. &nr, &nr+1, (chain+n-1) - partial);
  1328. *partial->p = 0;
  1329. /*
  1330. * We mark the inode dirty prior to restart,
  1331. * and prior to stop. No need for it here.
  1332. */
  1333. } else {
  1334. /* Shared branch grows from an indirect block */
  1335. BUFFER_TRACE(partial->bh, "get_write_access");
  1336. ext4_free_branches(handle, inode, partial->bh,
  1337. partial->p,
  1338. partial->p+1, (chain+n-1) - partial);
  1339. }
  1340. }
  1341. /* Clear the ends of indirect blocks on the shared branch */
  1342. while (partial > chain) {
  1343. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  1344. (__le32*)partial->bh->b_data+addr_per_block,
  1345. (chain+n-1) - partial);
  1346. BUFFER_TRACE(partial->bh, "call brelse");
  1347. brelse(partial->bh);
  1348. partial--;
  1349. }
  1350. do_indirects:
  1351. /* Kill the remaining (whole) subtrees */
  1352. switch (offsets[0]) {
  1353. default:
  1354. nr = i_data[EXT4_IND_BLOCK];
  1355. if (nr) {
  1356. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  1357. i_data[EXT4_IND_BLOCK] = 0;
  1358. }
  1359. case EXT4_IND_BLOCK:
  1360. nr = i_data[EXT4_DIND_BLOCK];
  1361. if (nr) {
  1362. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  1363. i_data[EXT4_DIND_BLOCK] = 0;
  1364. }
  1365. case EXT4_DIND_BLOCK:
  1366. nr = i_data[EXT4_TIND_BLOCK];
  1367. if (nr) {
  1368. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  1369. i_data[EXT4_TIND_BLOCK] = 0;
  1370. }
  1371. case EXT4_TIND_BLOCK:
  1372. ;
  1373. }
  1374. out_unlock:
  1375. up_write(&ei->i_data_sem);
  1376. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  1377. ext4_mark_inode_dirty(handle, inode);
  1378. /*
  1379. * In a multi-transaction truncate, we only make the final transaction
  1380. * synchronous
  1381. */
  1382. if (IS_SYNC(inode))
  1383. ext4_handle_sync(handle);
  1384. out_stop:
  1385. /*
  1386. * If this was a simple ftruncate(), and the file will remain alive
  1387. * then we need to clear up the orphan record which we created above.
  1388. * However, if this was a real unlink then we were called by
  1389. * ext4_delete_inode(), and we allow that function to clean up the
  1390. * orphan info for us.
  1391. */
  1392. if (inode->i_nlink)
  1393. ext4_orphan_del(handle, inode);
  1394. ext4_journal_stop(handle);
  1395. trace_ext4_truncate_exit(inode);
  1396. }
  1397. static int free_hole_blocks(handle_t *handle, struct inode *inode,
  1398. struct buffer_head *parent_bh, __le32 *i_data,
  1399. int level, ext4_lblk_t first,
  1400. ext4_lblk_t count, int max)
  1401. {
  1402. struct buffer_head *bh = NULL;
  1403. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1404. int ret = 0;
  1405. int i, inc;
  1406. ext4_lblk_t offset;
  1407. __le32 blk;
  1408. inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
  1409. for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
  1410. if (offset >= count + first)
  1411. break;
  1412. if (*i_data == 0 || (offset + inc) <= first)
  1413. continue;
  1414. blk = *i_data;
  1415. if (level > 0) {
  1416. ext4_lblk_t first2;
  1417. bh = sb_bread(inode->i_sb, blk);
  1418. if (!bh) {
  1419. EXT4_ERROR_INODE_BLOCK(inode, blk,
  1420. "Read failure");
  1421. return -EIO;
  1422. }
  1423. first2 = (first > offset) ? first - offset : 0;
  1424. ret = free_hole_blocks(handle, inode, bh,
  1425. (__le32 *)bh->b_data, level - 1,
  1426. first2, count - offset,
  1427. inode->i_sb->s_blocksize >> 2);
  1428. if (ret) {
  1429. brelse(bh);
  1430. goto err;
  1431. }
  1432. }
  1433. if (level == 0 ||
  1434. (bh && all_zeroes((__le32 *)bh->b_data,
  1435. (__le32 *)bh->b_data + addr_per_block))) {
  1436. ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
  1437. *i_data = 0;
  1438. }
  1439. brelse(bh);
  1440. bh = NULL;
  1441. }
  1442. err:
  1443. return ret;
  1444. }
  1445. static int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
  1446. ext4_lblk_t first, ext4_lblk_t stop)
  1447. {
  1448. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1449. int level, ret = 0;
  1450. int num = EXT4_NDIR_BLOCKS;
  1451. ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
  1452. __le32 *i_data = EXT4_I(inode)->i_data;
  1453. count = stop - first;
  1454. for (level = 0; level < 4; level++, max *= addr_per_block) {
  1455. if (first < max) {
  1456. ret = free_hole_blocks(handle, inode, NULL, i_data,
  1457. level, first, count, num);
  1458. if (ret)
  1459. goto err;
  1460. if (count > max - first)
  1461. count -= max - first;
  1462. else
  1463. break;
  1464. first = 0;
  1465. } else {
  1466. first -= max;
  1467. }
  1468. i_data += num;
  1469. if (level == 0) {
  1470. num = 1;
  1471. max = 1;
  1472. }
  1473. }
  1474. err:
  1475. return ret;
  1476. }
  1477. int ext4_ind_punch_hole(struct file *file, loff_t offset, loff_t length)
  1478. {
  1479. struct inode *inode = file->f_path.dentry->d_inode;
  1480. struct super_block *sb = inode->i_sb;
  1481. ext4_lblk_t first_block, stop_block;
  1482. struct address_space *mapping = inode->i_mapping;
  1483. handle_t *handle = NULL;
  1484. loff_t first_page, last_page, page_len;
  1485. loff_t first_page_offset, last_page_offset;
  1486. int err = 0;
  1487. /*
  1488. * Write out all dirty pages to avoid race conditions
  1489. * Then release them.
  1490. */
  1491. if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
  1492. err = filemap_write_and_wait_range(mapping,
  1493. offset, offset + length - 1);
  1494. if (err)
  1495. return err;
  1496. }
  1497. mutex_lock(&inode->i_mutex);
  1498. /* It's not possible punch hole on append only file */
  1499. if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
  1500. err = -EPERM;
  1501. goto out_mutex;
  1502. }
  1503. if (IS_SWAPFILE(inode)) {
  1504. err = -ETXTBSY;
  1505. goto out_mutex;
  1506. }
  1507. /* No need to punch hole beyond i_size */
  1508. if (offset >= inode->i_size)
  1509. goto out_mutex;
  1510. /*
  1511. * If the hole extents beyond i_size, set the hole
  1512. * to end after the page that contains i_size
  1513. */
  1514. if (offset + length > inode->i_size) {
  1515. length = inode->i_size +
  1516. PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
  1517. offset;
  1518. }
  1519. first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1520. last_page = (offset + length) >> PAGE_CACHE_SHIFT;
  1521. first_page_offset = first_page << PAGE_CACHE_SHIFT;
  1522. last_page_offset = last_page << PAGE_CACHE_SHIFT;
  1523. /* Now release the pages */
  1524. if (last_page_offset > first_page_offset) {
  1525. truncate_pagecache_range(inode, first_page_offset,
  1526. last_page_offset - 1);
  1527. }
  1528. /* Wait all existing dio works, newcomers will block on i_mutex */
  1529. inode_dio_wait(inode);
  1530. handle = start_transaction(inode);
  1531. if (IS_ERR(handle))
  1532. goto out_mutex;
  1533. /*
  1534. * Now we need to zero out the non-page-aligned data in the
  1535. * pages at the start and tail of the hole, and unmap the buffer
  1536. * heads for the block aligned regions of the page that were
  1537. * completely zerod.
  1538. */
  1539. if (first_page > last_page) {
  1540. /*
  1541. * If the file space being truncated is contained within a page
  1542. * just zero out and unmap the middle of that page
  1543. */
  1544. err = ext4_discard_partial_page_buffers(handle,
  1545. mapping, offset, length, 0);
  1546. if (err)
  1547. goto out;
  1548. } else {
  1549. /*
  1550. * Zero out and unmap the paritial page that contains
  1551. * the start of the hole
  1552. */
  1553. page_len = first_page_offset - offset;
  1554. if (page_len > 0) {
  1555. err = ext4_discard_partial_page_buffers(handle, mapping,
  1556. offset, page_len, 0);
  1557. if (err)
  1558. goto out;
  1559. }
  1560. /*
  1561. * Zero out and unmap the partial page that contains
  1562. * the end of the hole
  1563. */
  1564. page_len = offset + length - last_page_offset;
  1565. if (page_len > 0) {
  1566. err = ext4_discard_partial_page_buffers(handle, mapping,
  1567. last_page_offset, page_len, 0);
  1568. if (err)
  1569. goto out;
  1570. }
  1571. }
  1572. /*
  1573. * If i_size contained in the last page, we need to
  1574. * unmap and zero the paritial page after i_size
  1575. */
  1576. if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
  1577. inode->i_size % PAGE_CACHE_SIZE != 0) {
  1578. page_len = PAGE_CACHE_SIZE -
  1579. (inode->i_size & (PAGE_CACHE_SIZE - 1));
  1580. if (page_len > 0) {
  1581. err = ext4_discard_partial_page_buffers(handle,
  1582. mapping, inode->i_size, page_len, 0);
  1583. if (err)
  1584. goto out;
  1585. }
  1586. }
  1587. first_block = (offset + sb->s_blocksize - 1) >>
  1588. EXT4_BLOCK_SIZE_BITS(sb);
  1589. stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
  1590. if (first_block >= stop_block)
  1591. goto out;
  1592. down_write(&EXT4_I(inode)->i_data_sem);
  1593. ext4_discard_preallocations(inode);
  1594. err = ext4_es_remove_extent(inode, first_block,
  1595. stop_block - first_block);
  1596. err = ext4_free_hole_blocks(handle, inode, first_block, stop_block);
  1597. ext4_discard_preallocations(inode);
  1598. if (IS_SYNC(inode))
  1599. ext4_handle_sync(handle);
  1600. up_write(&EXT4_I(inode)->i_data_sem);
  1601. out:
  1602. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  1603. ext4_mark_inode_dirty(handle, inode);
  1604. ext4_journal_stop(handle);
  1605. out_mutex:
  1606. mutex_unlock(&inode->i_mutex);
  1607. return err;
  1608. }