mlme.c 123 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "rate.h"
  32. #include "led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (7 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define ERP_INFO_USE_PROTECTION BIT(1)
  54. /* mgmt header + 1 byte action code */
  55. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  56. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  57. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  58. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  59. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  60. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  61. /* next values represent the buffer size for A-MPDU frame.
  62. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  63. #define IEEE80211_MIN_AMPDU_BUF 0x8
  64. #define IEEE80211_MAX_AMPDU_BUF 0x40
  65. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  66. u8 *ssid, size_t ssid_len);
  67. static struct ieee80211_sta_bss *
  68. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  69. u8 *ssid, u8 ssid_len);
  70. static void ieee80211_rx_bss_put(struct net_device *dev,
  71. struct ieee80211_sta_bss *bss);
  72. static int ieee80211_sta_find_ibss(struct net_device *dev,
  73. struct ieee80211_if_sta *ifsta);
  74. static int ieee80211_sta_wep_configured(struct net_device *dev);
  75. static int ieee80211_sta_start_scan(struct net_device *dev,
  76. u8 *ssid, size_t ssid_len);
  77. static int ieee80211_sta_config_auth(struct net_device *dev,
  78. struct ieee80211_if_sta *ifsta);
  79. void ieee802_11_parse_elems(u8 *start, size_t len,
  80. struct ieee802_11_elems *elems)
  81. {
  82. size_t left = len;
  83. u8 *pos = start;
  84. memset(elems, 0, sizeof(*elems));
  85. while (left >= 2) {
  86. u8 id, elen;
  87. id = *pos++;
  88. elen = *pos++;
  89. left -= 2;
  90. if (elen > left)
  91. return;
  92. switch (id) {
  93. case WLAN_EID_SSID:
  94. elems->ssid = pos;
  95. elems->ssid_len = elen;
  96. break;
  97. case WLAN_EID_SUPP_RATES:
  98. elems->supp_rates = pos;
  99. elems->supp_rates_len = elen;
  100. break;
  101. case WLAN_EID_FH_PARAMS:
  102. elems->fh_params = pos;
  103. elems->fh_params_len = elen;
  104. break;
  105. case WLAN_EID_DS_PARAMS:
  106. elems->ds_params = pos;
  107. elems->ds_params_len = elen;
  108. break;
  109. case WLAN_EID_CF_PARAMS:
  110. elems->cf_params = pos;
  111. elems->cf_params_len = elen;
  112. break;
  113. case WLAN_EID_TIM:
  114. elems->tim = pos;
  115. elems->tim_len = elen;
  116. break;
  117. case WLAN_EID_IBSS_PARAMS:
  118. elems->ibss_params = pos;
  119. elems->ibss_params_len = elen;
  120. break;
  121. case WLAN_EID_CHALLENGE:
  122. elems->challenge = pos;
  123. elems->challenge_len = elen;
  124. break;
  125. case WLAN_EID_WPA:
  126. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  127. pos[2] == 0xf2) {
  128. /* Microsoft OUI (00:50:F2) */
  129. if (pos[3] == 1) {
  130. /* OUI Type 1 - WPA IE */
  131. elems->wpa = pos;
  132. elems->wpa_len = elen;
  133. } else if (elen >= 5 && pos[3] == 2) {
  134. if (pos[4] == 0) {
  135. elems->wmm_info = pos;
  136. elems->wmm_info_len = elen;
  137. } else if (pos[4] == 1) {
  138. elems->wmm_param = pos;
  139. elems->wmm_param_len = elen;
  140. }
  141. }
  142. }
  143. break;
  144. case WLAN_EID_RSN:
  145. elems->rsn = pos;
  146. elems->rsn_len = elen;
  147. break;
  148. case WLAN_EID_ERP_INFO:
  149. elems->erp_info = pos;
  150. elems->erp_info_len = elen;
  151. break;
  152. case WLAN_EID_EXT_SUPP_RATES:
  153. elems->ext_supp_rates = pos;
  154. elems->ext_supp_rates_len = elen;
  155. break;
  156. case WLAN_EID_HT_CAPABILITY:
  157. elems->ht_cap_elem = pos;
  158. elems->ht_cap_elem_len = elen;
  159. break;
  160. case WLAN_EID_HT_EXTRA_INFO:
  161. elems->ht_info_elem = pos;
  162. elems->ht_info_elem_len = elen;
  163. break;
  164. case WLAN_EID_MESH_ID:
  165. elems->mesh_id = pos;
  166. elems->mesh_id_len = elen;
  167. break;
  168. case WLAN_EID_MESH_CONFIG:
  169. elems->mesh_config = pos;
  170. elems->mesh_config_len = elen;
  171. break;
  172. case WLAN_EID_PEER_LINK:
  173. elems->peer_link = pos;
  174. elems->peer_link_len = elen;
  175. break;
  176. case WLAN_EID_PREQ:
  177. elems->preq = pos;
  178. elems->preq_len = elen;
  179. break;
  180. case WLAN_EID_PREP:
  181. elems->prep = pos;
  182. elems->prep_len = elen;
  183. break;
  184. case WLAN_EID_PERR:
  185. elems->perr = pos;
  186. elems->perr_len = elen;
  187. break;
  188. default:
  189. break;
  190. }
  191. left -= elen;
  192. pos += elen;
  193. }
  194. }
  195. static int ecw2cw(int ecw)
  196. {
  197. return (1 << ecw) - 1;
  198. }
  199. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  200. struct ieee80211_sta_bss *bss,
  201. int ibss)
  202. {
  203. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  204. struct ieee80211_local *local = sdata->local;
  205. int i, have_higher_than_11mbit = 0;
  206. /* cf. IEEE 802.11 9.2.12 */
  207. for (i = 0; i < bss->supp_rates_len; i++)
  208. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  209. have_higher_than_11mbit = 1;
  210. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  211. have_higher_than_11mbit)
  212. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  213. else
  214. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  215. if (local->ops->conf_tx) {
  216. struct ieee80211_tx_queue_params qparam;
  217. memset(&qparam, 0, sizeof(qparam));
  218. qparam.aifs = 2;
  219. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  220. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  221. qparam.cw_min = 31;
  222. else
  223. qparam.cw_min = 15;
  224. qparam.cw_max = 1023;
  225. qparam.txop = 0;
  226. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  227. local->ops->conf_tx(local_to_hw(local),
  228. i + IEEE80211_TX_QUEUE_DATA0,
  229. &qparam);
  230. if (ibss) {
  231. /* IBSS uses different parameters for Beacon sending */
  232. qparam.cw_min++;
  233. qparam.cw_min *= 2;
  234. qparam.cw_min--;
  235. local->ops->conf_tx(local_to_hw(local),
  236. IEEE80211_TX_QUEUE_BEACON, &qparam);
  237. }
  238. }
  239. }
  240. static void ieee80211_sta_wmm_params(struct net_device *dev,
  241. struct ieee80211_if_sta *ifsta,
  242. u8 *wmm_param, size_t wmm_param_len)
  243. {
  244. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  245. struct ieee80211_tx_queue_params params;
  246. size_t left;
  247. int count;
  248. u8 *pos;
  249. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  250. return;
  251. count = wmm_param[6] & 0x0f;
  252. if (count == ifsta->wmm_last_param_set)
  253. return;
  254. ifsta->wmm_last_param_set = count;
  255. pos = wmm_param + 8;
  256. left = wmm_param_len - 8;
  257. memset(&params, 0, sizeof(params));
  258. if (!local->ops->conf_tx)
  259. return;
  260. local->wmm_acm = 0;
  261. for (; left >= 4; left -= 4, pos += 4) {
  262. int aci = (pos[0] >> 5) & 0x03;
  263. int acm = (pos[0] >> 4) & 0x01;
  264. int queue;
  265. switch (aci) {
  266. case 1:
  267. queue = IEEE80211_TX_QUEUE_DATA3;
  268. if (acm) {
  269. local->wmm_acm |= BIT(0) | BIT(3);
  270. }
  271. break;
  272. case 2:
  273. queue = IEEE80211_TX_QUEUE_DATA1;
  274. if (acm) {
  275. local->wmm_acm |= BIT(4) | BIT(5);
  276. }
  277. break;
  278. case 3:
  279. queue = IEEE80211_TX_QUEUE_DATA0;
  280. if (acm) {
  281. local->wmm_acm |= BIT(6) | BIT(7);
  282. }
  283. break;
  284. case 0:
  285. default:
  286. queue = IEEE80211_TX_QUEUE_DATA2;
  287. if (acm) {
  288. local->wmm_acm |= BIT(1) | BIT(2);
  289. }
  290. break;
  291. }
  292. params.aifs = pos[0] & 0x0f;
  293. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  294. params.cw_min = ecw2cw(pos[1] & 0x0f);
  295. params.txop = pos[2] | (pos[3] << 8);
  296. #ifdef CONFIG_MAC80211_DEBUG
  297. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  298. "cWmin=%d cWmax=%d txop=%d\n",
  299. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  300. params.cw_max, params.txop);
  301. #endif
  302. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  303. * AC for now) */
  304. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  305. printk(KERN_DEBUG "%s: failed to set TX queue "
  306. "parameters for queue %d\n", dev->name, queue);
  307. }
  308. }
  309. }
  310. static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata,
  311. bool use_protection,
  312. bool use_short_preamble)
  313. {
  314. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  315. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  316. DECLARE_MAC_BUF(mac);
  317. u32 changed = 0;
  318. if (use_protection != bss_conf->use_cts_prot) {
  319. if (net_ratelimit()) {
  320. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  321. "%s)\n",
  322. sdata->dev->name,
  323. use_protection ? "enabled" : "disabled",
  324. print_mac(mac, ifsta->bssid));
  325. }
  326. bss_conf->use_cts_prot = use_protection;
  327. changed |= BSS_CHANGED_ERP_CTS_PROT;
  328. }
  329. if (use_short_preamble != bss_conf->use_short_preamble) {
  330. if (net_ratelimit()) {
  331. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  332. " (BSSID=%s)\n",
  333. sdata->dev->name,
  334. use_short_preamble ? "short" : "long",
  335. print_mac(mac, ifsta->bssid));
  336. }
  337. bss_conf->use_short_preamble = use_short_preamble;
  338. changed |= BSS_CHANGED_ERP_PREAMBLE;
  339. }
  340. return changed;
  341. }
  342. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  343. u8 erp_value)
  344. {
  345. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  346. bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
  347. return ieee80211_handle_protect_preamb(sdata,
  348. use_protection, use_short_preamble);
  349. }
  350. static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata,
  351. struct ieee80211_sta_bss *bss)
  352. {
  353. u32 changed = 0;
  354. if (bss->has_erp_value)
  355. changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value);
  356. else {
  357. u16 capab = bss->capability;
  358. changed |= ieee80211_handle_protect_preamb(sdata, false,
  359. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  360. }
  361. return changed;
  362. }
  363. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  364. struct ieee80211_ht_info *ht_info)
  365. {
  366. if (ht_info == NULL)
  367. return -EINVAL;
  368. memset(ht_info, 0, sizeof(*ht_info));
  369. if (ht_cap_ie) {
  370. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  371. ht_info->ht_supported = 1;
  372. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  373. ht_info->ampdu_factor =
  374. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  375. ht_info->ampdu_density =
  376. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  377. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  378. } else
  379. ht_info->ht_supported = 0;
  380. return 0;
  381. }
  382. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  383. struct ieee80211_ht_addt_info *ht_add_info_ie,
  384. struct ieee80211_ht_bss_info *bss_info)
  385. {
  386. if (bss_info == NULL)
  387. return -EINVAL;
  388. memset(bss_info, 0, sizeof(*bss_info));
  389. if (ht_add_info_ie) {
  390. u16 op_mode;
  391. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  392. bss_info->primary_channel = ht_add_info_ie->control_chan;
  393. bss_info->bss_cap = ht_add_info_ie->ht_param;
  394. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  395. }
  396. return 0;
  397. }
  398. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  399. struct ieee80211_if_sta *ifsta)
  400. {
  401. char *buf;
  402. size_t len;
  403. int i;
  404. union iwreq_data wrqu;
  405. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  406. return;
  407. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  408. ifsta->assocresp_ies_len), GFP_KERNEL);
  409. if (!buf)
  410. return;
  411. len = sprintf(buf, "ASSOCINFO(");
  412. if (ifsta->assocreq_ies) {
  413. len += sprintf(buf + len, "ReqIEs=");
  414. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  415. len += sprintf(buf + len, "%02x",
  416. ifsta->assocreq_ies[i]);
  417. }
  418. }
  419. if (ifsta->assocresp_ies) {
  420. if (ifsta->assocreq_ies)
  421. len += sprintf(buf + len, " ");
  422. len += sprintf(buf + len, "RespIEs=");
  423. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  424. len += sprintf(buf + len, "%02x",
  425. ifsta->assocresp_ies[i]);
  426. }
  427. }
  428. len += sprintf(buf + len, ")");
  429. if (len > IW_CUSTOM_MAX) {
  430. len = sprintf(buf, "ASSOCRESPIE=");
  431. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  432. len += sprintf(buf + len, "%02x",
  433. ifsta->assocresp_ies[i]);
  434. }
  435. }
  436. memset(&wrqu, 0, sizeof(wrqu));
  437. wrqu.data.length = len;
  438. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  439. kfree(buf);
  440. }
  441. static void ieee80211_set_associated(struct net_device *dev,
  442. struct ieee80211_if_sta *ifsta,
  443. bool assoc)
  444. {
  445. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  446. struct ieee80211_local *local = sdata->local;
  447. struct ieee80211_conf *conf = &local_to_hw(local)->conf;
  448. union iwreq_data wrqu;
  449. u32 changed = BSS_CHANGED_ASSOC;
  450. if (assoc) {
  451. struct ieee80211_sta_bss *bss;
  452. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  453. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  454. return;
  455. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  456. conf->channel->center_freq,
  457. ifsta->ssid, ifsta->ssid_len);
  458. if (bss) {
  459. /* set timing information */
  460. sdata->bss_conf.beacon_int = bss->beacon_int;
  461. sdata->bss_conf.timestamp = bss->timestamp;
  462. changed |= ieee80211_handle_bss_capability(sdata, bss);
  463. ieee80211_rx_bss_put(dev, bss);
  464. }
  465. if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  466. changed |= BSS_CHANGED_HT;
  467. sdata->bss_conf.assoc_ht = 1;
  468. sdata->bss_conf.ht_conf = &conf->ht_conf;
  469. sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
  470. }
  471. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  472. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  473. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  474. ieee80211_sta_send_associnfo(dev, ifsta);
  475. } else {
  476. netif_carrier_off(dev);
  477. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  478. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  479. ieee80211_reset_erp_info(dev);
  480. sdata->bss_conf.assoc_ht = 0;
  481. sdata->bss_conf.ht_conf = NULL;
  482. sdata->bss_conf.ht_bss_conf = NULL;
  483. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  484. }
  485. ifsta->last_probe = jiffies;
  486. ieee80211_led_assoc(local, assoc);
  487. sdata->bss_conf.assoc = assoc;
  488. ieee80211_bss_info_change_notify(sdata, changed);
  489. if (assoc)
  490. netif_carrier_on(dev);
  491. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  492. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  493. }
  494. static void ieee80211_set_disassoc(struct net_device *dev,
  495. struct ieee80211_if_sta *ifsta, int deauth)
  496. {
  497. if (deauth)
  498. ifsta->auth_tries = 0;
  499. ifsta->assoc_tries = 0;
  500. ieee80211_set_associated(dev, ifsta, 0);
  501. }
  502. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  503. int encrypt)
  504. {
  505. struct ieee80211_sub_if_data *sdata;
  506. struct ieee80211_tx_packet_data *pkt_data;
  507. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  508. skb->dev = sdata->local->mdev;
  509. skb_set_mac_header(skb, 0);
  510. skb_set_network_header(skb, 0);
  511. skb_set_transport_header(skb, 0);
  512. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  513. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  514. pkt_data->ifindex = sdata->dev->ifindex;
  515. if (!encrypt)
  516. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  517. dev_queue_xmit(skb);
  518. }
  519. static void ieee80211_send_auth(struct net_device *dev,
  520. struct ieee80211_if_sta *ifsta,
  521. int transaction, u8 *extra, size_t extra_len,
  522. int encrypt)
  523. {
  524. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  525. struct sk_buff *skb;
  526. struct ieee80211_mgmt *mgmt;
  527. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  528. sizeof(*mgmt) + 6 + extra_len);
  529. if (!skb) {
  530. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  531. "frame\n", dev->name);
  532. return;
  533. }
  534. skb_reserve(skb, local->hw.extra_tx_headroom);
  535. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  536. memset(mgmt, 0, 24 + 6);
  537. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  538. IEEE80211_STYPE_AUTH);
  539. if (encrypt)
  540. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  541. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  542. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  543. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  544. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  545. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  546. ifsta->auth_transaction = transaction + 1;
  547. mgmt->u.auth.status_code = cpu_to_le16(0);
  548. if (extra)
  549. memcpy(skb_put(skb, extra_len), extra, extra_len);
  550. ieee80211_sta_tx(dev, skb, encrypt);
  551. }
  552. static void ieee80211_authenticate(struct net_device *dev,
  553. struct ieee80211_if_sta *ifsta)
  554. {
  555. DECLARE_MAC_BUF(mac);
  556. ifsta->auth_tries++;
  557. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  558. printk(KERN_DEBUG "%s: authentication with AP %s"
  559. " timed out\n",
  560. dev->name, print_mac(mac, ifsta->bssid));
  561. ifsta->state = IEEE80211_DISABLED;
  562. return;
  563. }
  564. ifsta->state = IEEE80211_AUTHENTICATE;
  565. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  566. dev->name, print_mac(mac, ifsta->bssid));
  567. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  568. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  569. }
  570. static int ieee80211_compatible_rates(struct ieee80211_sta_bss *bss,
  571. struct ieee80211_supported_band *sband,
  572. u64 *rates)
  573. {
  574. int i, j, count;
  575. *rates = 0;
  576. count = 0;
  577. for (i = 0; i < bss->supp_rates_len; i++) {
  578. int rate = (bss->supp_rates[i] & 0x7F) * 5;
  579. for (j = 0; j < sband->n_bitrates; j++)
  580. if (sband->bitrates[j].bitrate == rate) {
  581. *rates |= BIT(j);
  582. count++;
  583. break;
  584. }
  585. }
  586. return count;
  587. }
  588. static void ieee80211_send_assoc(struct net_device *dev,
  589. struct ieee80211_if_sta *ifsta)
  590. {
  591. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  592. struct sk_buff *skb;
  593. struct ieee80211_mgmt *mgmt;
  594. u8 *pos, *ies;
  595. int i, len, count, rates_len, supp_rates_len;
  596. u16 capab;
  597. struct ieee80211_sta_bss *bss;
  598. int wmm = 0;
  599. struct ieee80211_supported_band *sband;
  600. u64 rates = 0;
  601. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  602. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  603. ifsta->ssid_len);
  604. if (!skb) {
  605. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  606. "frame\n", dev->name);
  607. return;
  608. }
  609. skb_reserve(skb, local->hw.extra_tx_headroom);
  610. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  611. capab = ifsta->capab;
  612. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  613. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  614. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  615. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  616. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  617. }
  618. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  619. local->hw.conf.channel->center_freq,
  620. ifsta->ssid, ifsta->ssid_len);
  621. if (bss) {
  622. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  623. capab |= WLAN_CAPABILITY_PRIVACY;
  624. if (bss->wmm_ie) {
  625. wmm = 1;
  626. }
  627. /* get all rates supported by the device and the AP as
  628. * some APs don't like getting a superset of their rates
  629. * in the association request (e.g. D-Link DAP 1353 in
  630. * b-only mode) */
  631. rates_len = ieee80211_compatible_rates(bss, sband, &rates);
  632. ieee80211_rx_bss_put(dev, bss);
  633. } else {
  634. rates = ~0;
  635. rates_len = sband->n_bitrates;
  636. }
  637. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  638. memset(mgmt, 0, 24);
  639. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  640. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  641. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  642. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  643. skb_put(skb, 10);
  644. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  645. IEEE80211_STYPE_REASSOC_REQ);
  646. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  647. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  648. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  649. ETH_ALEN);
  650. } else {
  651. skb_put(skb, 4);
  652. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  653. IEEE80211_STYPE_ASSOC_REQ);
  654. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  655. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  656. }
  657. /* SSID */
  658. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  659. *pos++ = WLAN_EID_SSID;
  660. *pos++ = ifsta->ssid_len;
  661. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  662. /* add all rates which were marked to be used above */
  663. supp_rates_len = rates_len;
  664. if (supp_rates_len > 8)
  665. supp_rates_len = 8;
  666. len = sband->n_bitrates;
  667. pos = skb_put(skb, supp_rates_len + 2);
  668. *pos++ = WLAN_EID_SUPP_RATES;
  669. *pos++ = supp_rates_len;
  670. count = 0;
  671. for (i = 0; i < sband->n_bitrates; i++) {
  672. if (BIT(i) & rates) {
  673. int rate = sband->bitrates[i].bitrate;
  674. *pos++ = (u8) (rate / 5);
  675. if (++count == 8)
  676. break;
  677. }
  678. }
  679. if (count == 8) {
  680. pos = skb_put(skb, rates_len - count + 2);
  681. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  682. *pos++ = rates_len - count;
  683. for (i++; i < sband->n_bitrates; i++) {
  684. if (BIT(i) & rates) {
  685. int rate = sband->bitrates[i].bitrate;
  686. *pos++ = (u8) (rate / 5);
  687. }
  688. }
  689. }
  690. if (ifsta->extra_ie) {
  691. pos = skb_put(skb, ifsta->extra_ie_len);
  692. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  693. }
  694. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  695. pos = skb_put(skb, 9);
  696. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  697. *pos++ = 7; /* len */
  698. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  699. *pos++ = 0x50;
  700. *pos++ = 0xf2;
  701. *pos++ = 2; /* WME */
  702. *pos++ = 0; /* WME info */
  703. *pos++ = 1; /* WME ver */
  704. *pos++ = 0;
  705. }
  706. /* wmm support is a must to HT */
  707. if (wmm && sband->ht_info.ht_supported) {
  708. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  709. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  710. *pos++ = WLAN_EID_HT_CAPABILITY;
  711. *pos++ = sizeof(struct ieee80211_ht_cap);
  712. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  713. memcpy(pos, &tmp, sizeof(u16));
  714. pos += sizeof(u16);
  715. /* TODO: needs a define here for << 2 */
  716. *pos++ = sband->ht_info.ampdu_factor |
  717. (sband->ht_info.ampdu_density << 2);
  718. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  719. }
  720. kfree(ifsta->assocreq_ies);
  721. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  722. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  723. if (ifsta->assocreq_ies)
  724. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  725. ieee80211_sta_tx(dev, skb, 0);
  726. }
  727. static void ieee80211_send_deauth(struct net_device *dev,
  728. struct ieee80211_if_sta *ifsta, u16 reason)
  729. {
  730. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  731. struct sk_buff *skb;
  732. struct ieee80211_mgmt *mgmt;
  733. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  734. if (!skb) {
  735. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  736. "frame\n", dev->name);
  737. return;
  738. }
  739. skb_reserve(skb, local->hw.extra_tx_headroom);
  740. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  741. memset(mgmt, 0, 24);
  742. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  743. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  744. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  745. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  746. IEEE80211_STYPE_DEAUTH);
  747. skb_put(skb, 2);
  748. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  749. ieee80211_sta_tx(dev, skb, 0);
  750. }
  751. static void ieee80211_send_disassoc(struct net_device *dev,
  752. struct ieee80211_if_sta *ifsta, u16 reason)
  753. {
  754. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  755. struct sk_buff *skb;
  756. struct ieee80211_mgmt *mgmt;
  757. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  758. if (!skb) {
  759. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  760. "frame\n", dev->name);
  761. return;
  762. }
  763. skb_reserve(skb, local->hw.extra_tx_headroom);
  764. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  765. memset(mgmt, 0, 24);
  766. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  767. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  768. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  769. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  770. IEEE80211_STYPE_DISASSOC);
  771. skb_put(skb, 2);
  772. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  773. ieee80211_sta_tx(dev, skb, 0);
  774. }
  775. static int ieee80211_privacy_mismatch(struct net_device *dev,
  776. struct ieee80211_if_sta *ifsta)
  777. {
  778. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  779. struct ieee80211_sta_bss *bss;
  780. int bss_privacy;
  781. int wep_privacy;
  782. int privacy_invoked;
  783. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  784. return 0;
  785. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  786. local->hw.conf.channel->center_freq,
  787. ifsta->ssid, ifsta->ssid_len);
  788. if (!bss)
  789. return 0;
  790. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  791. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  792. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  793. ieee80211_rx_bss_put(dev, bss);
  794. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  795. return 0;
  796. return 1;
  797. }
  798. static void ieee80211_associate(struct net_device *dev,
  799. struct ieee80211_if_sta *ifsta)
  800. {
  801. DECLARE_MAC_BUF(mac);
  802. ifsta->assoc_tries++;
  803. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  804. printk(KERN_DEBUG "%s: association with AP %s"
  805. " timed out\n",
  806. dev->name, print_mac(mac, ifsta->bssid));
  807. ifsta->state = IEEE80211_DISABLED;
  808. return;
  809. }
  810. ifsta->state = IEEE80211_ASSOCIATE;
  811. printk(KERN_DEBUG "%s: associate with AP %s\n",
  812. dev->name, print_mac(mac, ifsta->bssid));
  813. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  814. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  815. "mixed-cell disabled - abort association\n", dev->name);
  816. ifsta->state = IEEE80211_DISABLED;
  817. return;
  818. }
  819. ieee80211_send_assoc(dev, ifsta);
  820. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  821. }
  822. static void ieee80211_associated(struct net_device *dev,
  823. struct ieee80211_if_sta *ifsta)
  824. {
  825. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  826. struct sta_info *sta;
  827. int disassoc;
  828. DECLARE_MAC_BUF(mac);
  829. /* TODO: start monitoring current AP signal quality and number of
  830. * missed beacons. Scan other channels every now and then and search
  831. * for better APs. */
  832. /* TODO: remove expired BSSes */
  833. ifsta->state = IEEE80211_ASSOCIATED;
  834. rcu_read_lock();
  835. sta = sta_info_get(local, ifsta->bssid);
  836. if (!sta) {
  837. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  838. dev->name, print_mac(mac, ifsta->bssid));
  839. disassoc = 1;
  840. } else {
  841. disassoc = 0;
  842. if (time_after(jiffies,
  843. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  844. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  845. printk(KERN_DEBUG "%s: No ProbeResp from "
  846. "current AP %s - assume out of "
  847. "range\n",
  848. dev->name, print_mac(mac, ifsta->bssid));
  849. disassoc = 1;
  850. sta_info_unlink(&sta);
  851. } else
  852. ieee80211_send_probe_req(dev, ifsta->bssid,
  853. local->scan_ssid,
  854. local->scan_ssid_len);
  855. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  856. } else {
  857. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  858. if (time_after(jiffies, ifsta->last_probe +
  859. IEEE80211_PROBE_INTERVAL)) {
  860. ifsta->last_probe = jiffies;
  861. ieee80211_send_probe_req(dev, ifsta->bssid,
  862. ifsta->ssid,
  863. ifsta->ssid_len);
  864. }
  865. }
  866. }
  867. rcu_read_unlock();
  868. if (disassoc && sta)
  869. sta_info_destroy(sta);
  870. if (disassoc) {
  871. ifsta->state = IEEE80211_DISABLED;
  872. ieee80211_set_associated(dev, ifsta, 0);
  873. } else {
  874. mod_timer(&ifsta->timer, jiffies +
  875. IEEE80211_MONITORING_INTERVAL);
  876. }
  877. }
  878. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  879. u8 *ssid, size_t ssid_len)
  880. {
  881. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  882. struct ieee80211_supported_band *sband;
  883. struct sk_buff *skb;
  884. struct ieee80211_mgmt *mgmt;
  885. u8 *pos, *supp_rates, *esupp_rates = NULL;
  886. int i;
  887. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  888. if (!skb) {
  889. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  890. "request\n", dev->name);
  891. return;
  892. }
  893. skb_reserve(skb, local->hw.extra_tx_headroom);
  894. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  895. memset(mgmt, 0, 24);
  896. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  897. IEEE80211_STYPE_PROBE_REQ);
  898. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  899. if (dst) {
  900. memcpy(mgmt->da, dst, ETH_ALEN);
  901. memcpy(mgmt->bssid, dst, ETH_ALEN);
  902. } else {
  903. memset(mgmt->da, 0xff, ETH_ALEN);
  904. memset(mgmt->bssid, 0xff, ETH_ALEN);
  905. }
  906. pos = skb_put(skb, 2 + ssid_len);
  907. *pos++ = WLAN_EID_SSID;
  908. *pos++ = ssid_len;
  909. memcpy(pos, ssid, ssid_len);
  910. supp_rates = skb_put(skb, 2);
  911. supp_rates[0] = WLAN_EID_SUPP_RATES;
  912. supp_rates[1] = 0;
  913. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  914. for (i = 0; i < sband->n_bitrates; i++) {
  915. struct ieee80211_rate *rate = &sband->bitrates[i];
  916. if (esupp_rates) {
  917. pos = skb_put(skb, 1);
  918. esupp_rates[1]++;
  919. } else if (supp_rates[1] == 8) {
  920. esupp_rates = skb_put(skb, 3);
  921. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  922. esupp_rates[1] = 1;
  923. pos = &esupp_rates[2];
  924. } else {
  925. pos = skb_put(skb, 1);
  926. supp_rates[1]++;
  927. }
  928. *pos = rate->bitrate / 5;
  929. }
  930. ieee80211_sta_tx(dev, skb, 0);
  931. }
  932. static int ieee80211_sta_wep_configured(struct net_device *dev)
  933. {
  934. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  935. if (!sdata || !sdata->default_key ||
  936. sdata->default_key->conf.alg != ALG_WEP)
  937. return 0;
  938. return 1;
  939. }
  940. static void ieee80211_auth_completed(struct net_device *dev,
  941. struct ieee80211_if_sta *ifsta)
  942. {
  943. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  944. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  945. ieee80211_associate(dev, ifsta);
  946. }
  947. static void ieee80211_auth_challenge(struct net_device *dev,
  948. struct ieee80211_if_sta *ifsta,
  949. struct ieee80211_mgmt *mgmt,
  950. size_t len)
  951. {
  952. u8 *pos;
  953. struct ieee802_11_elems elems;
  954. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  955. pos = mgmt->u.auth.variable;
  956. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  957. if (!elems.challenge) {
  958. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  959. "frame\n", dev->name);
  960. return;
  961. }
  962. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  963. elems.challenge_len + 2, 1);
  964. }
  965. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  966. u8 dialog_token, u16 status, u16 policy,
  967. u16 buf_size, u16 timeout)
  968. {
  969. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  970. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  971. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  972. struct sk_buff *skb;
  973. struct ieee80211_mgmt *mgmt;
  974. u16 capab;
  975. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  976. sizeof(mgmt->u.action.u.addba_resp));
  977. if (!skb) {
  978. printk(KERN_DEBUG "%s: failed to allocate buffer "
  979. "for addba resp frame\n", dev->name);
  980. return;
  981. }
  982. skb_reserve(skb, local->hw.extra_tx_headroom);
  983. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  984. memset(mgmt, 0, 24);
  985. memcpy(mgmt->da, da, ETH_ALEN);
  986. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  987. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  988. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  989. else
  990. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  991. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  992. IEEE80211_STYPE_ACTION);
  993. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  994. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  995. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  996. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  997. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  998. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  999. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  1000. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  1001. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  1002. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  1003. ieee80211_sta_tx(dev, skb, 0);
  1004. return;
  1005. }
  1006. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  1007. u16 tid, u8 dialog_token, u16 start_seq_num,
  1008. u16 agg_size, u16 timeout)
  1009. {
  1010. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1011. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1012. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1013. struct sk_buff *skb;
  1014. struct ieee80211_mgmt *mgmt;
  1015. u16 capab;
  1016. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1017. sizeof(mgmt->u.action.u.addba_req));
  1018. if (!skb) {
  1019. printk(KERN_ERR "%s: failed to allocate buffer "
  1020. "for addba request frame\n", dev->name);
  1021. return;
  1022. }
  1023. skb_reserve(skb, local->hw.extra_tx_headroom);
  1024. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1025. memset(mgmt, 0, 24);
  1026. memcpy(mgmt->da, da, ETH_ALEN);
  1027. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1028. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1029. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1030. else
  1031. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1032. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1033. IEEE80211_STYPE_ACTION);
  1034. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  1035. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1036. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  1037. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  1038. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  1039. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  1040. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  1041. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  1042. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  1043. mgmt->u.action.u.addba_req.start_seq_num =
  1044. cpu_to_le16(start_seq_num << 4);
  1045. ieee80211_sta_tx(dev, skb, 0);
  1046. }
  1047. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  1048. struct ieee80211_mgmt *mgmt,
  1049. size_t len)
  1050. {
  1051. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1052. struct ieee80211_hw *hw = &local->hw;
  1053. struct ieee80211_conf *conf = &hw->conf;
  1054. struct sta_info *sta;
  1055. struct tid_ampdu_rx *tid_agg_rx;
  1056. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  1057. u8 dialog_token;
  1058. int ret = -EOPNOTSUPP;
  1059. DECLARE_MAC_BUF(mac);
  1060. rcu_read_lock();
  1061. sta = sta_info_get(local, mgmt->sa);
  1062. if (!sta) {
  1063. rcu_read_unlock();
  1064. return;
  1065. }
  1066. /* extract session parameters from addba request frame */
  1067. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1068. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1069. start_seq_num =
  1070. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1071. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1072. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1073. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1074. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1075. status = WLAN_STATUS_REQUEST_DECLINED;
  1076. /* sanity check for incoming parameters:
  1077. * check if configuration can support the BA policy
  1078. * and if buffer size does not exceeds max value */
  1079. if (((ba_policy != 1)
  1080. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1081. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1082. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1083. #ifdef CONFIG_MAC80211_HT_DEBUG
  1084. if (net_ratelimit())
  1085. printk(KERN_DEBUG "AddBA Req with bad params from "
  1086. "%s on tid %u. policy %d, buffer size %d\n",
  1087. print_mac(mac, mgmt->sa), tid, ba_policy,
  1088. buf_size);
  1089. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1090. goto end_no_lock;
  1091. }
  1092. /* determine default buffer size */
  1093. if (buf_size == 0) {
  1094. struct ieee80211_supported_band *sband;
  1095. sband = local->hw.wiphy->bands[conf->channel->band];
  1096. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1097. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1098. }
  1099. /* examine state machine */
  1100. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1101. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
  1102. #ifdef CONFIG_MAC80211_HT_DEBUG
  1103. if (net_ratelimit())
  1104. printk(KERN_DEBUG "unexpected AddBA Req from "
  1105. "%s on tid %u\n",
  1106. print_mac(mac, mgmt->sa), tid);
  1107. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1108. goto end;
  1109. }
  1110. /* prepare A-MPDU MLME for Rx aggregation */
  1111. sta->ampdu_mlme.tid_rx[tid] =
  1112. kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
  1113. if (!sta->ampdu_mlme.tid_rx[tid]) {
  1114. if (net_ratelimit())
  1115. printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
  1116. tid);
  1117. goto end;
  1118. }
  1119. /* rx timer */
  1120. sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
  1121. sta_rx_agg_session_timer_expired;
  1122. sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
  1123. (unsigned long)&sta->timer_to_tid[tid];
  1124. init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1125. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1126. /* prepare reordering buffer */
  1127. tid_agg_rx->reorder_buf =
  1128. kmalloc(buf_size * sizeof(struct sk_buff *), GFP_ATOMIC);
  1129. if (!tid_agg_rx->reorder_buf) {
  1130. if (net_ratelimit())
  1131. printk(KERN_ERR "can not allocate reordering buffer "
  1132. "to tid %d\n", tid);
  1133. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1134. goto end;
  1135. }
  1136. memset(tid_agg_rx->reorder_buf, 0,
  1137. buf_size * sizeof(struct sk_buff *));
  1138. if (local->ops->ampdu_action)
  1139. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1140. sta->addr, tid, &start_seq_num);
  1141. #ifdef CONFIG_MAC80211_HT_DEBUG
  1142. printk(KERN_DEBUG "Rx A-MPDU request on tid %d result %d\n", tid, ret);
  1143. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1144. if (ret) {
  1145. kfree(tid_agg_rx->reorder_buf);
  1146. kfree(tid_agg_rx);
  1147. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1148. goto end;
  1149. }
  1150. /* change state and send addba resp */
  1151. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
  1152. tid_agg_rx->dialog_token = dialog_token;
  1153. tid_agg_rx->ssn = start_seq_num;
  1154. tid_agg_rx->head_seq_num = start_seq_num;
  1155. tid_agg_rx->buf_size = buf_size;
  1156. tid_agg_rx->timeout = timeout;
  1157. tid_agg_rx->stored_mpdu_num = 0;
  1158. status = WLAN_STATUS_SUCCESS;
  1159. end:
  1160. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1161. end_no_lock:
  1162. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1163. dialog_token, status, 1, buf_size, timeout);
  1164. rcu_read_unlock();
  1165. }
  1166. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1167. struct ieee80211_mgmt *mgmt,
  1168. size_t len)
  1169. {
  1170. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1171. struct ieee80211_hw *hw = &local->hw;
  1172. struct sta_info *sta;
  1173. u16 capab;
  1174. u16 tid;
  1175. u8 *state;
  1176. rcu_read_lock();
  1177. sta = sta_info_get(local, mgmt->sa);
  1178. if (!sta) {
  1179. rcu_read_unlock();
  1180. return;
  1181. }
  1182. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1183. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1184. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1185. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1186. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1187. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1188. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1189. "%d\n", *state);
  1190. goto addba_resp_exit;
  1191. }
  1192. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1193. sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
  1194. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1195. #ifdef CONFIG_MAC80211_HT_DEBUG
  1196. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1197. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1198. goto addba_resp_exit;
  1199. }
  1200. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
  1201. #ifdef CONFIG_MAC80211_HT_DEBUG
  1202. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1203. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1204. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1205. == WLAN_STATUS_SUCCESS) {
  1206. if (*state & HT_ADDBA_RECEIVED_MSK)
  1207. printk(KERN_DEBUG "double addBA response\n");
  1208. *state |= HT_ADDBA_RECEIVED_MSK;
  1209. sta->ampdu_mlme.addba_req_num[tid] = 0;
  1210. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1211. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1212. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1213. }
  1214. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1215. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1216. } else {
  1217. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1218. sta->ampdu_mlme.addba_req_num[tid]++;
  1219. /* this will allow the state check in stop_BA_session */
  1220. *state = HT_AGG_STATE_OPERATIONAL;
  1221. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1222. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1223. WLAN_BACK_INITIATOR);
  1224. }
  1225. addba_resp_exit:
  1226. rcu_read_unlock();
  1227. }
  1228. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1229. u16 initiator, u16 reason_code)
  1230. {
  1231. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1232. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1233. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1234. struct sk_buff *skb;
  1235. struct ieee80211_mgmt *mgmt;
  1236. u16 params;
  1237. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1238. sizeof(mgmt->u.action.u.delba));
  1239. if (!skb) {
  1240. printk(KERN_ERR "%s: failed to allocate buffer "
  1241. "for delba frame\n", dev->name);
  1242. return;
  1243. }
  1244. skb_reserve(skb, local->hw.extra_tx_headroom);
  1245. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1246. memset(mgmt, 0, 24);
  1247. memcpy(mgmt->da, da, ETH_ALEN);
  1248. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1249. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1250. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1251. else
  1252. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1253. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1254. IEEE80211_STYPE_ACTION);
  1255. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1256. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1257. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1258. params = (u16)(initiator << 11); /* bit 11 initiator */
  1259. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1260. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1261. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1262. ieee80211_sta_tx(dev, skb, 0);
  1263. }
  1264. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1265. u16 initiator, u16 reason)
  1266. {
  1267. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1268. struct ieee80211_hw *hw = &local->hw;
  1269. struct sta_info *sta;
  1270. int ret, i;
  1271. DECLARE_MAC_BUF(mac);
  1272. rcu_read_lock();
  1273. sta = sta_info_get(local, ra);
  1274. if (!sta) {
  1275. rcu_read_unlock();
  1276. return;
  1277. }
  1278. /* check if TID is in operational state */
  1279. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1280. if (sta->ampdu_mlme.tid_state_rx[tid]
  1281. != HT_AGG_STATE_OPERATIONAL) {
  1282. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1283. rcu_read_unlock();
  1284. return;
  1285. }
  1286. sta->ampdu_mlme.tid_state_rx[tid] =
  1287. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1288. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1289. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1290. /* stop HW Rx aggregation. ampdu_action existence
  1291. * already verified in session init so we add the BUG_ON */
  1292. BUG_ON(!local->ops->ampdu_action);
  1293. #ifdef CONFIG_MAC80211_HT_DEBUG
  1294. printk(KERN_DEBUG "Rx BA session stop requested for %s tid %u\n",
  1295. print_mac(mac, ra), tid);
  1296. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1297. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1298. ra, tid, NULL);
  1299. if (ret)
  1300. printk(KERN_DEBUG "HW problem - can not stop rx "
  1301. "aggergation for tid %d\n", tid);
  1302. /* shutdown timer has not expired */
  1303. if (initiator != WLAN_BACK_TIMER)
  1304. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1305. /* check if this is a self generated aggregation halt */
  1306. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1307. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1308. /* free the reordering buffer */
  1309. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
  1310. if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
  1311. /* release the reordered frames */
  1312. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
  1313. sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
  1314. sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
  1315. }
  1316. }
  1317. /* free resources */
  1318. kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
  1319. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1320. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1321. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
  1322. rcu_read_unlock();
  1323. }
  1324. static void ieee80211_sta_process_delba(struct net_device *dev,
  1325. struct ieee80211_mgmt *mgmt, size_t len)
  1326. {
  1327. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1328. struct sta_info *sta;
  1329. u16 tid, params;
  1330. u16 initiator;
  1331. DECLARE_MAC_BUF(mac);
  1332. rcu_read_lock();
  1333. sta = sta_info_get(local, mgmt->sa);
  1334. if (!sta) {
  1335. rcu_read_unlock();
  1336. return;
  1337. }
  1338. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1339. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1340. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1341. #ifdef CONFIG_MAC80211_HT_DEBUG
  1342. if (net_ratelimit())
  1343. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1344. print_mac(mac, mgmt->sa),
  1345. initiator ? "initiator" : "recipient", tid,
  1346. mgmt->u.action.u.delba.reason_code);
  1347. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1348. if (initiator == WLAN_BACK_INITIATOR)
  1349. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1350. WLAN_BACK_INITIATOR, 0);
  1351. else { /* WLAN_BACK_RECIPIENT */
  1352. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1353. sta->ampdu_mlme.tid_state_tx[tid] =
  1354. HT_AGG_STATE_OPERATIONAL;
  1355. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1356. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1357. WLAN_BACK_RECIPIENT);
  1358. }
  1359. rcu_read_unlock();
  1360. }
  1361. /*
  1362. * After sending add Block Ack request we activated a timer until
  1363. * add Block Ack response will arrive from the recipient.
  1364. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1365. */
  1366. void sta_addba_resp_timer_expired(unsigned long data)
  1367. {
  1368. /* not an elegant detour, but there is no choice as the timer passes
  1369. * only one argument, and both sta_info and TID are needed, so init
  1370. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1371. * array gives the sta through container_of */
  1372. u16 tid = *(u8 *)data;
  1373. struct sta_info *temp_sta = container_of((void *)data,
  1374. struct sta_info, timer_to_tid[tid]);
  1375. struct ieee80211_local *local = temp_sta->local;
  1376. struct ieee80211_hw *hw = &local->hw;
  1377. struct sta_info *sta;
  1378. u8 *state;
  1379. rcu_read_lock();
  1380. sta = sta_info_get(local, temp_sta->addr);
  1381. if (!sta) {
  1382. rcu_read_unlock();
  1383. return;
  1384. }
  1385. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1386. /* check if the TID waits for addBA response */
  1387. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1388. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1389. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1390. *state = HT_AGG_STATE_IDLE;
  1391. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1392. "expecting addBA response there", tid);
  1393. goto timer_expired_exit;
  1394. }
  1395. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1396. /* go through the state check in stop_BA_session */
  1397. *state = HT_AGG_STATE_OPERATIONAL;
  1398. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1399. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1400. WLAN_BACK_INITIATOR);
  1401. timer_expired_exit:
  1402. rcu_read_unlock();
  1403. }
  1404. /*
  1405. * After accepting the AddBA Request we activated a timer,
  1406. * resetting it after each frame that arrives from the originator.
  1407. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1408. */
  1409. void sta_rx_agg_session_timer_expired(unsigned long data)
  1410. {
  1411. /* not an elegant detour, but there is no choice as the timer passes
  1412. * only one argument, and various sta_info are needed here, so init
  1413. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1414. * array gives the sta through container_of */
  1415. u8 *ptid = (u8 *)data;
  1416. u8 *timer_to_id = ptid - *ptid;
  1417. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1418. timer_to_tid[0]);
  1419. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1420. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1421. (u16)*ptid, WLAN_BACK_TIMER,
  1422. WLAN_REASON_QSTA_TIMEOUT);
  1423. }
  1424. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1425. {
  1426. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1427. int i;
  1428. for (i = 0; i < STA_TID_NUM; i++) {
  1429. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1430. WLAN_BACK_INITIATOR);
  1431. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1432. WLAN_BACK_RECIPIENT,
  1433. WLAN_REASON_QSTA_LEAVE_QBSS);
  1434. }
  1435. }
  1436. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1437. struct ieee80211_if_sta *ifsta,
  1438. struct ieee80211_mgmt *mgmt,
  1439. size_t len)
  1440. {
  1441. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1442. u16 auth_alg, auth_transaction, status_code;
  1443. DECLARE_MAC_BUF(mac);
  1444. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1445. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1446. printk(KERN_DEBUG "%s: authentication frame received from "
  1447. "%s, but not in authenticate state - ignored\n",
  1448. dev->name, print_mac(mac, mgmt->sa));
  1449. return;
  1450. }
  1451. if (len < 24 + 6) {
  1452. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1453. "received from %s - ignored\n",
  1454. dev->name, len, print_mac(mac, mgmt->sa));
  1455. return;
  1456. }
  1457. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1458. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1459. printk(KERN_DEBUG "%s: authentication frame received from "
  1460. "unknown AP (SA=%s BSSID=%s) - "
  1461. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1462. print_mac(mac, mgmt->bssid));
  1463. return;
  1464. }
  1465. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1466. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1467. printk(KERN_DEBUG "%s: authentication frame received from "
  1468. "unknown BSSID (SA=%s BSSID=%s) - "
  1469. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1470. print_mac(mac, mgmt->bssid));
  1471. return;
  1472. }
  1473. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1474. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1475. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1476. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1477. "transaction=%d status=%d)\n",
  1478. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1479. auth_transaction, status_code);
  1480. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1481. /* IEEE 802.11 standard does not require authentication in IBSS
  1482. * networks and most implementations do not seem to use it.
  1483. * However, try to reply to authentication attempts if someone
  1484. * has actually implemented this.
  1485. * TODO: Could implement shared key authentication. */
  1486. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1487. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1488. "frame (alg=%d transaction=%d)\n",
  1489. dev->name, auth_alg, auth_transaction);
  1490. return;
  1491. }
  1492. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1493. }
  1494. if (auth_alg != ifsta->auth_alg ||
  1495. auth_transaction != ifsta->auth_transaction) {
  1496. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1497. "(alg=%d transaction=%d)\n",
  1498. dev->name, auth_alg, auth_transaction);
  1499. return;
  1500. }
  1501. if (status_code != WLAN_STATUS_SUCCESS) {
  1502. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1503. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1504. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1505. u8 algs[3];
  1506. const int num_algs = ARRAY_SIZE(algs);
  1507. int i, pos;
  1508. algs[0] = algs[1] = algs[2] = 0xff;
  1509. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1510. algs[0] = WLAN_AUTH_OPEN;
  1511. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1512. algs[1] = WLAN_AUTH_SHARED_KEY;
  1513. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1514. algs[2] = WLAN_AUTH_LEAP;
  1515. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1516. pos = 0;
  1517. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1518. pos = 1;
  1519. else
  1520. pos = 2;
  1521. for (i = 0; i < num_algs; i++) {
  1522. pos++;
  1523. if (pos >= num_algs)
  1524. pos = 0;
  1525. if (algs[pos] == ifsta->auth_alg ||
  1526. algs[pos] == 0xff)
  1527. continue;
  1528. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1529. !ieee80211_sta_wep_configured(dev))
  1530. continue;
  1531. ifsta->auth_alg = algs[pos];
  1532. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1533. "next try\n",
  1534. dev->name, ifsta->auth_alg);
  1535. break;
  1536. }
  1537. }
  1538. return;
  1539. }
  1540. switch (ifsta->auth_alg) {
  1541. case WLAN_AUTH_OPEN:
  1542. case WLAN_AUTH_LEAP:
  1543. ieee80211_auth_completed(dev, ifsta);
  1544. break;
  1545. case WLAN_AUTH_SHARED_KEY:
  1546. if (ifsta->auth_transaction == 4)
  1547. ieee80211_auth_completed(dev, ifsta);
  1548. else
  1549. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1550. break;
  1551. }
  1552. }
  1553. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1554. struct ieee80211_if_sta *ifsta,
  1555. struct ieee80211_mgmt *mgmt,
  1556. size_t len)
  1557. {
  1558. u16 reason_code;
  1559. DECLARE_MAC_BUF(mac);
  1560. if (len < 24 + 2) {
  1561. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1562. "received from %s - ignored\n",
  1563. dev->name, len, print_mac(mac, mgmt->sa));
  1564. return;
  1565. }
  1566. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1567. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1568. "unknown AP (SA=%s BSSID=%s) - "
  1569. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1570. print_mac(mac, mgmt->bssid));
  1571. return;
  1572. }
  1573. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1574. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1575. " (reason=%d)\n",
  1576. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1577. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1578. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1579. }
  1580. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1581. ifsta->state == IEEE80211_ASSOCIATE ||
  1582. ifsta->state == IEEE80211_ASSOCIATED) {
  1583. ifsta->state = IEEE80211_AUTHENTICATE;
  1584. mod_timer(&ifsta->timer, jiffies +
  1585. IEEE80211_RETRY_AUTH_INTERVAL);
  1586. }
  1587. ieee80211_set_disassoc(dev, ifsta, 1);
  1588. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1589. }
  1590. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1591. struct ieee80211_if_sta *ifsta,
  1592. struct ieee80211_mgmt *mgmt,
  1593. size_t len)
  1594. {
  1595. u16 reason_code;
  1596. DECLARE_MAC_BUF(mac);
  1597. if (len < 24 + 2) {
  1598. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1599. "received from %s - ignored\n",
  1600. dev->name, len, print_mac(mac, mgmt->sa));
  1601. return;
  1602. }
  1603. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1604. printk(KERN_DEBUG "%s: disassociation frame received from "
  1605. "unknown AP (SA=%s BSSID=%s) - "
  1606. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1607. print_mac(mac, mgmt->bssid));
  1608. return;
  1609. }
  1610. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1611. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1612. " (reason=%d)\n",
  1613. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1614. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1615. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1616. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1617. ifsta->state = IEEE80211_ASSOCIATE;
  1618. mod_timer(&ifsta->timer, jiffies +
  1619. IEEE80211_RETRY_AUTH_INTERVAL);
  1620. }
  1621. ieee80211_set_disassoc(dev, ifsta, 0);
  1622. }
  1623. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1624. struct ieee80211_if_sta *ifsta,
  1625. struct ieee80211_mgmt *mgmt,
  1626. size_t len,
  1627. int reassoc)
  1628. {
  1629. struct ieee80211_local *local = sdata->local;
  1630. struct net_device *dev = sdata->dev;
  1631. struct ieee80211_supported_band *sband;
  1632. struct sta_info *sta;
  1633. u64 rates, basic_rates;
  1634. u16 capab_info, status_code, aid;
  1635. struct ieee802_11_elems elems;
  1636. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1637. u8 *pos;
  1638. int i, j;
  1639. DECLARE_MAC_BUF(mac);
  1640. bool have_higher_than_11mbit = false;
  1641. /* AssocResp and ReassocResp have identical structure, so process both
  1642. * of them in this function. */
  1643. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1644. printk(KERN_DEBUG "%s: association frame received from "
  1645. "%s, but not in associate state - ignored\n",
  1646. dev->name, print_mac(mac, mgmt->sa));
  1647. return;
  1648. }
  1649. if (len < 24 + 6) {
  1650. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1651. "received from %s - ignored\n",
  1652. dev->name, len, print_mac(mac, mgmt->sa));
  1653. return;
  1654. }
  1655. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1656. printk(KERN_DEBUG "%s: association frame received from "
  1657. "unknown AP (SA=%s BSSID=%s) - "
  1658. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1659. print_mac(mac, mgmt->bssid));
  1660. return;
  1661. }
  1662. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1663. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1664. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1665. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1666. "status=%d aid=%d)\n",
  1667. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1668. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1669. if (status_code != WLAN_STATUS_SUCCESS) {
  1670. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1671. dev->name, status_code);
  1672. /* if this was a reassociation, ensure we try a "full"
  1673. * association next time. This works around some broken APs
  1674. * which do not correctly reject reassociation requests. */
  1675. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1676. return;
  1677. }
  1678. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1679. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1680. "set\n", dev->name, aid);
  1681. aid &= ~(BIT(15) | BIT(14));
  1682. pos = mgmt->u.assoc_resp.variable;
  1683. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1684. if (!elems.supp_rates) {
  1685. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1686. dev->name);
  1687. return;
  1688. }
  1689. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1690. ifsta->aid = aid;
  1691. ifsta->ap_capab = capab_info;
  1692. kfree(ifsta->assocresp_ies);
  1693. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1694. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1695. if (ifsta->assocresp_ies)
  1696. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1697. rcu_read_lock();
  1698. /* Add STA entry for the AP */
  1699. sta = sta_info_get(local, ifsta->bssid);
  1700. if (!sta) {
  1701. struct ieee80211_sta_bss *bss;
  1702. int err;
  1703. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1704. if (!sta) {
  1705. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1706. " the AP\n", dev->name);
  1707. rcu_read_unlock();
  1708. return;
  1709. }
  1710. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1711. local->hw.conf.channel->center_freq,
  1712. ifsta->ssid, ifsta->ssid_len);
  1713. if (bss) {
  1714. sta->last_rssi = bss->rssi;
  1715. sta->last_signal = bss->signal;
  1716. sta->last_noise = bss->noise;
  1717. ieee80211_rx_bss_put(dev, bss);
  1718. }
  1719. err = sta_info_insert(sta);
  1720. if (err) {
  1721. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1722. " the AP (error %d)\n", dev->name, err);
  1723. rcu_read_unlock();
  1724. return;
  1725. }
  1726. }
  1727. /*
  1728. * FIXME: Do we really need to update the sta_info's information here?
  1729. * We already know about the AP (we found it in our list) so it
  1730. * should already be filled with the right info, no?
  1731. * As is stands, all this is racy because typically we assume
  1732. * the information that is filled in here (except flags) doesn't
  1733. * change while a STA structure is alive. As such, it should move
  1734. * to between the sta_info_alloc() and sta_info_insert() above.
  1735. */
  1736. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1737. WLAN_STA_AUTHORIZED;
  1738. rates = 0;
  1739. basic_rates = 0;
  1740. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1741. for (i = 0; i < elems.supp_rates_len; i++) {
  1742. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1743. if (rate > 110)
  1744. have_higher_than_11mbit = true;
  1745. for (j = 0; j < sband->n_bitrates; j++) {
  1746. if (sband->bitrates[j].bitrate == rate)
  1747. rates |= BIT(j);
  1748. if (elems.supp_rates[i] & 0x80)
  1749. basic_rates |= BIT(j);
  1750. }
  1751. }
  1752. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1753. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1754. if (rate > 110)
  1755. have_higher_than_11mbit = true;
  1756. for (j = 0; j < sband->n_bitrates; j++) {
  1757. if (sband->bitrates[j].bitrate == rate)
  1758. rates |= BIT(j);
  1759. if (elems.ext_supp_rates[i] & 0x80)
  1760. basic_rates |= BIT(j);
  1761. }
  1762. }
  1763. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1764. sdata->basic_rates = basic_rates;
  1765. /* cf. IEEE 802.11 9.2.12 */
  1766. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1767. have_higher_than_11mbit)
  1768. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1769. else
  1770. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1771. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param) {
  1772. struct ieee80211_ht_bss_info bss_info;
  1773. ieee80211_ht_cap_ie_to_ht_info(
  1774. (struct ieee80211_ht_cap *)
  1775. elems.ht_cap_elem, &sta->ht_info);
  1776. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1777. (struct ieee80211_ht_addt_info *)
  1778. elems.ht_info_elem, &bss_info);
  1779. ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info);
  1780. }
  1781. rate_control_rate_init(sta, local);
  1782. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1783. sta->flags |= WLAN_STA_WME;
  1784. rcu_read_unlock();
  1785. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1786. elems.wmm_param_len);
  1787. } else
  1788. rcu_read_unlock();
  1789. /* set AID and assoc capability,
  1790. * ieee80211_set_associated() will tell the driver */
  1791. bss_conf->aid = aid;
  1792. bss_conf->assoc_capability = capab_info;
  1793. ieee80211_set_associated(dev, ifsta, 1);
  1794. ieee80211_associated(dev, ifsta);
  1795. }
  1796. /* Caller must hold local->sta_bss_lock */
  1797. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1798. struct ieee80211_sta_bss *bss)
  1799. {
  1800. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1801. u8 hash_idx;
  1802. if (bss_mesh_cfg(bss))
  1803. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1804. bss_mesh_id_len(bss));
  1805. else
  1806. hash_idx = STA_HASH(bss->bssid);
  1807. bss->hnext = local->sta_bss_hash[hash_idx];
  1808. local->sta_bss_hash[hash_idx] = bss;
  1809. }
  1810. /* Caller must hold local->sta_bss_lock */
  1811. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1812. struct ieee80211_sta_bss *bss)
  1813. {
  1814. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1815. struct ieee80211_sta_bss *b, *prev = NULL;
  1816. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1817. while (b) {
  1818. if (b == bss) {
  1819. if (!prev)
  1820. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1821. bss->hnext;
  1822. else
  1823. prev->hnext = bss->hnext;
  1824. break;
  1825. }
  1826. prev = b;
  1827. b = b->hnext;
  1828. }
  1829. }
  1830. static struct ieee80211_sta_bss *
  1831. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1832. u8 *ssid, u8 ssid_len)
  1833. {
  1834. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1835. struct ieee80211_sta_bss *bss;
  1836. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1837. if (!bss)
  1838. return NULL;
  1839. atomic_inc(&bss->users);
  1840. atomic_inc(&bss->users);
  1841. memcpy(bss->bssid, bssid, ETH_ALEN);
  1842. bss->freq = freq;
  1843. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1844. memcpy(bss->ssid, ssid, ssid_len);
  1845. bss->ssid_len = ssid_len;
  1846. }
  1847. spin_lock_bh(&local->sta_bss_lock);
  1848. /* TODO: order by RSSI? */
  1849. list_add_tail(&bss->list, &local->sta_bss_list);
  1850. __ieee80211_rx_bss_hash_add(dev, bss);
  1851. spin_unlock_bh(&local->sta_bss_lock);
  1852. return bss;
  1853. }
  1854. static struct ieee80211_sta_bss *
  1855. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1856. u8 *ssid, u8 ssid_len)
  1857. {
  1858. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1859. struct ieee80211_sta_bss *bss;
  1860. spin_lock_bh(&local->sta_bss_lock);
  1861. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1862. while (bss) {
  1863. if (!bss_mesh_cfg(bss) &&
  1864. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1865. bss->freq == freq &&
  1866. bss->ssid_len == ssid_len &&
  1867. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1868. atomic_inc(&bss->users);
  1869. break;
  1870. }
  1871. bss = bss->hnext;
  1872. }
  1873. spin_unlock_bh(&local->sta_bss_lock);
  1874. return bss;
  1875. }
  1876. #ifdef CONFIG_MAC80211_MESH
  1877. static struct ieee80211_sta_bss *
  1878. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1879. u8 *mesh_cfg, int freq)
  1880. {
  1881. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1882. struct ieee80211_sta_bss *bss;
  1883. spin_lock_bh(&local->sta_bss_lock);
  1884. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1885. while (bss) {
  1886. if (bss_mesh_cfg(bss) &&
  1887. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1888. bss->freq == freq &&
  1889. mesh_id_len == bss->mesh_id_len &&
  1890. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1891. mesh_id_len))) {
  1892. atomic_inc(&bss->users);
  1893. break;
  1894. }
  1895. bss = bss->hnext;
  1896. }
  1897. spin_unlock_bh(&local->sta_bss_lock);
  1898. return bss;
  1899. }
  1900. static struct ieee80211_sta_bss *
  1901. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1902. u8 *mesh_cfg, int mesh_config_len, int freq)
  1903. {
  1904. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1905. struct ieee80211_sta_bss *bss;
  1906. if (mesh_config_len != MESH_CFG_LEN)
  1907. return NULL;
  1908. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1909. if (!bss)
  1910. return NULL;
  1911. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1912. if (!bss->mesh_cfg) {
  1913. kfree(bss);
  1914. return NULL;
  1915. }
  1916. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1917. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1918. if (!bss->mesh_id) {
  1919. kfree(bss->mesh_cfg);
  1920. kfree(bss);
  1921. return NULL;
  1922. }
  1923. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1924. }
  1925. atomic_inc(&bss->users);
  1926. atomic_inc(&bss->users);
  1927. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1928. bss->mesh_id_len = mesh_id_len;
  1929. bss->freq = freq;
  1930. spin_lock_bh(&local->sta_bss_lock);
  1931. /* TODO: order by RSSI? */
  1932. list_add_tail(&bss->list, &local->sta_bss_list);
  1933. __ieee80211_rx_bss_hash_add(dev, bss);
  1934. spin_unlock_bh(&local->sta_bss_lock);
  1935. return bss;
  1936. }
  1937. #endif
  1938. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1939. {
  1940. kfree(bss->wpa_ie);
  1941. kfree(bss->rsn_ie);
  1942. kfree(bss->wmm_ie);
  1943. kfree(bss->ht_ie);
  1944. kfree(bss_mesh_id(bss));
  1945. kfree(bss_mesh_cfg(bss));
  1946. kfree(bss);
  1947. }
  1948. static void ieee80211_rx_bss_put(struct net_device *dev,
  1949. struct ieee80211_sta_bss *bss)
  1950. {
  1951. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1952. local_bh_disable();
  1953. if (!atomic_dec_and_lock(&bss->users, &local->sta_bss_lock)) {
  1954. local_bh_enable();
  1955. return;
  1956. }
  1957. __ieee80211_rx_bss_hash_del(dev, bss);
  1958. list_del(&bss->list);
  1959. spin_unlock_bh(&local->sta_bss_lock);
  1960. ieee80211_rx_bss_free(bss);
  1961. }
  1962. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1963. {
  1964. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1965. spin_lock_init(&local->sta_bss_lock);
  1966. INIT_LIST_HEAD(&local->sta_bss_list);
  1967. }
  1968. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1969. {
  1970. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1971. struct ieee80211_sta_bss *bss, *tmp;
  1972. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1973. ieee80211_rx_bss_put(dev, bss);
  1974. }
  1975. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1976. struct ieee80211_if_sta *ifsta,
  1977. struct ieee80211_sta_bss *bss)
  1978. {
  1979. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1980. int res, rates, i, j;
  1981. struct sk_buff *skb;
  1982. struct ieee80211_mgmt *mgmt;
  1983. struct ieee80211_tx_control control;
  1984. struct rate_selection ratesel;
  1985. u8 *pos;
  1986. struct ieee80211_sub_if_data *sdata;
  1987. struct ieee80211_supported_band *sband;
  1988. union iwreq_data wrqu;
  1989. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1990. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1991. /* Remove possible STA entries from other IBSS networks. */
  1992. sta_info_flush_delayed(sdata);
  1993. if (local->ops->reset_tsf) {
  1994. /* Reset own TSF to allow time synchronization work. */
  1995. local->ops->reset_tsf(local_to_hw(local));
  1996. }
  1997. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1998. res = ieee80211_if_config(dev);
  1999. if (res)
  2000. return res;
  2001. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  2002. sdata->drop_unencrypted = bss->capability &
  2003. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  2004. res = ieee80211_set_freq(dev, bss->freq);
  2005. if (res)
  2006. return res;
  2007. /* Set beacon template */
  2008. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2009. do {
  2010. if (!skb)
  2011. break;
  2012. skb_reserve(skb, local->hw.extra_tx_headroom);
  2013. mgmt = (struct ieee80211_mgmt *)
  2014. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2015. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2016. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2017. IEEE80211_STYPE_BEACON);
  2018. memset(mgmt->da, 0xff, ETH_ALEN);
  2019. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2020. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2021. mgmt->u.beacon.beacon_int =
  2022. cpu_to_le16(local->hw.conf.beacon_int);
  2023. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2024. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2025. *pos++ = WLAN_EID_SSID;
  2026. *pos++ = ifsta->ssid_len;
  2027. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2028. rates = bss->supp_rates_len;
  2029. if (rates > 8)
  2030. rates = 8;
  2031. pos = skb_put(skb, 2 + rates);
  2032. *pos++ = WLAN_EID_SUPP_RATES;
  2033. *pos++ = rates;
  2034. memcpy(pos, bss->supp_rates, rates);
  2035. if (bss->band == IEEE80211_BAND_2GHZ) {
  2036. pos = skb_put(skb, 2 + 1);
  2037. *pos++ = WLAN_EID_DS_PARAMS;
  2038. *pos++ = 1;
  2039. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  2040. }
  2041. pos = skb_put(skb, 2 + 2);
  2042. *pos++ = WLAN_EID_IBSS_PARAMS;
  2043. *pos++ = 2;
  2044. /* FIX: set ATIM window based on scan results */
  2045. *pos++ = 0;
  2046. *pos++ = 0;
  2047. if (bss->supp_rates_len > 8) {
  2048. rates = bss->supp_rates_len - 8;
  2049. pos = skb_put(skb, 2 + rates);
  2050. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2051. *pos++ = rates;
  2052. memcpy(pos, &bss->supp_rates[8], rates);
  2053. }
  2054. memset(&control, 0, sizeof(control));
  2055. rate_control_get_rate(dev, sband, skb, &ratesel);
  2056. if (!ratesel.rate) {
  2057. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2058. "for IBSS beacon\n", dev->name);
  2059. break;
  2060. }
  2061. control.vif = &sdata->vif;
  2062. control.tx_rate = ratesel.rate;
  2063. if (sdata->bss_conf.use_short_preamble &&
  2064. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  2065. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  2066. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2067. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2068. control.retry_limit = 1;
  2069. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2070. if (ifsta->probe_resp) {
  2071. mgmt = (struct ieee80211_mgmt *)
  2072. ifsta->probe_resp->data;
  2073. mgmt->frame_control =
  2074. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2075. IEEE80211_STYPE_PROBE_RESP);
  2076. } else {
  2077. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2078. "template for IBSS\n", dev->name);
  2079. }
  2080. if (local->ops->beacon_update &&
  2081. local->ops->beacon_update(local_to_hw(local),
  2082. skb, &control) == 0) {
  2083. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2084. "template\n", dev->name);
  2085. skb = NULL;
  2086. }
  2087. rates = 0;
  2088. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2089. for (i = 0; i < bss->supp_rates_len; i++) {
  2090. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2091. for (j = 0; j < sband->n_bitrates; j++)
  2092. if (sband->bitrates[j].bitrate == bitrate)
  2093. rates |= BIT(j);
  2094. }
  2095. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2096. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2097. } while (0);
  2098. if (skb) {
  2099. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2100. "template\n", dev->name);
  2101. dev_kfree_skb(skb);
  2102. }
  2103. ifsta->state = IEEE80211_IBSS_JOINED;
  2104. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2105. memset(&wrqu, 0, sizeof(wrqu));
  2106. memcpy(wrqu.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  2107. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  2108. return res;
  2109. }
  2110. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2111. struct ieee802_11_elems *elems,
  2112. enum ieee80211_band band)
  2113. {
  2114. struct ieee80211_supported_band *sband;
  2115. struct ieee80211_rate *bitrates;
  2116. size_t num_rates;
  2117. u64 supp_rates;
  2118. int i, j;
  2119. sband = local->hw.wiphy->bands[band];
  2120. if (!sband) {
  2121. WARN_ON(1);
  2122. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2123. }
  2124. bitrates = sband->bitrates;
  2125. num_rates = sband->n_bitrates;
  2126. supp_rates = 0;
  2127. for (i = 0; i < elems->supp_rates_len +
  2128. elems->ext_supp_rates_len; i++) {
  2129. u8 rate = 0;
  2130. int own_rate;
  2131. if (i < elems->supp_rates_len)
  2132. rate = elems->supp_rates[i];
  2133. else if (elems->ext_supp_rates)
  2134. rate = elems->ext_supp_rates
  2135. [i - elems->supp_rates_len];
  2136. own_rate = 5 * (rate & 0x7f);
  2137. for (j = 0; j < num_rates; j++)
  2138. if (bitrates[j].bitrate == own_rate)
  2139. supp_rates |= BIT(j);
  2140. }
  2141. return supp_rates;
  2142. }
  2143. static void ieee80211_rx_bss_info(struct net_device *dev,
  2144. struct ieee80211_mgmt *mgmt,
  2145. size_t len,
  2146. struct ieee80211_rx_status *rx_status,
  2147. int beacon)
  2148. {
  2149. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2150. struct ieee802_11_elems elems;
  2151. size_t baselen;
  2152. int freq, clen;
  2153. struct ieee80211_sta_bss *bss;
  2154. struct sta_info *sta;
  2155. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2156. u64 beacon_timestamp, rx_timestamp;
  2157. struct ieee80211_channel *channel;
  2158. DECLARE_MAC_BUF(mac);
  2159. DECLARE_MAC_BUF(mac2);
  2160. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2161. return; /* ignore ProbeResp to foreign address */
  2162. #if 0
  2163. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2164. dev->name, beacon ? "Beacon" : "Probe Response",
  2165. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2166. #endif
  2167. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2168. if (baselen > len)
  2169. return;
  2170. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2171. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2172. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2173. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2174. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2175. rx_status->band);
  2176. mesh_neighbour_update(mgmt->sa, rates, dev,
  2177. mesh_peer_accepts_plinks(&elems, dev));
  2178. }
  2179. rcu_read_lock();
  2180. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2181. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2182. (sta = sta_info_get(local, mgmt->sa))) {
  2183. u64 prev_rates;
  2184. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2185. rx_status->band);
  2186. prev_rates = sta->supp_rates[rx_status->band];
  2187. sta->supp_rates[rx_status->band] &= supp_rates;
  2188. if (sta->supp_rates[rx_status->band] == 0) {
  2189. /* No matching rates - this should not really happen.
  2190. * Make sure that at least one rate is marked
  2191. * supported to avoid issues with TX rate ctrl. */
  2192. sta->supp_rates[rx_status->band] =
  2193. sdata->u.sta.supp_rates_bits[rx_status->band];
  2194. }
  2195. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2196. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2197. "%s based on beacon info (0x%llx & 0x%llx -> "
  2198. "0x%llx)\n",
  2199. dev->name, print_mac(mac, sta->addr),
  2200. (unsigned long long) prev_rates,
  2201. (unsigned long long) supp_rates,
  2202. (unsigned long long) sta->supp_rates[rx_status->band]);
  2203. }
  2204. }
  2205. rcu_read_unlock();
  2206. if (elems.ds_params && elems.ds_params_len == 1)
  2207. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2208. else
  2209. freq = rx_status->freq;
  2210. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2211. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2212. return;
  2213. #ifdef CONFIG_MAC80211_MESH
  2214. if (elems.mesh_config)
  2215. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2216. elems.mesh_id_len, elems.mesh_config, freq);
  2217. else
  2218. #endif
  2219. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2220. elems.ssid, elems.ssid_len);
  2221. if (!bss) {
  2222. #ifdef CONFIG_MAC80211_MESH
  2223. if (elems.mesh_config)
  2224. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2225. elems.mesh_id_len, elems.mesh_config,
  2226. elems.mesh_config_len, freq);
  2227. else
  2228. #endif
  2229. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2230. elems.ssid, elems.ssid_len);
  2231. if (!bss)
  2232. return;
  2233. } else {
  2234. #if 0
  2235. /* TODO: order by RSSI? */
  2236. spin_lock_bh(&local->sta_bss_lock);
  2237. list_move_tail(&bss->list, &local->sta_bss_list);
  2238. spin_unlock_bh(&local->sta_bss_lock);
  2239. #endif
  2240. }
  2241. /* save the ERP value so that it is available at association time */
  2242. if (elems.erp_info && elems.erp_info_len >= 1) {
  2243. bss->erp_value = elems.erp_info[0];
  2244. bss->has_erp_value = 1;
  2245. }
  2246. if (elems.ht_cap_elem &&
  2247. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2248. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2249. kfree(bss->ht_ie);
  2250. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2251. if (bss->ht_ie) {
  2252. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2253. elems.ht_cap_elem_len + 2);
  2254. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2255. } else
  2256. bss->ht_ie_len = 0;
  2257. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2258. kfree(bss->ht_ie);
  2259. bss->ht_ie = NULL;
  2260. bss->ht_ie_len = 0;
  2261. }
  2262. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2263. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2264. bss->supp_rates_len = 0;
  2265. if (elems.supp_rates) {
  2266. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2267. if (clen > elems.supp_rates_len)
  2268. clen = elems.supp_rates_len;
  2269. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2270. clen);
  2271. bss->supp_rates_len += clen;
  2272. }
  2273. if (elems.ext_supp_rates) {
  2274. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2275. if (clen > elems.ext_supp_rates_len)
  2276. clen = elems.ext_supp_rates_len;
  2277. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2278. elems.ext_supp_rates, clen);
  2279. bss->supp_rates_len += clen;
  2280. }
  2281. bss->band = rx_status->band;
  2282. bss->timestamp = beacon_timestamp;
  2283. bss->last_update = jiffies;
  2284. bss->rssi = rx_status->ssi;
  2285. bss->signal = rx_status->signal;
  2286. bss->noise = rx_status->noise;
  2287. if (!beacon && !bss->probe_resp)
  2288. bss->probe_resp = true;
  2289. /*
  2290. * In STA mode, the remaining parameters should not be overridden
  2291. * by beacons because they're not necessarily accurate there.
  2292. */
  2293. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2294. bss->probe_resp && beacon) {
  2295. ieee80211_rx_bss_put(dev, bss);
  2296. return;
  2297. }
  2298. if (elems.wpa &&
  2299. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2300. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2301. kfree(bss->wpa_ie);
  2302. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2303. if (bss->wpa_ie) {
  2304. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2305. bss->wpa_ie_len = elems.wpa_len + 2;
  2306. } else
  2307. bss->wpa_ie_len = 0;
  2308. } else if (!elems.wpa && bss->wpa_ie) {
  2309. kfree(bss->wpa_ie);
  2310. bss->wpa_ie = NULL;
  2311. bss->wpa_ie_len = 0;
  2312. }
  2313. if (elems.rsn &&
  2314. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2315. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2316. kfree(bss->rsn_ie);
  2317. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2318. if (bss->rsn_ie) {
  2319. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2320. bss->rsn_ie_len = elems.rsn_len + 2;
  2321. } else
  2322. bss->rsn_ie_len = 0;
  2323. } else if (!elems.rsn && bss->rsn_ie) {
  2324. kfree(bss->rsn_ie);
  2325. bss->rsn_ie = NULL;
  2326. bss->rsn_ie_len = 0;
  2327. }
  2328. /*
  2329. * Cf.
  2330. * http://www.wipo.int/pctdb/en/wo.jsp?wo=2007047181&IA=WO2007047181&DISPLAY=DESC
  2331. *
  2332. * quoting:
  2333. *
  2334. * In particular, "Wi-Fi CERTIFIED for WMM - Support for Multimedia
  2335. * Applications with Quality of Service in Wi-Fi Networks," Wi- Fi
  2336. * Alliance (September 1, 2004) is incorporated by reference herein.
  2337. * The inclusion of the WMM Parameters in probe responses and
  2338. * association responses is mandatory for WMM enabled networks. The
  2339. * inclusion of the WMM Parameters in beacons, however, is optional.
  2340. */
  2341. if (elems.wmm_param &&
  2342. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2343. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2344. kfree(bss->wmm_ie);
  2345. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2346. if (bss->wmm_ie) {
  2347. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2348. elems.wmm_param_len + 2);
  2349. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2350. } else
  2351. bss->wmm_ie_len = 0;
  2352. } else if (elems.wmm_info &&
  2353. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_info_len ||
  2354. memcmp(bss->wmm_ie, elems.wmm_info, elems.wmm_info_len))) {
  2355. /* As for certain AP's Fifth bit is not set in WMM IE in
  2356. * beacon frames.So while parsing the beacon frame the
  2357. * wmm_info structure is used instead of wmm_param.
  2358. * wmm_info structure was never used to set bss->wmm_ie.
  2359. * This code fixes this problem by copying the WME
  2360. * information from wmm_info to bss->wmm_ie and enabling
  2361. * n-band association.
  2362. */
  2363. kfree(bss->wmm_ie);
  2364. bss->wmm_ie = kmalloc(elems.wmm_info_len + 2, GFP_ATOMIC);
  2365. if (bss->wmm_ie) {
  2366. memcpy(bss->wmm_ie, elems.wmm_info - 2,
  2367. elems.wmm_info_len + 2);
  2368. bss->wmm_ie_len = elems.wmm_info_len + 2;
  2369. } else
  2370. bss->wmm_ie_len = 0;
  2371. } else if (!elems.wmm_param && !elems.wmm_info && bss->wmm_ie) {
  2372. kfree(bss->wmm_ie);
  2373. bss->wmm_ie = NULL;
  2374. bss->wmm_ie_len = 0;
  2375. }
  2376. /* check if we need to merge IBSS */
  2377. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2378. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2379. bss->capability & WLAN_CAPABILITY_IBSS &&
  2380. bss->freq == local->oper_channel->center_freq &&
  2381. elems.ssid_len == sdata->u.sta.ssid_len &&
  2382. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2383. if (rx_status->flag & RX_FLAG_TSFT) {
  2384. /* in order for correct IBSS merging we need mactime
  2385. *
  2386. * since mactime is defined as the time the first data
  2387. * symbol of the frame hits the PHY, and the timestamp
  2388. * of the beacon is defined as "the time that the data
  2389. * symbol containing the first bit of the timestamp is
  2390. * transmitted to the PHY plus the transmitting STA’s
  2391. * delays through its local PHY from the MAC-PHY
  2392. * interface to its interface with the WM"
  2393. * (802.11 11.1.2) - equals the time this bit arrives at
  2394. * the receiver - we have to take into account the
  2395. * offset between the two.
  2396. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2397. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2398. */
  2399. int rate = local->hw.wiphy->bands[rx_status->band]->
  2400. bitrates[rx_status->rate_idx].bitrate;
  2401. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2402. } else if (local && local->ops && local->ops->get_tsf)
  2403. /* second best option: get current TSF */
  2404. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2405. else
  2406. /* can't merge without knowing the TSF */
  2407. rx_timestamp = -1LLU;
  2408. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2409. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2410. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2411. print_mac(mac, mgmt->sa),
  2412. print_mac(mac2, mgmt->bssid),
  2413. (unsigned long long)rx_timestamp,
  2414. (unsigned long long)beacon_timestamp,
  2415. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2416. jiffies);
  2417. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2418. if (beacon_timestamp > rx_timestamp) {
  2419. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2420. if (net_ratelimit())
  2421. #endif
  2422. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2423. "local TSF - IBSS merge with BSSID %s\n",
  2424. dev->name, print_mac(mac, mgmt->bssid));
  2425. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2426. ieee80211_ibss_add_sta(dev, NULL,
  2427. mgmt->bssid, mgmt->sa);
  2428. }
  2429. }
  2430. ieee80211_rx_bss_put(dev, bss);
  2431. }
  2432. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2433. struct ieee80211_mgmt *mgmt,
  2434. size_t len,
  2435. struct ieee80211_rx_status *rx_status)
  2436. {
  2437. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2438. }
  2439. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2440. struct ieee80211_mgmt *mgmt,
  2441. size_t len,
  2442. struct ieee80211_rx_status *rx_status)
  2443. {
  2444. struct ieee80211_sub_if_data *sdata;
  2445. struct ieee80211_if_sta *ifsta;
  2446. size_t baselen;
  2447. struct ieee802_11_elems elems;
  2448. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2449. struct ieee80211_conf *conf = &local->hw.conf;
  2450. u32 changed = 0;
  2451. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2452. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2453. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2454. return;
  2455. ifsta = &sdata->u.sta;
  2456. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2457. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2458. return;
  2459. /* Process beacon from the current BSS */
  2460. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2461. if (baselen > len)
  2462. return;
  2463. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2464. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2465. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2466. elems.wmm_param_len);
  2467. }
  2468. /* Do not send changes to driver if we are scanning. This removes
  2469. * requirement that driver's bss_info_changed function needs to be
  2470. * atomic. */
  2471. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2472. return;
  2473. if (elems.erp_info && elems.erp_info_len >= 1)
  2474. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2475. else {
  2476. u16 capab = le16_to_cpu(mgmt->u.beacon.capab_info);
  2477. changed |= ieee80211_handle_protect_preamb(sdata, false,
  2478. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  2479. }
  2480. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2481. elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2482. struct ieee80211_ht_bss_info bss_info;
  2483. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2484. (struct ieee80211_ht_addt_info *)
  2485. elems.ht_info_elem, &bss_info);
  2486. changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf,
  2487. &bss_info);
  2488. }
  2489. ieee80211_bss_info_change_notify(sdata, changed);
  2490. }
  2491. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2492. struct ieee80211_if_sta *ifsta,
  2493. struct ieee80211_mgmt *mgmt,
  2494. size_t len,
  2495. struct ieee80211_rx_status *rx_status)
  2496. {
  2497. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2498. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2499. int tx_last_beacon;
  2500. struct sk_buff *skb;
  2501. struct ieee80211_mgmt *resp;
  2502. u8 *pos, *end;
  2503. DECLARE_MAC_BUF(mac);
  2504. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2505. DECLARE_MAC_BUF(mac2);
  2506. DECLARE_MAC_BUF(mac3);
  2507. #endif
  2508. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2509. ifsta->state != IEEE80211_IBSS_JOINED ||
  2510. len < 24 + 2 || !ifsta->probe_resp)
  2511. return;
  2512. if (local->ops->tx_last_beacon)
  2513. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2514. else
  2515. tx_last_beacon = 1;
  2516. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2517. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2518. "%s (tx_last_beacon=%d)\n",
  2519. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2520. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2521. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2522. if (!tx_last_beacon)
  2523. return;
  2524. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2525. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2526. return;
  2527. end = ((u8 *) mgmt) + len;
  2528. pos = mgmt->u.probe_req.variable;
  2529. if (pos[0] != WLAN_EID_SSID ||
  2530. pos + 2 + pos[1] > end) {
  2531. if (net_ratelimit()) {
  2532. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2533. "from %s\n",
  2534. dev->name, print_mac(mac, mgmt->sa));
  2535. }
  2536. return;
  2537. }
  2538. if (pos[1] != 0 &&
  2539. (pos[1] != ifsta->ssid_len ||
  2540. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2541. /* Ignore ProbeReq for foreign SSID */
  2542. return;
  2543. }
  2544. /* Reply with ProbeResp */
  2545. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2546. if (!skb)
  2547. return;
  2548. resp = (struct ieee80211_mgmt *) skb->data;
  2549. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2550. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2551. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2552. dev->name, print_mac(mac, resp->da));
  2553. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2554. ieee80211_sta_tx(dev, skb, 0);
  2555. }
  2556. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2557. struct ieee80211_if_sta *ifsta,
  2558. struct ieee80211_mgmt *mgmt,
  2559. size_t len,
  2560. struct ieee80211_rx_status *rx_status)
  2561. {
  2562. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2563. if (len < IEEE80211_MIN_ACTION_SIZE)
  2564. return;
  2565. switch (mgmt->u.action.category) {
  2566. case WLAN_CATEGORY_BACK:
  2567. switch (mgmt->u.action.u.addba_req.action_code) {
  2568. case WLAN_ACTION_ADDBA_REQ:
  2569. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2570. sizeof(mgmt->u.action.u.addba_req)))
  2571. break;
  2572. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2573. break;
  2574. case WLAN_ACTION_ADDBA_RESP:
  2575. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2576. sizeof(mgmt->u.action.u.addba_resp)))
  2577. break;
  2578. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2579. break;
  2580. case WLAN_ACTION_DELBA:
  2581. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2582. sizeof(mgmt->u.action.u.delba)))
  2583. break;
  2584. ieee80211_sta_process_delba(dev, mgmt, len);
  2585. break;
  2586. default:
  2587. if (net_ratelimit())
  2588. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2589. dev->name);
  2590. break;
  2591. }
  2592. break;
  2593. case PLINK_CATEGORY:
  2594. if (ieee80211_vif_is_mesh(&sdata->vif))
  2595. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2596. break;
  2597. case MESH_PATH_SEL_CATEGORY:
  2598. if (ieee80211_vif_is_mesh(&sdata->vif))
  2599. mesh_rx_path_sel_frame(dev, mgmt, len);
  2600. break;
  2601. default:
  2602. if (net_ratelimit())
  2603. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2604. "category=%d\n", dev->name, mgmt->u.action.category);
  2605. break;
  2606. }
  2607. }
  2608. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2609. struct ieee80211_rx_status *rx_status)
  2610. {
  2611. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2612. struct ieee80211_sub_if_data *sdata;
  2613. struct ieee80211_if_sta *ifsta;
  2614. struct ieee80211_mgmt *mgmt;
  2615. u16 fc;
  2616. if (skb->len < 24)
  2617. goto fail;
  2618. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2619. ifsta = &sdata->u.sta;
  2620. mgmt = (struct ieee80211_mgmt *) skb->data;
  2621. fc = le16_to_cpu(mgmt->frame_control);
  2622. switch (fc & IEEE80211_FCTL_STYPE) {
  2623. case IEEE80211_STYPE_PROBE_REQ:
  2624. case IEEE80211_STYPE_PROBE_RESP:
  2625. case IEEE80211_STYPE_BEACON:
  2626. case IEEE80211_STYPE_ACTION:
  2627. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2628. case IEEE80211_STYPE_AUTH:
  2629. case IEEE80211_STYPE_ASSOC_RESP:
  2630. case IEEE80211_STYPE_REASSOC_RESP:
  2631. case IEEE80211_STYPE_DEAUTH:
  2632. case IEEE80211_STYPE_DISASSOC:
  2633. skb_queue_tail(&ifsta->skb_queue, skb);
  2634. queue_work(local->hw.workqueue, &ifsta->work);
  2635. return;
  2636. default:
  2637. printk(KERN_DEBUG "%s: received unknown management frame - "
  2638. "stype=%d\n", dev->name,
  2639. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2640. break;
  2641. }
  2642. fail:
  2643. kfree_skb(skb);
  2644. }
  2645. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2646. struct sk_buff *skb)
  2647. {
  2648. struct ieee80211_rx_status *rx_status;
  2649. struct ieee80211_sub_if_data *sdata;
  2650. struct ieee80211_if_sta *ifsta;
  2651. struct ieee80211_mgmt *mgmt;
  2652. u16 fc;
  2653. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2654. ifsta = &sdata->u.sta;
  2655. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2656. mgmt = (struct ieee80211_mgmt *) skb->data;
  2657. fc = le16_to_cpu(mgmt->frame_control);
  2658. switch (fc & IEEE80211_FCTL_STYPE) {
  2659. case IEEE80211_STYPE_PROBE_REQ:
  2660. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2661. rx_status);
  2662. break;
  2663. case IEEE80211_STYPE_PROBE_RESP:
  2664. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2665. break;
  2666. case IEEE80211_STYPE_BEACON:
  2667. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2668. break;
  2669. case IEEE80211_STYPE_AUTH:
  2670. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2671. break;
  2672. case IEEE80211_STYPE_ASSOC_RESP:
  2673. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2674. break;
  2675. case IEEE80211_STYPE_REASSOC_RESP:
  2676. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2677. break;
  2678. case IEEE80211_STYPE_DEAUTH:
  2679. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2680. break;
  2681. case IEEE80211_STYPE_DISASSOC:
  2682. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2683. break;
  2684. case IEEE80211_STYPE_ACTION:
  2685. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2686. break;
  2687. }
  2688. kfree_skb(skb);
  2689. }
  2690. ieee80211_rx_result
  2691. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2692. struct ieee80211_rx_status *rx_status)
  2693. {
  2694. struct ieee80211_mgmt *mgmt;
  2695. u16 fc;
  2696. if (skb->len < 2)
  2697. return RX_DROP_UNUSABLE;
  2698. mgmt = (struct ieee80211_mgmt *) skb->data;
  2699. fc = le16_to_cpu(mgmt->frame_control);
  2700. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2701. return RX_CONTINUE;
  2702. if (skb->len < 24)
  2703. return RX_DROP_MONITOR;
  2704. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2705. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2706. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2707. skb->len, rx_status);
  2708. dev_kfree_skb(skb);
  2709. return RX_QUEUED;
  2710. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2711. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2712. rx_status);
  2713. dev_kfree_skb(skb);
  2714. return RX_QUEUED;
  2715. }
  2716. }
  2717. return RX_CONTINUE;
  2718. }
  2719. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2720. {
  2721. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2722. int active = 0;
  2723. struct sta_info *sta;
  2724. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2725. rcu_read_lock();
  2726. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2727. if (sta->sdata == sdata &&
  2728. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2729. jiffies)) {
  2730. active++;
  2731. break;
  2732. }
  2733. }
  2734. rcu_read_unlock();
  2735. return active;
  2736. }
  2737. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2738. {
  2739. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2740. struct sta_info *sta, *tmp;
  2741. LIST_HEAD(tmp_list);
  2742. DECLARE_MAC_BUF(mac);
  2743. unsigned long flags;
  2744. spin_lock_irqsave(&local->sta_lock, flags);
  2745. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2746. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2747. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2748. dev->name, print_mac(mac, sta->addr));
  2749. __sta_info_unlink(&sta);
  2750. if (sta)
  2751. list_add(&sta->list, &tmp_list);
  2752. }
  2753. spin_unlock_irqrestore(&local->sta_lock, flags);
  2754. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2755. sta_info_destroy(sta);
  2756. }
  2757. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2758. struct ieee80211_if_sta *ifsta)
  2759. {
  2760. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2761. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2762. if (ieee80211_sta_active_ibss(dev))
  2763. return;
  2764. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2765. "IBSS networks with same SSID (merge)\n", dev->name);
  2766. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2767. }
  2768. #ifdef CONFIG_MAC80211_MESH
  2769. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2770. struct ieee80211_if_sta *ifsta)
  2771. {
  2772. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2773. bool free_plinks;
  2774. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2775. mesh_path_expire(dev);
  2776. free_plinks = mesh_plink_availables(sdata);
  2777. if (free_plinks != sdata->u.sta.accepting_plinks)
  2778. ieee80211_if_config_beacon(dev);
  2779. mod_timer(&ifsta->timer, jiffies +
  2780. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2781. }
  2782. void ieee80211_start_mesh(struct net_device *dev)
  2783. {
  2784. struct ieee80211_if_sta *ifsta;
  2785. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2786. ifsta = &sdata->u.sta;
  2787. ifsta->state = IEEE80211_MESH_UP;
  2788. ieee80211_sta_timer((unsigned long)sdata);
  2789. }
  2790. #endif
  2791. void ieee80211_sta_timer(unsigned long data)
  2792. {
  2793. struct ieee80211_sub_if_data *sdata =
  2794. (struct ieee80211_sub_if_data *) data;
  2795. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2796. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2797. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2798. queue_work(local->hw.workqueue, &ifsta->work);
  2799. }
  2800. void ieee80211_sta_work(struct work_struct *work)
  2801. {
  2802. struct ieee80211_sub_if_data *sdata =
  2803. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2804. struct net_device *dev = sdata->dev;
  2805. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2806. struct ieee80211_if_sta *ifsta;
  2807. struct sk_buff *skb;
  2808. if (!netif_running(dev))
  2809. return;
  2810. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2811. return;
  2812. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2813. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2814. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2815. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2816. "(type=%d)\n", dev->name, sdata->vif.type);
  2817. return;
  2818. }
  2819. ifsta = &sdata->u.sta;
  2820. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2821. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2822. #ifdef CONFIG_MAC80211_MESH
  2823. if (ifsta->preq_queue_len &&
  2824. time_after(jiffies,
  2825. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2826. mesh_path_start_discovery(dev);
  2827. #endif
  2828. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2829. ifsta->state != IEEE80211_ASSOCIATE &&
  2830. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2831. if (ifsta->scan_ssid_len)
  2832. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2833. else
  2834. ieee80211_sta_start_scan(dev, NULL, 0);
  2835. return;
  2836. }
  2837. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2838. if (ieee80211_sta_config_auth(dev, ifsta))
  2839. return;
  2840. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2841. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2842. return;
  2843. switch (ifsta->state) {
  2844. case IEEE80211_DISABLED:
  2845. break;
  2846. case IEEE80211_AUTHENTICATE:
  2847. ieee80211_authenticate(dev, ifsta);
  2848. break;
  2849. case IEEE80211_ASSOCIATE:
  2850. ieee80211_associate(dev, ifsta);
  2851. break;
  2852. case IEEE80211_ASSOCIATED:
  2853. ieee80211_associated(dev, ifsta);
  2854. break;
  2855. case IEEE80211_IBSS_SEARCH:
  2856. ieee80211_sta_find_ibss(dev, ifsta);
  2857. break;
  2858. case IEEE80211_IBSS_JOINED:
  2859. ieee80211_sta_merge_ibss(dev, ifsta);
  2860. break;
  2861. #ifdef CONFIG_MAC80211_MESH
  2862. case IEEE80211_MESH_UP:
  2863. ieee80211_mesh_housekeeping(dev, ifsta);
  2864. break;
  2865. #endif
  2866. default:
  2867. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2868. ifsta->state);
  2869. break;
  2870. }
  2871. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2872. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2873. "mixed-cell disabled - disassociate\n", dev->name);
  2874. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2875. ieee80211_set_disassoc(dev, ifsta, 0);
  2876. }
  2877. }
  2878. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2879. struct ieee80211_if_sta *ifsta)
  2880. {
  2881. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2882. if (local->ops->reset_tsf) {
  2883. /* Reset own TSF to allow time synchronization work. */
  2884. local->ops->reset_tsf(local_to_hw(local));
  2885. }
  2886. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2887. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2888. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2889. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2890. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2891. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2892. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2893. else
  2894. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2895. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2896. ifsta->auth_alg);
  2897. ifsta->auth_transaction = -1;
  2898. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2899. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2900. netif_carrier_off(dev);
  2901. }
  2902. void ieee80211_sta_req_auth(struct net_device *dev,
  2903. struct ieee80211_if_sta *ifsta)
  2904. {
  2905. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2906. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2907. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2908. return;
  2909. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2910. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2911. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2912. IEEE80211_STA_AUTO_SSID_SEL))) {
  2913. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2914. queue_work(local->hw.workqueue, &ifsta->work);
  2915. }
  2916. }
  2917. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2918. const char *ssid, int ssid_len)
  2919. {
  2920. int tmp, hidden_ssid;
  2921. if (ssid_len == ifsta->ssid_len &&
  2922. !memcmp(ifsta->ssid, ssid, ssid_len))
  2923. return 1;
  2924. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2925. return 0;
  2926. hidden_ssid = 1;
  2927. tmp = ssid_len;
  2928. while (tmp--) {
  2929. if (ssid[tmp] != '\0') {
  2930. hidden_ssid = 0;
  2931. break;
  2932. }
  2933. }
  2934. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2935. return 1;
  2936. if (ssid_len == 1 && ssid[0] == ' ')
  2937. return 1;
  2938. return 0;
  2939. }
  2940. static int ieee80211_sta_config_auth(struct net_device *dev,
  2941. struct ieee80211_if_sta *ifsta)
  2942. {
  2943. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2944. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2945. struct ieee80211_sta_bss *bss, *selected = NULL;
  2946. int top_rssi = 0, freq;
  2947. spin_lock_bh(&local->sta_bss_lock);
  2948. freq = local->oper_channel->center_freq;
  2949. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2950. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2951. continue;
  2952. if ((ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2953. IEEE80211_STA_AUTO_BSSID_SEL |
  2954. IEEE80211_STA_AUTO_CHANNEL_SEL)) &&
  2955. (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2956. !!sdata->default_key))
  2957. continue;
  2958. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2959. bss->freq != freq)
  2960. continue;
  2961. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2962. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2963. continue;
  2964. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2965. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2966. continue;
  2967. if (!selected || top_rssi < bss->rssi) {
  2968. selected = bss;
  2969. top_rssi = bss->rssi;
  2970. }
  2971. }
  2972. if (selected)
  2973. atomic_inc(&selected->users);
  2974. spin_unlock_bh(&local->sta_bss_lock);
  2975. if (selected) {
  2976. ieee80211_set_freq(dev, selected->freq);
  2977. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2978. ieee80211_sta_set_ssid(dev, selected->ssid,
  2979. selected->ssid_len);
  2980. ieee80211_sta_set_bssid(dev, selected->bssid);
  2981. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2982. ieee80211_rx_bss_put(dev, selected);
  2983. ifsta->state = IEEE80211_AUTHENTICATE;
  2984. ieee80211_sta_reset_auth(dev, ifsta);
  2985. return 0;
  2986. } else {
  2987. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2988. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2989. ieee80211_sta_start_scan(dev, NULL, 0);
  2990. else
  2991. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2992. ifsta->ssid_len);
  2993. ifsta->state = IEEE80211_AUTHENTICATE;
  2994. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2995. } else
  2996. ifsta->state = IEEE80211_DISABLED;
  2997. }
  2998. return -1;
  2999. }
  3000. static int ieee80211_sta_create_ibss(struct net_device *dev,
  3001. struct ieee80211_if_sta *ifsta)
  3002. {
  3003. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3004. struct ieee80211_sta_bss *bss;
  3005. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3006. struct ieee80211_supported_band *sband;
  3007. u8 bssid[ETH_ALEN], *pos;
  3008. int i;
  3009. int ret;
  3010. DECLARE_MAC_BUF(mac);
  3011. #if 0
  3012. /* Easier testing, use fixed BSSID. */
  3013. memset(bssid, 0xfe, ETH_ALEN);
  3014. #else
  3015. /* Generate random, not broadcast, locally administered BSSID. Mix in
  3016. * own MAC address to make sure that devices that do not have proper
  3017. * random number generator get different BSSID. */
  3018. get_random_bytes(bssid, ETH_ALEN);
  3019. for (i = 0; i < ETH_ALEN; i++)
  3020. bssid[i] ^= dev->dev_addr[i];
  3021. bssid[0] &= ~0x01;
  3022. bssid[0] |= 0x02;
  3023. #endif
  3024. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  3025. dev->name, print_mac(mac, bssid));
  3026. bss = ieee80211_rx_bss_add(dev, bssid,
  3027. local->hw.conf.channel->center_freq,
  3028. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  3029. if (!bss)
  3030. return -ENOMEM;
  3031. bss->band = local->hw.conf.channel->band;
  3032. sband = local->hw.wiphy->bands[bss->band];
  3033. if (local->hw.conf.beacon_int == 0)
  3034. local->hw.conf.beacon_int = 10000;
  3035. bss->beacon_int = local->hw.conf.beacon_int;
  3036. bss->last_update = jiffies;
  3037. bss->capability = WLAN_CAPABILITY_IBSS;
  3038. if (sdata->default_key) {
  3039. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  3040. } else
  3041. sdata->drop_unencrypted = 0;
  3042. bss->supp_rates_len = sband->n_bitrates;
  3043. pos = bss->supp_rates;
  3044. for (i = 0; i < sband->n_bitrates; i++) {
  3045. int rate = sband->bitrates[i].bitrate;
  3046. *pos++ = (u8) (rate / 5);
  3047. }
  3048. ret = ieee80211_sta_join_ibss(dev, ifsta, bss);
  3049. ieee80211_rx_bss_put(dev, bss);
  3050. return ret;
  3051. }
  3052. static int ieee80211_sta_find_ibss(struct net_device *dev,
  3053. struct ieee80211_if_sta *ifsta)
  3054. {
  3055. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3056. struct ieee80211_sta_bss *bss;
  3057. int found = 0;
  3058. u8 bssid[ETH_ALEN];
  3059. int active_ibss;
  3060. DECLARE_MAC_BUF(mac);
  3061. DECLARE_MAC_BUF(mac2);
  3062. if (ifsta->ssid_len == 0)
  3063. return -EINVAL;
  3064. active_ibss = ieee80211_sta_active_ibss(dev);
  3065. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3066. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  3067. dev->name, active_ibss);
  3068. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3069. spin_lock_bh(&local->sta_bss_lock);
  3070. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3071. if (ifsta->ssid_len != bss->ssid_len ||
  3072. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  3073. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  3074. continue;
  3075. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3076. printk(KERN_DEBUG " bssid=%s found\n",
  3077. print_mac(mac, bss->bssid));
  3078. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3079. memcpy(bssid, bss->bssid, ETH_ALEN);
  3080. found = 1;
  3081. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  3082. break;
  3083. }
  3084. spin_unlock_bh(&local->sta_bss_lock);
  3085. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3086. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  3087. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  3088. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3089. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  3090. (bss = ieee80211_rx_bss_get(dev, bssid,
  3091. local->hw.conf.channel->center_freq,
  3092. ifsta->ssid, ifsta->ssid_len))) {
  3093. int ret;
  3094. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  3095. " based on configured SSID\n",
  3096. dev->name, print_mac(mac, bssid));
  3097. ret = ieee80211_sta_join_ibss(dev, ifsta, bss);
  3098. ieee80211_rx_bss_put(dev, bss);
  3099. return ret;
  3100. }
  3101. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3102. printk(KERN_DEBUG " did not try to join ibss\n");
  3103. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3104. /* Selected IBSS not found in current scan results - try to scan */
  3105. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  3106. !ieee80211_sta_active_ibss(dev)) {
  3107. mod_timer(&ifsta->timer, jiffies +
  3108. IEEE80211_IBSS_MERGE_INTERVAL);
  3109. } else if (time_after(jiffies, local->last_scan_completed +
  3110. IEEE80211_SCAN_INTERVAL)) {
  3111. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  3112. "join\n", dev->name);
  3113. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  3114. ifsta->ssid_len);
  3115. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  3116. int interval = IEEE80211_SCAN_INTERVAL;
  3117. if (time_after(jiffies, ifsta->ibss_join_req +
  3118. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  3119. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  3120. (!(local->oper_channel->flags &
  3121. IEEE80211_CHAN_NO_IBSS)))
  3122. return ieee80211_sta_create_ibss(dev, ifsta);
  3123. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  3124. printk(KERN_DEBUG "%s: IBSS not allowed on"
  3125. " %d MHz\n", dev->name,
  3126. local->hw.conf.channel->center_freq);
  3127. }
  3128. /* No IBSS found - decrease scan interval and continue
  3129. * scanning. */
  3130. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3131. }
  3132. ifsta->state = IEEE80211_IBSS_SEARCH;
  3133. mod_timer(&ifsta->timer, jiffies + interval);
  3134. return 0;
  3135. }
  3136. return 0;
  3137. }
  3138. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3139. {
  3140. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3141. struct ieee80211_if_sta *ifsta;
  3142. if (len > IEEE80211_MAX_SSID_LEN)
  3143. return -EINVAL;
  3144. ifsta = &sdata->u.sta;
  3145. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  3146. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3147. memcpy(ifsta->ssid, ssid, len);
  3148. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  3149. ifsta->ssid_len = len;
  3150. if (len)
  3151. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3152. else
  3153. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3154. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3155. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3156. ifsta->ibss_join_req = jiffies;
  3157. ifsta->state = IEEE80211_IBSS_SEARCH;
  3158. return ieee80211_sta_find_ibss(dev, ifsta);
  3159. }
  3160. return 0;
  3161. }
  3162. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3163. {
  3164. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3165. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3166. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3167. *len = ifsta->ssid_len;
  3168. return 0;
  3169. }
  3170. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3171. {
  3172. struct ieee80211_sub_if_data *sdata;
  3173. struct ieee80211_if_sta *ifsta;
  3174. int res;
  3175. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3176. ifsta = &sdata->u.sta;
  3177. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3178. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3179. res = ieee80211_if_config(dev);
  3180. if (res) {
  3181. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3182. "the low-level driver\n", dev->name);
  3183. return res;
  3184. }
  3185. }
  3186. if (is_valid_ether_addr(bssid))
  3187. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3188. else
  3189. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3190. return 0;
  3191. }
  3192. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3193. struct ieee80211_sub_if_data *sdata,
  3194. int powersave)
  3195. {
  3196. struct sk_buff *skb;
  3197. struct ieee80211_hdr *nullfunc;
  3198. u16 fc;
  3199. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3200. if (!skb) {
  3201. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3202. "frame\n", sdata->dev->name);
  3203. return;
  3204. }
  3205. skb_reserve(skb, local->hw.extra_tx_headroom);
  3206. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3207. memset(nullfunc, 0, 24);
  3208. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3209. IEEE80211_FCTL_TODS;
  3210. if (powersave)
  3211. fc |= IEEE80211_FCTL_PM;
  3212. nullfunc->frame_control = cpu_to_le16(fc);
  3213. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3214. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3215. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3216. ieee80211_sta_tx(sdata->dev, skb, 0);
  3217. }
  3218. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3219. {
  3220. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3221. ieee80211_vif_is_mesh(&sdata->vif))
  3222. ieee80211_sta_timer((unsigned long)sdata);
  3223. }
  3224. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3225. {
  3226. struct ieee80211_local *local = hw_to_local(hw);
  3227. struct net_device *dev = local->scan_dev;
  3228. struct ieee80211_sub_if_data *sdata;
  3229. union iwreq_data wrqu;
  3230. local->last_scan_completed = jiffies;
  3231. memset(&wrqu, 0, sizeof(wrqu));
  3232. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3233. if (local->sta_hw_scanning) {
  3234. local->sta_hw_scanning = 0;
  3235. if (ieee80211_hw_config(local))
  3236. printk(KERN_DEBUG "%s: failed to restore operational "
  3237. "channel after scan\n", dev->name);
  3238. /* Restart STA timer for HW scan case */
  3239. rcu_read_lock();
  3240. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3241. ieee80211_restart_sta_timer(sdata);
  3242. rcu_read_unlock();
  3243. goto done;
  3244. }
  3245. local->sta_sw_scanning = 0;
  3246. if (ieee80211_hw_config(local))
  3247. printk(KERN_DEBUG "%s: failed to restore operational "
  3248. "channel after scan\n", dev->name);
  3249. netif_tx_lock_bh(local->mdev);
  3250. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3251. local->ops->configure_filter(local_to_hw(local),
  3252. FIF_BCN_PRBRESP_PROMISC,
  3253. &local->filter_flags,
  3254. local->mdev->mc_count,
  3255. local->mdev->mc_list);
  3256. netif_tx_unlock_bh(local->mdev);
  3257. rcu_read_lock();
  3258. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3259. /* No need to wake the master device. */
  3260. if (sdata->dev == local->mdev)
  3261. continue;
  3262. /* Tell AP we're back */
  3263. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3264. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3265. ieee80211_send_nullfunc(local, sdata, 0);
  3266. ieee80211_restart_sta_timer(sdata);
  3267. netif_wake_queue(sdata->dev);
  3268. }
  3269. rcu_read_unlock();
  3270. done:
  3271. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3272. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3273. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3274. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3275. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3276. !ieee80211_sta_active_ibss(dev)))
  3277. ieee80211_sta_find_ibss(dev, ifsta);
  3278. }
  3279. }
  3280. EXPORT_SYMBOL(ieee80211_scan_completed);
  3281. void ieee80211_sta_scan_work(struct work_struct *work)
  3282. {
  3283. struct ieee80211_local *local =
  3284. container_of(work, struct ieee80211_local, scan_work.work);
  3285. struct net_device *dev = local->scan_dev;
  3286. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3287. struct ieee80211_supported_band *sband;
  3288. struct ieee80211_channel *chan;
  3289. int skip;
  3290. unsigned long next_delay = 0;
  3291. if (!local->sta_sw_scanning)
  3292. return;
  3293. switch (local->scan_state) {
  3294. case SCAN_SET_CHANNEL:
  3295. /*
  3296. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3297. * after we successfully scanned the last channel of the last
  3298. * band (and the last band is supported by the hw)
  3299. */
  3300. if (local->scan_band < IEEE80211_NUM_BANDS)
  3301. sband = local->hw.wiphy->bands[local->scan_band];
  3302. else
  3303. sband = NULL;
  3304. /*
  3305. * If we are at an unsupported band and have more bands
  3306. * left to scan, advance to the next supported one.
  3307. */
  3308. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3309. local->scan_band++;
  3310. sband = local->hw.wiphy->bands[local->scan_band];
  3311. local->scan_channel_idx = 0;
  3312. }
  3313. /* if no more bands/channels left, complete scan */
  3314. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3315. ieee80211_scan_completed(local_to_hw(local));
  3316. return;
  3317. }
  3318. skip = 0;
  3319. chan = &sband->channels[local->scan_channel_idx];
  3320. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3321. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3322. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3323. skip = 1;
  3324. if (!skip) {
  3325. local->scan_channel = chan;
  3326. if (ieee80211_hw_config(local)) {
  3327. printk(KERN_DEBUG "%s: failed to set freq to "
  3328. "%d MHz for scan\n", dev->name,
  3329. chan->center_freq);
  3330. skip = 1;
  3331. }
  3332. }
  3333. /* advance state machine to next channel/band */
  3334. local->scan_channel_idx++;
  3335. if (local->scan_channel_idx >= sband->n_channels) {
  3336. /*
  3337. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3338. * we'll catch that case above and complete the scan
  3339. * if that is the case.
  3340. */
  3341. local->scan_band++;
  3342. local->scan_channel_idx = 0;
  3343. }
  3344. if (skip)
  3345. break;
  3346. next_delay = IEEE80211_PROBE_DELAY +
  3347. usecs_to_jiffies(local->hw.channel_change_time);
  3348. local->scan_state = SCAN_SEND_PROBE;
  3349. break;
  3350. case SCAN_SEND_PROBE:
  3351. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3352. local->scan_state = SCAN_SET_CHANNEL;
  3353. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3354. break;
  3355. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3356. local->scan_ssid_len);
  3357. next_delay = IEEE80211_CHANNEL_TIME;
  3358. break;
  3359. }
  3360. if (local->sta_sw_scanning)
  3361. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3362. next_delay);
  3363. }
  3364. static int ieee80211_sta_start_scan(struct net_device *dev,
  3365. u8 *ssid, size_t ssid_len)
  3366. {
  3367. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3368. struct ieee80211_sub_if_data *sdata;
  3369. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3370. return -EINVAL;
  3371. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3372. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3373. * BSSID: MACAddress
  3374. * SSID
  3375. * ScanType: ACTIVE, PASSIVE
  3376. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3377. * a Probe frame during active scanning
  3378. * ChannelList
  3379. * MinChannelTime (>= ProbeDelay), in TU
  3380. * MaxChannelTime: (>= MinChannelTime), in TU
  3381. */
  3382. /* MLME-SCAN.confirm
  3383. * BSSDescriptionSet
  3384. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3385. */
  3386. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3387. if (local->scan_dev == dev)
  3388. return 0;
  3389. return -EBUSY;
  3390. }
  3391. if (local->ops->hw_scan) {
  3392. int rc = local->ops->hw_scan(local_to_hw(local),
  3393. ssid, ssid_len);
  3394. if (!rc) {
  3395. local->sta_hw_scanning = 1;
  3396. local->scan_dev = dev;
  3397. }
  3398. return rc;
  3399. }
  3400. local->sta_sw_scanning = 1;
  3401. rcu_read_lock();
  3402. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3403. /* Don't stop the master interface, otherwise we can't transmit
  3404. * probes! */
  3405. if (sdata->dev == local->mdev)
  3406. continue;
  3407. netif_stop_queue(sdata->dev);
  3408. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3409. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3410. ieee80211_send_nullfunc(local, sdata, 1);
  3411. }
  3412. rcu_read_unlock();
  3413. if (ssid) {
  3414. local->scan_ssid_len = ssid_len;
  3415. memcpy(local->scan_ssid, ssid, ssid_len);
  3416. } else
  3417. local->scan_ssid_len = 0;
  3418. local->scan_state = SCAN_SET_CHANNEL;
  3419. local->scan_channel_idx = 0;
  3420. local->scan_band = IEEE80211_BAND_2GHZ;
  3421. local->scan_dev = dev;
  3422. netif_tx_lock_bh(local->mdev);
  3423. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3424. local->ops->configure_filter(local_to_hw(local),
  3425. FIF_BCN_PRBRESP_PROMISC,
  3426. &local->filter_flags,
  3427. local->mdev->mc_count,
  3428. local->mdev->mc_list);
  3429. netif_tx_unlock_bh(local->mdev);
  3430. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3431. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3432. IEEE80211_CHANNEL_TIME);
  3433. return 0;
  3434. }
  3435. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3436. {
  3437. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3438. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3439. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3440. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3441. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3442. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3443. if (local->scan_dev == dev)
  3444. return 0;
  3445. return -EBUSY;
  3446. }
  3447. ifsta->scan_ssid_len = ssid_len;
  3448. if (ssid_len)
  3449. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3450. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3451. queue_work(local->hw.workqueue, &ifsta->work);
  3452. return 0;
  3453. }
  3454. static char *
  3455. ieee80211_sta_scan_result(struct net_device *dev,
  3456. struct ieee80211_sta_bss *bss,
  3457. char *current_ev, char *end_buf)
  3458. {
  3459. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3460. struct iw_event iwe;
  3461. if (time_after(jiffies,
  3462. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3463. return current_ev;
  3464. memset(&iwe, 0, sizeof(iwe));
  3465. iwe.cmd = SIOCGIWAP;
  3466. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3467. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3468. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3469. IW_EV_ADDR_LEN);
  3470. memset(&iwe, 0, sizeof(iwe));
  3471. iwe.cmd = SIOCGIWESSID;
  3472. if (bss_mesh_cfg(bss)) {
  3473. iwe.u.data.length = bss_mesh_id_len(bss);
  3474. iwe.u.data.flags = 1;
  3475. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3476. bss_mesh_id(bss));
  3477. } else {
  3478. iwe.u.data.length = bss->ssid_len;
  3479. iwe.u.data.flags = 1;
  3480. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3481. bss->ssid);
  3482. }
  3483. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3484. || bss_mesh_cfg(bss)) {
  3485. memset(&iwe, 0, sizeof(iwe));
  3486. iwe.cmd = SIOCGIWMODE;
  3487. if (bss_mesh_cfg(bss))
  3488. iwe.u.mode = IW_MODE_MESH;
  3489. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3490. iwe.u.mode = IW_MODE_MASTER;
  3491. else
  3492. iwe.u.mode = IW_MODE_ADHOC;
  3493. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3494. IW_EV_UINT_LEN);
  3495. }
  3496. memset(&iwe, 0, sizeof(iwe));
  3497. iwe.cmd = SIOCGIWFREQ;
  3498. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3499. iwe.u.freq.e = 0;
  3500. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3501. IW_EV_FREQ_LEN);
  3502. memset(&iwe, 0, sizeof(iwe));
  3503. iwe.cmd = SIOCGIWFREQ;
  3504. iwe.u.freq.m = bss->freq;
  3505. iwe.u.freq.e = 6;
  3506. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3507. IW_EV_FREQ_LEN);
  3508. memset(&iwe, 0, sizeof(iwe));
  3509. iwe.cmd = IWEVQUAL;
  3510. iwe.u.qual.qual = bss->signal;
  3511. iwe.u.qual.level = bss->rssi;
  3512. iwe.u.qual.noise = bss->noise;
  3513. iwe.u.qual.updated = local->wstats_flags;
  3514. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3515. IW_EV_QUAL_LEN);
  3516. memset(&iwe, 0, sizeof(iwe));
  3517. iwe.cmd = SIOCGIWENCODE;
  3518. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3519. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3520. else
  3521. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3522. iwe.u.data.length = 0;
  3523. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3524. if (bss && bss->wpa_ie) {
  3525. memset(&iwe, 0, sizeof(iwe));
  3526. iwe.cmd = IWEVGENIE;
  3527. iwe.u.data.length = bss->wpa_ie_len;
  3528. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3529. bss->wpa_ie);
  3530. }
  3531. if (bss && bss->rsn_ie) {
  3532. memset(&iwe, 0, sizeof(iwe));
  3533. iwe.cmd = IWEVGENIE;
  3534. iwe.u.data.length = bss->rsn_ie_len;
  3535. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3536. bss->rsn_ie);
  3537. }
  3538. if (bss && bss->supp_rates_len > 0) {
  3539. /* display all supported rates in readable format */
  3540. char *p = current_ev + IW_EV_LCP_LEN;
  3541. int i;
  3542. memset(&iwe, 0, sizeof(iwe));
  3543. iwe.cmd = SIOCGIWRATE;
  3544. /* Those two flags are ignored... */
  3545. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3546. for (i = 0; i < bss->supp_rates_len; i++) {
  3547. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3548. 0x7f) * 500000);
  3549. p = iwe_stream_add_value(current_ev, p,
  3550. end_buf, &iwe, IW_EV_PARAM_LEN);
  3551. }
  3552. current_ev = p;
  3553. }
  3554. if (bss) {
  3555. char *buf;
  3556. buf = kmalloc(30, GFP_ATOMIC);
  3557. if (buf) {
  3558. memset(&iwe, 0, sizeof(iwe));
  3559. iwe.cmd = IWEVCUSTOM;
  3560. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3561. iwe.u.data.length = strlen(buf);
  3562. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3563. &iwe, buf);
  3564. kfree(buf);
  3565. }
  3566. }
  3567. if (bss_mesh_cfg(bss)) {
  3568. char *buf;
  3569. u8 *cfg = bss_mesh_cfg(bss);
  3570. buf = kmalloc(50, GFP_ATOMIC);
  3571. if (buf) {
  3572. memset(&iwe, 0, sizeof(iwe));
  3573. iwe.cmd = IWEVCUSTOM;
  3574. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3575. iwe.u.data.length = strlen(buf);
  3576. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3577. &iwe, buf);
  3578. sprintf(buf, "Path Selection Protocol ID: "
  3579. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3580. cfg[4]);
  3581. iwe.u.data.length = strlen(buf);
  3582. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3583. &iwe, buf);
  3584. sprintf(buf, "Path Selection Metric ID: "
  3585. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3586. cfg[8]);
  3587. iwe.u.data.length = strlen(buf);
  3588. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3589. &iwe, buf);
  3590. sprintf(buf, "Congestion Control Mode ID: "
  3591. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3592. cfg[11], cfg[12]);
  3593. iwe.u.data.length = strlen(buf);
  3594. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3595. &iwe, buf);
  3596. sprintf(buf, "Channel Precedence: "
  3597. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3598. cfg[15], cfg[16]);
  3599. iwe.u.data.length = strlen(buf);
  3600. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3601. &iwe, buf);
  3602. kfree(buf);
  3603. }
  3604. }
  3605. return current_ev;
  3606. }
  3607. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3608. {
  3609. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3610. char *current_ev = buf;
  3611. char *end_buf = buf + len;
  3612. struct ieee80211_sta_bss *bss;
  3613. spin_lock_bh(&local->sta_bss_lock);
  3614. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3615. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3616. spin_unlock_bh(&local->sta_bss_lock);
  3617. return -E2BIG;
  3618. }
  3619. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3620. end_buf);
  3621. }
  3622. spin_unlock_bh(&local->sta_bss_lock);
  3623. return current_ev - buf;
  3624. }
  3625. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3626. {
  3627. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3628. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3629. kfree(ifsta->extra_ie);
  3630. if (len == 0) {
  3631. ifsta->extra_ie = NULL;
  3632. ifsta->extra_ie_len = 0;
  3633. return 0;
  3634. }
  3635. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3636. if (!ifsta->extra_ie) {
  3637. ifsta->extra_ie_len = 0;
  3638. return -ENOMEM;
  3639. }
  3640. memcpy(ifsta->extra_ie, ie, len);
  3641. ifsta->extra_ie_len = len;
  3642. return 0;
  3643. }
  3644. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3645. struct sk_buff *skb, u8 *bssid,
  3646. u8 *addr)
  3647. {
  3648. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3649. struct sta_info *sta;
  3650. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3651. DECLARE_MAC_BUF(mac);
  3652. /* TODO: Could consider removing the least recently used entry and
  3653. * allow new one to be added. */
  3654. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3655. if (net_ratelimit()) {
  3656. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3657. "entry %s\n", dev->name, print_mac(mac, addr));
  3658. }
  3659. return NULL;
  3660. }
  3661. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3662. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3663. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3664. if (!sta)
  3665. return NULL;
  3666. sta->flags |= WLAN_STA_AUTHORIZED;
  3667. sta->supp_rates[local->hw.conf.channel->band] =
  3668. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3669. rate_control_rate_init(sta, local);
  3670. if (sta_info_insert(sta))
  3671. return NULL;
  3672. return sta;
  3673. }
  3674. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3675. {
  3676. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3677. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3678. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3679. dev->name, reason);
  3680. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3681. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3682. return -EINVAL;
  3683. ieee80211_send_deauth(dev, ifsta, reason);
  3684. ieee80211_set_disassoc(dev, ifsta, 1);
  3685. return 0;
  3686. }
  3687. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3688. {
  3689. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3690. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3691. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3692. dev->name, reason);
  3693. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3694. return -EINVAL;
  3695. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3696. return -1;
  3697. ieee80211_send_disassoc(dev, ifsta, reason);
  3698. ieee80211_set_disassoc(dev, ifsta, 0);
  3699. return 0;
  3700. }
  3701. void ieee80211_notify_mac(struct ieee80211_hw *hw,
  3702. enum ieee80211_notification_types notif_type)
  3703. {
  3704. struct ieee80211_local *local = hw_to_local(hw);
  3705. struct ieee80211_sub_if_data *sdata;
  3706. switch (notif_type) {
  3707. case IEEE80211_NOTIFY_RE_ASSOC:
  3708. rcu_read_lock();
  3709. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3710. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  3711. ieee80211_sta_req_auth(sdata->dev,
  3712. &sdata->u.sta);
  3713. }
  3714. }
  3715. rcu_read_unlock();
  3716. break;
  3717. }
  3718. }
  3719. EXPORT_SYMBOL(ieee80211_notify_mac);