setup.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2007 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <linux/module.h>
  25. #include <linux/smp.h>
  26. #include <linux/err.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/mmzone.h>
  30. #include <linux/clk.h>
  31. #include <linux/delay.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/lmb.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/io.h>
  36. #include <asm/page.h>
  37. #include <asm/elf.h>
  38. #include <asm/sections.h>
  39. #include <asm/irq.h>
  40. #include <asm/setup.h>
  41. #include <asm/clock.h>
  42. #include <asm/smp.h>
  43. #include <asm/mmu_context.h>
  44. /*
  45. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  46. * This value will be used at the very early stage of serial setup.
  47. * The bigger value means no problem.
  48. */
  49. struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
  50. [0] = {
  51. .type = CPU_SH_NONE,
  52. .family = CPU_FAMILY_UNKNOWN,
  53. .loops_per_jiffy = 10000000,
  54. },
  55. };
  56. EXPORT_SYMBOL(cpu_data);
  57. /*
  58. * The machine vector. First entry in .machvec.init, or clobbered by
  59. * sh_mv= on the command line, prior to .machvec.init teardown.
  60. */
  61. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  62. EXPORT_SYMBOL(sh_mv);
  63. #ifdef CONFIG_VT
  64. struct screen_info screen_info;
  65. #endif
  66. extern int root_mountflags;
  67. #define RAMDISK_IMAGE_START_MASK 0x07FF
  68. #define RAMDISK_PROMPT_FLAG 0x8000
  69. #define RAMDISK_LOAD_FLAG 0x4000
  70. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  71. static struct resource code_resource = {
  72. .name = "Kernel code",
  73. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  74. };
  75. static struct resource data_resource = {
  76. .name = "Kernel data",
  77. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  78. };
  79. static struct resource bss_resource = {
  80. .name = "Kernel bss",
  81. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  82. };
  83. unsigned long memory_start;
  84. EXPORT_SYMBOL(memory_start);
  85. unsigned long memory_end = 0;
  86. EXPORT_SYMBOL(memory_end);
  87. static struct resource mem_resources[MAX_NUMNODES];
  88. int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
  89. static int __init early_parse_mem(char *p)
  90. {
  91. unsigned long size;
  92. memory_start = (unsigned long)__va(__MEMORY_START);
  93. size = memparse(p, &p);
  94. if (size > __MEMORY_SIZE) {
  95. printk(KERN_ERR
  96. "Using mem= to increase the size of kernel memory "
  97. "is not allowed.\n"
  98. " Recompile the kernel with the correct value for "
  99. "CONFIG_MEMORY_SIZE.\n");
  100. return 0;
  101. }
  102. memory_end = memory_start + size;
  103. return 0;
  104. }
  105. early_param("mem", early_parse_mem);
  106. /*
  107. * Register fully available low RAM pages with the bootmem allocator.
  108. */
  109. static void __init register_bootmem_low_pages(void)
  110. {
  111. unsigned long curr_pfn, last_pfn, pages;
  112. /*
  113. * We are rounding up the start address of usable memory:
  114. */
  115. curr_pfn = PFN_UP(__MEMORY_START);
  116. /*
  117. * ... and at the end of the usable range downwards:
  118. */
  119. last_pfn = PFN_DOWN(__pa(memory_end));
  120. if (last_pfn > max_low_pfn)
  121. last_pfn = max_low_pfn;
  122. pages = last_pfn - curr_pfn;
  123. free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
  124. }
  125. #ifdef CONFIG_KEXEC
  126. static void __init reserve_crashkernel(void)
  127. {
  128. unsigned long long free_mem;
  129. unsigned long long crash_size, crash_base;
  130. void *vp;
  131. int ret;
  132. free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  133. ret = parse_crashkernel(boot_command_line, free_mem,
  134. &crash_size, &crash_base);
  135. if (ret == 0 && crash_size) {
  136. if (crash_base <= 0) {
  137. vp = alloc_bootmem_nopanic(crash_size);
  138. if (!vp) {
  139. printk(KERN_INFO "crashkernel allocation "
  140. "failed\n");
  141. return;
  142. }
  143. crash_base = __pa(vp);
  144. } else if (reserve_bootmem(crash_base, crash_size,
  145. BOOTMEM_EXCLUSIVE) < 0) {
  146. printk(KERN_INFO "crashkernel reservation failed - "
  147. "memory is in use\n");
  148. return;
  149. }
  150. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  151. "for crashkernel (System RAM: %ldMB)\n",
  152. (unsigned long)(crash_size >> 20),
  153. (unsigned long)(crash_base >> 20),
  154. (unsigned long)(free_mem >> 20));
  155. crashk_res.start = crash_base;
  156. crashk_res.end = crash_base + crash_size - 1;
  157. insert_resource(&iomem_resource, &crashk_res);
  158. }
  159. }
  160. #else
  161. static inline void __init reserve_crashkernel(void)
  162. {}
  163. #endif
  164. void __cpuinit calibrate_delay(void)
  165. {
  166. struct clk *clk = clk_get(NULL, "cpu_clk");
  167. if (IS_ERR(clk))
  168. panic("Need a sane CPU clock definition!");
  169. loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
  170. printk(KERN_INFO "Calibrating delay loop (skipped)... "
  171. "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
  172. loops_per_jiffy/(500000/HZ),
  173. (loops_per_jiffy/(5000/HZ)) % 100,
  174. loops_per_jiffy);
  175. }
  176. void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
  177. unsigned long end_pfn)
  178. {
  179. struct resource *res = &mem_resources[nid];
  180. WARN_ON(res->name); /* max one active range per node for now */
  181. res->name = "System RAM";
  182. res->start = start_pfn << PAGE_SHIFT;
  183. res->end = (end_pfn << PAGE_SHIFT) - 1;
  184. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  185. if (request_resource(&iomem_resource, res)) {
  186. pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
  187. start_pfn, end_pfn);
  188. return;
  189. }
  190. /*
  191. * We don't know which RAM region contains kernel data,
  192. * so we try it repeatedly and let the resource manager
  193. * test it.
  194. */
  195. request_resource(res, &code_resource);
  196. request_resource(res, &data_resource);
  197. request_resource(res, &bss_resource);
  198. add_active_range(nid, start_pfn, end_pfn);
  199. }
  200. void __init setup_bootmem_allocator(unsigned long free_pfn)
  201. {
  202. unsigned long bootmap_size;
  203. unsigned long bootmap_pages, bootmem_paddr;
  204. u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
  205. int i;
  206. bootmap_pages = bootmem_bootmap_pages(total_pages);
  207. bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
  208. /*
  209. * Find a proper area for the bootmem bitmap. After this
  210. * bootstrap step all allocations (until the page allocator
  211. * is intact) must be done via bootmem_alloc().
  212. */
  213. bootmap_size = init_bootmem_node(NODE_DATA(0),
  214. bootmem_paddr >> PAGE_SHIFT,
  215. min_low_pfn, max_low_pfn);
  216. /* Add active regions with valid PFNs. */
  217. for (i = 0; i < lmb.memory.cnt; i++) {
  218. unsigned long start_pfn, end_pfn;
  219. start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
  220. end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
  221. __add_active_range(0, start_pfn, end_pfn);
  222. }
  223. /*
  224. * Add all physical memory to the bootmem map and mark each
  225. * area as present.
  226. */
  227. register_bootmem_low_pages();
  228. /* Reserve the sections we're already using. */
  229. for (i = 0; i < lmb.reserved.cnt; i++)
  230. reserve_bootmem(lmb.reserved.region[i].base,
  231. lmb_size_bytes(&lmb.reserved, i),
  232. BOOTMEM_DEFAULT);
  233. node_set_online(0);
  234. sparse_memory_present_with_active_regions(0);
  235. #ifdef CONFIG_BLK_DEV_INITRD
  236. ROOT_DEV = Root_RAM0;
  237. if (LOADER_TYPE && INITRD_START) {
  238. unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
  239. if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
  240. reserve_bootmem(initrd_start_phys, INITRD_SIZE,
  241. BOOTMEM_DEFAULT);
  242. initrd_start = (unsigned long)__va(initrd_start_phys);
  243. initrd_end = initrd_start + INITRD_SIZE;
  244. } else {
  245. printk("initrd extends beyond end of memory "
  246. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  247. initrd_start_phys + INITRD_SIZE,
  248. (unsigned long)PFN_PHYS(max_low_pfn));
  249. initrd_start = 0;
  250. }
  251. }
  252. #endif
  253. reserve_crashkernel();
  254. }
  255. #ifndef CONFIG_NEED_MULTIPLE_NODES
  256. static void __init setup_memory(void)
  257. {
  258. unsigned long start_pfn;
  259. u64 base = min_low_pfn << PAGE_SHIFT;
  260. u64 size = (max_low_pfn << PAGE_SHIFT) - base;
  261. /*
  262. * Partially used pages are not usable - thus
  263. * we are rounding upwards:
  264. */
  265. start_pfn = PFN_UP(__pa(_end));
  266. lmb_add(base, size);
  267. /*
  268. * Reserve the kernel text and
  269. * Reserve the bootmem bitmap. We do this in two steps (first step
  270. * was init_bootmem()), because this catches the (definitely buggy)
  271. * case of us accidentally initializing the bootmem allocator with
  272. * an invalid RAM area.
  273. */
  274. lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
  275. (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
  276. (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
  277. /*
  278. * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
  279. */
  280. if (CONFIG_ZERO_PAGE_OFFSET != 0)
  281. lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
  282. lmb_analyze();
  283. lmb_dump_all();
  284. setup_bootmem_allocator(start_pfn);
  285. }
  286. #else
  287. extern void __init setup_memory(void);
  288. #endif
  289. /*
  290. * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
  291. * is_kdump_kernel() to determine if we are booting after a panic. Hence
  292. * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
  293. */
  294. #ifdef CONFIG_CRASH_DUMP
  295. /* elfcorehdr= specifies the location of elf core header
  296. * stored by the crashed kernel.
  297. */
  298. static int __init parse_elfcorehdr(char *arg)
  299. {
  300. if (!arg)
  301. return -EINVAL;
  302. elfcorehdr_addr = memparse(arg, &arg);
  303. return 0;
  304. }
  305. early_param("elfcorehdr", parse_elfcorehdr);
  306. #endif
  307. void __init __attribute__ ((weak)) plat_early_device_setup(void)
  308. {
  309. }
  310. void __init setup_arch(char **cmdline_p)
  311. {
  312. enable_mmu();
  313. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  314. printk(KERN_NOTICE "Boot params:\n"
  315. "... MOUNT_ROOT_RDONLY - %08lx\n"
  316. "... RAMDISK_FLAGS - %08lx\n"
  317. "... ORIG_ROOT_DEV - %08lx\n"
  318. "... LOADER_TYPE - %08lx\n"
  319. "... INITRD_START - %08lx\n"
  320. "... INITRD_SIZE - %08lx\n",
  321. MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
  322. ORIG_ROOT_DEV, LOADER_TYPE,
  323. INITRD_START, INITRD_SIZE);
  324. #ifdef CONFIG_BLK_DEV_RAM
  325. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  326. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  327. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  328. #endif
  329. if (!MOUNT_ROOT_RDONLY)
  330. root_mountflags &= ~MS_RDONLY;
  331. init_mm.start_code = (unsigned long) _text;
  332. init_mm.end_code = (unsigned long) _etext;
  333. init_mm.end_data = (unsigned long) _edata;
  334. init_mm.brk = (unsigned long) _end;
  335. code_resource.start = virt_to_phys(_text);
  336. code_resource.end = virt_to_phys(_etext)-1;
  337. data_resource.start = virt_to_phys(_etext);
  338. data_resource.end = virt_to_phys(_edata)-1;
  339. bss_resource.start = virt_to_phys(__bss_start);
  340. bss_resource.end = virt_to_phys(_ebss)-1;
  341. memory_start = (unsigned long)__va(__MEMORY_START);
  342. if (!memory_end)
  343. memory_end = memory_start + __MEMORY_SIZE;
  344. #ifdef CONFIG_CMDLINE_OVERWRITE
  345. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  346. #else
  347. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  348. #ifdef CONFIG_CMDLINE_EXTEND
  349. strlcat(command_line, " ", sizeof(command_line));
  350. strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
  351. #endif
  352. #endif
  353. /* Save unparsed command line copy for /proc/cmdline */
  354. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  355. *cmdline_p = command_line;
  356. parse_early_param();
  357. uncached_init();
  358. plat_early_device_setup();
  359. /* Let earlyprintk output early console messages */
  360. early_platform_driver_probe("earlyprintk", 1, 1);
  361. sh_mv_setup();
  362. /*
  363. * Find the highest page frame number we have available
  364. */
  365. max_pfn = PFN_DOWN(__pa(memory_end));
  366. /*
  367. * Determine low and high memory ranges:
  368. */
  369. max_low_pfn = max_pfn;
  370. min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
  371. nodes_clear(node_online_map);
  372. pmb_init();
  373. lmb_init();
  374. setup_memory();
  375. sparse_init();
  376. #ifdef CONFIG_DUMMY_CONSOLE
  377. conswitchp = &dummy_con;
  378. #endif
  379. paging_init();
  380. ioremap_fixed_init();
  381. /* Perform the machine specific initialisation */
  382. if (likely(sh_mv.mv_setup))
  383. sh_mv.mv_setup(cmdline_p);
  384. plat_smp_setup();
  385. }
  386. /* processor boot mode configuration */
  387. int generic_mode_pins(void)
  388. {
  389. pr_warning("generic_mode_pins(): missing mode pin configuration\n");
  390. return 0;
  391. }
  392. int test_mode_pin(int pin)
  393. {
  394. return sh_mv.mv_mode_pins() & pin;
  395. }
  396. static const char *cpu_name[] = {
  397. [CPU_SH7201] = "SH7201",
  398. [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
  399. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  400. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  401. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  402. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  403. [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
  404. [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
  405. [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
  406. [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
  407. [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
  408. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  409. [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
  410. [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
  411. [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
  412. [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757",
  413. [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
  414. [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
  415. [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
  416. [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
  417. [CPU_SH_NONE] = "Unknown"
  418. };
  419. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  420. {
  421. return cpu_name[c->type];
  422. }
  423. EXPORT_SYMBOL(get_cpu_subtype);
  424. #ifdef CONFIG_PROC_FS
  425. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  426. static const char *cpu_flags[] = {
  427. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  428. "ptea", "llsc", "l2", "op32", "pteaex", NULL
  429. };
  430. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  431. {
  432. unsigned long i;
  433. seq_printf(m, "cpu flags\t:");
  434. if (!c->flags) {
  435. seq_printf(m, " %s\n", cpu_flags[0]);
  436. return;
  437. }
  438. for (i = 0; cpu_flags[i]; i++)
  439. if ((c->flags & (1 << i)))
  440. seq_printf(m, " %s", cpu_flags[i+1]);
  441. seq_printf(m, "\n");
  442. }
  443. static void show_cacheinfo(struct seq_file *m, const char *type,
  444. struct cache_info info)
  445. {
  446. unsigned int cache_size;
  447. cache_size = info.ways * info.sets * info.linesz;
  448. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  449. type, cache_size >> 10, info.ways);
  450. }
  451. /*
  452. * Get CPU information for use by the procfs.
  453. */
  454. static int show_cpuinfo(struct seq_file *m, void *v)
  455. {
  456. struct sh_cpuinfo *c = v;
  457. unsigned int cpu = c - cpu_data;
  458. if (!cpu_online(cpu))
  459. return 0;
  460. if (cpu == 0)
  461. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  462. else
  463. seq_printf(m, "\n");
  464. seq_printf(m, "processor\t: %d\n", cpu);
  465. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  466. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  467. if (c->cut_major == -1)
  468. seq_printf(m, "cut\t\t: unknown\n");
  469. else if (c->cut_minor == -1)
  470. seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
  471. else
  472. seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
  473. show_cpuflags(m, c);
  474. seq_printf(m, "cache type\t: ");
  475. /*
  476. * Check for what type of cache we have, we support both the
  477. * unified cache on the SH-2 and SH-3, as well as the harvard
  478. * style cache on the SH-4.
  479. */
  480. if (c->icache.flags & SH_CACHE_COMBINED) {
  481. seq_printf(m, "unified\n");
  482. show_cacheinfo(m, "cache", c->icache);
  483. } else {
  484. seq_printf(m, "split (harvard)\n");
  485. show_cacheinfo(m, "icache", c->icache);
  486. show_cacheinfo(m, "dcache", c->dcache);
  487. }
  488. /* Optional secondary cache */
  489. if (c->flags & CPU_HAS_L2_CACHE)
  490. show_cacheinfo(m, "scache", c->scache);
  491. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  492. c->loops_per_jiffy/(500000/HZ),
  493. (c->loops_per_jiffy/(5000/HZ)) % 100);
  494. return 0;
  495. }
  496. static void *c_start(struct seq_file *m, loff_t *pos)
  497. {
  498. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  499. }
  500. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  501. {
  502. ++*pos;
  503. return c_start(m, pos);
  504. }
  505. static void c_stop(struct seq_file *m, void *v)
  506. {
  507. }
  508. const struct seq_operations cpuinfo_op = {
  509. .start = c_start,
  510. .next = c_next,
  511. .stop = c_stop,
  512. .show = show_cpuinfo,
  513. };
  514. #endif /* CONFIG_PROC_FS */
  515. struct dentry *sh_debugfs_root;
  516. static int __init sh_debugfs_init(void)
  517. {
  518. sh_debugfs_root = debugfs_create_dir("sh", NULL);
  519. if (!sh_debugfs_root)
  520. return -ENOMEM;
  521. if (IS_ERR(sh_debugfs_root))
  522. return PTR_ERR(sh_debugfs_root);
  523. return 0;
  524. }
  525. arch_initcall(sh_debugfs_init);