pid.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_fs.h>
  39. #define pid_hashfn(nr, ns) \
  40. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  41. static struct hlist_head *pid_hash;
  42. static unsigned int pidhash_shift = 4;
  43. struct pid init_struct_pid = INIT_STRUCT_PID;
  44. int pid_max = PID_MAX_DEFAULT;
  45. #define RESERVED_PIDS 300
  46. int pid_max_min = RESERVED_PIDS + 1;
  47. int pid_max_max = PID_MAX_LIMIT;
  48. #define BITS_PER_PAGE (PAGE_SIZE*8)
  49. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  50. static inline int mk_pid(struct pid_namespace *pid_ns,
  51. struct pidmap *map, int off)
  52. {
  53. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  54. }
  55. #define find_next_offset(map, off) \
  56. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  57. /*
  58. * PID-map pages start out as NULL, they get allocated upon
  59. * first use and are never deallocated. This way a low pid_max
  60. * value does not cause lots of bitmaps to be allocated, but
  61. * the scheme scales to up to 4 million PIDs, runtime.
  62. */
  63. struct pid_namespace init_pid_ns = {
  64. .kref = {
  65. .refcount = ATOMIC_INIT(2),
  66. },
  67. .pidmap = {
  68. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  69. },
  70. .last_pid = 0,
  71. .level = 0,
  72. .child_reaper = &init_task,
  73. .user_ns = &init_user_ns,
  74. .proc_inum = PROC_PID_INIT_INO,
  75. };
  76. EXPORT_SYMBOL_GPL(init_pid_ns);
  77. /*
  78. * Note: disable interrupts while the pidmap_lock is held as an
  79. * interrupt might come in and do read_lock(&tasklist_lock).
  80. *
  81. * If we don't disable interrupts there is a nasty deadlock between
  82. * detach_pid()->free_pid() and another cpu that does
  83. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  84. * read_lock(&tasklist_lock);
  85. *
  86. * After we clean up the tasklist_lock and know there are no
  87. * irq handlers that take it we can leave the interrupts enabled.
  88. * For now it is easier to be safe than to prove it can't happen.
  89. */
  90. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  91. static void free_pidmap(struct upid *upid)
  92. {
  93. int nr = upid->nr;
  94. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  95. int offset = nr & BITS_PER_PAGE_MASK;
  96. clear_bit(offset, map->page);
  97. atomic_inc(&map->nr_free);
  98. }
  99. /*
  100. * If we started walking pids at 'base', is 'a' seen before 'b'?
  101. */
  102. static int pid_before(int base, int a, int b)
  103. {
  104. /*
  105. * This is the same as saying
  106. *
  107. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  108. * and that mapping orders 'a' and 'b' with respect to 'base'.
  109. */
  110. return (unsigned)(a - base) < (unsigned)(b - base);
  111. }
  112. /*
  113. * We might be racing with someone else trying to set pid_ns->last_pid
  114. * at the pid allocation time (there's also a sysctl for this, but racing
  115. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  116. * We want the winner to have the "later" value, because if the
  117. * "earlier" value prevails, then a pid may get reused immediately.
  118. *
  119. * Since pids rollover, it is not sufficient to just pick the bigger
  120. * value. We have to consider where we started counting from.
  121. *
  122. * 'base' is the value of pid_ns->last_pid that we observed when
  123. * we started looking for a pid.
  124. *
  125. * 'pid' is the pid that we eventually found.
  126. */
  127. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  128. {
  129. int prev;
  130. int last_write = base;
  131. do {
  132. prev = last_write;
  133. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  134. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  135. }
  136. static int alloc_pidmap(struct pid_namespace *pid_ns)
  137. {
  138. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  139. struct pidmap *map;
  140. pid = last + 1;
  141. if (pid >= pid_max)
  142. pid = RESERVED_PIDS;
  143. offset = pid & BITS_PER_PAGE_MASK;
  144. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  145. /*
  146. * If last_pid points into the middle of the map->page we
  147. * want to scan this bitmap block twice, the second time
  148. * we start with offset == 0 (or RESERVED_PIDS).
  149. */
  150. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  151. for (i = 0; i <= max_scan; ++i) {
  152. if (unlikely(!map->page)) {
  153. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  154. /*
  155. * Free the page if someone raced with us
  156. * installing it:
  157. */
  158. spin_lock_irq(&pidmap_lock);
  159. if (!map->page) {
  160. map->page = page;
  161. page = NULL;
  162. }
  163. spin_unlock_irq(&pidmap_lock);
  164. kfree(page);
  165. if (unlikely(!map->page))
  166. break;
  167. }
  168. if (likely(atomic_read(&map->nr_free))) {
  169. for ( ; ; ) {
  170. if (!test_and_set_bit(offset, map->page)) {
  171. atomic_dec(&map->nr_free);
  172. set_last_pid(pid_ns, last, pid);
  173. return pid;
  174. }
  175. offset = find_next_offset(map, offset);
  176. if (offset >= BITS_PER_PAGE)
  177. break;
  178. pid = mk_pid(pid_ns, map, offset);
  179. if (pid >= pid_max)
  180. break;
  181. }
  182. }
  183. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  184. ++map;
  185. offset = 0;
  186. } else {
  187. map = &pid_ns->pidmap[0];
  188. offset = RESERVED_PIDS;
  189. if (unlikely(last == offset))
  190. break;
  191. }
  192. pid = mk_pid(pid_ns, map, offset);
  193. }
  194. return -1;
  195. }
  196. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  197. {
  198. int offset;
  199. struct pidmap *map, *end;
  200. if (last >= PID_MAX_LIMIT)
  201. return -1;
  202. offset = (last + 1) & BITS_PER_PAGE_MASK;
  203. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  204. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  205. for (; map < end; map++, offset = 0) {
  206. if (unlikely(!map->page))
  207. continue;
  208. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  209. if (offset < BITS_PER_PAGE)
  210. return mk_pid(pid_ns, map, offset);
  211. }
  212. return -1;
  213. }
  214. void put_pid(struct pid *pid)
  215. {
  216. struct pid_namespace *ns;
  217. if (!pid)
  218. return;
  219. ns = pid->numbers[pid->level].ns;
  220. if ((atomic_read(&pid->count) == 1) ||
  221. atomic_dec_and_test(&pid->count)) {
  222. kmem_cache_free(ns->pid_cachep, pid);
  223. put_pid_ns(ns);
  224. }
  225. }
  226. EXPORT_SYMBOL_GPL(put_pid);
  227. static void delayed_put_pid(struct rcu_head *rhp)
  228. {
  229. struct pid *pid = container_of(rhp, struct pid, rcu);
  230. put_pid(pid);
  231. }
  232. void free_pid(struct pid *pid)
  233. {
  234. /* We can be called with write_lock_irq(&tasklist_lock) held */
  235. int i;
  236. unsigned long flags;
  237. spin_lock_irqsave(&pidmap_lock, flags);
  238. for (i = 0; i <= pid->level; i++) {
  239. struct upid *upid = pid->numbers + i;
  240. struct pid_namespace *ns = upid->ns;
  241. hlist_del_rcu(&upid->pid_chain);
  242. switch(--ns->nr_hashed) {
  243. case 1:
  244. /* When all that is left in the pid namespace
  245. * is the reaper wake up the reaper. The reaper
  246. * may be sleeping in zap_pid_ns_processes().
  247. */
  248. wake_up_process(ns->child_reaper);
  249. break;
  250. case 0:
  251. schedule_work(&ns->proc_work);
  252. break;
  253. }
  254. }
  255. spin_unlock_irqrestore(&pidmap_lock, flags);
  256. for (i = 0; i <= pid->level; i++)
  257. free_pidmap(pid->numbers + i);
  258. call_rcu(&pid->rcu, delayed_put_pid);
  259. }
  260. struct pid *alloc_pid(struct pid_namespace *ns)
  261. {
  262. struct pid *pid;
  263. enum pid_type type;
  264. int i, nr;
  265. struct pid_namespace *tmp;
  266. struct upid *upid;
  267. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  268. if (!pid)
  269. goto out;
  270. tmp = ns;
  271. pid->level = ns->level;
  272. for (i = ns->level; i >= 0; i--) {
  273. nr = alloc_pidmap(tmp);
  274. if (nr < 0)
  275. goto out_free;
  276. pid->numbers[i].nr = nr;
  277. pid->numbers[i].ns = tmp;
  278. tmp = tmp->parent;
  279. }
  280. if (unlikely(is_child_reaper(pid))) {
  281. if (pid_ns_prepare_proc(ns))
  282. goto out_free;
  283. }
  284. get_pid_ns(ns);
  285. atomic_set(&pid->count, 1);
  286. for (type = 0; type < PIDTYPE_MAX; ++type)
  287. INIT_HLIST_HEAD(&pid->tasks[type]);
  288. upid = pid->numbers + ns->level;
  289. spin_lock_irq(&pidmap_lock);
  290. if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
  291. goto out_unlock;
  292. for ( ; upid >= pid->numbers; --upid) {
  293. hlist_add_head_rcu(&upid->pid_chain,
  294. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  295. upid->ns->nr_hashed++;
  296. }
  297. spin_unlock_irq(&pidmap_lock);
  298. out:
  299. return pid;
  300. out_unlock:
  301. spin_unlock_irq(&pidmap_lock);
  302. out_free:
  303. while (++i <= ns->level)
  304. free_pidmap(pid->numbers + i);
  305. kmem_cache_free(ns->pid_cachep, pid);
  306. pid = NULL;
  307. goto out;
  308. }
  309. void disable_pid_allocation(struct pid_namespace *ns)
  310. {
  311. spin_lock_irq(&pidmap_lock);
  312. ns->nr_hashed &= ~PIDNS_HASH_ADDING;
  313. spin_unlock_irq(&pidmap_lock);
  314. }
  315. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  316. {
  317. struct upid *pnr;
  318. hlist_for_each_entry_rcu(pnr,
  319. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  320. if (pnr->nr == nr && pnr->ns == ns)
  321. return container_of(pnr, struct pid,
  322. numbers[ns->level]);
  323. return NULL;
  324. }
  325. EXPORT_SYMBOL_GPL(find_pid_ns);
  326. struct pid *find_vpid(int nr)
  327. {
  328. return find_pid_ns(nr, task_active_pid_ns(current));
  329. }
  330. EXPORT_SYMBOL_GPL(find_vpid);
  331. /*
  332. * attach_pid() must be called with the tasklist_lock write-held.
  333. */
  334. void attach_pid(struct task_struct *task, enum pid_type type,
  335. struct pid *pid)
  336. {
  337. struct pid_link *link;
  338. link = &task->pids[type];
  339. link->pid = pid;
  340. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  341. }
  342. static void __change_pid(struct task_struct *task, enum pid_type type,
  343. struct pid *new)
  344. {
  345. struct pid_link *link;
  346. struct pid *pid;
  347. int tmp;
  348. link = &task->pids[type];
  349. pid = link->pid;
  350. hlist_del_rcu(&link->node);
  351. link->pid = new;
  352. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  353. if (!hlist_empty(&pid->tasks[tmp]))
  354. return;
  355. free_pid(pid);
  356. }
  357. void detach_pid(struct task_struct *task, enum pid_type type)
  358. {
  359. __change_pid(task, type, NULL);
  360. }
  361. void change_pid(struct task_struct *task, enum pid_type type,
  362. struct pid *pid)
  363. {
  364. __change_pid(task, type, pid);
  365. attach_pid(task, type, pid);
  366. }
  367. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  368. void transfer_pid(struct task_struct *old, struct task_struct *new,
  369. enum pid_type type)
  370. {
  371. new->pids[type].pid = old->pids[type].pid;
  372. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  373. }
  374. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  375. {
  376. struct task_struct *result = NULL;
  377. if (pid) {
  378. struct hlist_node *first;
  379. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  380. lockdep_tasklist_lock_is_held());
  381. if (first)
  382. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  383. }
  384. return result;
  385. }
  386. EXPORT_SYMBOL(pid_task);
  387. /*
  388. * Must be called under rcu_read_lock().
  389. */
  390. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  391. {
  392. rcu_lockdep_assert(rcu_read_lock_held(),
  393. "find_task_by_pid_ns() needs rcu_read_lock()"
  394. " protection");
  395. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  396. }
  397. struct task_struct *find_task_by_vpid(pid_t vnr)
  398. {
  399. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  400. }
  401. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  402. {
  403. struct pid *pid;
  404. rcu_read_lock();
  405. if (type != PIDTYPE_PID)
  406. task = task->group_leader;
  407. pid = get_pid(task->pids[type].pid);
  408. rcu_read_unlock();
  409. return pid;
  410. }
  411. EXPORT_SYMBOL_GPL(get_task_pid);
  412. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  413. {
  414. struct task_struct *result;
  415. rcu_read_lock();
  416. result = pid_task(pid, type);
  417. if (result)
  418. get_task_struct(result);
  419. rcu_read_unlock();
  420. return result;
  421. }
  422. EXPORT_SYMBOL_GPL(get_pid_task);
  423. struct pid *find_get_pid(pid_t nr)
  424. {
  425. struct pid *pid;
  426. rcu_read_lock();
  427. pid = get_pid(find_vpid(nr));
  428. rcu_read_unlock();
  429. return pid;
  430. }
  431. EXPORT_SYMBOL_GPL(find_get_pid);
  432. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  433. {
  434. struct upid *upid;
  435. pid_t nr = 0;
  436. if (pid && ns->level <= pid->level) {
  437. upid = &pid->numbers[ns->level];
  438. if (upid->ns == ns)
  439. nr = upid->nr;
  440. }
  441. return nr;
  442. }
  443. EXPORT_SYMBOL_GPL(pid_nr_ns);
  444. pid_t pid_vnr(struct pid *pid)
  445. {
  446. return pid_nr_ns(pid, task_active_pid_ns(current));
  447. }
  448. EXPORT_SYMBOL_GPL(pid_vnr);
  449. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  450. struct pid_namespace *ns)
  451. {
  452. pid_t nr = 0;
  453. rcu_read_lock();
  454. if (!ns)
  455. ns = task_active_pid_ns(current);
  456. if (likely(pid_alive(task))) {
  457. if (type != PIDTYPE_PID)
  458. task = task->group_leader;
  459. nr = pid_nr_ns(task->pids[type].pid, ns);
  460. }
  461. rcu_read_unlock();
  462. return nr;
  463. }
  464. EXPORT_SYMBOL(__task_pid_nr_ns);
  465. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  466. {
  467. return pid_nr_ns(task_tgid(tsk), ns);
  468. }
  469. EXPORT_SYMBOL(task_tgid_nr_ns);
  470. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  471. {
  472. return ns_of_pid(task_pid(tsk));
  473. }
  474. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  475. /*
  476. * Used by proc to find the first pid that is greater than or equal to nr.
  477. *
  478. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  479. */
  480. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  481. {
  482. struct pid *pid;
  483. do {
  484. pid = find_pid_ns(nr, ns);
  485. if (pid)
  486. break;
  487. nr = next_pidmap(ns, nr);
  488. } while (nr > 0);
  489. return pid;
  490. }
  491. /*
  492. * The pid hash table is scaled according to the amount of memory in the
  493. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  494. * more.
  495. */
  496. void __init pidhash_init(void)
  497. {
  498. unsigned int i, pidhash_size;
  499. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  500. HASH_EARLY | HASH_SMALL,
  501. &pidhash_shift, NULL,
  502. 0, 4096);
  503. pidhash_size = 1U << pidhash_shift;
  504. for (i = 0; i < pidhash_size; i++)
  505. INIT_HLIST_HEAD(&pid_hash[i]);
  506. }
  507. void __init pidmap_init(void)
  508. {
  509. /* Veryify no one has done anything silly */
  510. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
  511. /* bump default and minimum pid_max based on number of cpus */
  512. pid_max = min(pid_max_max, max_t(int, pid_max,
  513. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  514. pid_max_min = max_t(int, pid_max_min,
  515. PIDS_PER_CPU_MIN * num_possible_cpus());
  516. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  517. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  518. /* Reserve PID 0. We never call free_pidmap(0) */
  519. set_bit(0, init_pid_ns.pidmap[0].page);
  520. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  521. init_pid_ns.nr_hashed = PIDNS_HASH_ADDING;
  522. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  523. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  524. }