hugetlb.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <linux/mutex.h>
  17. #include <asm/page.h>
  18. #include <asm/pgtable.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  22. static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
  23. unsigned long max_huge_pages;
  24. static struct list_head hugepage_freelists[MAX_NUMNODES];
  25. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  26. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  27. /*
  28. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  29. */
  30. static DEFINE_SPINLOCK(hugetlb_lock);
  31. static void clear_huge_page(struct page *page, unsigned long addr)
  32. {
  33. int i;
  34. might_sleep();
  35. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
  36. cond_resched();
  37. clear_user_highpage(page + i, addr);
  38. }
  39. }
  40. static void copy_huge_page(struct page *dst, struct page *src,
  41. unsigned long addr, struct vm_area_struct *vma)
  42. {
  43. int i;
  44. might_sleep();
  45. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
  46. cond_resched();
  47. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  48. }
  49. }
  50. static void enqueue_huge_page(struct page *page)
  51. {
  52. int nid = page_to_nid(page);
  53. list_add(&page->lru, &hugepage_freelists[nid]);
  54. free_huge_pages++;
  55. free_huge_pages_node[nid]++;
  56. }
  57. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  58. unsigned long address)
  59. {
  60. int nid = numa_node_id();
  61. struct page *page = NULL;
  62. struct zonelist *zonelist = huge_zonelist(vma, address);
  63. struct zone **z;
  64. for (z = zonelist->zones; *z; z++) {
  65. nid = zone_to_nid(*z);
  66. if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
  67. !list_empty(&hugepage_freelists[nid]))
  68. break;
  69. }
  70. if (*z) {
  71. page = list_entry(hugepage_freelists[nid].next,
  72. struct page, lru);
  73. list_del(&page->lru);
  74. free_huge_pages--;
  75. free_huge_pages_node[nid]--;
  76. }
  77. return page;
  78. }
  79. static void free_huge_page(struct page *page)
  80. {
  81. BUG_ON(page_count(page));
  82. INIT_LIST_HEAD(&page->lru);
  83. spin_lock(&hugetlb_lock);
  84. enqueue_huge_page(page);
  85. spin_unlock(&hugetlb_lock);
  86. }
  87. static int alloc_fresh_huge_page(void)
  88. {
  89. static int nid = 0;
  90. struct page *page;
  91. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  92. HUGETLB_PAGE_ORDER);
  93. nid = next_node(nid, node_online_map);
  94. if (nid == MAX_NUMNODES)
  95. nid = first_node(node_online_map);
  96. if (page) {
  97. set_compound_page_dtor(page, free_huge_page);
  98. spin_lock(&hugetlb_lock);
  99. nr_huge_pages++;
  100. nr_huge_pages_node[page_to_nid(page)]++;
  101. spin_unlock(&hugetlb_lock);
  102. put_page(page); /* free it into the hugepage allocator */
  103. return 1;
  104. }
  105. return 0;
  106. }
  107. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  108. unsigned long addr)
  109. {
  110. struct page *page;
  111. spin_lock(&hugetlb_lock);
  112. if (vma->vm_flags & VM_MAYSHARE)
  113. resv_huge_pages--;
  114. else if (free_huge_pages <= resv_huge_pages)
  115. goto fail;
  116. page = dequeue_huge_page(vma, addr);
  117. if (!page)
  118. goto fail;
  119. spin_unlock(&hugetlb_lock);
  120. set_page_refcounted(page);
  121. return page;
  122. fail:
  123. if (vma->vm_flags & VM_MAYSHARE)
  124. resv_huge_pages++;
  125. spin_unlock(&hugetlb_lock);
  126. return NULL;
  127. }
  128. static int __init hugetlb_init(void)
  129. {
  130. unsigned long i;
  131. if (HPAGE_SHIFT == 0)
  132. return 0;
  133. for (i = 0; i < MAX_NUMNODES; ++i)
  134. INIT_LIST_HEAD(&hugepage_freelists[i]);
  135. for (i = 0; i < max_huge_pages; ++i) {
  136. if (!alloc_fresh_huge_page())
  137. break;
  138. }
  139. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  140. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  141. return 0;
  142. }
  143. module_init(hugetlb_init);
  144. static int __init hugetlb_setup(char *s)
  145. {
  146. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  147. max_huge_pages = 0;
  148. return 1;
  149. }
  150. __setup("hugepages=", hugetlb_setup);
  151. static unsigned int cpuset_mems_nr(unsigned int *array)
  152. {
  153. int node;
  154. unsigned int nr = 0;
  155. for_each_node_mask(node, cpuset_current_mems_allowed)
  156. nr += array[node];
  157. return nr;
  158. }
  159. #ifdef CONFIG_SYSCTL
  160. static void update_and_free_page(struct page *page)
  161. {
  162. int i;
  163. nr_huge_pages--;
  164. nr_huge_pages_node[page_to_nid(page)]--;
  165. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  166. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  167. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  168. 1 << PG_private | 1<< PG_writeback);
  169. }
  170. page[1].lru.next = NULL;
  171. set_page_refcounted(page);
  172. __free_pages(page, HUGETLB_PAGE_ORDER);
  173. }
  174. #ifdef CONFIG_HIGHMEM
  175. static void try_to_free_low(unsigned long count)
  176. {
  177. int i;
  178. for (i = 0; i < MAX_NUMNODES; ++i) {
  179. struct page *page, *next;
  180. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  181. if (PageHighMem(page))
  182. continue;
  183. list_del(&page->lru);
  184. update_and_free_page(page);
  185. free_huge_pages--;
  186. free_huge_pages_node[page_to_nid(page)]--;
  187. if (count >= nr_huge_pages)
  188. return;
  189. }
  190. }
  191. }
  192. #else
  193. static inline void try_to_free_low(unsigned long count)
  194. {
  195. }
  196. #endif
  197. static unsigned long set_max_huge_pages(unsigned long count)
  198. {
  199. while (count > nr_huge_pages) {
  200. if (!alloc_fresh_huge_page())
  201. return nr_huge_pages;
  202. }
  203. if (count >= nr_huge_pages)
  204. return nr_huge_pages;
  205. spin_lock(&hugetlb_lock);
  206. count = max(count, resv_huge_pages);
  207. try_to_free_low(count);
  208. while (count < nr_huge_pages) {
  209. struct page *page = dequeue_huge_page(NULL, 0);
  210. if (!page)
  211. break;
  212. update_and_free_page(page);
  213. }
  214. spin_unlock(&hugetlb_lock);
  215. return nr_huge_pages;
  216. }
  217. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  218. struct file *file, void __user *buffer,
  219. size_t *length, loff_t *ppos)
  220. {
  221. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  222. max_huge_pages = set_max_huge_pages(max_huge_pages);
  223. return 0;
  224. }
  225. #endif /* CONFIG_SYSCTL */
  226. int hugetlb_report_meminfo(char *buf)
  227. {
  228. return sprintf(buf,
  229. "HugePages_Total: %5lu\n"
  230. "HugePages_Free: %5lu\n"
  231. "HugePages_Rsvd: %5lu\n"
  232. "Hugepagesize: %5lu kB\n",
  233. nr_huge_pages,
  234. free_huge_pages,
  235. resv_huge_pages,
  236. HPAGE_SIZE/1024);
  237. }
  238. int hugetlb_report_node_meminfo(int nid, char *buf)
  239. {
  240. return sprintf(buf,
  241. "Node %d HugePages_Total: %5u\n"
  242. "Node %d HugePages_Free: %5u\n",
  243. nid, nr_huge_pages_node[nid],
  244. nid, free_huge_pages_node[nid]);
  245. }
  246. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  247. unsigned long hugetlb_total_pages(void)
  248. {
  249. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  250. }
  251. /*
  252. * We cannot handle pagefaults against hugetlb pages at all. They cause
  253. * handle_mm_fault() to try to instantiate regular-sized pages in the
  254. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  255. * this far.
  256. */
  257. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  258. unsigned long address, int *unused)
  259. {
  260. BUG();
  261. return NULL;
  262. }
  263. struct vm_operations_struct hugetlb_vm_ops = {
  264. .nopage = hugetlb_nopage,
  265. };
  266. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  267. int writable)
  268. {
  269. pte_t entry;
  270. if (writable) {
  271. entry =
  272. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  273. } else {
  274. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  275. }
  276. entry = pte_mkyoung(entry);
  277. entry = pte_mkhuge(entry);
  278. return entry;
  279. }
  280. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  281. unsigned long address, pte_t *ptep)
  282. {
  283. pte_t entry;
  284. entry = pte_mkwrite(pte_mkdirty(*ptep));
  285. if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
  286. update_mmu_cache(vma, address, entry);
  287. lazy_mmu_prot_update(entry);
  288. }
  289. }
  290. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  291. struct vm_area_struct *vma)
  292. {
  293. pte_t *src_pte, *dst_pte, entry;
  294. struct page *ptepage;
  295. unsigned long addr;
  296. int cow;
  297. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  298. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  299. src_pte = huge_pte_offset(src, addr);
  300. if (!src_pte)
  301. continue;
  302. dst_pte = huge_pte_alloc(dst, addr);
  303. if (!dst_pte)
  304. goto nomem;
  305. spin_lock(&dst->page_table_lock);
  306. spin_lock(&src->page_table_lock);
  307. if (!pte_none(*src_pte)) {
  308. if (cow)
  309. ptep_set_wrprotect(src, addr, src_pte);
  310. entry = *src_pte;
  311. ptepage = pte_page(entry);
  312. get_page(ptepage);
  313. set_huge_pte_at(dst, addr, dst_pte, entry);
  314. }
  315. spin_unlock(&src->page_table_lock);
  316. spin_unlock(&dst->page_table_lock);
  317. }
  318. return 0;
  319. nomem:
  320. return -ENOMEM;
  321. }
  322. void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  323. unsigned long end)
  324. {
  325. struct mm_struct *mm = vma->vm_mm;
  326. unsigned long address;
  327. pte_t *ptep;
  328. pte_t pte;
  329. struct page *page;
  330. struct page *tmp;
  331. /*
  332. * A page gathering list, protected by per file i_mmap_lock. The
  333. * lock is used to avoid list corruption from multiple unmapping
  334. * of the same page since we are using page->lru.
  335. */
  336. LIST_HEAD(page_list);
  337. WARN_ON(!is_vm_hugetlb_page(vma));
  338. BUG_ON(start & ~HPAGE_MASK);
  339. BUG_ON(end & ~HPAGE_MASK);
  340. spin_lock(&mm->page_table_lock);
  341. for (address = start; address < end; address += HPAGE_SIZE) {
  342. ptep = huge_pte_offset(mm, address);
  343. if (!ptep)
  344. continue;
  345. if (huge_pmd_unshare(mm, &address, ptep))
  346. continue;
  347. pte = huge_ptep_get_and_clear(mm, address, ptep);
  348. if (pte_none(pte))
  349. continue;
  350. page = pte_page(pte);
  351. if (pte_dirty(pte))
  352. set_page_dirty(page);
  353. list_add(&page->lru, &page_list);
  354. }
  355. spin_unlock(&mm->page_table_lock);
  356. flush_tlb_range(vma, start, end);
  357. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  358. list_del(&page->lru);
  359. put_page(page);
  360. }
  361. }
  362. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  363. unsigned long end)
  364. {
  365. /*
  366. * It is undesirable to test vma->vm_file as it should be non-null
  367. * for valid hugetlb area. However, vm_file will be NULL in the error
  368. * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
  369. * do_mmap_pgoff() nullifies vma->vm_file before calling this function
  370. * to clean up. Since no pte has actually been setup, it is safe to
  371. * do nothing in this case.
  372. */
  373. if (vma->vm_file) {
  374. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  375. __unmap_hugepage_range(vma, start, end);
  376. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  377. }
  378. }
  379. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  380. unsigned long address, pte_t *ptep, pte_t pte)
  381. {
  382. struct page *old_page, *new_page;
  383. int avoidcopy;
  384. old_page = pte_page(pte);
  385. /* If no-one else is actually using this page, avoid the copy
  386. * and just make the page writable */
  387. avoidcopy = (page_count(old_page) == 1);
  388. if (avoidcopy) {
  389. set_huge_ptep_writable(vma, address, ptep);
  390. return VM_FAULT_MINOR;
  391. }
  392. page_cache_get(old_page);
  393. new_page = alloc_huge_page(vma, address);
  394. if (!new_page) {
  395. page_cache_release(old_page);
  396. return VM_FAULT_OOM;
  397. }
  398. spin_unlock(&mm->page_table_lock);
  399. copy_huge_page(new_page, old_page, address, vma);
  400. spin_lock(&mm->page_table_lock);
  401. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  402. if (likely(pte_same(*ptep, pte))) {
  403. /* Break COW */
  404. set_huge_pte_at(mm, address, ptep,
  405. make_huge_pte(vma, new_page, 1));
  406. /* Make the old page be freed below */
  407. new_page = old_page;
  408. }
  409. page_cache_release(new_page);
  410. page_cache_release(old_page);
  411. return VM_FAULT_MINOR;
  412. }
  413. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  414. unsigned long address, pte_t *ptep, int write_access)
  415. {
  416. int ret = VM_FAULT_SIGBUS;
  417. unsigned long idx;
  418. unsigned long size;
  419. struct page *page;
  420. struct address_space *mapping;
  421. pte_t new_pte;
  422. mapping = vma->vm_file->f_mapping;
  423. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  424. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  425. /*
  426. * Use page lock to guard against racing truncation
  427. * before we get page_table_lock.
  428. */
  429. retry:
  430. page = find_lock_page(mapping, idx);
  431. if (!page) {
  432. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  433. if (idx >= size)
  434. goto out;
  435. if (hugetlb_get_quota(mapping))
  436. goto out;
  437. page = alloc_huge_page(vma, address);
  438. if (!page) {
  439. hugetlb_put_quota(mapping);
  440. ret = VM_FAULT_OOM;
  441. goto out;
  442. }
  443. clear_huge_page(page, address);
  444. if (vma->vm_flags & VM_SHARED) {
  445. int err;
  446. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  447. if (err) {
  448. put_page(page);
  449. hugetlb_put_quota(mapping);
  450. if (err == -EEXIST)
  451. goto retry;
  452. goto out;
  453. }
  454. } else
  455. lock_page(page);
  456. }
  457. spin_lock(&mm->page_table_lock);
  458. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  459. if (idx >= size)
  460. goto backout;
  461. ret = VM_FAULT_MINOR;
  462. if (!pte_none(*ptep))
  463. goto backout;
  464. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  465. && (vma->vm_flags & VM_SHARED)));
  466. set_huge_pte_at(mm, address, ptep, new_pte);
  467. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  468. /* Optimization, do the COW without a second fault */
  469. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  470. }
  471. spin_unlock(&mm->page_table_lock);
  472. unlock_page(page);
  473. out:
  474. return ret;
  475. backout:
  476. spin_unlock(&mm->page_table_lock);
  477. hugetlb_put_quota(mapping);
  478. unlock_page(page);
  479. put_page(page);
  480. goto out;
  481. }
  482. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  483. unsigned long address, int write_access)
  484. {
  485. pte_t *ptep;
  486. pte_t entry;
  487. int ret;
  488. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  489. ptep = huge_pte_alloc(mm, address);
  490. if (!ptep)
  491. return VM_FAULT_OOM;
  492. /*
  493. * Serialize hugepage allocation and instantiation, so that we don't
  494. * get spurious allocation failures if two CPUs race to instantiate
  495. * the same page in the page cache.
  496. */
  497. mutex_lock(&hugetlb_instantiation_mutex);
  498. entry = *ptep;
  499. if (pte_none(entry)) {
  500. ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
  501. mutex_unlock(&hugetlb_instantiation_mutex);
  502. return ret;
  503. }
  504. ret = VM_FAULT_MINOR;
  505. spin_lock(&mm->page_table_lock);
  506. /* Check for a racing update before calling hugetlb_cow */
  507. if (likely(pte_same(entry, *ptep)))
  508. if (write_access && !pte_write(entry))
  509. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  510. spin_unlock(&mm->page_table_lock);
  511. mutex_unlock(&hugetlb_instantiation_mutex);
  512. return ret;
  513. }
  514. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  515. struct page **pages, struct vm_area_struct **vmas,
  516. unsigned long *position, int *length, int i)
  517. {
  518. unsigned long pfn_offset;
  519. unsigned long vaddr = *position;
  520. int remainder = *length;
  521. spin_lock(&mm->page_table_lock);
  522. while (vaddr < vma->vm_end && remainder) {
  523. pte_t *pte;
  524. struct page *page;
  525. /*
  526. * Some archs (sparc64, sh*) have multiple pte_ts to
  527. * each hugepage. We have to make * sure we get the
  528. * first, for the page indexing below to work.
  529. */
  530. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  531. if (!pte || pte_none(*pte)) {
  532. int ret;
  533. spin_unlock(&mm->page_table_lock);
  534. ret = hugetlb_fault(mm, vma, vaddr, 0);
  535. spin_lock(&mm->page_table_lock);
  536. if (ret == VM_FAULT_MINOR)
  537. continue;
  538. remainder = 0;
  539. if (!i)
  540. i = -EFAULT;
  541. break;
  542. }
  543. pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
  544. page = pte_page(*pte);
  545. same_page:
  546. if (pages) {
  547. get_page(page);
  548. pages[i] = page + pfn_offset;
  549. }
  550. if (vmas)
  551. vmas[i] = vma;
  552. vaddr += PAGE_SIZE;
  553. ++pfn_offset;
  554. --remainder;
  555. ++i;
  556. if (vaddr < vma->vm_end && remainder &&
  557. pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
  558. /*
  559. * We use pfn_offset to avoid touching the pageframes
  560. * of this compound page.
  561. */
  562. goto same_page;
  563. }
  564. }
  565. spin_unlock(&mm->page_table_lock);
  566. *length = remainder;
  567. *position = vaddr;
  568. return i;
  569. }
  570. void hugetlb_change_protection(struct vm_area_struct *vma,
  571. unsigned long address, unsigned long end, pgprot_t newprot)
  572. {
  573. struct mm_struct *mm = vma->vm_mm;
  574. unsigned long start = address;
  575. pte_t *ptep;
  576. pte_t pte;
  577. BUG_ON(address >= end);
  578. flush_cache_range(vma, address, end);
  579. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  580. spin_lock(&mm->page_table_lock);
  581. for (; address < end; address += HPAGE_SIZE) {
  582. ptep = huge_pte_offset(mm, address);
  583. if (!ptep)
  584. continue;
  585. if (huge_pmd_unshare(mm, &address, ptep))
  586. continue;
  587. if (!pte_none(*ptep)) {
  588. pte = huge_ptep_get_and_clear(mm, address, ptep);
  589. pte = pte_mkhuge(pte_modify(pte, newprot));
  590. set_huge_pte_at(mm, address, ptep, pte);
  591. lazy_mmu_prot_update(pte);
  592. }
  593. }
  594. spin_unlock(&mm->page_table_lock);
  595. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  596. flush_tlb_range(vma, start, end);
  597. }
  598. struct file_region {
  599. struct list_head link;
  600. long from;
  601. long to;
  602. };
  603. static long region_add(struct list_head *head, long f, long t)
  604. {
  605. struct file_region *rg, *nrg, *trg;
  606. /* Locate the region we are either in or before. */
  607. list_for_each_entry(rg, head, link)
  608. if (f <= rg->to)
  609. break;
  610. /* Round our left edge to the current segment if it encloses us. */
  611. if (f > rg->from)
  612. f = rg->from;
  613. /* Check for and consume any regions we now overlap with. */
  614. nrg = rg;
  615. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  616. if (&rg->link == head)
  617. break;
  618. if (rg->from > t)
  619. break;
  620. /* If this area reaches higher then extend our area to
  621. * include it completely. If this is not the first area
  622. * which we intend to reuse, free it. */
  623. if (rg->to > t)
  624. t = rg->to;
  625. if (rg != nrg) {
  626. list_del(&rg->link);
  627. kfree(rg);
  628. }
  629. }
  630. nrg->from = f;
  631. nrg->to = t;
  632. return 0;
  633. }
  634. static long region_chg(struct list_head *head, long f, long t)
  635. {
  636. struct file_region *rg, *nrg;
  637. long chg = 0;
  638. /* Locate the region we are before or in. */
  639. list_for_each_entry(rg, head, link)
  640. if (f <= rg->to)
  641. break;
  642. /* If we are below the current region then a new region is required.
  643. * Subtle, allocate a new region at the position but make it zero
  644. * size such that we can guarentee to record the reservation. */
  645. if (&rg->link == head || t < rg->from) {
  646. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  647. if (nrg == 0)
  648. return -ENOMEM;
  649. nrg->from = f;
  650. nrg->to = f;
  651. INIT_LIST_HEAD(&nrg->link);
  652. list_add(&nrg->link, rg->link.prev);
  653. return t - f;
  654. }
  655. /* Round our left edge to the current segment if it encloses us. */
  656. if (f > rg->from)
  657. f = rg->from;
  658. chg = t - f;
  659. /* Check for and consume any regions we now overlap with. */
  660. list_for_each_entry(rg, rg->link.prev, link) {
  661. if (&rg->link == head)
  662. break;
  663. if (rg->from > t)
  664. return chg;
  665. /* We overlap with this area, if it extends futher than
  666. * us then we must extend ourselves. Account for its
  667. * existing reservation. */
  668. if (rg->to > t) {
  669. chg += rg->to - t;
  670. t = rg->to;
  671. }
  672. chg -= rg->to - rg->from;
  673. }
  674. return chg;
  675. }
  676. static long region_truncate(struct list_head *head, long end)
  677. {
  678. struct file_region *rg, *trg;
  679. long chg = 0;
  680. /* Locate the region we are either in or before. */
  681. list_for_each_entry(rg, head, link)
  682. if (end <= rg->to)
  683. break;
  684. if (&rg->link == head)
  685. return 0;
  686. /* If we are in the middle of a region then adjust it. */
  687. if (end > rg->from) {
  688. chg = rg->to - end;
  689. rg->to = end;
  690. rg = list_entry(rg->link.next, typeof(*rg), link);
  691. }
  692. /* Drop any remaining regions. */
  693. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  694. if (&rg->link == head)
  695. break;
  696. chg += rg->to - rg->from;
  697. list_del(&rg->link);
  698. kfree(rg);
  699. }
  700. return chg;
  701. }
  702. static int hugetlb_acct_memory(long delta)
  703. {
  704. int ret = -ENOMEM;
  705. spin_lock(&hugetlb_lock);
  706. if ((delta + resv_huge_pages) <= free_huge_pages) {
  707. resv_huge_pages += delta;
  708. ret = 0;
  709. }
  710. spin_unlock(&hugetlb_lock);
  711. return ret;
  712. }
  713. int hugetlb_reserve_pages(struct inode *inode, long from, long to)
  714. {
  715. long ret, chg;
  716. chg = region_chg(&inode->i_mapping->private_list, from, to);
  717. if (chg < 0)
  718. return chg;
  719. /*
  720. * When cpuset is configured, it breaks the strict hugetlb page
  721. * reservation as the accounting is done on a global variable. Such
  722. * reservation is completely rubbish in the presence of cpuset because
  723. * the reservation is not checked against page availability for the
  724. * current cpuset. Application can still potentially OOM'ed by kernel
  725. * with lack of free htlb page in cpuset that the task is in.
  726. * Attempt to enforce strict accounting with cpuset is almost
  727. * impossible (or too ugly) because cpuset is too fluid that
  728. * task or memory node can be dynamically moved between cpusets.
  729. *
  730. * The change of semantics for shared hugetlb mapping with cpuset is
  731. * undesirable. However, in order to preserve some of the semantics,
  732. * we fall back to check against current free page availability as
  733. * a best attempt and hopefully to minimize the impact of changing
  734. * semantics that cpuset has.
  735. */
  736. if (chg > cpuset_mems_nr(free_huge_pages_node))
  737. return -ENOMEM;
  738. ret = hugetlb_acct_memory(chg);
  739. if (ret < 0)
  740. return ret;
  741. region_add(&inode->i_mapping->private_list, from, to);
  742. return 0;
  743. }
  744. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  745. {
  746. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  747. hugetlb_acct_memory(freed - chg);
  748. }