mct.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/delay.h>
  20. #include <linux/percpu.h>
  21. #include <linux/of.h>
  22. #include <asm/arch_timer.h>
  23. #include <asm/hardware/gic.h>
  24. #include <asm/localtimer.h>
  25. #include <plat/cpu.h>
  26. #include <mach/map.h>
  27. #include <mach/irqs.h>
  28. #include <mach/regs-mct.h>
  29. #include <asm/mach/time.h>
  30. #define TICK_BASE_CNT 1
  31. enum {
  32. MCT_INT_SPI,
  33. MCT_INT_PPI
  34. };
  35. static unsigned long clk_rate;
  36. static unsigned int mct_int_type;
  37. struct mct_clock_event_device {
  38. struct clock_event_device *evt;
  39. void __iomem *base;
  40. char name[10];
  41. };
  42. static void exynos4_mct_write(unsigned int value, void *addr)
  43. {
  44. void __iomem *stat_addr;
  45. u32 mask;
  46. u32 i;
  47. __raw_writel(value, addr);
  48. if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
  49. u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
  50. switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
  51. case (u32) MCT_L_TCON_OFFSET:
  52. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  53. mask = 1 << 3; /* L_TCON write status */
  54. break;
  55. case (u32) MCT_L_ICNTB_OFFSET:
  56. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  57. mask = 1 << 1; /* L_ICNTB write status */
  58. break;
  59. case (u32) MCT_L_TCNTB_OFFSET:
  60. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  61. mask = 1 << 0; /* L_TCNTB write status */
  62. break;
  63. default:
  64. return;
  65. }
  66. } else {
  67. switch ((u32) addr) {
  68. case (u32) EXYNOS4_MCT_G_TCON:
  69. stat_addr = EXYNOS4_MCT_G_WSTAT;
  70. mask = 1 << 16; /* G_TCON write status */
  71. break;
  72. case (u32) EXYNOS4_MCT_G_COMP0_L:
  73. stat_addr = EXYNOS4_MCT_G_WSTAT;
  74. mask = 1 << 0; /* G_COMP0_L write status */
  75. break;
  76. case (u32) EXYNOS4_MCT_G_COMP0_U:
  77. stat_addr = EXYNOS4_MCT_G_WSTAT;
  78. mask = 1 << 1; /* G_COMP0_U write status */
  79. break;
  80. case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
  81. stat_addr = EXYNOS4_MCT_G_WSTAT;
  82. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  83. break;
  84. case (u32) EXYNOS4_MCT_G_CNT_L:
  85. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  86. mask = 1 << 0; /* G_CNT_L write status */
  87. break;
  88. case (u32) EXYNOS4_MCT_G_CNT_U:
  89. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  90. mask = 1 << 1; /* G_CNT_U write status */
  91. break;
  92. default:
  93. return;
  94. }
  95. }
  96. /* Wait maximum 1 ms until written values are applied */
  97. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  98. if (__raw_readl(stat_addr) & mask) {
  99. __raw_writel(mask, stat_addr);
  100. return;
  101. }
  102. panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
  103. }
  104. /* Clocksource handling */
  105. static void exynos4_mct_frc_start(u32 hi, u32 lo)
  106. {
  107. u32 reg;
  108. exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
  109. exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
  110. reg = __raw_readl(EXYNOS4_MCT_G_TCON);
  111. reg |= MCT_G_TCON_START;
  112. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  113. }
  114. static cycle_t exynos4_frc_read(struct clocksource *cs)
  115. {
  116. unsigned int lo, hi;
  117. u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
  118. do {
  119. hi = hi2;
  120. lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
  121. hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
  122. } while (hi != hi2);
  123. return ((cycle_t)hi << 32) | lo;
  124. }
  125. static void exynos4_frc_resume(struct clocksource *cs)
  126. {
  127. exynos4_mct_frc_start(0, 0);
  128. }
  129. struct clocksource mct_frc = {
  130. .name = "mct-frc",
  131. .rating = 400,
  132. .read = exynos4_frc_read,
  133. .mask = CLOCKSOURCE_MASK(64),
  134. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  135. .resume = exynos4_frc_resume,
  136. };
  137. static void __init exynos4_clocksource_init(void)
  138. {
  139. exynos4_mct_frc_start(0, 0);
  140. if (clocksource_register_hz(&mct_frc, clk_rate))
  141. panic("%s: can't register clocksource\n", mct_frc.name);
  142. }
  143. static void exynos4_mct_comp0_stop(void)
  144. {
  145. unsigned int tcon;
  146. tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
  147. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  148. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  149. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  150. }
  151. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  152. unsigned long cycles)
  153. {
  154. unsigned int tcon;
  155. cycle_t comp_cycle;
  156. tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
  157. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  158. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  159. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  160. }
  161. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  162. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  163. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  164. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  165. tcon |= MCT_G_TCON_COMP0_ENABLE;
  166. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  167. }
  168. static int exynos4_comp_set_next_event(unsigned long cycles,
  169. struct clock_event_device *evt)
  170. {
  171. exynos4_mct_comp0_start(evt->mode, cycles);
  172. return 0;
  173. }
  174. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  175. struct clock_event_device *evt)
  176. {
  177. unsigned long cycles_per_jiffy;
  178. exynos4_mct_comp0_stop();
  179. switch (mode) {
  180. case CLOCK_EVT_MODE_PERIODIC:
  181. cycles_per_jiffy =
  182. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  183. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  184. break;
  185. case CLOCK_EVT_MODE_ONESHOT:
  186. case CLOCK_EVT_MODE_UNUSED:
  187. case CLOCK_EVT_MODE_SHUTDOWN:
  188. case CLOCK_EVT_MODE_RESUME:
  189. break;
  190. }
  191. }
  192. static struct clock_event_device mct_comp_device = {
  193. .name = "mct-comp",
  194. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  195. .rating = 250,
  196. .set_next_event = exynos4_comp_set_next_event,
  197. .set_mode = exynos4_comp_set_mode,
  198. };
  199. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  200. {
  201. struct clock_event_device *evt = dev_id;
  202. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  203. evt->event_handler(evt);
  204. return IRQ_HANDLED;
  205. }
  206. static struct irqaction mct_comp_event_irq = {
  207. .name = "mct_comp_irq",
  208. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  209. .handler = exynos4_mct_comp_isr,
  210. .dev_id = &mct_comp_device,
  211. };
  212. static void exynos4_clockevent_init(void)
  213. {
  214. mct_comp_device.cpumask = cpumask_of(0);
  215. clockevents_config_and_register(&mct_comp_device, clk_rate,
  216. 0xf, 0xffffffff);
  217. if (soc_is_exynos5250())
  218. setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
  219. else
  220. setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
  221. }
  222. #ifdef CONFIG_LOCAL_TIMERS
  223. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  224. /* Clock event handling */
  225. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  226. {
  227. unsigned long tmp;
  228. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  229. void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
  230. tmp = __raw_readl(addr);
  231. if (tmp & mask) {
  232. tmp &= ~mask;
  233. exynos4_mct_write(tmp, addr);
  234. }
  235. }
  236. static void exynos4_mct_tick_start(unsigned long cycles,
  237. struct mct_clock_event_device *mevt)
  238. {
  239. unsigned long tmp;
  240. exynos4_mct_tick_stop(mevt);
  241. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  242. /* update interrupt count buffer */
  243. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  244. /* enable MCT tick interrupt */
  245. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  246. tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
  247. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  248. MCT_L_TCON_INTERVAL_MODE;
  249. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  250. }
  251. static int exynos4_tick_set_next_event(unsigned long cycles,
  252. struct clock_event_device *evt)
  253. {
  254. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  255. exynos4_mct_tick_start(cycles, mevt);
  256. return 0;
  257. }
  258. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  259. struct clock_event_device *evt)
  260. {
  261. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  262. unsigned long cycles_per_jiffy;
  263. exynos4_mct_tick_stop(mevt);
  264. switch (mode) {
  265. case CLOCK_EVT_MODE_PERIODIC:
  266. cycles_per_jiffy =
  267. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  268. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  269. break;
  270. case CLOCK_EVT_MODE_ONESHOT:
  271. case CLOCK_EVT_MODE_UNUSED:
  272. case CLOCK_EVT_MODE_SHUTDOWN:
  273. case CLOCK_EVT_MODE_RESUME:
  274. break;
  275. }
  276. }
  277. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  278. {
  279. struct clock_event_device *evt = mevt->evt;
  280. /*
  281. * This is for supporting oneshot mode.
  282. * Mct would generate interrupt periodically
  283. * without explicit stopping.
  284. */
  285. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  286. exynos4_mct_tick_stop(mevt);
  287. /* Clear the MCT tick interrupt */
  288. if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  289. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  290. return 1;
  291. } else {
  292. return 0;
  293. }
  294. }
  295. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  296. {
  297. struct mct_clock_event_device *mevt = dev_id;
  298. struct clock_event_device *evt = mevt->evt;
  299. exynos4_mct_tick_clear(mevt);
  300. evt->event_handler(evt);
  301. return IRQ_HANDLED;
  302. }
  303. static struct irqaction mct_tick0_event_irq = {
  304. .name = "mct_tick0_irq",
  305. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  306. .handler = exynos4_mct_tick_isr,
  307. };
  308. static struct irqaction mct_tick1_event_irq = {
  309. .name = "mct_tick1_irq",
  310. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  311. .handler = exynos4_mct_tick_isr,
  312. };
  313. static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
  314. {
  315. struct mct_clock_event_device *mevt;
  316. unsigned int cpu = smp_processor_id();
  317. int mct_lx_irq;
  318. mevt = this_cpu_ptr(&percpu_mct_tick);
  319. mevt->evt = evt;
  320. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  321. sprintf(mevt->name, "mct_tick%d", cpu);
  322. evt->name = mevt->name;
  323. evt->cpumask = cpumask_of(cpu);
  324. evt->set_next_event = exynos4_tick_set_next_event;
  325. evt->set_mode = exynos4_tick_set_mode;
  326. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  327. evt->rating = 450;
  328. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  329. 0xf, 0x7fffffff);
  330. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  331. if (mct_int_type == MCT_INT_SPI) {
  332. if (cpu == 0) {
  333. mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 :
  334. EXYNOS5_IRQ_MCT_L0;
  335. mct_tick0_event_irq.dev_id = mevt;
  336. evt->irq = mct_lx_irq;
  337. setup_irq(mct_lx_irq, &mct_tick0_event_irq);
  338. } else {
  339. mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 :
  340. EXYNOS5_IRQ_MCT_L1;
  341. mct_tick1_event_irq.dev_id = mevt;
  342. evt->irq = mct_lx_irq;
  343. setup_irq(mct_lx_irq, &mct_tick1_event_irq);
  344. irq_set_affinity(mct_lx_irq, cpumask_of(1));
  345. }
  346. } else {
  347. enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
  348. }
  349. return 0;
  350. }
  351. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  352. {
  353. unsigned int cpu = smp_processor_id();
  354. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  355. if (mct_int_type == MCT_INT_SPI)
  356. if (cpu == 0)
  357. remove_irq(evt->irq, &mct_tick0_event_irq);
  358. else
  359. remove_irq(evt->irq, &mct_tick1_event_irq);
  360. else
  361. disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
  362. }
  363. static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
  364. .setup = exynos4_local_timer_setup,
  365. .stop = exynos4_local_timer_stop,
  366. };
  367. #endif /* CONFIG_LOCAL_TIMERS */
  368. static void __init exynos4_timer_resources(void)
  369. {
  370. struct clk *mct_clk;
  371. mct_clk = clk_get(NULL, "xtal");
  372. clk_rate = clk_get_rate(mct_clk);
  373. #ifdef CONFIG_LOCAL_TIMERS
  374. if (mct_int_type == MCT_INT_PPI) {
  375. int err;
  376. err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
  377. exynos4_mct_tick_isr, "MCT",
  378. &percpu_mct_tick);
  379. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  380. EXYNOS_IRQ_MCT_LOCALTIMER, err);
  381. }
  382. local_timer_register(&exynos4_mct_tick_ops);
  383. #endif /* CONFIG_LOCAL_TIMERS */
  384. }
  385. void __init exynos4_timer_init(void)
  386. {
  387. if (soc_is_exynos5440()) {
  388. arch_timer_of_register();
  389. return;
  390. }
  391. if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
  392. mct_int_type = MCT_INT_SPI;
  393. else
  394. mct_int_type = MCT_INT_PPI;
  395. exynos4_timer_resources();
  396. exynos4_clocksource_init();
  397. exynos4_clockevent_init();
  398. }