lguest.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052
  1. /*P:100
  2. * This is the Launcher code, a simple program which lays out the "physical"
  3. * memory for the new Guest by mapping the kernel image and the virtual
  4. * devices, then opens /dev/lguest to tell the kernel about the Guest and
  5. * control it.
  6. :*/
  7. #define _LARGEFILE64_SOURCE
  8. #define _GNU_SOURCE
  9. #include <stdio.h>
  10. #include <string.h>
  11. #include <unistd.h>
  12. #include <err.h>
  13. #include <stdint.h>
  14. #include <stdlib.h>
  15. #include <elf.h>
  16. #include <sys/mman.h>
  17. #include <sys/param.h>
  18. #include <sys/types.h>
  19. #include <sys/stat.h>
  20. #include <sys/wait.h>
  21. #include <sys/eventfd.h>
  22. #include <fcntl.h>
  23. #include <stdbool.h>
  24. #include <errno.h>
  25. #include <ctype.h>
  26. #include <sys/socket.h>
  27. #include <sys/ioctl.h>
  28. #include <sys/time.h>
  29. #include <time.h>
  30. #include <netinet/in.h>
  31. #include <net/if.h>
  32. #include <linux/sockios.h>
  33. #include <linux/if_tun.h>
  34. #include <sys/uio.h>
  35. #include <termios.h>
  36. #include <getopt.h>
  37. #include <assert.h>
  38. #include <sched.h>
  39. #include <limits.h>
  40. #include <stddef.h>
  41. #include <signal.h>
  42. #include <pwd.h>
  43. #include <grp.h>
  44. #include <linux/virtio_config.h>
  45. #include <linux/virtio_net.h>
  46. #include <linux/virtio_blk.h>
  47. #include <linux/virtio_console.h>
  48. #include <linux/virtio_rng.h>
  49. #include <linux/virtio_ring.h>
  50. #include <asm/bootparam.h>
  51. #include "../../include/linux/lguest_launcher.h"
  52. /*L:110
  53. * We can ignore the 43 include files we need for this program, but I do want
  54. * to draw attention to the use of kernel-style types.
  55. *
  56. * As Linus said, "C is a Spartan language, and so should your naming be." I
  57. * like these abbreviations, so we define them here. Note that u64 is always
  58. * unsigned long long, which works on all Linux systems: this means that we can
  59. * use %llu in printf for any u64.
  60. */
  61. typedef unsigned long long u64;
  62. typedef uint32_t u32;
  63. typedef uint16_t u16;
  64. typedef uint8_t u8;
  65. /*:*/
  66. #define BRIDGE_PFX "bridge:"
  67. #ifndef SIOCBRADDIF
  68. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  69. #endif
  70. /* We can have up to 256 pages for devices. */
  71. #define DEVICE_PAGES 256
  72. /* This will occupy 3 pages: it must be a power of 2. */
  73. #define VIRTQUEUE_NUM 256
  74. /*L:120
  75. * verbose is both a global flag and a macro. The C preprocessor allows
  76. * this, and although I wouldn't recommend it, it works quite nicely here.
  77. */
  78. static bool verbose;
  79. #define verbose(args...) \
  80. do { if (verbose) printf(args); } while(0)
  81. /*:*/
  82. /* The pointer to the start of guest memory. */
  83. static void *guest_base;
  84. /* The maximum guest physical address allowed, and maximum possible. */
  85. static unsigned long guest_limit, guest_max;
  86. /* The /dev/lguest file descriptor. */
  87. static int lguest_fd;
  88. /* a per-cpu variable indicating whose vcpu is currently running */
  89. static unsigned int __thread cpu_id;
  90. /* This is our list of devices. */
  91. struct device_list {
  92. /* Counter to assign interrupt numbers. */
  93. unsigned int next_irq;
  94. /* Counter to print out convenient device numbers. */
  95. unsigned int device_num;
  96. /* The descriptor page for the devices. */
  97. u8 *descpage;
  98. /* A single linked list of devices. */
  99. struct device *dev;
  100. /* And a pointer to the last device for easy append. */
  101. struct device *lastdev;
  102. };
  103. /* The list of Guest devices, based on command line arguments. */
  104. static struct device_list devices;
  105. /* The device structure describes a single device. */
  106. struct device {
  107. /* The linked-list pointer. */
  108. struct device *next;
  109. /* The device's descriptor, as mapped into the Guest. */
  110. struct lguest_device_desc *desc;
  111. /* We can't trust desc values once Guest has booted: we use these. */
  112. unsigned int feature_len;
  113. unsigned int num_vq;
  114. /* The name of this device, for --verbose. */
  115. const char *name;
  116. /* Any queues attached to this device */
  117. struct virtqueue *vq;
  118. /* Is it operational */
  119. bool running;
  120. /* Device-specific data. */
  121. void *priv;
  122. };
  123. /* The virtqueue structure describes a queue attached to a device. */
  124. struct virtqueue {
  125. struct virtqueue *next;
  126. /* Which device owns me. */
  127. struct device *dev;
  128. /* The configuration for this queue. */
  129. struct lguest_vqconfig config;
  130. /* The actual ring of buffers. */
  131. struct vring vring;
  132. /* Last available index we saw. */
  133. u16 last_avail_idx;
  134. /* How many are used since we sent last irq? */
  135. unsigned int pending_used;
  136. /* Eventfd where Guest notifications arrive. */
  137. int eventfd;
  138. /* Function for the thread which is servicing this virtqueue. */
  139. void (*service)(struct virtqueue *vq);
  140. pid_t thread;
  141. };
  142. /* Remember the arguments to the program so we can "reboot" */
  143. static char **main_args;
  144. /* The original tty settings to restore on exit. */
  145. static struct termios orig_term;
  146. /*
  147. * We have to be careful with barriers: our devices are all run in separate
  148. * threads and so we need to make sure that changes visible to the Guest happen
  149. * in precise order.
  150. */
  151. #define wmb() __asm__ __volatile__("" : : : "memory")
  152. #define mb() __asm__ __volatile__("" : : : "memory")
  153. /* Wrapper for the last available index. Makes it easier to change. */
  154. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  155. /*
  156. * The virtio configuration space is defined to be little-endian. x86 is
  157. * little-endian too, but it's nice to be explicit so we have these helpers.
  158. */
  159. #define cpu_to_le16(v16) (v16)
  160. #define cpu_to_le32(v32) (v32)
  161. #define cpu_to_le64(v64) (v64)
  162. #define le16_to_cpu(v16) (v16)
  163. #define le32_to_cpu(v32) (v32)
  164. #define le64_to_cpu(v64) (v64)
  165. /* Is this iovec empty? */
  166. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  167. {
  168. unsigned int i;
  169. for (i = 0; i < num_iov; i++)
  170. if (iov[i].iov_len)
  171. return false;
  172. return true;
  173. }
  174. /* Take len bytes from the front of this iovec. */
  175. static void iov_consume(struct iovec iov[], unsigned num_iov,
  176. void *dest, unsigned len)
  177. {
  178. unsigned int i;
  179. for (i = 0; i < num_iov; i++) {
  180. unsigned int used;
  181. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  182. if (dest) {
  183. memcpy(dest, iov[i].iov_base, used);
  184. dest += used;
  185. }
  186. iov[i].iov_base += used;
  187. iov[i].iov_len -= used;
  188. len -= used;
  189. }
  190. if (len != 0)
  191. errx(1, "iovec too short!");
  192. }
  193. /* The device virtqueue descriptors are followed by feature bitmasks. */
  194. static u8 *get_feature_bits(struct device *dev)
  195. {
  196. return (u8 *)(dev->desc + 1)
  197. + dev->num_vq * sizeof(struct lguest_vqconfig);
  198. }
  199. /*L:100
  200. * The Launcher code itself takes us out into userspace, that scary place where
  201. * pointers run wild and free! Unfortunately, like most userspace programs,
  202. * it's quite boring (which is why everyone likes to hack on the kernel!).
  203. * Perhaps if you make up an Lguest Drinking Game at this point, it will get
  204. * you through this section. Or, maybe not.
  205. *
  206. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  207. * memory and stores it in "guest_base". In other words, Guest physical ==
  208. * Launcher virtual with an offset.
  209. *
  210. * This can be tough to get your head around, but usually it just means that we
  211. * use these trivial conversion functions when the Guest gives us its
  212. * "physical" addresses:
  213. */
  214. static void *from_guest_phys(unsigned long addr)
  215. {
  216. return guest_base + addr;
  217. }
  218. static unsigned long to_guest_phys(const void *addr)
  219. {
  220. return (addr - guest_base);
  221. }
  222. /*L:130
  223. * Loading the Kernel.
  224. *
  225. * We start with couple of simple helper routines. open_or_die() avoids
  226. * error-checking code cluttering the callers:
  227. */
  228. static int open_or_die(const char *name, int flags)
  229. {
  230. int fd = open(name, flags);
  231. if (fd < 0)
  232. err(1, "Failed to open %s", name);
  233. return fd;
  234. }
  235. /* map_zeroed_pages() takes a number of pages. */
  236. static void *map_zeroed_pages(unsigned int num)
  237. {
  238. int fd = open_or_die("/dev/zero", O_RDONLY);
  239. void *addr;
  240. /*
  241. * We use a private mapping (ie. if we write to the page, it will be
  242. * copied). We allocate an extra two pages PROT_NONE to act as guard
  243. * pages against read/write attempts that exceed allocated space.
  244. */
  245. addr = mmap(NULL, getpagesize() * (num+2),
  246. PROT_NONE, MAP_PRIVATE, fd, 0);
  247. if (addr == MAP_FAILED)
  248. err(1, "Mmapping %u pages of /dev/zero", num);
  249. if (mprotect(addr + getpagesize(), getpagesize() * num,
  250. PROT_READ|PROT_WRITE) == -1)
  251. err(1, "mprotect rw %u pages failed", num);
  252. /*
  253. * One neat mmap feature is that you can close the fd, and it
  254. * stays mapped.
  255. */
  256. close(fd);
  257. /* Return address after PROT_NONE page */
  258. return addr + getpagesize();
  259. }
  260. /* Get some more pages for a device. */
  261. static void *get_pages(unsigned int num)
  262. {
  263. void *addr = from_guest_phys(guest_limit);
  264. guest_limit += num * getpagesize();
  265. if (guest_limit > guest_max)
  266. errx(1, "Not enough memory for devices");
  267. return addr;
  268. }
  269. /*
  270. * This routine is used to load the kernel or initrd. It tries mmap, but if
  271. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  272. * it falls back to reading the memory in.
  273. */
  274. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  275. {
  276. ssize_t r;
  277. /*
  278. * We map writable even though for some segments are marked read-only.
  279. * The kernel really wants to be writable: it patches its own
  280. * instructions.
  281. *
  282. * MAP_PRIVATE means that the page won't be copied until a write is
  283. * done to it. This allows us to share untouched memory between
  284. * Guests.
  285. */
  286. if (mmap(addr, len, PROT_READ|PROT_WRITE,
  287. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  288. return;
  289. /* pread does a seek and a read in one shot: saves a few lines. */
  290. r = pread(fd, addr, len, offset);
  291. if (r != len)
  292. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  293. }
  294. /*
  295. * This routine takes an open vmlinux image, which is in ELF, and maps it into
  296. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  297. * by all modern binaries on Linux including the kernel.
  298. *
  299. * The ELF headers give *two* addresses: a physical address, and a virtual
  300. * address. We use the physical address; the Guest will map itself to the
  301. * virtual address.
  302. *
  303. * We return the starting address.
  304. */
  305. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  306. {
  307. Elf32_Phdr phdr[ehdr->e_phnum];
  308. unsigned int i;
  309. /*
  310. * Sanity checks on the main ELF header: an x86 executable with a
  311. * reasonable number of correctly-sized program headers.
  312. */
  313. if (ehdr->e_type != ET_EXEC
  314. || ehdr->e_machine != EM_386
  315. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  316. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  317. errx(1, "Malformed elf header");
  318. /*
  319. * An ELF executable contains an ELF header and a number of "program"
  320. * headers which indicate which parts ("segments") of the program to
  321. * load where.
  322. */
  323. /* We read in all the program headers at once: */
  324. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  325. err(1, "Seeking to program headers");
  326. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  327. err(1, "Reading program headers");
  328. /*
  329. * Try all the headers: there are usually only three. A read-only one,
  330. * a read-write one, and a "note" section which we don't load.
  331. */
  332. for (i = 0; i < ehdr->e_phnum; i++) {
  333. /* If this isn't a loadable segment, we ignore it */
  334. if (phdr[i].p_type != PT_LOAD)
  335. continue;
  336. verbose("Section %i: size %i addr %p\n",
  337. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  338. /* We map this section of the file at its physical address. */
  339. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  340. phdr[i].p_offset, phdr[i].p_filesz);
  341. }
  342. /* The entry point is given in the ELF header. */
  343. return ehdr->e_entry;
  344. }
  345. /*L:150
  346. * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
  347. * to jump into it and it will unpack itself. We used to have to perform some
  348. * hairy magic because the unpacking code scared me.
  349. *
  350. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  351. * a small patch to jump over the tricky bits in the Guest, so now we just read
  352. * the funky header so we know where in the file to load, and away we go!
  353. */
  354. static unsigned long load_bzimage(int fd)
  355. {
  356. struct boot_params boot;
  357. int r;
  358. /* Modern bzImages get loaded at 1M. */
  359. void *p = from_guest_phys(0x100000);
  360. /*
  361. * Go back to the start of the file and read the header. It should be
  362. * a Linux boot header (see Documentation/x86/boot.txt)
  363. */
  364. lseek(fd, 0, SEEK_SET);
  365. read(fd, &boot, sizeof(boot));
  366. /* Inside the setup_hdr, we expect the magic "HdrS" */
  367. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  368. errx(1, "This doesn't look like a bzImage to me");
  369. /* Skip over the extra sectors of the header. */
  370. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  371. /* Now read everything into memory. in nice big chunks. */
  372. while ((r = read(fd, p, 65536)) > 0)
  373. p += r;
  374. /* Finally, code32_start tells us where to enter the kernel. */
  375. return boot.hdr.code32_start;
  376. }
  377. /*L:140
  378. * Loading the kernel is easy when it's a "vmlinux", but most kernels
  379. * come wrapped up in the self-decompressing "bzImage" format. With a little
  380. * work, we can load those, too.
  381. */
  382. static unsigned long load_kernel(int fd)
  383. {
  384. Elf32_Ehdr hdr;
  385. /* Read in the first few bytes. */
  386. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  387. err(1, "Reading kernel");
  388. /* If it's an ELF file, it starts with "\177ELF" */
  389. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  390. return map_elf(fd, &hdr);
  391. /* Otherwise we assume it's a bzImage, and try to load it. */
  392. return load_bzimage(fd);
  393. }
  394. /*
  395. * This is a trivial little helper to align pages. Andi Kleen hated it because
  396. * it calls getpagesize() twice: "it's dumb code."
  397. *
  398. * Kernel guys get really het up about optimization, even when it's not
  399. * necessary. I leave this code as a reaction against that.
  400. */
  401. static inline unsigned long page_align(unsigned long addr)
  402. {
  403. /* Add upwards and truncate downwards. */
  404. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  405. }
  406. /*L:180
  407. * An "initial ram disk" is a disk image loaded into memory along with the
  408. * kernel which the kernel can use to boot from without needing any drivers.
  409. * Most distributions now use this as standard: the initrd contains the code to
  410. * load the appropriate driver modules for the current machine.
  411. *
  412. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  413. * kernels. He sent me this (and tells me when I break it).
  414. */
  415. static unsigned long load_initrd(const char *name, unsigned long mem)
  416. {
  417. int ifd;
  418. struct stat st;
  419. unsigned long len;
  420. ifd = open_or_die(name, O_RDONLY);
  421. /* fstat() is needed to get the file size. */
  422. if (fstat(ifd, &st) < 0)
  423. err(1, "fstat() on initrd '%s'", name);
  424. /*
  425. * We map the initrd at the top of memory, but mmap wants it to be
  426. * page-aligned, so we round the size up for that.
  427. */
  428. len = page_align(st.st_size);
  429. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  430. /*
  431. * Once a file is mapped, you can close the file descriptor. It's a
  432. * little odd, but quite useful.
  433. */
  434. close(ifd);
  435. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  436. /* We return the initrd size. */
  437. return len;
  438. }
  439. /*:*/
  440. /*
  441. * Simple routine to roll all the commandline arguments together with spaces
  442. * between them.
  443. */
  444. static void concat(char *dst, char *args[])
  445. {
  446. unsigned int i, len = 0;
  447. for (i = 0; args[i]; i++) {
  448. if (i) {
  449. strcat(dst+len, " ");
  450. len++;
  451. }
  452. strcpy(dst+len, args[i]);
  453. len += strlen(args[i]);
  454. }
  455. /* In case it's empty. */
  456. dst[len] = '\0';
  457. }
  458. /*L:185
  459. * This is where we actually tell the kernel to initialize the Guest. We
  460. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  461. * the base of Guest "physical" memory, the top physical page to allow and the
  462. * entry point for the Guest.
  463. */
  464. static void tell_kernel(unsigned long start)
  465. {
  466. unsigned long args[] = { LHREQ_INITIALIZE,
  467. (unsigned long)guest_base,
  468. guest_limit / getpagesize(), start };
  469. verbose("Guest: %p - %p (%#lx)\n",
  470. guest_base, guest_base + guest_limit, guest_limit);
  471. lguest_fd = open_or_die("/dev/lguest", O_RDWR);
  472. if (write(lguest_fd, args, sizeof(args)) < 0)
  473. err(1, "Writing to /dev/lguest");
  474. }
  475. /*:*/
  476. /*L:200
  477. * Device Handling.
  478. *
  479. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  480. * We need to make sure it's not trying to reach into the Launcher itself, so
  481. * we have a convenient routine which checks it and exits with an error message
  482. * if something funny is going on:
  483. */
  484. static void *_check_pointer(unsigned long addr, unsigned int size,
  485. unsigned int line)
  486. {
  487. /*
  488. * Check if the requested address and size exceeds the allocated memory,
  489. * or addr + size wraps around.
  490. */
  491. if ((addr + size) > guest_limit || (addr + size) < addr)
  492. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  493. /*
  494. * We return a pointer for the caller's convenience, now we know it's
  495. * safe to use.
  496. */
  497. return from_guest_phys(addr);
  498. }
  499. /* A macro which transparently hands the line number to the real function. */
  500. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  501. /*
  502. * Each buffer in the virtqueues is actually a chain of descriptors. This
  503. * function returns the next descriptor in the chain, or vq->vring.num if we're
  504. * at the end.
  505. */
  506. static unsigned next_desc(struct vring_desc *desc,
  507. unsigned int i, unsigned int max)
  508. {
  509. unsigned int next;
  510. /* If this descriptor says it doesn't chain, we're done. */
  511. if (!(desc[i].flags & VRING_DESC_F_NEXT))
  512. return max;
  513. /* Check they're not leading us off end of descriptors. */
  514. next = desc[i].next;
  515. /* Make sure compiler knows to grab that: we don't want it changing! */
  516. wmb();
  517. if (next >= max)
  518. errx(1, "Desc next is %u", next);
  519. return next;
  520. }
  521. /*
  522. * This actually sends the interrupt for this virtqueue, if we've used a
  523. * buffer.
  524. */
  525. static void trigger_irq(struct virtqueue *vq)
  526. {
  527. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  528. /* Don't inform them if nothing used. */
  529. if (!vq->pending_used)
  530. return;
  531. vq->pending_used = 0;
  532. /* If they don't want an interrupt, don't send one... */
  533. if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
  534. return;
  535. }
  536. /* Send the Guest an interrupt tell them we used something up. */
  537. if (write(lguest_fd, buf, sizeof(buf)) != 0)
  538. err(1, "Triggering irq %i", vq->config.irq);
  539. }
  540. /*
  541. * This looks in the virtqueue for the first available buffer, and converts
  542. * it to an iovec for convenient access. Since descriptors consist of some
  543. * number of output then some number of input descriptors, it's actually two
  544. * iovecs, but we pack them into one and note how many of each there were.
  545. *
  546. * This function waits if necessary, and returns the descriptor number found.
  547. */
  548. static unsigned wait_for_vq_desc(struct virtqueue *vq,
  549. struct iovec iov[],
  550. unsigned int *out_num, unsigned int *in_num)
  551. {
  552. unsigned int i, head, max;
  553. struct vring_desc *desc;
  554. u16 last_avail = lg_last_avail(vq);
  555. /* There's nothing available? */
  556. while (last_avail == vq->vring.avail->idx) {
  557. u64 event;
  558. /*
  559. * Since we're about to sleep, now is a good time to tell the
  560. * Guest about what we've used up to now.
  561. */
  562. trigger_irq(vq);
  563. /* OK, now we need to know about added descriptors. */
  564. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  565. /*
  566. * They could have slipped one in as we were doing that: make
  567. * sure it's written, then check again.
  568. */
  569. mb();
  570. if (last_avail != vq->vring.avail->idx) {
  571. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  572. break;
  573. }
  574. /* Nothing new? Wait for eventfd to tell us they refilled. */
  575. if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
  576. errx(1, "Event read failed?");
  577. /* We don't need to be notified again. */
  578. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  579. }
  580. /* Check it isn't doing very strange things with descriptor numbers. */
  581. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  582. errx(1, "Guest moved used index from %u to %u",
  583. last_avail, vq->vring.avail->idx);
  584. /*
  585. * Grab the next descriptor number they're advertising, and increment
  586. * the index we've seen.
  587. */
  588. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  589. lg_last_avail(vq)++;
  590. /* If their number is silly, that's a fatal mistake. */
  591. if (head >= vq->vring.num)
  592. errx(1, "Guest says index %u is available", head);
  593. /* When we start there are none of either input nor output. */
  594. *out_num = *in_num = 0;
  595. max = vq->vring.num;
  596. desc = vq->vring.desc;
  597. i = head;
  598. /*
  599. * If this is an indirect entry, then this buffer contains a descriptor
  600. * table which we handle as if it's any normal descriptor chain.
  601. */
  602. if (desc[i].flags & VRING_DESC_F_INDIRECT) {
  603. if (desc[i].len % sizeof(struct vring_desc))
  604. errx(1, "Invalid size for indirect buffer table");
  605. max = desc[i].len / sizeof(struct vring_desc);
  606. desc = check_pointer(desc[i].addr, desc[i].len);
  607. i = 0;
  608. }
  609. do {
  610. /* Grab the first descriptor, and check it's OK. */
  611. iov[*out_num + *in_num].iov_len = desc[i].len;
  612. iov[*out_num + *in_num].iov_base
  613. = check_pointer(desc[i].addr, desc[i].len);
  614. /* If this is an input descriptor, increment that count. */
  615. if (desc[i].flags & VRING_DESC_F_WRITE)
  616. (*in_num)++;
  617. else {
  618. /*
  619. * If it's an output descriptor, they're all supposed
  620. * to come before any input descriptors.
  621. */
  622. if (*in_num)
  623. errx(1, "Descriptor has out after in");
  624. (*out_num)++;
  625. }
  626. /* If we've got too many, that implies a descriptor loop. */
  627. if (*out_num + *in_num > max)
  628. errx(1, "Looped descriptor");
  629. } while ((i = next_desc(desc, i, max)) != max);
  630. return head;
  631. }
  632. /*
  633. * After we've used one of their buffers, we tell the Guest about it. Sometime
  634. * later we'll want to send them an interrupt using trigger_irq(); note that
  635. * wait_for_vq_desc() does that for us if it has to wait.
  636. */
  637. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  638. {
  639. struct vring_used_elem *used;
  640. /*
  641. * The virtqueue contains a ring of used buffers. Get a pointer to the
  642. * next entry in that used ring.
  643. */
  644. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  645. used->id = head;
  646. used->len = len;
  647. /* Make sure buffer is written before we update index. */
  648. wmb();
  649. vq->vring.used->idx++;
  650. vq->pending_used++;
  651. }
  652. /* And here's the combo meal deal. Supersize me! */
  653. static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
  654. {
  655. add_used(vq, head, len);
  656. trigger_irq(vq);
  657. }
  658. /*
  659. * The Console
  660. *
  661. * We associate some data with the console for our exit hack.
  662. */
  663. struct console_abort {
  664. /* How many times have they hit ^C? */
  665. int count;
  666. /* When did they start? */
  667. struct timeval start;
  668. };
  669. /* This is the routine which handles console input (ie. stdin). */
  670. static void console_input(struct virtqueue *vq)
  671. {
  672. int len;
  673. unsigned int head, in_num, out_num;
  674. struct console_abort *abort = vq->dev->priv;
  675. struct iovec iov[vq->vring.num];
  676. /* Make sure there's a descriptor available. */
  677. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  678. if (out_num)
  679. errx(1, "Output buffers in console in queue?");
  680. /* Read into it. This is where we usually wait. */
  681. len = readv(STDIN_FILENO, iov, in_num);
  682. if (len <= 0) {
  683. /* Ran out of input? */
  684. warnx("Failed to get console input, ignoring console.");
  685. /*
  686. * For simplicity, dying threads kill the whole Launcher. So
  687. * just nap here.
  688. */
  689. for (;;)
  690. pause();
  691. }
  692. /* Tell the Guest we used a buffer. */
  693. add_used_and_trigger(vq, head, len);
  694. /*
  695. * Three ^C within one second? Exit.
  696. *
  697. * This is such a hack, but works surprisingly well. Each ^C has to
  698. * be in a buffer by itself, so they can't be too fast. But we check
  699. * that we get three within about a second, so they can't be too
  700. * slow.
  701. */
  702. if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
  703. abort->count = 0;
  704. return;
  705. }
  706. abort->count++;
  707. if (abort->count == 1)
  708. gettimeofday(&abort->start, NULL);
  709. else if (abort->count == 3) {
  710. struct timeval now;
  711. gettimeofday(&now, NULL);
  712. /* Kill all Launcher processes with SIGINT, like normal ^C */
  713. if (now.tv_sec <= abort->start.tv_sec+1)
  714. kill(0, SIGINT);
  715. abort->count = 0;
  716. }
  717. }
  718. /* This is the routine which handles console output (ie. stdout). */
  719. static void console_output(struct virtqueue *vq)
  720. {
  721. unsigned int head, out, in;
  722. struct iovec iov[vq->vring.num];
  723. /* We usually wait in here, for the Guest to give us something. */
  724. head = wait_for_vq_desc(vq, iov, &out, &in);
  725. if (in)
  726. errx(1, "Input buffers in console output queue?");
  727. /* writev can return a partial write, so we loop here. */
  728. while (!iov_empty(iov, out)) {
  729. int len = writev(STDOUT_FILENO, iov, out);
  730. if (len <= 0) {
  731. warn("Write to stdout gave %i (%d)", len, errno);
  732. break;
  733. }
  734. iov_consume(iov, out, NULL, len);
  735. }
  736. /*
  737. * We're finished with that buffer: if we're going to sleep,
  738. * wait_for_vq_desc() will prod the Guest with an interrupt.
  739. */
  740. add_used(vq, head, 0);
  741. }
  742. /*
  743. * The Network
  744. *
  745. * Handling output for network is also simple: we get all the output buffers
  746. * and write them to /dev/net/tun.
  747. */
  748. struct net_info {
  749. int tunfd;
  750. };
  751. static void net_output(struct virtqueue *vq)
  752. {
  753. struct net_info *net_info = vq->dev->priv;
  754. unsigned int head, out, in;
  755. struct iovec iov[vq->vring.num];
  756. /* We usually wait in here for the Guest to give us a packet. */
  757. head = wait_for_vq_desc(vq, iov, &out, &in);
  758. if (in)
  759. errx(1, "Input buffers in net output queue?");
  760. /*
  761. * Send the whole thing through to /dev/net/tun. It expects the exact
  762. * same format: what a coincidence!
  763. */
  764. if (writev(net_info->tunfd, iov, out) < 0)
  765. warnx("Write to tun failed (%d)?", errno);
  766. /*
  767. * Done with that one; wait_for_vq_desc() will send the interrupt if
  768. * all packets are processed.
  769. */
  770. add_used(vq, head, 0);
  771. }
  772. /*
  773. * Handling network input is a bit trickier, because I've tried to optimize it.
  774. *
  775. * First we have a helper routine which tells is if from this file descriptor
  776. * (ie. the /dev/net/tun device) will block:
  777. */
  778. static bool will_block(int fd)
  779. {
  780. fd_set fdset;
  781. struct timeval zero = { 0, 0 };
  782. FD_ZERO(&fdset);
  783. FD_SET(fd, &fdset);
  784. return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
  785. }
  786. /*
  787. * This handles packets coming in from the tun device to our Guest. Like all
  788. * service routines, it gets called again as soon as it returns, so you don't
  789. * see a while(1) loop here.
  790. */
  791. static void net_input(struct virtqueue *vq)
  792. {
  793. int len;
  794. unsigned int head, out, in;
  795. struct iovec iov[vq->vring.num];
  796. struct net_info *net_info = vq->dev->priv;
  797. /*
  798. * Get a descriptor to write an incoming packet into. This will also
  799. * send an interrupt if they're out of descriptors.
  800. */
  801. head = wait_for_vq_desc(vq, iov, &out, &in);
  802. if (out)
  803. errx(1, "Output buffers in net input queue?");
  804. /*
  805. * If it looks like we'll block reading from the tun device, send them
  806. * an interrupt.
  807. */
  808. if (vq->pending_used && will_block(net_info->tunfd))
  809. trigger_irq(vq);
  810. /*
  811. * Read in the packet. This is where we normally wait (when there's no
  812. * incoming network traffic).
  813. */
  814. len = readv(net_info->tunfd, iov, in);
  815. if (len <= 0)
  816. warn("Failed to read from tun (%d).", errno);
  817. /*
  818. * Mark that packet buffer as used, but don't interrupt here. We want
  819. * to wait until we've done as much work as we can.
  820. */
  821. add_used(vq, head, len);
  822. }
  823. /*:*/
  824. /* This is the helper to create threads: run the service routine in a loop. */
  825. static int do_thread(void *_vq)
  826. {
  827. struct virtqueue *vq = _vq;
  828. for (;;)
  829. vq->service(vq);
  830. return 0;
  831. }
  832. /*
  833. * When a child dies, we kill our entire process group with SIGTERM. This
  834. * also has the side effect that the shell restores the console for us!
  835. */
  836. static void kill_launcher(int signal)
  837. {
  838. kill(0, SIGTERM);
  839. }
  840. static void reset_device(struct device *dev)
  841. {
  842. struct virtqueue *vq;
  843. verbose("Resetting device %s\n", dev->name);
  844. /* Clear any features they've acked. */
  845. memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
  846. /* We're going to be explicitly killing threads, so ignore them. */
  847. signal(SIGCHLD, SIG_IGN);
  848. /* Zero out the virtqueues, get rid of their threads */
  849. for (vq = dev->vq; vq; vq = vq->next) {
  850. if (vq->thread != (pid_t)-1) {
  851. kill(vq->thread, SIGTERM);
  852. waitpid(vq->thread, NULL, 0);
  853. vq->thread = (pid_t)-1;
  854. }
  855. memset(vq->vring.desc, 0,
  856. vring_size(vq->config.num, LGUEST_VRING_ALIGN));
  857. lg_last_avail(vq) = 0;
  858. }
  859. dev->running = false;
  860. /* Now we care if threads die. */
  861. signal(SIGCHLD, (void *)kill_launcher);
  862. }
  863. /*L:216
  864. * This actually creates the thread which services the virtqueue for a device.
  865. */
  866. static void create_thread(struct virtqueue *vq)
  867. {
  868. /*
  869. * Create stack for thread. Since the stack grows upwards, we point
  870. * the stack pointer to the end of this region.
  871. */
  872. char *stack = malloc(32768);
  873. unsigned long args[] = { LHREQ_EVENTFD,
  874. vq->config.pfn*getpagesize(), 0 };
  875. /* Create a zero-initialized eventfd. */
  876. vq->eventfd = eventfd(0, 0);
  877. if (vq->eventfd < 0)
  878. err(1, "Creating eventfd");
  879. args[2] = vq->eventfd;
  880. /*
  881. * Attach an eventfd to this virtqueue: it will go off when the Guest
  882. * does an LHCALL_NOTIFY for this vq.
  883. */
  884. if (write(lguest_fd, &args, sizeof(args)) != 0)
  885. err(1, "Attaching eventfd");
  886. /*
  887. * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
  888. * we get a signal if it dies.
  889. */
  890. vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
  891. if (vq->thread == (pid_t)-1)
  892. err(1, "Creating clone");
  893. /* We close our local copy now the child has it. */
  894. close(vq->eventfd);
  895. }
  896. static void start_device(struct device *dev)
  897. {
  898. unsigned int i;
  899. struct virtqueue *vq;
  900. verbose("Device %s OK: offered", dev->name);
  901. for (i = 0; i < dev->feature_len; i++)
  902. verbose(" %02x", get_feature_bits(dev)[i]);
  903. verbose(", accepted");
  904. for (i = 0; i < dev->feature_len; i++)
  905. verbose(" %02x", get_feature_bits(dev)
  906. [dev->feature_len+i]);
  907. for (vq = dev->vq; vq; vq = vq->next) {
  908. if (vq->service)
  909. create_thread(vq);
  910. }
  911. dev->running = true;
  912. }
  913. static void cleanup_devices(void)
  914. {
  915. struct device *dev;
  916. for (dev = devices.dev; dev; dev = dev->next)
  917. reset_device(dev);
  918. /* If we saved off the original terminal settings, restore them now. */
  919. if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
  920. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  921. }
  922. /* When the Guest tells us they updated the status field, we handle it. */
  923. static void update_device_status(struct device *dev)
  924. {
  925. /* A zero status is a reset, otherwise it's a set of flags. */
  926. if (dev->desc->status == 0)
  927. reset_device(dev);
  928. else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  929. warnx("Device %s configuration FAILED", dev->name);
  930. if (dev->running)
  931. reset_device(dev);
  932. } else {
  933. if (dev->running)
  934. err(1, "Device %s features finalized twice", dev->name);
  935. start_device(dev);
  936. }
  937. }
  938. /*L:215
  939. * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
  940. * particular, it's used to notify us of device status changes during boot.
  941. */
  942. static void handle_output(unsigned long addr)
  943. {
  944. struct device *i;
  945. /* Check each device. */
  946. for (i = devices.dev; i; i = i->next) {
  947. struct virtqueue *vq;
  948. /*
  949. * Notifications to device descriptors mean they updated the
  950. * device status.
  951. */
  952. if (from_guest_phys(addr) == i->desc) {
  953. update_device_status(i);
  954. return;
  955. }
  956. /* Devices should not be used before features are finalized. */
  957. for (vq = i->vq; vq; vq = vq->next) {
  958. if (addr != vq->config.pfn*getpagesize())
  959. continue;
  960. errx(1, "Notification on %s before setup!", i->name);
  961. }
  962. }
  963. /*
  964. * Early console write is done using notify on a nul-terminated string
  965. * in Guest memory. It's also great for hacking debugging messages
  966. * into a Guest.
  967. */
  968. if (addr >= guest_limit)
  969. errx(1, "Bad NOTIFY %#lx", addr);
  970. write(STDOUT_FILENO, from_guest_phys(addr),
  971. strnlen(from_guest_phys(addr), guest_limit - addr));
  972. }
  973. /*L:190
  974. * Device Setup
  975. *
  976. * All devices need a descriptor so the Guest knows it exists, and a "struct
  977. * device" so the Launcher can keep track of it. We have common helper
  978. * routines to allocate and manage them.
  979. */
  980. /*
  981. * The layout of the device page is a "struct lguest_device_desc" followed by a
  982. * number of virtqueue descriptors, then two sets of feature bits, then an
  983. * array of configuration bytes. This routine returns the configuration
  984. * pointer.
  985. */
  986. static u8 *device_config(const struct device *dev)
  987. {
  988. return (void *)(dev->desc + 1)
  989. + dev->num_vq * sizeof(struct lguest_vqconfig)
  990. + dev->feature_len * 2;
  991. }
  992. /*
  993. * This routine allocates a new "struct lguest_device_desc" from descriptor
  994. * table page just above the Guest's normal memory. It returns a pointer to
  995. * that descriptor.
  996. */
  997. static struct lguest_device_desc *new_dev_desc(u16 type)
  998. {
  999. struct lguest_device_desc d = { .type = type };
  1000. void *p;
  1001. /* Figure out where the next device config is, based on the last one. */
  1002. if (devices.lastdev)
  1003. p = device_config(devices.lastdev)
  1004. + devices.lastdev->desc->config_len;
  1005. else
  1006. p = devices.descpage;
  1007. /* We only have one page for all the descriptors. */
  1008. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  1009. errx(1, "Too many devices");
  1010. /* p might not be aligned, so we memcpy in. */
  1011. return memcpy(p, &d, sizeof(d));
  1012. }
  1013. /*
  1014. * Each device descriptor is followed by the description of its virtqueues. We
  1015. * specify how many descriptors the virtqueue is to have.
  1016. */
  1017. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  1018. void (*service)(struct virtqueue *))
  1019. {
  1020. unsigned int pages;
  1021. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  1022. void *p;
  1023. /* First we need some memory for this virtqueue. */
  1024. pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
  1025. / getpagesize();
  1026. p = get_pages(pages);
  1027. /* Initialize the virtqueue */
  1028. vq->next = NULL;
  1029. vq->last_avail_idx = 0;
  1030. vq->dev = dev;
  1031. /*
  1032. * This is the routine the service thread will run, and its Process ID
  1033. * once it's running.
  1034. */
  1035. vq->service = service;
  1036. vq->thread = (pid_t)-1;
  1037. /* Initialize the configuration. */
  1038. vq->config.num = num_descs;
  1039. vq->config.irq = devices.next_irq++;
  1040. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1041. /* Initialize the vring. */
  1042. vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
  1043. /*
  1044. * Append virtqueue to this device's descriptor. We use
  1045. * device_config() to get the end of the device's current virtqueues;
  1046. * we check that we haven't added any config or feature information
  1047. * yet, otherwise we'd be overwriting them.
  1048. */
  1049. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1050. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1051. dev->num_vq++;
  1052. dev->desc->num_vq++;
  1053. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1054. /*
  1055. * Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1056. * second.
  1057. */
  1058. for (i = &dev->vq; *i; i = &(*i)->next);
  1059. *i = vq;
  1060. }
  1061. /*
  1062. * The first half of the feature bitmask is for us to advertise features. The
  1063. * second half is for the Guest to accept features.
  1064. */
  1065. static void add_feature(struct device *dev, unsigned bit)
  1066. {
  1067. u8 *features = get_feature_bits(dev);
  1068. /* We can't extend the feature bits once we've added config bytes */
  1069. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1070. assert(dev->desc->config_len == 0);
  1071. dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
  1072. }
  1073. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1074. }
  1075. /*
  1076. * This routine sets the configuration fields for an existing device's
  1077. * descriptor. It only works for the last device, but that's OK because that's
  1078. * how we use it.
  1079. */
  1080. static void set_config(struct device *dev, unsigned len, const void *conf)
  1081. {
  1082. /* Check we haven't overflowed our single page. */
  1083. if (device_config(dev) + len > devices.descpage + getpagesize())
  1084. errx(1, "Too many devices");
  1085. /* Copy in the config information, and store the length. */
  1086. memcpy(device_config(dev), conf, len);
  1087. dev->desc->config_len = len;
  1088. /* Size must fit in config_len field (8 bits)! */
  1089. assert(dev->desc->config_len == len);
  1090. }
  1091. /*
  1092. * This routine does all the creation and setup of a new device, including
  1093. * calling new_dev_desc() to allocate the descriptor and device memory. We
  1094. * don't actually start the service threads until later.
  1095. *
  1096. * See what I mean about userspace being boring?
  1097. */
  1098. static struct device *new_device(const char *name, u16 type)
  1099. {
  1100. struct device *dev = malloc(sizeof(*dev));
  1101. /* Now we populate the fields one at a time. */
  1102. dev->desc = new_dev_desc(type);
  1103. dev->name = name;
  1104. dev->vq = NULL;
  1105. dev->feature_len = 0;
  1106. dev->num_vq = 0;
  1107. dev->running = false;
  1108. dev->next = NULL;
  1109. /*
  1110. * Append to device list. Prepending to a single-linked list is
  1111. * easier, but the user expects the devices to be arranged on the bus
  1112. * in command-line order. The first network device on the command line
  1113. * is eth0, the first block device /dev/vda, etc.
  1114. */
  1115. if (devices.lastdev)
  1116. devices.lastdev->next = dev;
  1117. else
  1118. devices.dev = dev;
  1119. devices.lastdev = dev;
  1120. return dev;
  1121. }
  1122. /*
  1123. * Our first setup routine is the console. It's a fairly simple device, but
  1124. * UNIX tty handling makes it uglier than it could be.
  1125. */
  1126. static void setup_console(void)
  1127. {
  1128. struct device *dev;
  1129. /* If we can save the initial standard input settings... */
  1130. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1131. struct termios term = orig_term;
  1132. /*
  1133. * Then we turn off echo, line buffering and ^C etc: We want a
  1134. * raw input stream to the Guest.
  1135. */
  1136. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1137. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1138. }
  1139. dev = new_device("console", VIRTIO_ID_CONSOLE);
  1140. /* We store the console state in dev->priv, and initialize it. */
  1141. dev->priv = malloc(sizeof(struct console_abort));
  1142. ((struct console_abort *)dev->priv)->count = 0;
  1143. /*
  1144. * The console needs two virtqueues: the input then the output. When
  1145. * they put something the input queue, we make sure we're listening to
  1146. * stdin. When they put something in the output queue, we write it to
  1147. * stdout.
  1148. */
  1149. add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
  1150. add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
  1151. verbose("device %u: console\n", ++devices.device_num);
  1152. }
  1153. /*:*/
  1154. /*M:010
  1155. * Inter-guest networking is an interesting area. Simplest is to have a
  1156. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1157. * used to send packets to another guest in a 1:1 manner.
  1158. *
  1159. * More sophisticated is to use one of the tools developed for project like UML
  1160. * to do networking.
  1161. *
  1162. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1163. * completely generic ("here's my vring, attach to your vring") and would work
  1164. * for any traffic. Of course, namespace and permissions issues need to be
  1165. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1166. * multiple inter-guest channels behind one interface, although it would
  1167. * require some manner of hotplugging new virtio channels.
  1168. *
  1169. * Finally, we could use a virtio network switch in the kernel, ie. vhost.
  1170. :*/
  1171. static u32 str2ip(const char *ipaddr)
  1172. {
  1173. unsigned int b[4];
  1174. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1175. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1176. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1177. }
  1178. static void str2mac(const char *macaddr, unsigned char mac[6])
  1179. {
  1180. unsigned int m[6];
  1181. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1182. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1183. errx(1, "Failed to parse mac address '%s'", macaddr);
  1184. mac[0] = m[0];
  1185. mac[1] = m[1];
  1186. mac[2] = m[2];
  1187. mac[3] = m[3];
  1188. mac[4] = m[4];
  1189. mac[5] = m[5];
  1190. }
  1191. /*
  1192. * This code is "adapted" from libbridge: it attaches the Host end of the
  1193. * network device to the bridge device specified by the command line.
  1194. *
  1195. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1196. * dislike bridging), and I just try not to break it.
  1197. */
  1198. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1199. {
  1200. int ifidx;
  1201. struct ifreq ifr;
  1202. if (!*br_name)
  1203. errx(1, "must specify bridge name");
  1204. ifidx = if_nametoindex(if_name);
  1205. if (!ifidx)
  1206. errx(1, "interface %s does not exist!", if_name);
  1207. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1208. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1209. ifr.ifr_ifindex = ifidx;
  1210. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1211. err(1, "can't add %s to bridge %s", if_name, br_name);
  1212. }
  1213. /*
  1214. * This sets up the Host end of the network device with an IP address, brings
  1215. * it up so packets will flow, the copies the MAC address into the hwaddr
  1216. * pointer.
  1217. */
  1218. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1219. {
  1220. struct ifreq ifr;
  1221. struct sockaddr_in sin;
  1222. memset(&ifr, 0, sizeof(ifr));
  1223. strcpy(ifr.ifr_name, tapif);
  1224. /* Don't read these incantations. Just cut & paste them like I did! */
  1225. sin.sin_family = AF_INET;
  1226. sin.sin_addr.s_addr = htonl(ipaddr);
  1227. memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
  1228. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1229. err(1, "Setting %s interface address", tapif);
  1230. ifr.ifr_flags = IFF_UP;
  1231. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1232. err(1, "Bringing interface %s up", tapif);
  1233. }
  1234. static int get_tun_device(char tapif[IFNAMSIZ])
  1235. {
  1236. struct ifreq ifr;
  1237. int netfd;
  1238. /* Start with this zeroed. Messy but sure. */
  1239. memset(&ifr, 0, sizeof(ifr));
  1240. /*
  1241. * We open the /dev/net/tun device and tell it we want a tap device. A
  1242. * tap device is like a tun device, only somehow different. To tell
  1243. * the truth, I completely blundered my way through this code, but it
  1244. * works now!
  1245. */
  1246. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1247. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1248. strcpy(ifr.ifr_name, "tap%d");
  1249. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1250. err(1, "configuring /dev/net/tun");
  1251. if (ioctl(netfd, TUNSETOFFLOAD,
  1252. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1253. err(1, "Could not set features for tun device");
  1254. /*
  1255. * We don't need checksums calculated for packets coming in this
  1256. * device: trust us!
  1257. */
  1258. ioctl(netfd, TUNSETNOCSUM, 1);
  1259. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1260. return netfd;
  1261. }
  1262. /*L:195
  1263. * Our network is a Host<->Guest network. This can either use bridging or
  1264. * routing, but the principle is the same: it uses the "tun" device to inject
  1265. * packets into the Host as if they came in from a normal network card. We
  1266. * just shunt packets between the Guest and the tun device.
  1267. */
  1268. static void setup_tun_net(char *arg)
  1269. {
  1270. struct device *dev;
  1271. struct net_info *net_info = malloc(sizeof(*net_info));
  1272. int ipfd;
  1273. u32 ip = INADDR_ANY;
  1274. bool bridging = false;
  1275. char tapif[IFNAMSIZ], *p;
  1276. struct virtio_net_config conf;
  1277. net_info->tunfd = get_tun_device(tapif);
  1278. /* First we create a new network device. */
  1279. dev = new_device("net", VIRTIO_ID_NET);
  1280. dev->priv = net_info;
  1281. /* Network devices need a recv and a send queue, just like console. */
  1282. add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
  1283. add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
  1284. /*
  1285. * We need a socket to perform the magic network ioctls to bring up the
  1286. * tap interface, connect to the bridge etc. Any socket will do!
  1287. */
  1288. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1289. if (ipfd < 0)
  1290. err(1, "opening IP socket");
  1291. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1292. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1293. arg += strlen(BRIDGE_PFX);
  1294. bridging = true;
  1295. }
  1296. /* A mac address may follow the bridge name or IP address */
  1297. p = strchr(arg, ':');
  1298. if (p) {
  1299. str2mac(p+1, conf.mac);
  1300. add_feature(dev, VIRTIO_NET_F_MAC);
  1301. *p = '\0';
  1302. }
  1303. /* arg is now either an IP address or a bridge name */
  1304. if (bridging)
  1305. add_to_bridge(ipfd, tapif, arg);
  1306. else
  1307. ip = str2ip(arg);
  1308. /* Set up the tun device. */
  1309. configure_device(ipfd, tapif, ip);
  1310. /* Expect Guest to handle everything except UFO */
  1311. add_feature(dev, VIRTIO_NET_F_CSUM);
  1312. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1313. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1314. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1315. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1316. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1317. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1318. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1319. /* We handle indirect ring entries */
  1320. add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
  1321. set_config(dev, sizeof(conf), &conf);
  1322. /* We don't need the socket any more; setup is done. */
  1323. close(ipfd);
  1324. devices.device_num++;
  1325. if (bridging)
  1326. verbose("device %u: tun %s attached to bridge: %s\n",
  1327. devices.device_num, tapif, arg);
  1328. else
  1329. verbose("device %u: tun %s: %s\n",
  1330. devices.device_num, tapif, arg);
  1331. }
  1332. /*:*/
  1333. /* This hangs off device->priv. */
  1334. struct vblk_info {
  1335. /* The size of the file. */
  1336. off64_t len;
  1337. /* The file descriptor for the file. */
  1338. int fd;
  1339. };
  1340. /*L:210
  1341. * The Disk
  1342. *
  1343. * The disk only has one virtqueue, so it only has one thread. It is really
  1344. * simple: the Guest asks for a block number and we read or write that position
  1345. * in the file.
  1346. *
  1347. * Before we serviced each virtqueue in a separate thread, that was unacceptably
  1348. * slow: the Guest waits until the read is finished before running anything
  1349. * else, even if it could have been doing useful work.
  1350. *
  1351. * We could have used async I/O, except it's reputed to suck so hard that
  1352. * characters actually go missing from your code when you try to use it.
  1353. */
  1354. static void blk_request(struct virtqueue *vq)
  1355. {
  1356. struct vblk_info *vblk = vq->dev->priv;
  1357. unsigned int head, out_num, in_num, wlen;
  1358. int ret, i;
  1359. u8 *in;
  1360. struct virtio_blk_outhdr out;
  1361. struct iovec iov[vq->vring.num];
  1362. off64_t off;
  1363. /*
  1364. * Get the next request, where we normally wait. It triggers the
  1365. * interrupt to acknowledge previously serviced requests (if any).
  1366. */
  1367. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  1368. /* Copy the output header from the front of the iov (adjusts iov) */
  1369. iov_consume(iov, out_num, &out, sizeof(out));
  1370. /* Find and trim end of iov input array, for our status byte. */
  1371. in = NULL;
  1372. for (i = out_num + in_num - 1; i >= out_num; i--) {
  1373. if (iov[i].iov_len > 0) {
  1374. in = iov[i].iov_base + iov[i].iov_len - 1;
  1375. iov[i].iov_len--;
  1376. break;
  1377. }
  1378. }
  1379. if (!in)
  1380. errx(1, "Bad virtblk cmd with no room for status");
  1381. /*
  1382. * For historical reasons, block operations are expressed in 512 byte
  1383. * "sectors".
  1384. */
  1385. off = out.sector * 512;
  1386. /*
  1387. * In general the virtio block driver is allowed to try SCSI commands.
  1388. * It'd be nice if we supported eject, for example, but we don't.
  1389. */
  1390. if (out.type & VIRTIO_BLK_T_SCSI_CMD) {
  1391. fprintf(stderr, "Scsi commands unsupported\n");
  1392. *in = VIRTIO_BLK_S_UNSUPP;
  1393. wlen = sizeof(*in);
  1394. } else if (out.type & VIRTIO_BLK_T_OUT) {
  1395. /*
  1396. * Write
  1397. *
  1398. * Move to the right location in the block file. This can fail
  1399. * if they try to write past end.
  1400. */
  1401. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1402. err(1, "Bad seek to sector %llu", out.sector);
  1403. ret = writev(vblk->fd, iov, out_num);
  1404. verbose("WRITE to sector %llu: %i\n", out.sector, ret);
  1405. /*
  1406. * Grr... Now we know how long the descriptor they sent was, we
  1407. * make sure they didn't try to write over the end of the block
  1408. * file (possibly extending it).
  1409. */
  1410. if (ret > 0 && off + ret > vblk->len) {
  1411. /* Trim it back to the correct length */
  1412. ftruncate64(vblk->fd, vblk->len);
  1413. /* Die, bad Guest, die. */
  1414. errx(1, "Write past end %llu+%u", off, ret);
  1415. }
  1416. wlen = sizeof(*in);
  1417. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1418. } else if (out.type & VIRTIO_BLK_T_FLUSH) {
  1419. /* Flush */
  1420. ret = fdatasync(vblk->fd);
  1421. verbose("FLUSH fdatasync: %i\n", ret);
  1422. wlen = sizeof(*in);
  1423. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1424. } else {
  1425. /*
  1426. * Read
  1427. *
  1428. * Move to the right location in the block file. This can fail
  1429. * if they try to read past end.
  1430. */
  1431. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1432. err(1, "Bad seek to sector %llu", out.sector);
  1433. ret = readv(vblk->fd, iov + out_num, in_num);
  1434. if (ret >= 0) {
  1435. wlen = sizeof(*in) + ret;
  1436. *in = VIRTIO_BLK_S_OK;
  1437. } else {
  1438. wlen = sizeof(*in);
  1439. *in = VIRTIO_BLK_S_IOERR;
  1440. }
  1441. }
  1442. /* Finished that request. */
  1443. add_used(vq, head, wlen);
  1444. }
  1445. /*L:198 This actually sets up a virtual block device. */
  1446. static void setup_block_file(const char *filename)
  1447. {
  1448. struct device *dev;
  1449. struct vblk_info *vblk;
  1450. struct virtio_blk_config conf;
  1451. /* Creat the device. */
  1452. dev = new_device("block", VIRTIO_ID_BLOCK);
  1453. /* The device has one virtqueue, where the Guest places requests. */
  1454. add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
  1455. /* Allocate the room for our own bookkeeping */
  1456. vblk = dev->priv = malloc(sizeof(*vblk));
  1457. /* First we open the file and store the length. */
  1458. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1459. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1460. /* We support FLUSH. */
  1461. add_feature(dev, VIRTIO_BLK_F_FLUSH);
  1462. /* Tell Guest how many sectors this device has. */
  1463. conf.capacity = cpu_to_le64(vblk->len / 512);
  1464. /*
  1465. * Tell Guest not to put in too many descriptors at once: two are used
  1466. * for the in and out elements.
  1467. */
  1468. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1469. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1470. /* Don't try to put whole struct: we have 8 bit limit. */
  1471. set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
  1472. verbose("device %u: virtblock %llu sectors\n",
  1473. ++devices.device_num, le64_to_cpu(conf.capacity));
  1474. }
  1475. /*L:211
  1476. * Our random number generator device reads from /dev/random into the Guest's
  1477. * input buffers. The usual case is that the Guest doesn't want random numbers
  1478. * and so has no buffers although /dev/random is still readable, whereas
  1479. * console is the reverse.
  1480. *
  1481. * The same logic applies, however.
  1482. */
  1483. struct rng_info {
  1484. int rfd;
  1485. };
  1486. static void rng_input(struct virtqueue *vq)
  1487. {
  1488. int len;
  1489. unsigned int head, in_num, out_num, totlen = 0;
  1490. struct rng_info *rng_info = vq->dev->priv;
  1491. struct iovec iov[vq->vring.num];
  1492. /* First we need a buffer from the Guests's virtqueue. */
  1493. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  1494. if (out_num)
  1495. errx(1, "Output buffers in rng?");
  1496. /*
  1497. * Just like the console write, we loop to cover the whole iovec.
  1498. * In this case, short reads actually happen quite a bit.
  1499. */
  1500. while (!iov_empty(iov, in_num)) {
  1501. len = readv(rng_info->rfd, iov, in_num);
  1502. if (len <= 0)
  1503. err(1, "Read from /dev/random gave %i", len);
  1504. iov_consume(iov, in_num, NULL, len);
  1505. totlen += len;
  1506. }
  1507. /* Tell the Guest about the new input. */
  1508. add_used(vq, head, totlen);
  1509. }
  1510. /*L:199
  1511. * This creates a "hardware" random number device for the Guest.
  1512. */
  1513. static void setup_rng(void)
  1514. {
  1515. struct device *dev;
  1516. struct rng_info *rng_info = malloc(sizeof(*rng_info));
  1517. /* Our device's privat info simply contains the /dev/random fd. */
  1518. rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
  1519. /* Create the new device. */
  1520. dev = new_device("rng", VIRTIO_ID_RNG);
  1521. dev->priv = rng_info;
  1522. /* The device has one virtqueue, where the Guest places inbufs. */
  1523. add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
  1524. verbose("device %u: rng\n", devices.device_num++);
  1525. }
  1526. /* That's the end of device setup. */
  1527. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1528. static void __attribute__((noreturn)) restart_guest(void)
  1529. {
  1530. unsigned int i;
  1531. /*
  1532. * Since we don't track all open fds, we simply close everything beyond
  1533. * stderr.
  1534. */
  1535. for (i = 3; i < FD_SETSIZE; i++)
  1536. close(i);
  1537. /* Reset all the devices (kills all threads). */
  1538. cleanup_devices();
  1539. execv(main_args[0], main_args);
  1540. err(1, "Could not exec %s", main_args[0]);
  1541. }
  1542. /*L:220
  1543. * Finally we reach the core of the Launcher which runs the Guest, serves
  1544. * its input and output, and finally, lays it to rest.
  1545. */
  1546. static void __attribute__((noreturn)) run_guest(void)
  1547. {
  1548. for (;;) {
  1549. unsigned long notify_addr;
  1550. int readval;
  1551. /* We read from the /dev/lguest device to run the Guest. */
  1552. readval = pread(lguest_fd, &notify_addr,
  1553. sizeof(notify_addr), cpu_id);
  1554. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1555. if (readval == sizeof(notify_addr)) {
  1556. verbose("Notify on address %#lx\n", notify_addr);
  1557. handle_output(notify_addr);
  1558. /* ENOENT means the Guest died. Reading tells us why. */
  1559. } else if (errno == ENOENT) {
  1560. char reason[1024] = { 0 };
  1561. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1562. errx(1, "%s", reason);
  1563. /* ERESTART means that we need to reboot the guest */
  1564. } else if (errno == ERESTART) {
  1565. restart_guest();
  1566. /* Anything else means a bug or incompatible change. */
  1567. } else
  1568. err(1, "Running guest failed");
  1569. }
  1570. }
  1571. /*L:240
  1572. * This is the end of the Launcher. The good news: we are over halfway
  1573. * through! The bad news: the most fiendish part of the code still lies ahead
  1574. * of us.
  1575. *
  1576. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1577. * "make Host".
  1578. :*/
  1579. static struct option opts[] = {
  1580. { "verbose", 0, NULL, 'v' },
  1581. { "tunnet", 1, NULL, 't' },
  1582. { "block", 1, NULL, 'b' },
  1583. { "rng", 0, NULL, 'r' },
  1584. { "initrd", 1, NULL, 'i' },
  1585. { "username", 1, NULL, 'u' },
  1586. { "chroot", 1, NULL, 'c' },
  1587. { NULL },
  1588. };
  1589. static void usage(void)
  1590. {
  1591. errx(1, "Usage: lguest [--verbose] "
  1592. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1593. "|--block=<filename>|--initrd=<filename>]...\n"
  1594. "<mem-in-mb> vmlinux [args...]");
  1595. }
  1596. /*L:105 The main routine is where the real work begins: */
  1597. int main(int argc, char *argv[])
  1598. {
  1599. /* Memory, code startpoint and size of the (optional) initrd. */
  1600. unsigned long mem = 0, start, initrd_size = 0;
  1601. /* Two temporaries. */
  1602. int i, c;
  1603. /* The boot information for the Guest. */
  1604. struct boot_params *boot;
  1605. /* If they specify an initrd file to load. */
  1606. const char *initrd_name = NULL;
  1607. /* Password structure for initgroups/setres[gu]id */
  1608. struct passwd *user_details = NULL;
  1609. /* Directory to chroot to */
  1610. char *chroot_path = NULL;
  1611. /* Save the args: we "reboot" by execing ourselves again. */
  1612. main_args = argv;
  1613. /*
  1614. * First we initialize the device list. We keep a pointer to the last
  1615. * device, and the next interrupt number to use for devices (1:
  1616. * remember that 0 is used by the timer).
  1617. */
  1618. devices.lastdev = NULL;
  1619. devices.next_irq = 1;
  1620. /* We're CPU 0. In fact, that's the only CPU possible right now. */
  1621. cpu_id = 0;
  1622. /*
  1623. * We need to know how much memory so we can set up the device
  1624. * descriptor and memory pages for the devices as we parse the command
  1625. * line. So we quickly look through the arguments to find the amount
  1626. * of memory now.
  1627. */
  1628. for (i = 1; i < argc; i++) {
  1629. if (argv[i][0] != '-') {
  1630. mem = atoi(argv[i]) * 1024 * 1024;
  1631. /*
  1632. * We start by mapping anonymous pages over all of
  1633. * guest-physical memory range. This fills it with 0,
  1634. * and ensures that the Guest won't be killed when it
  1635. * tries to access it.
  1636. */
  1637. guest_base = map_zeroed_pages(mem / getpagesize()
  1638. + DEVICE_PAGES);
  1639. guest_limit = mem;
  1640. guest_max = mem + DEVICE_PAGES*getpagesize();
  1641. devices.descpage = get_pages(1);
  1642. break;
  1643. }
  1644. }
  1645. /* The options are fairly straight-forward */
  1646. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1647. switch (c) {
  1648. case 'v':
  1649. verbose = true;
  1650. break;
  1651. case 't':
  1652. setup_tun_net(optarg);
  1653. break;
  1654. case 'b':
  1655. setup_block_file(optarg);
  1656. break;
  1657. case 'r':
  1658. setup_rng();
  1659. break;
  1660. case 'i':
  1661. initrd_name = optarg;
  1662. break;
  1663. case 'u':
  1664. user_details = getpwnam(optarg);
  1665. if (!user_details)
  1666. err(1, "getpwnam failed, incorrect username?");
  1667. break;
  1668. case 'c':
  1669. chroot_path = optarg;
  1670. break;
  1671. default:
  1672. warnx("Unknown argument %s", argv[optind]);
  1673. usage();
  1674. }
  1675. }
  1676. /*
  1677. * After the other arguments we expect memory and kernel image name,
  1678. * followed by command line arguments for the kernel.
  1679. */
  1680. if (optind + 2 > argc)
  1681. usage();
  1682. verbose("Guest base is at %p\n", guest_base);
  1683. /* We always have a console device */
  1684. setup_console();
  1685. /* Now we load the kernel */
  1686. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1687. /* Boot information is stashed at physical address 0 */
  1688. boot = from_guest_phys(0);
  1689. /* Map the initrd image if requested (at top of physical memory) */
  1690. if (initrd_name) {
  1691. initrd_size = load_initrd(initrd_name, mem);
  1692. /*
  1693. * These are the location in the Linux boot header where the
  1694. * start and size of the initrd are expected to be found.
  1695. */
  1696. boot->hdr.ramdisk_image = mem - initrd_size;
  1697. boot->hdr.ramdisk_size = initrd_size;
  1698. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1699. boot->hdr.type_of_loader = 0xFF;
  1700. }
  1701. /*
  1702. * The Linux boot header contains an "E820" memory map: ours is a
  1703. * simple, single region.
  1704. */
  1705. boot->e820_entries = 1;
  1706. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1707. /*
  1708. * The boot header contains a command line pointer: we put the command
  1709. * line after the boot header.
  1710. */
  1711. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1712. /* We use a simple helper to copy the arguments separated by spaces. */
  1713. concat((char *)(boot + 1), argv+optind+2);
  1714. /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
  1715. boot->hdr.kernel_alignment = 0x1000000;
  1716. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1717. boot->hdr.version = 0x207;
  1718. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1719. boot->hdr.hardware_subarch = 1;
  1720. /* Tell the entry path not to try to reload segment registers. */
  1721. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1722. /* We tell the kernel to initialize the Guest. */
  1723. tell_kernel(start);
  1724. /* Ensure that we terminate if a device-servicing child dies. */
  1725. signal(SIGCHLD, kill_launcher);
  1726. /* If we exit via err(), this kills all the threads, restores tty. */
  1727. atexit(cleanup_devices);
  1728. /* If requested, chroot to a directory */
  1729. if (chroot_path) {
  1730. if (chroot(chroot_path) != 0)
  1731. err(1, "chroot(\"%s\") failed", chroot_path);
  1732. if (chdir("/") != 0)
  1733. err(1, "chdir(\"/\") failed");
  1734. verbose("chroot done\n");
  1735. }
  1736. /* If requested, drop privileges */
  1737. if (user_details) {
  1738. uid_t u;
  1739. gid_t g;
  1740. u = user_details->pw_uid;
  1741. g = user_details->pw_gid;
  1742. if (initgroups(user_details->pw_name, g) != 0)
  1743. err(1, "initgroups failed");
  1744. if (setresgid(g, g, g) != 0)
  1745. err(1, "setresgid failed");
  1746. if (setresuid(u, u, u) != 0)
  1747. err(1, "setresuid failed");
  1748. verbose("Dropping privileges completed\n");
  1749. }
  1750. /* Finally, run the Guest. This doesn't return. */
  1751. run_guest();
  1752. }
  1753. /*:*/
  1754. /*M:999
  1755. * Mastery is done: you now know everything I do.
  1756. *
  1757. * But surely you have seen code, features and bugs in your wanderings which
  1758. * you now yearn to attack? That is the real game, and I look forward to you
  1759. * patching and forking lguest into the Your-Name-Here-visor.
  1760. *
  1761. * Farewell, and good coding!
  1762. * Rusty Russell.
  1763. */