tcp_input.c 175 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_frto_response __read_mostly;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_early_retrans __read_mostly = 2;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  102. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  103. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  104. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  105. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  106. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  107. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. /* Adapt the MSS value used to make delayed ack decision to the
  116. * real world.
  117. */
  118. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  119. {
  120. struct inet_connection_sock *icsk = inet_csk(sk);
  121. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  122. unsigned int len;
  123. icsk->icsk_ack.last_seg_size = 0;
  124. /* skb->len may jitter because of SACKs, even if peer
  125. * sends good full-sized frames.
  126. */
  127. len = skb_shinfo(skb)->gso_size ? : skb->len;
  128. if (len >= icsk->icsk_ack.rcv_mss) {
  129. icsk->icsk_ack.rcv_mss = len;
  130. } else {
  131. /* Otherwise, we make more careful check taking into account,
  132. * that SACKs block is variable.
  133. *
  134. * "len" is invariant segment length, including TCP header.
  135. */
  136. len += skb->data - skb_transport_header(skb);
  137. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  138. /* If PSH is not set, packet should be
  139. * full sized, provided peer TCP is not badly broken.
  140. * This observation (if it is correct 8)) allows
  141. * to handle super-low mtu links fairly.
  142. */
  143. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  144. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  145. /* Subtract also invariant (if peer is RFC compliant),
  146. * tcp header plus fixed timestamp option length.
  147. * Resulting "len" is MSS free of SACK jitter.
  148. */
  149. len -= tcp_sk(sk)->tcp_header_len;
  150. icsk->icsk_ack.last_seg_size = len;
  151. if (len == lss) {
  152. icsk->icsk_ack.rcv_mss = len;
  153. return;
  154. }
  155. }
  156. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  159. }
  160. }
  161. static void tcp_incr_quickack(struct sock *sk)
  162. {
  163. struct inet_connection_sock *icsk = inet_csk(sk);
  164. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  165. if (quickacks == 0)
  166. quickacks = 2;
  167. if (quickacks > icsk->icsk_ack.quick)
  168. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. static void tcp_enter_quickack_mode(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. tcp_incr_quickack(sk);
  174. icsk->icsk_ack.pingpong = 0;
  175. icsk->icsk_ack.ato = TCP_ATO_MIN;
  176. }
  177. /* Send ACKs quickly, if "quick" count is not exhausted
  178. * and the session is not interactive.
  179. */
  180. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  181. {
  182. const struct inet_connection_sock *icsk = inet_csk(sk);
  183. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  184. }
  185. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  186. {
  187. if (tp->ecn_flags & TCP_ECN_OK)
  188. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  189. }
  190. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  191. {
  192. if (tcp_hdr(skb)->cwr)
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  196. {
  197. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  198. }
  199. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  200. {
  201. if (!(tp->ecn_flags & TCP_ECN_OK))
  202. return;
  203. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  204. case INET_ECN_NOT_ECT:
  205. /* Funny extension: if ECT is not set on a segment,
  206. * and we already seen ECT on a previous segment,
  207. * it is probably a retransmit.
  208. */
  209. if (tp->ecn_flags & TCP_ECN_SEEN)
  210. tcp_enter_quickack_mode((struct sock *)tp);
  211. break;
  212. case INET_ECN_CE:
  213. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  214. /* Better not delay acks, sender can have a very low cwnd */
  215. tcp_enter_quickack_mode((struct sock *)tp);
  216. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  217. }
  218. /* fallinto */
  219. default:
  220. tp->ecn_flags |= TCP_ECN_SEEN;
  221. }
  222. }
  223. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  224. {
  225. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  226. tp->ecn_flags &= ~TCP_ECN_OK;
  227. }
  228. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  229. {
  230. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  231. tp->ecn_flags &= ~TCP_ECN_OK;
  232. }
  233. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  234. {
  235. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  236. return true;
  237. return false;
  238. }
  239. /* Buffer size and advertised window tuning.
  240. *
  241. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  242. */
  243. static void tcp_fixup_sndbuf(struct sock *sk)
  244. {
  245. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  246. sndmem *= TCP_INIT_CWND;
  247. if (sk->sk_sndbuf < sndmem)
  248. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  249. }
  250. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  251. *
  252. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  253. * forward and advertised in receiver window (tp->rcv_wnd) and
  254. * "application buffer", required to isolate scheduling/application
  255. * latencies from network.
  256. * window_clamp is maximal advertised window. It can be less than
  257. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  258. * is reserved for "application" buffer. The less window_clamp is
  259. * the smoother our behaviour from viewpoint of network, but the lower
  260. * throughput and the higher sensitivity of the connection to losses. 8)
  261. *
  262. * rcv_ssthresh is more strict window_clamp used at "slow start"
  263. * phase to predict further behaviour of this connection.
  264. * It is used for two goals:
  265. * - to enforce header prediction at sender, even when application
  266. * requires some significant "application buffer". It is check #1.
  267. * - to prevent pruning of receive queue because of misprediction
  268. * of receiver window. Check #2.
  269. *
  270. * The scheme does not work when sender sends good segments opening
  271. * window and then starts to feed us spaghetti. But it should work
  272. * in common situations. Otherwise, we have to rely on queue collapsing.
  273. */
  274. /* Slow part of check#2. */
  275. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  276. {
  277. struct tcp_sock *tp = tcp_sk(sk);
  278. /* Optimize this! */
  279. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  280. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  281. while (tp->rcv_ssthresh <= window) {
  282. if (truesize <= skb->len)
  283. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  284. truesize >>= 1;
  285. window >>= 1;
  286. }
  287. return 0;
  288. }
  289. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  290. {
  291. struct tcp_sock *tp = tcp_sk(sk);
  292. /* Check #1 */
  293. if (tp->rcv_ssthresh < tp->window_clamp &&
  294. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  295. !sk_under_memory_pressure(sk)) {
  296. int incr;
  297. /* Check #2. Increase window, if skb with such overhead
  298. * will fit to rcvbuf in future.
  299. */
  300. if (tcp_win_from_space(skb->truesize) <= skb->len)
  301. incr = 2 * tp->advmss;
  302. else
  303. incr = __tcp_grow_window(sk, skb);
  304. if (incr) {
  305. incr = max_t(int, incr, 2 * skb->len);
  306. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  307. tp->window_clamp);
  308. inet_csk(sk)->icsk_ack.quick |= 1;
  309. }
  310. }
  311. }
  312. /* 3. Tuning rcvbuf, when connection enters established state. */
  313. static void tcp_fixup_rcvbuf(struct sock *sk)
  314. {
  315. u32 mss = tcp_sk(sk)->advmss;
  316. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  317. int rcvmem;
  318. /* Limit to 10 segments if mss <= 1460,
  319. * or 14600/mss segments, with a minimum of two segments.
  320. */
  321. if (mss > 1460)
  322. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  323. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  324. while (tcp_win_from_space(rcvmem) < mss)
  325. rcvmem += 128;
  326. rcvmem *= icwnd;
  327. if (sk->sk_rcvbuf < rcvmem)
  328. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  329. }
  330. /* 4. Try to fixup all. It is made immediately after connection enters
  331. * established state.
  332. */
  333. void tcp_init_buffer_space(struct sock *sk)
  334. {
  335. struct tcp_sock *tp = tcp_sk(sk);
  336. int maxwin;
  337. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  338. tcp_fixup_rcvbuf(sk);
  339. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  340. tcp_fixup_sndbuf(sk);
  341. tp->rcvq_space.space = tp->rcv_wnd;
  342. maxwin = tcp_full_space(sk);
  343. if (tp->window_clamp >= maxwin) {
  344. tp->window_clamp = maxwin;
  345. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  346. tp->window_clamp = max(maxwin -
  347. (maxwin >> sysctl_tcp_app_win),
  348. 4 * tp->advmss);
  349. }
  350. /* Force reservation of one segment. */
  351. if (sysctl_tcp_app_win &&
  352. tp->window_clamp > 2 * tp->advmss &&
  353. tp->window_clamp + tp->advmss > maxwin)
  354. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  355. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  356. tp->snd_cwnd_stamp = tcp_time_stamp;
  357. }
  358. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  359. static void tcp_clamp_window(struct sock *sk)
  360. {
  361. struct tcp_sock *tp = tcp_sk(sk);
  362. struct inet_connection_sock *icsk = inet_csk(sk);
  363. icsk->icsk_ack.quick = 0;
  364. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  365. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  366. !sk_under_memory_pressure(sk) &&
  367. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  368. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  369. sysctl_tcp_rmem[2]);
  370. }
  371. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  372. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  373. }
  374. /* Initialize RCV_MSS value.
  375. * RCV_MSS is an our guess about MSS used by the peer.
  376. * We haven't any direct information about the MSS.
  377. * It's better to underestimate the RCV_MSS rather than overestimate.
  378. * Overestimations make us ACKing less frequently than needed.
  379. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  380. */
  381. void tcp_initialize_rcv_mss(struct sock *sk)
  382. {
  383. const struct tcp_sock *tp = tcp_sk(sk);
  384. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  385. hint = min(hint, tp->rcv_wnd / 2);
  386. hint = min(hint, TCP_MSS_DEFAULT);
  387. hint = max(hint, TCP_MIN_MSS);
  388. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  389. }
  390. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  391. /* Receiver "autotuning" code.
  392. *
  393. * The algorithm for RTT estimation w/o timestamps is based on
  394. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  395. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  396. *
  397. * More detail on this code can be found at
  398. * <http://staff.psc.edu/jheffner/>,
  399. * though this reference is out of date. A new paper
  400. * is pending.
  401. */
  402. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  403. {
  404. u32 new_sample = tp->rcv_rtt_est.rtt;
  405. long m = sample;
  406. if (m == 0)
  407. m = 1;
  408. if (new_sample != 0) {
  409. /* If we sample in larger samples in the non-timestamp
  410. * case, we could grossly overestimate the RTT especially
  411. * with chatty applications or bulk transfer apps which
  412. * are stalled on filesystem I/O.
  413. *
  414. * Also, since we are only going for a minimum in the
  415. * non-timestamp case, we do not smooth things out
  416. * else with timestamps disabled convergence takes too
  417. * long.
  418. */
  419. if (!win_dep) {
  420. m -= (new_sample >> 3);
  421. new_sample += m;
  422. } else {
  423. m <<= 3;
  424. if (m < new_sample)
  425. new_sample = m;
  426. }
  427. } else {
  428. /* No previous measure. */
  429. new_sample = m << 3;
  430. }
  431. if (tp->rcv_rtt_est.rtt != new_sample)
  432. tp->rcv_rtt_est.rtt = new_sample;
  433. }
  434. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  435. {
  436. if (tp->rcv_rtt_est.time == 0)
  437. goto new_measure;
  438. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  439. return;
  440. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  441. new_measure:
  442. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  443. tp->rcv_rtt_est.time = tcp_time_stamp;
  444. }
  445. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  446. const struct sk_buff *skb)
  447. {
  448. struct tcp_sock *tp = tcp_sk(sk);
  449. if (tp->rx_opt.rcv_tsecr &&
  450. (TCP_SKB_CB(skb)->end_seq -
  451. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  452. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  453. }
  454. /*
  455. * This function should be called every time data is copied to user space.
  456. * It calculates the appropriate TCP receive buffer space.
  457. */
  458. void tcp_rcv_space_adjust(struct sock *sk)
  459. {
  460. struct tcp_sock *tp = tcp_sk(sk);
  461. int time;
  462. int space;
  463. if (tp->rcvq_space.time == 0)
  464. goto new_measure;
  465. time = tcp_time_stamp - tp->rcvq_space.time;
  466. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  467. return;
  468. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  469. space = max(tp->rcvq_space.space, space);
  470. if (tp->rcvq_space.space != space) {
  471. int rcvmem;
  472. tp->rcvq_space.space = space;
  473. if (sysctl_tcp_moderate_rcvbuf &&
  474. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  475. int new_clamp = space;
  476. /* Receive space grows, normalize in order to
  477. * take into account packet headers and sk_buff
  478. * structure overhead.
  479. */
  480. space /= tp->advmss;
  481. if (!space)
  482. space = 1;
  483. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  484. while (tcp_win_from_space(rcvmem) < tp->advmss)
  485. rcvmem += 128;
  486. space *= rcvmem;
  487. space = min(space, sysctl_tcp_rmem[2]);
  488. if (space > sk->sk_rcvbuf) {
  489. sk->sk_rcvbuf = space;
  490. /* Make the window clamp follow along. */
  491. tp->window_clamp = new_clamp;
  492. }
  493. }
  494. }
  495. new_measure:
  496. tp->rcvq_space.seq = tp->copied_seq;
  497. tp->rcvq_space.time = tcp_time_stamp;
  498. }
  499. /* There is something which you must keep in mind when you analyze the
  500. * behavior of the tp->ato delayed ack timeout interval. When a
  501. * connection starts up, we want to ack as quickly as possible. The
  502. * problem is that "good" TCP's do slow start at the beginning of data
  503. * transmission. The means that until we send the first few ACK's the
  504. * sender will sit on his end and only queue most of his data, because
  505. * he can only send snd_cwnd unacked packets at any given time. For
  506. * each ACK we send, he increments snd_cwnd and transmits more of his
  507. * queue. -DaveM
  508. */
  509. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  510. {
  511. struct tcp_sock *tp = tcp_sk(sk);
  512. struct inet_connection_sock *icsk = inet_csk(sk);
  513. u32 now;
  514. inet_csk_schedule_ack(sk);
  515. tcp_measure_rcv_mss(sk, skb);
  516. tcp_rcv_rtt_measure(tp);
  517. now = tcp_time_stamp;
  518. if (!icsk->icsk_ack.ato) {
  519. /* The _first_ data packet received, initialize
  520. * delayed ACK engine.
  521. */
  522. tcp_incr_quickack(sk);
  523. icsk->icsk_ack.ato = TCP_ATO_MIN;
  524. } else {
  525. int m = now - icsk->icsk_ack.lrcvtime;
  526. if (m <= TCP_ATO_MIN / 2) {
  527. /* The fastest case is the first. */
  528. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  529. } else if (m < icsk->icsk_ack.ato) {
  530. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  531. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  532. icsk->icsk_ack.ato = icsk->icsk_rto;
  533. } else if (m > icsk->icsk_rto) {
  534. /* Too long gap. Apparently sender failed to
  535. * restart window, so that we send ACKs quickly.
  536. */
  537. tcp_incr_quickack(sk);
  538. sk_mem_reclaim(sk);
  539. }
  540. }
  541. icsk->icsk_ack.lrcvtime = now;
  542. TCP_ECN_check_ce(tp, skb);
  543. if (skb->len >= 128)
  544. tcp_grow_window(sk, skb);
  545. }
  546. /* Called to compute a smoothed rtt estimate. The data fed to this
  547. * routine either comes from timestamps, or from segments that were
  548. * known _not_ to have been retransmitted [see Karn/Partridge
  549. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  550. * piece by Van Jacobson.
  551. * NOTE: the next three routines used to be one big routine.
  552. * To save cycles in the RFC 1323 implementation it was better to break
  553. * it up into three procedures. -- erics
  554. */
  555. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  556. {
  557. struct tcp_sock *tp = tcp_sk(sk);
  558. long m = mrtt; /* RTT */
  559. /* The following amusing code comes from Jacobson's
  560. * article in SIGCOMM '88. Note that rtt and mdev
  561. * are scaled versions of rtt and mean deviation.
  562. * This is designed to be as fast as possible
  563. * m stands for "measurement".
  564. *
  565. * On a 1990 paper the rto value is changed to:
  566. * RTO = rtt + 4 * mdev
  567. *
  568. * Funny. This algorithm seems to be very broken.
  569. * These formulae increase RTO, when it should be decreased, increase
  570. * too slowly, when it should be increased quickly, decrease too quickly
  571. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  572. * does not matter how to _calculate_ it. Seems, it was trap
  573. * that VJ failed to avoid. 8)
  574. */
  575. if (m == 0)
  576. m = 1;
  577. if (tp->srtt != 0) {
  578. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  579. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  580. if (m < 0) {
  581. m = -m; /* m is now abs(error) */
  582. m -= (tp->mdev >> 2); /* similar update on mdev */
  583. /* This is similar to one of Eifel findings.
  584. * Eifel blocks mdev updates when rtt decreases.
  585. * This solution is a bit different: we use finer gain
  586. * for mdev in this case (alpha*beta).
  587. * Like Eifel it also prevents growth of rto,
  588. * but also it limits too fast rto decreases,
  589. * happening in pure Eifel.
  590. */
  591. if (m > 0)
  592. m >>= 3;
  593. } else {
  594. m -= (tp->mdev >> 2); /* similar update on mdev */
  595. }
  596. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  597. if (tp->mdev > tp->mdev_max) {
  598. tp->mdev_max = tp->mdev;
  599. if (tp->mdev_max > tp->rttvar)
  600. tp->rttvar = tp->mdev_max;
  601. }
  602. if (after(tp->snd_una, tp->rtt_seq)) {
  603. if (tp->mdev_max < tp->rttvar)
  604. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  605. tp->rtt_seq = tp->snd_nxt;
  606. tp->mdev_max = tcp_rto_min(sk);
  607. }
  608. } else {
  609. /* no previous measure. */
  610. tp->srtt = m << 3; /* take the measured time to be rtt */
  611. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  612. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  613. tp->rtt_seq = tp->snd_nxt;
  614. }
  615. }
  616. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  617. * routine referred to above.
  618. */
  619. void tcp_set_rto(struct sock *sk)
  620. {
  621. const struct tcp_sock *tp = tcp_sk(sk);
  622. /* Old crap is replaced with new one. 8)
  623. *
  624. * More seriously:
  625. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  626. * It cannot be less due to utterly erratic ACK generation made
  627. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  628. * to do with delayed acks, because at cwnd>2 true delack timeout
  629. * is invisible. Actually, Linux-2.4 also generates erratic
  630. * ACKs in some circumstances.
  631. */
  632. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  633. /* 2. Fixups made earlier cannot be right.
  634. * If we do not estimate RTO correctly without them,
  635. * all the algo is pure shit and should be replaced
  636. * with correct one. It is exactly, which we pretend to do.
  637. */
  638. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  639. * guarantees that rto is higher.
  640. */
  641. tcp_bound_rto(sk);
  642. }
  643. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  644. {
  645. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  646. if (!cwnd)
  647. cwnd = TCP_INIT_CWND;
  648. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  649. }
  650. /*
  651. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  652. * disables it when reordering is detected
  653. */
  654. void tcp_disable_fack(struct tcp_sock *tp)
  655. {
  656. /* RFC3517 uses different metric in lost marker => reset on change */
  657. if (tcp_is_fack(tp))
  658. tp->lost_skb_hint = NULL;
  659. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  660. }
  661. /* Take a notice that peer is sending D-SACKs */
  662. static void tcp_dsack_seen(struct tcp_sock *tp)
  663. {
  664. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  665. }
  666. static void tcp_update_reordering(struct sock *sk, const int metric,
  667. const int ts)
  668. {
  669. struct tcp_sock *tp = tcp_sk(sk);
  670. if (metric > tp->reordering) {
  671. int mib_idx;
  672. tp->reordering = min(TCP_MAX_REORDERING, metric);
  673. /* This exciting event is worth to be remembered. 8) */
  674. if (ts)
  675. mib_idx = LINUX_MIB_TCPTSREORDER;
  676. else if (tcp_is_reno(tp))
  677. mib_idx = LINUX_MIB_TCPRENOREORDER;
  678. else if (tcp_is_fack(tp))
  679. mib_idx = LINUX_MIB_TCPFACKREORDER;
  680. else
  681. mib_idx = LINUX_MIB_TCPSACKREORDER;
  682. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  683. #if FASTRETRANS_DEBUG > 1
  684. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  685. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  686. tp->reordering,
  687. tp->fackets_out,
  688. tp->sacked_out,
  689. tp->undo_marker ? tp->undo_retrans : 0);
  690. #endif
  691. tcp_disable_fack(tp);
  692. }
  693. if (metric > 0)
  694. tcp_disable_early_retrans(tp);
  695. }
  696. /* This must be called before lost_out is incremented */
  697. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  698. {
  699. if ((tp->retransmit_skb_hint == NULL) ||
  700. before(TCP_SKB_CB(skb)->seq,
  701. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  702. tp->retransmit_skb_hint = skb;
  703. if (!tp->lost_out ||
  704. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  705. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  706. }
  707. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  708. {
  709. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  710. tcp_verify_retransmit_hint(tp, skb);
  711. tp->lost_out += tcp_skb_pcount(skb);
  712. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  713. }
  714. }
  715. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  716. struct sk_buff *skb)
  717. {
  718. tcp_verify_retransmit_hint(tp, skb);
  719. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  720. tp->lost_out += tcp_skb_pcount(skb);
  721. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  722. }
  723. }
  724. /* This procedure tags the retransmission queue when SACKs arrive.
  725. *
  726. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  727. * Packets in queue with these bits set are counted in variables
  728. * sacked_out, retrans_out and lost_out, correspondingly.
  729. *
  730. * Valid combinations are:
  731. * Tag InFlight Description
  732. * 0 1 - orig segment is in flight.
  733. * S 0 - nothing flies, orig reached receiver.
  734. * L 0 - nothing flies, orig lost by net.
  735. * R 2 - both orig and retransmit are in flight.
  736. * L|R 1 - orig is lost, retransmit is in flight.
  737. * S|R 1 - orig reached receiver, retrans is still in flight.
  738. * (L|S|R is logically valid, it could occur when L|R is sacked,
  739. * but it is equivalent to plain S and code short-curcuits it to S.
  740. * L|S is logically invalid, it would mean -1 packet in flight 8))
  741. *
  742. * These 6 states form finite state machine, controlled by the following events:
  743. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  744. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  745. * 3. Loss detection event of two flavors:
  746. * A. Scoreboard estimator decided the packet is lost.
  747. * A'. Reno "three dupacks" marks head of queue lost.
  748. * A''. Its FACK modification, head until snd.fack is lost.
  749. * B. SACK arrives sacking SND.NXT at the moment, when the
  750. * segment was retransmitted.
  751. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  752. *
  753. * It is pleasant to note, that state diagram turns out to be commutative,
  754. * so that we are allowed not to be bothered by order of our actions,
  755. * when multiple events arrive simultaneously. (see the function below).
  756. *
  757. * Reordering detection.
  758. * --------------------
  759. * Reordering metric is maximal distance, which a packet can be displaced
  760. * in packet stream. With SACKs we can estimate it:
  761. *
  762. * 1. SACK fills old hole and the corresponding segment was not
  763. * ever retransmitted -> reordering. Alas, we cannot use it
  764. * when segment was retransmitted.
  765. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  766. * for retransmitted and already SACKed segment -> reordering..
  767. * Both of these heuristics are not used in Loss state, when we cannot
  768. * account for retransmits accurately.
  769. *
  770. * SACK block validation.
  771. * ----------------------
  772. *
  773. * SACK block range validation checks that the received SACK block fits to
  774. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  775. * Note that SND.UNA is not included to the range though being valid because
  776. * it means that the receiver is rather inconsistent with itself reporting
  777. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  778. * perfectly valid, however, in light of RFC2018 which explicitly states
  779. * that "SACK block MUST reflect the newest segment. Even if the newest
  780. * segment is going to be discarded ...", not that it looks very clever
  781. * in case of head skb. Due to potentional receiver driven attacks, we
  782. * choose to avoid immediate execution of a walk in write queue due to
  783. * reneging and defer head skb's loss recovery to standard loss recovery
  784. * procedure that will eventually trigger (nothing forbids us doing this).
  785. *
  786. * Implements also blockage to start_seq wrap-around. Problem lies in the
  787. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  788. * there's no guarantee that it will be before snd_nxt (n). The problem
  789. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  790. * wrap (s_w):
  791. *
  792. * <- outs wnd -> <- wrapzone ->
  793. * u e n u_w e_w s n_w
  794. * | | | | | | |
  795. * |<------------+------+----- TCP seqno space --------------+---------->|
  796. * ...-- <2^31 ->| |<--------...
  797. * ...---- >2^31 ------>| |<--------...
  798. *
  799. * Current code wouldn't be vulnerable but it's better still to discard such
  800. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  801. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  802. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  803. * equal to the ideal case (infinite seqno space without wrap caused issues).
  804. *
  805. * With D-SACK the lower bound is extended to cover sequence space below
  806. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  807. * again, D-SACK block must not to go across snd_una (for the same reason as
  808. * for the normal SACK blocks, explained above). But there all simplicity
  809. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  810. * fully below undo_marker they do not affect behavior in anyway and can
  811. * therefore be safely ignored. In rare cases (which are more or less
  812. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  813. * fragmentation and packet reordering past skb's retransmission. To consider
  814. * them correctly, the acceptable range must be extended even more though
  815. * the exact amount is rather hard to quantify. However, tp->max_window can
  816. * be used as an exaggerated estimate.
  817. */
  818. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  819. u32 start_seq, u32 end_seq)
  820. {
  821. /* Too far in future, or reversed (interpretation is ambiguous) */
  822. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  823. return false;
  824. /* Nasty start_seq wrap-around check (see comments above) */
  825. if (!before(start_seq, tp->snd_nxt))
  826. return false;
  827. /* In outstanding window? ...This is valid exit for D-SACKs too.
  828. * start_seq == snd_una is non-sensical (see comments above)
  829. */
  830. if (after(start_seq, tp->snd_una))
  831. return true;
  832. if (!is_dsack || !tp->undo_marker)
  833. return false;
  834. /* ...Then it's D-SACK, and must reside below snd_una completely */
  835. if (after(end_seq, tp->snd_una))
  836. return false;
  837. if (!before(start_seq, tp->undo_marker))
  838. return true;
  839. /* Too old */
  840. if (!after(end_seq, tp->undo_marker))
  841. return false;
  842. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  843. * start_seq < undo_marker and end_seq >= undo_marker.
  844. */
  845. return !before(start_seq, end_seq - tp->max_window);
  846. }
  847. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  848. * Event "B". Later note: FACK people cheated me again 8), we have to account
  849. * for reordering! Ugly, but should help.
  850. *
  851. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  852. * less than what is now known to be received by the other end (derived from
  853. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  854. * retransmitted skbs to avoid some costly processing per ACKs.
  855. */
  856. static void tcp_mark_lost_retrans(struct sock *sk)
  857. {
  858. const struct inet_connection_sock *icsk = inet_csk(sk);
  859. struct tcp_sock *tp = tcp_sk(sk);
  860. struct sk_buff *skb;
  861. int cnt = 0;
  862. u32 new_low_seq = tp->snd_nxt;
  863. u32 received_upto = tcp_highest_sack_seq(tp);
  864. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  865. !after(received_upto, tp->lost_retrans_low) ||
  866. icsk->icsk_ca_state != TCP_CA_Recovery)
  867. return;
  868. tcp_for_write_queue(skb, sk) {
  869. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  870. if (skb == tcp_send_head(sk))
  871. break;
  872. if (cnt == tp->retrans_out)
  873. break;
  874. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  875. continue;
  876. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  877. continue;
  878. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  879. * constraint here (see above) but figuring out that at
  880. * least tp->reordering SACK blocks reside between ack_seq
  881. * and received_upto is not easy task to do cheaply with
  882. * the available datastructures.
  883. *
  884. * Whether FACK should check here for tp->reordering segs
  885. * in-between one could argue for either way (it would be
  886. * rather simple to implement as we could count fack_count
  887. * during the walk and do tp->fackets_out - fack_count).
  888. */
  889. if (after(received_upto, ack_seq)) {
  890. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  891. tp->retrans_out -= tcp_skb_pcount(skb);
  892. tcp_skb_mark_lost_uncond_verify(tp, skb);
  893. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  894. } else {
  895. if (before(ack_seq, new_low_seq))
  896. new_low_seq = ack_seq;
  897. cnt += tcp_skb_pcount(skb);
  898. }
  899. }
  900. if (tp->retrans_out)
  901. tp->lost_retrans_low = new_low_seq;
  902. }
  903. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  904. struct tcp_sack_block_wire *sp, int num_sacks,
  905. u32 prior_snd_una)
  906. {
  907. struct tcp_sock *tp = tcp_sk(sk);
  908. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  909. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  910. bool dup_sack = false;
  911. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  912. dup_sack = true;
  913. tcp_dsack_seen(tp);
  914. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  915. } else if (num_sacks > 1) {
  916. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  917. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  918. if (!after(end_seq_0, end_seq_1) &&
  919. !before(start_seq_0, start_seq_1)) {
  920. dup_sack = true;
  921. tcp_dsack_seen(tp);
  922. NET_INC_STATS_BH(sock_net(sk),
  923. LINUX_MIB_TCPDSACKOFORECV);
  924. }
  925. }
  926. /* D-SACK for already forgotten data... Do dumb counting. */
  927. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  928. !after(end_seq_0, prior_snd_una) &&
  929. after(end_seq_0, tp->undo_marker))
  930. tp->undo_retrans--;
  931. return dup_sack;
  932. }
  933. struct tcp_sacktag_state {
  934. int reord;
  935. int fack_count;
  936. int flag;
  937. };
  938. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  939. * the incoming SACK may not exactly match but we can find smaller MSS
  940. * aligned portion of it that matches. Therefore we might need to fragment
  941. * which may fail and creates some hassle (caller must handle error case
  942. * returns).
  943. *
  944. * FIXME: this could be merged to shift decision code
  945. */
  946. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  947. u32 start_seq, u32 end_seq)
  948. {
  949. int err;
  950. bool in_sack;
  951. unsigned int pkt_len;
  952. unsigned int mss;
  953. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  954. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  955. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  956. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  957. mss = tcp_skb_mss(skb);
  958. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  959. if (!in_sack) {
  960. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  961. if (pkt_len < mss)
  962. pkt_len = mss;
  963. } else {
  964. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  965. if (pkt_len < mss)
  966. return -EINVAL;
  967. }
  968. /* Round if necessary so that SACKs cover only full MSSes
  969. * and/or the remaining small portion (if present)
  970. */
  971. if (pkt_len > mss) {
  972. unsigned int new_len = (pkt_len / mss) * mss;
  973. if (!in_sack && new_len < pkt_len) {
  974. new_len += mss;
  975. if (new_len > skb->len)
  976. return 0;
  977. }
  978. pkt_len = new_len;
  979. }
  980. err = tcp_fragment(sk, skb, pkt_len, mss);
  981. if (err < 0)
  982. return err;
  983. }
  984. return in_sack;
  985. }
  986. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  987. static u8 tcp_sacktag_one(struct sock *sk,
  988. struct tcp_sacktag_state *state, u8 sacked,
  989. u32 start_seq, u32 end_seq,
  990. bool dup_sack, int pcount)
  991. {
  992. struct tcp_sock *tp = tcp_sk(sk);
  993. int fack_count = state->fack_count;
  994. /* Account D-SACK for retransmitted packet. */
  995. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  996. if (tp->undo_marker && tp->undo_retrans &&
  997. after(end_seq, tp->undo_marker))
  998. tp->undo_retrans--;
  999. if (sacked & TCPCB_SACKED_ACKED)
  1000. state->reord = min(fack_count, state->reord);
  1001. }
  1002. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1003. if (!after(end_seq, tp->snd_una))
  1004. return sacked;
  1005. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1006. if (sacked & TCPCB_SACKED_RETRANS) {
  1007. /* If the segment is not tagged as lost,
  1008. * we do not clear RETRANS, believing
  1009. * that retransmission is still in flight.
  1010. */
  1011. if (sacked & TCPCB_LOST) {
  1012. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1013. tp->lost_out -= pcount;
  1014. tp->retrans_out -= pcount;
  1015. }
  1016. } else {
  1017. if (!(sacked & TCPCB_RETRANS)) {
  1018. /* New sack for not retransmitted frame,
  1019. * which was in hole. It is reordering.
  1020. */
  1021. if (before(start_seq,
  1022. tcp_highest_sack_seq(tp)))
  1023. state->reord = min(fack_count,
  1024. state->reord);
  1025. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1026. if (!after(end_seq, tp->frto_highmark))
  1027. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1028. }
  1029. if (sacked & TCPCB_LOST) {
  1030. sacked &= ~TCPCB_LOST;
  1031. tp->lost_out -= pcount;
  1032. }
  1033. }
  1034. sacked |= TCPCB_SACKED_ACKED;
  1035. state->flag |= FLAG_DATA_SACKED;
  1036. tp->sacked_out += pcount;
  1037. fack_count += pcount;
  1038. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1039. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1040. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1041. tp->lost_cnt_hint += pcount;
  1042. if (fack_count > tp->fackets_out)
  1043. tp->fackets_out = fack_count;
  1044. }
  1045. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1046. * frames and clear it. undo_retrans is decreased above, L|R frames
  1047. * are accounted above as well.
  1048. */
  1049. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1050. sacked &= ~TCPCB_SACKED_RETRANS;
  1051. tp->retrans_out -= pcount;
  1052. }
  1053. return sacked;
  1054. }
  1055. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1056. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1057. */
  1058. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1059. struct tcp_sacktag_state *state,
  1060. unsigned int pcount, int shifted, int mss,
  1061. bool dup_sack)
  1062. {
  1063. struct tcp_sock *tp = tcp_sk(sk);
  1064. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1065. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1066. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1067. BUG_ON(!pcount);
  1068. /* Adjust counters and hints for the newly sacked sequence
  1069. * range but discard the return value since prev is already
  1070. * marked. We must tag the range first because the seq
  1071. * advancement below implicitly advances
  1072. * tcp_highest_sack_seq() when skb is highest_sack.
  1073. */
  1074. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1075. start_seq, end_seq, dup_sack, pcount);
  1076. if (skb == tp->lost_skb_hint)
  1077. tp->lost_cnt_hint += pcount;
  1078. TCP_SKB_CB(prev)->end_seq += shifted;
  1079. TCP_SKB_CB(skb)->seq += shifted;
  1080. skb_shinfo(prev)->gso_segs += pcount;
  1081. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1082. skb_shinfo(skb)->gso_segs -= pcount;
  1083. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1084. * in theory this shouldn't be necessary but as long as DSACK
  1085. * code can come after this skb later on it's better to keep
  1086. * setting gso_size to something.
  1087. */
  1088. if (!skb_shinfo(prev)->gso_size) {
  1089. skb_shinfo(prev)->gso_size = mss;
  1090. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1091. }
  1092. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1093. if (skb_shinfo(skb)->gso_segs <= 1) {
  1094. skb_shinfo(skb)->gso_size = 0;
  1095. skb_shinfo(skb)->gso_type = 0;
  1096. }
  1097. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1098. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1099. if (skb->len > 0) {
  1100. BUG_ON(!tcp_skb_pcount(skb));
  1101. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1102. return false;
  1103. }
  1104. /* Whole SKB was eaten :-) */
  1105. if (skb == tp->retransmit_skb_hint)
  1106. tp->retransmit_skb_hint = prev;
  1107. if (skb == tp->scoreboard_skb_hint)
  1108. tp->scoreboard_skb_hint = prev;
  1109. if (skb == tp->lost_skb_hint) {
  1110. tp->lost_skb_hint = prev;
  1111. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1112. }
  1113. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1114. if (skb == tcp_highest_sack(sk))
  1115. tcp_advance_highest_sack(sk, skb);
  1116. tcp_unlink_write_queue(skb, sk);
  1117. sk_wmem_free_skb(sk, skb);
  1118. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1119. return true;
  1120. }
  1121. /* I wish gso_size would have a bit more sane initialization than
  1122. * something-or-zero which complicates things
  1123. */
  1124. static int tcp_skb_seglen(const struct sk_buff *skb)
  1125. {
  1126. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1127. }
  1128. /* Shifting pages past head area doesn't work */
  1129. static int skb_can_shift(const struct sk_buff *skb)
  1130. {
  1131. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1132. }
  1133. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1134. * skb.
  1135. */
  1136. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1137. struct tcp_sacktag_state *state,
  1138. u32 start_seq, u32 end_seq,
  1139. bool dup_sack)
  1140. {
  1141. struct tcp_sock *tp = tcp_sk(sk);
  1142. struct sk_buff *prev;
  1143. int mss;
  1144. int pcount = 0;
  1145. int len;
  1146. int in_sack;
  1147. if (!sk_can_gso(sk))
  1148. goto fallback;
  1149. /* Normally R but no L won't result in plain S */
  1150. if (!dup_sack &&
  1151. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1152. goto fallback;
  1153. if (!skb_can_shift(skb))
  1154. goto fallback;
  1155. /* This frame is about to be dropped (was ACKed). */
  1156. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1157. goto fallback;
  1158. /* Can only happen with delayed DSACK + discard craziness */
  1159. if (unlikely(skb == tcp_write_queue_head(sk)))
  1160. goto fallback;
  1161. prev = tcp_write_queue_prev(sk, skb);
  1162. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1163. goto fallback;
  1164. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1165. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1166. if (in_sack) {
  1167. len = skb->len;
  1168. pcount = tcp_skb_pcount(skb);
  1169. mss = tcp_skb_seglen(skb);
  1170. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1171. * drop this restriction as unnecessary
  1172. */
  1173. if (mss != tcp_skb_seglen(prev))
  1174. goto fallback;
  1175. } else {
  1176. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1177. goto noop;
  1178. /* CHECKME: This is non-MSS split case only?, this will
  1179. * cause skipped skbs due to advancing loop btw, original
  1180. * has that feature too
  1181. */
  1182. if (tcp_skb_pcount(skb) <= 1)
  1183. goto noop;
  1184. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1185. if (!in_sack) {
  1186. /* TODO: head merge to next could be attempted here
  1187. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1188. * though it might not be worth of the additional hassle
  1189. *
  1190. * ...we can probably just fallback to what was done
  1191. * previously. We could try merging non-SACKed ones
  1192. * as well but it probably isn't going to buy off
  1193. * because later SACKs might again split them, and
  1194. * it would make skb timestamp tracking considerably
  1195. * harder problem.
  1196. */
  1197. goto fallback;
  1198. }
  1199. len = end_seq - TCP_SKB_CB(skb)->seq;
  1200. BUG_ON(len < 0);
  1201. BUG_ON(len > skb->len);
  1202. /* MSS boundaries should be honoured or else pcount will
  1203. * severely break even though it makes things bit trickier.
  1204. * Optimize common case to avoid most of the divides
  1205. */
  1206. mss = tcp_skb_mss(skb);
  1207. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1208. * drop this restriction as unnecessary
  1209. */
  1210. if (mss != tcp_skb_seglen(prev))
  1211. goto fallback;
  1212. if (len == mss) {
  1213. pcount = 1;
  1214. } else if (len < mss) {
  1215. goto noop;
  1216. } else {
  1217. pcount = len / mss;
  1218. len = pcount * mss;
  1219. }
  1220. }
  1221. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1222. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1223. goto fallback;
  1224. if (!skb_shift(prev, skb, len))
  1225. goto fallback;
  1226. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1227. goto out;
  1228. /* Hole filled allows collapsing with the next as well, this is very
  1229. * useful when hole on every nth skb pattern happens
  1230. */
  1231. if (prev == tcp_write_queue_tail(sk))
  1232. goto out;
  1233. skb = tcp_write_queue_next(sk, prev);
  1234. if (!skb_can_shift(skb) ||
  1235. (skb == tcp_send_head(sk)) ||
  1236. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1237. (mss != tcp_skb_seglen(skb)))
  1238. goto out;
  1239. len = skb->len;
  1240. if (skb_shift(prev, skb, len)) {
  1241. pcount += tcp_skb_pcount(skb);
  1242. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1243. }
  1244. out:
  1245. state->fack_count += pcount;
  1246. return prev;
  1247. noop:
  1248. return skb;
  1249. fallback:
  1250. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1251. return NULL;
  1252. }
  1253. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1254. struct tcp_sack_block *next_dup,
  1255. struct tcp_sacktag_state *state,
  1256. u32 start_seq, u32 end_seq,
  1257. bool dup_sack_in)
  1258. {
  1259. struct tcp_sock *tp = tcp_sk(sk);
  1260. struct sk_buff *tmp;
  1261. tcp_for_write_queue_from(skb, sk) {
  1262. int in_sack = 0;
  1263. bool dup_sack = dup_sack_in;
  1264. if (skb == tcp_send_head(sk))
  1265. break;
  1266. /* queue is in-order => we can short-circuit the walk early */
  1267. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1268. break;
  1269. if ((next_dup != NULL) &&
  1270. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1271. in_sack = tcp_match_skb_to_sack(sk, skb,
  1272. next_dup->start_seq,
  1273. next_dup->end_seq);
  1274. if (in_sack > 0)
  1275. dup_sack = true;
  1276. }
  1277. /* skb reference here is a bit tricky to get right, since
  1278. * shifting can eat and free both this skb and the next,
  1279. * so not even _safe variant of the loop is enough.
  1280. */
  1281. if (in_sack <= 0) {
  1282. tmp = tcp_shift_skb_data(sk, skb, state,
  1283. start_seq, end_seq, dup_sack);
  1284. if (tmp != NULL) {
  1285. if (tmp != skb) {
  1286. skb = tmp;
  1287. continue;
  1288. }
  1289. in_sack = 0;
  1290. } else {
  1291. in_sack = tcp_match_skb_to_sack(sk, skb,
  1292. start_seq,
  1293. end_seq);
  1294. }
  1295. }
  1296. if (unlikely(in_sack < 0))
  1297. break;
  1298. if (in_sack) {
  1299. TCP_SKB_CB(skb)->sacked =
  1300. tcp_sacktag_one(sk,
  1301. state,
  1302. TCP_SKB_CB(skb)->sacked,
  1303. TCP_SKB_CB(skb)->seq,
  1304. TCP_SKB_CB(skb)->end_seq,
  1305. dup_sack,
  1306. tcp_skb_pcount(skb));
  1307. if (!before(TCP_SKB_CB(skb)->seq,
  1308. tcp_highest_sack_seq(tp)))
  1309. tcp_advance_highest_sack(sk, skb);
  1310. }
  1311. state->fack_count += tcp_skb_pcount(skb);
  1312. }
  1313. return skb;
  1314. }
  1315. /* Avoid all extra work that is being done by sacktag while walking in
  1316. * a normal way
  1317. */
  1318. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1319. struct tcp_sacktag_state *state,
  1320. u32 skip_to_seq)
  1321. {
  1322. tcp_for_write_queue_from(skb, sk) {
  1323. if (skb == tcp_send_head(sk))
  1324. break;
  1325. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1326. break;
  1327. state->fack_count += tcp_skb_pcount(skb);
  1328. }
  1329. return skb;
  1330. }
  1331. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1332. struct sock *sk,
  1333. struct tcp_sack_block *next_dup,
  1334. struct tcp_sacktag_state *state,
  1335. u32 skip_to_seq)
  1336. {
  1337. if (next_dup == NULL)
  1338. return skb;
  1339. if (before(next_dup->start_seq, skip_to_seq)) {
  1340. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1341. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1342. next_dup->start_seq, next_dup->end_seq,
  1343. 1);
  1344. }
  1345. return skb;
  1346. }
  1347. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1348. {
  1349. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1350. }
  1351. static int
  1352. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1353. u32 prior_snd_una)
  1354. {
  1355. const struct inet_connection_sock *icsk = inet_csk(sk);
  1356. struct tcp_sock *tp = tcp_sk(sk);
  1357. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1358. TCP_SKB_CB(ack_skb)->sacked);
  1359. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1360. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1361. struct tcp_sack_block *cache;
  1362. struct tcp_sacktag_state state;
  1363. struct sk_buff *skb;
  1364. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1365. int used_sacks;
  1366. bool found_dup_sack = false;
  1367. int i, j;
  1368. int first_sack_index;
  1369. state.flag = 0;
  1370. state.reord = tp->packets_out;
  1371. if (!tp->sacked_out) {
  1372. if (WARN_ON(tp->fackets_out))
  1373. tp->fackets_out = 0;
  1374. tcp_highest_sack_reset(sk);
  1375. }
  1376. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1377. num_sacks, prior_snd_una);
  1378. if (found_dup_sack)
  1379. state.flag |= FLAG_DSACKING_ACK;
  1380. /* Eliminate too old ACKs, but take into
  1381. * account more or less fresh ones, they can
  1382. * contain valid SACK info.
  1383. */
  1384. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1385. return 0;
  1386. if (!tp->packets_out)
  1387. goto out;
  1388. used_sacks = 0;
  1389. first_sack_index = 0;
  1390. for (i = 0; i < num_sacks; i++) {
  1391. bool dup_sack = !i && found_dup_sack;
  1392. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1393. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1394. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1395. sp[used_sacks].start_seq,
  1396. sp[used_sacks].end_seq)) {
  1397. int mib_idx;
  1398. if (dup_sack) {
  1399. if (!tp->undo_marker)
  1400. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1401. else
  1402. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1403. } else {
  1404. /* Don't count olds caused by ACK reordering */
  1405. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1406. !after(sp[used_sacks].end_seq, tp->snd_una))
  1407. continue;
  1408. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1409. }
  1410. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1411. if (i == 0)
  1412. first_sack_index = -1;
  1413. continue;
  1414. }
  1415. /* Ignore very old stuff early */
  1416. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1417. continue;
  1418. used_sacks++;
  1419. }
  1420. /* order SACK blocks to allow in order walk of the retrans queue */
  1421. for (i = used_sacks - 1; i > 0; i--) {
  1422. for (j = 0; j < i; j++) {
  1423. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1424. swap(sp[j], sp[j + 1]);
  1425. /* Track where the first SACK block goes to */
  1426. if (j == first_sack_index)
  1427. first_sack_index = j + 1;
  1428. }
  1429. }
  1430. }
  1431. skb = tcp_write_queue_head(sk);
  1432. state.fack_count = 0;
  1433. i = 0;
  1434. if (!tp->sacked_out) {
  1435. /* It's already past, so skip checking against it */
  1436. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1437. } else {
  1438. cache = tp->recv_sack_cache;
  1439. /* Skip empty blocks in at head of the cache */
  1440. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1441. !cache->end_seq)
  1442. cache++;
  1443. }
  1444. while (i < used_sacks) {
  1445. u32 start_seq = sp[i].start_seq;
  1446. u32 end_seq = sp[i].end_seq;
  1447. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1448. struct tcp_sack_block *next_dup = NULL;
  1449. if (found_dup_sack && ((i + 1) == first_sack_index))
  1450. next_dup = &sp[i + 1];
  1451. /* Skip too early cached blocks */
  1452. while (tcp_sack_cache_ok(tp, cache) &&
  1453. !before(start_seq, cache->end_seq))
  1454. cache++;
  1455. /* Can skip some work by looking recv_sack_cache? */
  1456. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1457. after(end_seq, cache->start_seq)) {
  1458. /* Head todo? */
  1459. if (before(start_seq, cache->start_seq)) {
  1460. skb = tcp_sacktag_skip(skb, sk, &state,
  1461. start_seq);
  1462. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1463. &state,
  1464. start_seq,
  1465. cache->start_seq,
  1466. dup_sack);
  1467. }
  1468. /* Rest of the block already fully processed? */
  1469. if (!after(end_seq, cache->end_seq))
  1470. goto advance_sp;
  1471. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1472. &state,
  1473. cache->end_seq);
  1474. /* ...tail remains todo... */
  1475. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1476. /* ...but better entrypoint exists! */
  1477. skb = tcp_highest_sack(sk);
  1478. if (skb == NULL)
  1479. break;
  1480. state.fack_count = tp->fackets_out;
  1481. cache++;
  1482. goto walk;
  1483. }
  1484. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1485. /* Check overlap against next cached too (past this one already) */
  1486. cache++;
  1487. continue;
  1488. }
  1489. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1490. skb = tcp_highest_sack(sk);
  1491. if (skb == NULL)
  1492. break;
  1493. state.fack_count = tp->fackets_out;
  1494. }
  1495. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1496. walk:
  1497. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1498. start_seq, end_seq, dup_sack);
  1499. advance_sp:
  1500. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1501. * due to in-order walk
  1502. */
  1503. if (after(end_seq, tp->frto_highmark))
  1504. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1505. i++;
  1506. }
  1507. /* Clear the head of the cache sack blocks so we can skip it next time */
  1508. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1509. tp->recv_sack_cache[i].start_seq = 0;
  1510. tp->recv_sack_cache[i].end_seq = 0;
  1511. }
  1512. for (j = 0; j < used_sacks; j++)
  1513. tp->recv_sack_cache[i++] = sp[j];
  1514. tcp_mark_lost_retrans(sk);
  1515. tcp_verify_left_out(tp);
  1516. if ((state.reord < tp->fackets_out) &&
  1517. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1518. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1519. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1520. out:
  1521. #if FASTRETRANS_DEBUG > 0
  1522. WARN_ON((int)tp->sacked_out < 0);
  1523. WARN_ON((int)tp->lost_out < 0);
  1524. WARN_ON((int)tp->retrans_out < 0);
  1525. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1526. #endif
  1527. return state.flag;
  1528. }
  1529. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1530. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1531. */
  1532. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1533. {
  1534. u32 holes;
  1535. holes = max(tp->lost_out, 1U);
  1536. holes = min(holes, tp->packets_out);
  1537. if ((tp->sacked_out + holes) > tp->packets_out) {
  1538. tp->sacked_out = tp->packets_out - holes;
  1539. return true;
  1540. }
  1541. return false;
  1542. }
  1543. /* If we receive more dupacks than we expected counting segments
  1544. * in assumption of absent reordering, interpret this as reordering.
  1545. * The only another reason could be bug in receiver TCP.
  1546. */
  1547. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1548. {
  1549. struct tcp_sock *tp = tcp_sk(sk);
  1550. if (tcp_limit_reno_sacked(tp))
  1551. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1552. }
  1553. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1554. static void tcp_add_reno_sack(struct sock *sk)
  1555. {
  1556. struct tcp_sock *tp = tcp_sk(sk);
  1557. tp->sacked_out++;
  1558. tcp_check_reno_reordering(sk, 0);
  1559. tcp_verify_left_out(tp);
  1560. }
  1561. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1562. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1563. {
  1564. struct tcp_sock *tp = tcp_sk(sk);
  1565. if (acked > 0) {
  1566. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1567. if (acked - 1 >= tp->sacked_out)
  1568. tp->sacked_out = 0;
  1569. else
  1570. tp->sacked_out -= acked - 1;
  1571. }
  1572. tcp_check_reno_reordering(sk, acked);
  1573. tcp_verify_left_out(tp);
  1574. }
  1575. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1576. {
  1577. tp->sacked_out = 0;
  1578. }
  1579. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1580. {
  1581. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1582. }
  1583. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1584. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1585. */
  1586. bool tcp_use_frto(struct sock *sk)
  1587. {
  1588. const struct tcp_sock *tp = tcp_sk(sk);
  1589. const struct inet_connection_sock *icsk = inet_csk(sk);
  1590. struct sk_buff *skb;
  1591. if (!sysctl_tcp_frto)
  1592. return false;
  1593. /* MTU probe and F-RTO won't really play nicely along currently */
  1594. if (icsk->icsk_mtup.probe_size)
  1595. return false;
  1596. if (tcp_is_sackfrto(tp))
  1597. return true;
  1598. /* Avoid expensive walking of rexmit queue if possible */
  1599. if (tp->retrans_out > 1)
  1600. return false;
  1601. skb = tcp_write_queue_head(sk);
  1602. if (tcp_skb_is_last(sk, skb))
  1603. return true;
  1604. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1605. tcp_for_write_queue_from(skb, sk) {
  1606. if (skb == tcp_send_head(sk))
  1607. break;
  1608. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1609. return false;
  1610. /* Short-circuit when first non-SACKed skb has been checked */
  1611. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1612. break;
  1613. }
  1614. return true;
  1615. }
  1616. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1617. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1618. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1619. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1620. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1621. * bits are handled if the Loss state is really to be entered (in
  1622. * tcp_enter_frto_loss).
  1623. *
  1624. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1625. * does:
  1626. * "Reduce ssthresh if it has not yet been made inside this window."
  1627. */
  1628. void tcp_enter_frto(struct sock *sk)
  1629. {
  1630. const struct inet_connection_sock *icsk = inet_csk(sk);
  1631. struct tcp_sock *tp = tcp_sk(sk);
  1632. struct sk_buff *skb;
  1633. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1634. tp->snd_una == tp->high_seq ||
  1635. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1636. !icsk->icsk_retransmits)) {
  1637. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1638. /* Our state is too optimistic in ssthresh() call because cwnd
  1639. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1640. * recovery has not yet completed. Pattern would be this: RTO,
  1641. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1642. * up here twice).
  1643. * RFC4138 should be more specific on what to do, even though
  1644. * RTO is quite unlikely to occur after the first Cumulative ACK
  1645. * due to back-off and complexity of triggering events ...
  1646. */
  1647. if (tp->frto_counter) {
  1648. u32 stored_cwnd;
  1649. stored_cwnd = tp->snd_cwnd;
  1650. tp->snd_cwnd = 2;
  1651. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1652. tp->snd_cwnd = stored_cwnd;
  1653. } else {
  1654. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1655. }
  1656. /* ... in theory, cong.control module could do "any tricks" in
  1657. * ssthresh(), which means that ca_state, lost bits and lost_out
  1658. * counter would have to be faked before the call occurs. We
  1659. * consider that too expensive, unlikely and hacky, so modules
  1660. * using these in ssthresh() must deal these incompatibility
  1661. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1662. */
  1663. tcp_ca_event(sk, CA_EVENT_FRTO);
  1664. }
  1665. tp->undo_marker = tp->snd_una;
  1666. tp->undo_retrans = 0;
  1667. skb = tcp_write_queue_head(sk);
  1668. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1669. tp->undo_marker = 0;
  1670. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1671. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1672. tp->retrans_out -= tcp_skb_pcount(skb);
  1673. }
  1674. tcp_verify_left_out(tp);
  1675. /* Too bad if TCP was application limited */
  1676. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1677. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1678. * The last condition is necessary at least in tp->frto_counter case.
  1679. */
  1680. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1681. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1682. after(tp->high_seq, tp->snd_una)) {
  1683. tp->frto_highmark = tp->high_seq;
  1684. } else {
  1685. tp->frto_highmark = tp->snd_nxt;
  1686. }
  1687. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1688. tp->high_seq = tp->snd_nxt;
  1689. tp->frto_counter = 1;
  1690. }
  1691. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1692. * which indicates that we should follow the traditional RTO recovery,
  1693. * i.e. mark everything lost and do go-back-N retransmission.
  1694. */
  1695. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1696. {
  1697. struct tcp_sock *tp = tcp_sk(sk);
  1698. struct sk_buff *skb;
  1699. tp->lost_out = 0;
  1700. tp->retrans_out = 0;
  1701. if (tcp_is_reno(tp))
  1702. tcp_reset_reno_sack(tp);
  1703. tcp_for_write_queue(skb, sk) {
  1704. if (skb == tcp_send_head(sk))
  1705. break;
  1706. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1707. /*
  1708. * Count the retransmission made on RTO correctly (only when
  1709. * waiting for the first ACK and did not get it)...
  1710. */
  1711. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1712. /* For some reason this R-bit might get cleared? */
  1713. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1714. tp->retrans_out += tcp_skb_pcount(skb);
  1715. /* ...enter this if branch just for the first segment */
  1716. flag |= FLAG_DATA_ACKED;
  1717. } else {
  1718. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1719. tp->undo_marker = 0;
  1720. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1721. }
  1722. /* Marking forward transmissions that were made after RTO lost
  1723. * can cause unnecessary retransmissions in some scenarios,
  1724. * SACK blocks will mitigate that in some but not in all cases.
  1725. * We used to not mark them but it was causing break-ups with
  1726. * receivers that do only in-order receival.
  1727. *
  1728. * TODO: we could detect presence of such receiver and select
  1729. * different behavior per flow.
  1730. */
  1731. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1732. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1733. tp->lost_out += tcp_skb_pcount(skb);
  1734. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1735. }
  1736. }
  1737. tcp_verify_left_out(tp);
  1738. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1739. tp->snd_cwnd_cnt = 0;
  1740. tp->snd_cwnd_stamp = tcp_time_stamp;
  1741. tp->frto_counter = 0;
  1742. tp->reordering = min_t(unsigned int, tp->reordering,
  1743. sysctl_tcp_reordering);
  1744. tcp_set_ca_state(sk, TCP_CA_Loss);
  1745. tp->high_seq = tp->snd_nxt;
  1746. TCP_ECN_queue_cwr(tp);
  1747. tcp_clear_all_retrans_hints(tp);
  1748. }
  1749. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1750. {
  1751. tp->retrans_out = 0;
  1752. tp->lost_out = 0;
  1753. tp->undo_marker = 0;
  1754. tp->undo_retrans = 0;
  1755. }
  1756. void tcp_clear_retrans(struct tcp_sock *tp)
  1757. {
  1758. tcp_clear_retrans_partial(tp);
  1759. tp->fackets_out = 0;
  1760. tp->sacked_out = 0;
  1761. }
  1762. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1763. * and reset tags completely, otherwise preserve SACKs. If receiver
  1764. * dropped its ofo queue, we will know this due to reneging detection.
  1765. */
  1766. void tcp_enter_loss(struct sock *sk, int how)
  1767. {
  1768. const struct inet_connection_sock *icsk = inet_csk(sk);
  1769. struct tcp_sock *tp = tcp_sk(sk);
  1770. struct sk_buff *skb;
  1771. /* Reduce ssthresh if it has not yet been made inside this window. */
  1772. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1773. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1774. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1775. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1776. tcp_ca_event(sk, CA_EVENT_LOSS);
  1777. }
  1778. tp->snd_cwnd = 1;
  1779. tp->snd_cwnd_cnt = 0;
  1780. tp->snd_cwnd_stamp = tcp_time_stamp;
  1781. tcp_clear_retrans_partial(tp);
  1782. if (tcp_is_reno(tp))
  1783. tcp_reset_reno_sack(tp);
  1784. tp->undo_marker = tp->snd_una;
  1785. if (how) {
  1786. tp->sacked_out = 0;
  1787. tp->fackets_out = 0;
  1788. }
  1789. tcp_clear_all_retrans_hints(tp);
  1790. tcp_for_write_queue(skb, sk) {
  1791. if (skb == tcp_send_head(sk))
  1792. break;
  1793. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1794. tp->undo_marker = 0;
  1795. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1796. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1797. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1798. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1799. tp->lost_out += tcp_skb_pcount(skb);
  1800. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1801. }
  1802. }
  1803. tcp_verify_left_out(tp);
  1804. tp->reordering = min_t(unsigned int, tp->reordering,
  1805. sysctl_tcp_reordering);
  1806. tcp_set_ca_state(sk, TCP_CA_Loss);
  1807. tp->high_seq = tp->snd_nxt;
  1808. TCP_ECN_queue_cwr(tp);
  1809. /* Abort F-RTO algorithm if one is in progress */
  1810. tp->frto_counter = 0;
  1811. }
  1812. /* If ACK arrived pointing to a remembered SACK, it means that our
  1813. * remembered SACKs do not reflect real state of receiver i.e.
  1814. * receiver _host_ is heavily congested (or buggy).
  1815. *
  1816. * Do processing similar to RTO timeout.
  1817. */
  1818. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1819. {
  1820. if (flag & FLAG_SACK_RENEGING) {
  1821. struct inet_connection_sock *icsk = inet_csk(sk);
  1822. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1823. tcp_enter_loss(sk, 1);
  1824. icsk->icsk_retransmits++;
  1825. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1826. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1827. icsk->icsk_rto, TCP_RTO_MAX);
  1828. return true;
  1829. }
  1830. return false;
  1831. }
  1832. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1833. {
  1834. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1835. }
  1836. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1837. * counter when SACK is enabled (without SACK, sacked_out is used for
  1838. * that purpose).
  1839. *
  1840. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1841. * segments up to the highest received SACK block so far and holes in
  1842. * between them.
  1843. *
  1844. * With reordering, holes may still be in flight, so RFC3517 recovery
  1845. * uses pure sacked_out (total number of SACKed segments) even though
  1846. * it violates the RFC that uses duplicate ACKs, often these are equal
  1847. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1848. * they differ. Since neither occurs due to loss, TCP should really
  1849. * ignore them.
  1850. */
  1851. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1852. {
  1853. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1854. }
  1855. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1856. {
  1857. struct tcp_sock *tp = tcp_sk(sk);
  1858. unsigned long delay;
  1859. /* Delay early retransmit and entering fast recovery for
  1860. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1861. * available, or RTO is scheduled to fire first.
  1862. */
  1863. if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
  1864. return false;
  1865. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1866. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1867. return false;
  1868. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
  1869. tp->early_retrans_delayed = 1;
  1870. return true;
  1871. }
  1872. static inline int tcp_skb_timedout(const struct sock *sk,
  1873. const struct sk_buff *skb)
  1874. {
  1875. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1876. }
  1877. static inline int tcp_head_timedout(const struct sock *sk)
  1878. {
  1879. const struct tcp_sock *tp = tcp_sk(sk);
  1880. return tp->packets_out &&
  1881. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1882. }
  1883. /* Linux NewReno/SACK/FACK/ECN state machine.
  1884. * --------------------------------------
  1885. *
  1886. * "Open" Normal state, no dubious events, fast path.
  1887. * "Disorder" In all the respects it is "Open",
  1888. * but requires a bit more attention. It is entered when
  1889. * we see some SACKs or dupacks. It is split of "Open"
  1890. * mainly to move some processing from fast path to slow one.
  1891. * "CWR" CWND was reduced due to some Congestion Notification event.
  1892. * It can be ECN, ICMP source quench, local device congestion.
  1893. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1894. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1895. *
  1896. * tcp_fastretrans_alert() is entered:
  1897. * - each incoming ACK, if state is not "Open"
  1898. * - when arrived ACK is unusual, namely:
  1899. * * SACK
  1900. * * Duplicate ACK.
  1901. * * ECN ECE.
  1902. *
  1903. * Counting packets in flight is pretty simple.
  1904. *
  1905. * in_flight = packets_out - left_out + retrans_out
  1906. *
  1907. * packets_out is SND.NXT-SND.UNA counted in packets.
  1908. *
  1909. * retrans_out is number of retransmitted segments.
  1910. *
  1911. * left_out is number of segments left network, but not ACKed yet.
  1912. *
  1913. * left_out = sacked_out + lost_out
  1914. *
  1915. * sacked_out: Packets, which arrived to receiver out of order
  1916. * and hence not ACKed. With SACKs this number is simply
  1917. * amount of SACKed data. Even without SACKs
  1918. * it is easy to give pretty reliable estimate of this number,
  1919. * counting duplicate ACKs.
  1920. *
  1921. * lost_out: Packets lost by network. TCP has no explicit
  1922. * "loss notification" feedback from network (for now).
  1923. * It means that this number can be only _guessed_.
  1924. * Actually, it is the heuristics to predict lossage that
  1925. * distinguishes different algorithms.
  1926. *
  1927. * F.e. after RTO, when all the queue is considered as lost,
  1928. * lost_out = packets_out and in_flight = retrans_out.
  1929. *
  1930. * Essentially, we have now two algorithms counting
  1931. * lost packets.
  1932. *
  1933. * FACK: It is the simplest heuristics. As soon as we decided
  1934. * that something is lost, we decide that _all_ not SACKed
  1935. * packets until the most forward SACK are lost. I.e.
  1936. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1937. * It is absolutely correct estimate, if network does not reorder
  1938. * packets. And it loses any connection to reality when reordering
  1939. * takes place. We use FACK by default until reordering
  1940. * is suspected on the path to this destination.
  1941. *
  1942. * NewReno: when Recovery is entered, we assume that one segment
  1943. * is lost (classic Reno). While we are in Recovery and
  1944. * a partial ACK arrives, we assume that one more packet
  1945. * is lost (NewReno). This heuristics are the same in NewReno
  1946. * and SACK.
  1947. *
  1948. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1949. * deflation etc. CWND is real congestion window, never inflated, changes
  1950. * only according to classic VJ rules.
  1951. *
  1952. * Really tricky (and requiring careful tuning) part of algorithm
  1953. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1954. * The first determines the moment _when_ we should reduce CWND and,
  1955. * hence, slow down forward transmission. In fact, it determines the moment
  1956. * when we decide that hole is caused by loss, rather than by a reorder.
  1957. *
  1958. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1959. * holes, caused by lost packets.
  1960. *
  1961. * And the most logically complicated part of algorithm is undo
  1962. * heuristics. We detect false retransmits due to both too early
  1963. * fast retransmit (reordering) and underestimated RTO, analyzing
  1964. * timestamps and D-SACKs. When we detect that some segments were
  1965. * retransmitted by mistake and CWND reduction was wrong, we undo
  1966. * window reduction and abort recovery phase. This logic is hidden
  1967. * inside several functions named tcp_try_undo_<something>.
  1968. */
  1969. /* This function decides, when we should leave Disordered state
  1970. * and enter Recovery phase, reducing congestion window.
  1971. *
  1972. * Main question: may we further continue forward transmission
  1973. * with the same cwnd?
  1974. */
  1975. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1976. {
  1977. struct tcp_sock *tp = tcp_sk(sk);
  1978. __u32 packets_out;
  1979. /* Do not perform any recovery during F-RTO algorithm */
  1980. if (tp->frto_counter)
  1981. return false;
  1982. /* Trick#1: The loss is proven. */
  1983. if (tp->lost_out)
  1984. return true;
  1985. /* Not-A-Trick#2 : Classic rule... */
  1986. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1987. return true;
  1988. /* Trick#3 : when we use RFC2988 timer restart, fast
  1989. * retransmit can be triggered by timeout of queue head.
  1990. */
  1991. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1992. return true;
  1993. /* Trick#4: It is still not OK... But will it be useful to delay
  1994. * recovery more?
  1995. */
  1996. packets_out = tp->packets_out;
  1997. if (packets_out <= tp->reordering &&
  1998. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1999. !tcp_may_send_now(sk)) {
  2000. /* We have nothing to send. This connection is limited
  2001. * either by receiver window or by application.
  2002. */
  2003. return true;
  2004. }
  2005. /* If a thin stream is detected, retransmit after first
  2006. * received dupack. Employ only if SACK is supported in order
  2007. * to avoid possible corner-case series of spurious retransmissions
  2008. * Use only if there are no unsent data.
  2009. */
  2010. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2011. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2012. tcp_is_sack(tp) && !tcp_send_head(sk))
  2013. return true;
  2014. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  2015. * retransmissions due to small network reorderings, we implement
  2016. * Mitigation A.3 in the RFC and delay the retransmission for a short
  2017. * interval if appropriate.
  2018. */
  2019. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  2020. (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
  2021. !tcp_may_send_now(sk))
  2022. return !tcp_pause_early_retransmit(sk, flag);
  2023. return false;
  2024. }
  2025. /* New heuristics: it is possible only after we switched to restart timer
  2026. * each time when something is ACKed. Hence, we can detect timed out packets
  2027. * during fast retransmit without falling to slow start.
  2028. *
  2029. * Usefulness of this as is very questionable, since we should know which of
  2030. * the segments is the next to timeout which is relatively expensive to find
  2031. * in general case unless we add some data structure just for that. The
  2032. * current approach certainly won't find the right one too often and when it
  2033. * finally does find _something_ it usually marks large part of the window
  2034. * right away (because a retransmission with a larger timestamp blocks the
  2035. * loop from advancing). -ij
  2036. */
  2037. static void tcp_timeout_skbs(struct sock *sk)
  2038. {
  2039. struct tcp_sock *tp = tcp_sk(sk);
  2040. struct sk_buff *skb;
  2041. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2042. return;
  2043. skb = tp->scoreboard_skb_hint;
  2044. if (tp->scoreboard_skb_hint == NULL)
  2045. skb = tcp_write_queue_head(sk);
  2046. tcp_for_write_queue_from(skb, sk) {
  2047. if (skb == tcp_send_head(sk))
  2048. break;
  2049. if (!tcp_skb_timedout(sk, skb))
  2050. break;
  2051. tcp_skb_mark_lost(tp, skb);
  2052. }
  2053. tp->scoreboard_skb_hint = skb;
  2054. tcp_verify_left_out(tp);
  2055. }
  2056. /* Detect loss in event "A" above by marking head of queue up as lost.
  2057. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2058. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2059. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2060. * the maximum SACKed segments to pass before reaching this limit.
  2061. */
  2062. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2063. {
  2064. struct tcp_sock *tp = tcp_sk(sk);
  2065. struct sk_buff *skb;
  2066. int cnt, oldcnt;
  2067. int err;
  2068. unsigned int mss;
  2069. /* Use SACK to deduce losses of new sequences sent during recovery */
  2070. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2071. WARN_ON(packets > tp->packets_out);
  2072. if (tp->lost_skb_hint) {
  2073. skb = tp->lost_skb_hint;
  2074. cnt = tp->lost_cnt_hint;
  2075. /* Head already handled? */
  2076. if (mark_head && skb != tcp_write_queue_head(sk))
  2077. return;
  2078. } else {
  2079. skb = tcp_write_queue_head(sk);
  2080. cnt = 0;
  2081. }
  2082. tcp_for_write_queue_from(skb, sk) {
  2083. if (skb == tcp_send_head(sk))
  2084. break;
  2085. /* TODO: do this better */
  2086. /* this is not the most efficient way to do this... */
  2087. tp->lost_skb_hint = skb;
  2088. tp->lost_cnt_hint = cnt;
  2089. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2090. break;
  2091. oldcnt = cnt;
  2092. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2093. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2094. cnt += tcp_skb_pcount(skb);
  2095. if (cnt > packets) {
  2096. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2097. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2098. (oldcnt >= packets))
  2099. break;
  2100. mss = skb_shinfo(skb)->gso_size;
  2101. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2102. if (err < 0)
  2103. break;
  2104. cnt = packets;
  2105. }
  2106. tcp_skb_mark_lost(tp, skb);
  2107. if (mark_head)
  2108. break;
  2109. }
  2110. tcp_verify_left_out(tp);
  2111. }
  2112. /* Account newly detected lost packet(s) */
  2113. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2114. {
  2115. struct tcp_sock *tp = tcp_sk(sk);
  2116. if (tcp_is_reno(tp)) {
  2117. tcp_mark_head_lost(sk, 1, 1);
  2118. } else if (tcp_is_fack(tp)) {
  2119. int lost = tp->fackets_out - tp->reordering;
  2120. if (lost <= 0)
  2121. lost = 1;
  2122. tcp_mark_head_lost(sk, lost, 0);
  2123. } else {
  2124. int sacked_upto = tp->sacked_out - tp->reordering;
  2125. if (sacked_upto >= 0)
  2126. tcp_mark_head_lost(sk, sacked_upto, 0);
  2127. else if (fast_rexmit)
  2128. tcp_mark_head_lost(sk, 1, 1);
  2129. }
  2130. tcp_timeout_skbs(sk);
  2131. }
  2132. /* CWND moderation, preventing bursts due to too big ACKs
  2133. * in dubious situations.
  2134. */
  2135. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2136. {
  2137. tp->snd_cwnd = min(tp->snd_cwnd,
  2138. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2139. tp->snd_cwnd_stamp = tcp_time_stamp;
  2140. }
  2141. /* Nothing was retransmitted or returned timestamp is less
  2142. * than timestamp of the first retransmission.
  2143. */
  2144. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2145. {
  2146. return !tp->retrans_stamp ||
  2147. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2148. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2149. }
  2150. /* Undo procedures. */
  2151. #if FASTRETRANS_DEBUG > 1
  2152. static void DBGUNDO(struct sock *sk, const char *msg)
  2153. {
  2154. struct tcp_sock *tp = tcp_sk(sk);
  2155. struct inet_sock *inet = inet_sk(sk);
  2156. if (sk->sk_family == AF_INET) {
  2157. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2158. msg,
  2159. &inet->inet_daddr, ntohs(inet->inet_dport),
  2160. tp->snd_cwnd, tcp_left_out(tp),
  2161. tp->snd_ssthresh, tp->prior_ssthresh,
  2162. tp->packets_out);
  2163. }
  2164. #if IS_ENABLED(CONFIG_IPV6)
  2165. else if (sk->sk_family == AF_INET6) {
  2166. struct ipv6_pinfo *np = inet6_sk(sk);
  2167. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2168. msg,
  2169. &np->daddr, ntohs(inet->inet_dport),
  2170. tp->snd_cwnd, tcp_left_out(tp),
  2171. tp->snd_ssthresh, tp->prior_ssthresh,
  2172. tp->packets_out);
  2173. }
  2174. #endif
  2175. }
  2176. #else
  2177. #define DBGUNDO(x...) do { } while (0)
  2178. #endif
  2179. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2180. {
  2181. struct tcp_sock *tp = tcp_sk(sk);
  2182. if (tp->prior_ssthresh) {
  2183. const struct inet_connection_sock *icsk = inet_csk(sk);
  2184. if (icsk->icsk_ca_ops->undo_cwnd)
  2185. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2186. else
  2187. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2188. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2189. tp->snd_ssthresh = tp->prior_ssthresh;
  2190. TCP_ECN_withdraw_cwr(tp);
  2191. }
  2192. } else {
  2193. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2194. }
  2195. tp->snd_cwnd_stamp = tcp_time_stamp;
  2196. }
  2197. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2198. {
  2199. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2200. }
  2201. /* People celebrate: "We love our President!" */
  2202. static bool tcp_try_undo_recovery(struct sock *sk)
  2203. {
  2204. struct tcp_sock *tp = tcp_sk(sk);
  2205. if (tcp_may_undo(tp)) {
  2206. int mib_idx;
  2207. /* Happy end! We did not retransmit anything
  2208. * or our original transmission succeeded.
  2209. */
  2210. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2211. tcp_undo_cwr(sk, true);
  2212. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2213. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2214. else
  2215. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2216. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2217. tp->undo_marker = 0;
  2218. }
  2219. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2220. /* Hold old state until something *above* high_seq
  2221. * is ACKed. For Reno it is MUST to prevent false
  2222. * fast retransmits (RFC2582). SACK TCP is safe. */
  2223. tcp_moderate_cwnd(tp);
  2224. return true;
  2225. }
  2226. tcp_set_ca_state(sk, TCP_CA_Open);
  2227. return false;
  2228. }
  2229. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2230. static void tcp_try_undo_dsack(struct sock *sk)
  2231. {
  2232. struct tcp_sock *tp = tcp_sk(sk);
  2233. if (tp->undo_marker && !tp->undo_retrans) {
  2234. DBGUNDO(sk, "D-SACK");
  2235. tcp_undo_cwr(sk, true);
  2236. tp->undo_marker = 0;
  2237. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2238. }
  2239. }
  2240. /* We can clear retrans_stamp when there are no retransmissions in the
  2241. * window. It would seem that it is trivially available for us in
  2242. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2243. * what will happen if errors occur when sending retransmission for the
  2244. * second time. ...It could the that such segment has only
  2245. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2246. * the head skb is enough except for some reneging corner cases that
  2247. * are not worth the effort.
  2248. *
  2249. * Main reason for all this complexity is the fact that connection dying
  2250. * time now depends on the validity of the retrans_stamp, in particular,
  2251. * that successive retransmissions of a segment must not advance
  2252. * retrans_stamp under any conditions.
  2253. */
  2254. static bool tcp_any_retrans_done(const struct sock *sk)
  2255. {
  2256. const struct tcp_sock *tp = tcp_sk(sk);
  2257. struct sk_buff *skb;
  2258. if (tp->retrans_out)
  2259. return true;
  2260. skb = tcp_write_queue_head(sk);
  2261. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2262. return true;
  2263. return false;
  2264. }
  2265. /* Undo during fast recovery after partial ACK. */
  2266. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2267. {
  2268. struct tcp_sock *tp = tcp_sk(sk);
  2269. /* Partial ACK arrived. Force Hoe's retransmit. */
  2270. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2271. if (tcp_may_undo(tp)) {
  2272. /* Plain luck! Hole if filled with delayed
  2273. * packet, rather than with a retransmit.
  2274. */
  2275. if (!tcp_any_retrans_done(sk))
  2276. tp->retrans_stamp = 0;
  2277. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2278. DBGUNDO(sk, "Hoe");
  2279. tcp_undo_cwr(sk, false);
  2280. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2281. /* So... Do not make Hoe's retransmit yet.
  2282. * If the first packet was delayed, the rest
  2283. * ones are most probably delayed as well.
  2284. */
  2285. failed = 0;
  2286. }
  2287. return failed;
  2288. }
  2289. /* Undo during loss recovery after partial ACK. */
  2290. static bool tcp_try_undo_loss(struct sock *sk)
  2291. {
  2292. struct tcp_sock *tp = tcp_sk(sk);
  2293. if (tcp_may_undo(tp)) {
  2294. struct sk_buff *skb;
  2295. tcp_for_write_queue(skb, sk) {
  2296. if (skb == tcp_send_head(sk))
  2297. break;
  2298. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2299. }
  2300. tcp_clear_all_retrans_hints(tp);
  2301. DBGUNDO(sk, "partial loss");
  2302. tp->lost_out = 0;
  2303. tcp_undo_cwr(sk, true);
  2304. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2305. inet_csk(sk)->icsk_retransmits = 0;
  2306. tp->undo_marker = 0;
  2307. if (tcp_is_sack(tp))
  2308. tcp_set_ca_state(sk, TCP_CA_Open);
  2309. return true;
  2310. }
  2311. return false;
  2312. }
  2313. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2314. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2315. * It computes the number of packets to send (sndcnt) based on packets newly
  2316. * delivered:
  2317. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2318. * cwnd reductions across a full RTT.
  2319. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2320. * losses and/or application stalls), do not perform any further cwnd
  2321. * reductions, but instead slow start up to ssthresh.
  2322. */
  2323. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2324. {
  2325. struct tcp_sock *tp = tcp_sk(sk);
  2326. tp->high_seq = tp->snd_nxt;
  2327. tp->snd_cwnd_cnt = 0;
  2328. tp->prior_cwnd = tp->snd_cwnd;
  2329. tp->prr_delivered = 0;
  2330. tp->prr_out = 0;
  2331. if (set_ssthresh)
  2332. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2333. TCP_ECN_queue_cwr(tp);
  2334. }
  2335. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2336. int fast_rexmit)
  2337. {
  2338. struct tcp_sock *tp = tcp_sk(sk);
  2339. int sndcnt = 0;
  2340. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2341. tp->prr_delivered += newly_acked_sacked;
  2342. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2343. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2344. tp->prior_cwnd - 1;
  2345. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2346. } else {
  2347. sndcnt = min_t(int, delta,
  2348. max_t(int, tp->prr_delivered - tp->prr_out,
  2349. newly_acked_sacked) + 1);
  2350. }
  2351. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2352. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2353. }
  2354. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2355. {
  2356. struct tcp_sock *tp = tcp_sk(sk);
  2357. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2358. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2359. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2360. tp->snd_cwnd = tp->snd_ssthresh;
  2361. tp->snd_cwnd_stamp = tcp_time_stamp;
  2362. }
  2363. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2364. }
  2365. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2366. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2367. {
  2368. struct tcp_sock *tp = tcp_sk(sk);
  2369. tp->prior_ssthresh = 0;
  2370. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2371. tp->undo_marker = 0;
  2372. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2373. tcp_set_ca_state(sk, TCP_CA_CWR);
  2374. }
  2375. }
  2376. static void tcp_try_keep_open(struct sock *sk)
  2377. {
  2378. struct tcp_sock *tp = tcp_sk(sk);
  2379. int state = TCP_CA_Open;
  2380. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2381. state = TCP_CA_Disorder;
  2382. if (inet_csk(sk)->icsk_ca_state != state) {
  2383. tcp_set_ca_state(sk, state);
  2384. tp->high_seq = tp->snd_nxt;
  2385. }
  2386. }
  2387. static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
  2388. {
  2389. struct tcp_sock *tp = tcp_sk(sk);
  2390. tcp_verify_left_out(tp);
  2391. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2392. tp->retrans_stamp = 0;
  2393. if (flag & FLAG_ECE)
  2394. tcp_enter_cwr(sk, 1);
  2395. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2396. tcp_try_keep_open(sk);
  2397. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2398. tcp_moderate_cwnd(tp);
  2399. } else {
  2400. tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
  2401. }
  2402. }
  2403. static void tcp_mtup_probe_failed(struct sock *sk)
  2404. {
  2405. struct inet_connection_sock *icsk = inet_csk(sk);
  2406. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2407. icsk->icsk_mtup.probe_size = 0;
  2408. }
  2409. static void tcp_mtup_probe_success(struct sock *sk)
  2410. {
  2411. struct tcp_sock *tp = tcp_sk(sk);
  2412. struct inet_connection_sock *icsk = inet_csk(sk);
  2413. /* FIXME: breaks with very large cwnd */
  2414. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2415. tp->snd_cwnd = tp->snd_cwnd *
  2416. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2417. icsk->icsk_mtup.probe_size;
  2418. tp->snd_cwnd_cnt = 0;
  2419. tp->snd_cwnd_stamp = tcp_time_stamp;
  2420. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2421. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2422. icsk->icsk_mtup.probe_size = 0;
  2423. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2424. }
  2425. /* Do a simple retransmit without using the backoff mechanisms in
  2426. * tcp_timer. This is used for path mtu discovery.
  2427. * The socket is already locked here.
  2428. */
  2429. void tcp_simple_retransmit(struct sock *sk)
  2430. {
  2431. const struct inet_connection_sock *icsk = inet_csk(sk);
  2432. struct tcp_sock *tp = tcp_sk(sk);
  2433. struct sk_buff *skb;
  2434. unsigned int mss = tcp_current_mss(sk);
  2435. u32 prior_lost = tp->lost_out;
  2436. tcp_for_write_queue(skb, sk) {
  2437. if (skb == tcp_send_head(sk))
  2438. break;
  2439. if (tcp_skb_seglen(skb) > mss &&
  2440. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2441. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2442. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2443. tp->retrans_out -= tcp_skb_pcount(skb);
  2444. }
  2445. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2446. }
  2447. }
  2448. tcp_clear_retrans_hints_partial(tp);
  2449. if (prior_lost == tp->lost_out)
  2450. return;
  2451. if (tcp_is_reno(tp))
  2452. tcp_limit_reno_sacked(tp);
  2453. tcp_verify_left_out(tp);
  2454. /* Don't muck with the congestion window here.
  2455. * Reason is that we do not increase amount of _data_
  2456. * in network, but units changed and effective
  2457. * cwnd/ssthresh really reduced now.
  2458. */
  2459. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2460. tp->high_seq = tp->snd_nxt;
  2461. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2462. tp->prior_ssthresh = 0;
  2463. tp->undo_marker = 0;
  2464. tcp_set_ca_state(sk, TCP_CA_Loss);
  2465. }
  2466. tcp_xmit_retransmit_queue(sk);
  2467. }
  2468. EXPORT_SYMBOL(tcp_simple_retransmit);
  2469. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2470. {
  2471. struct tcp_sock *tp = tcp_sk(sk);
  2472. int mib_idx;
  2473. if (tcp_is_reno(tp))
  2474. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2475. else
  2476. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2477. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2478. tp->prior_ssthresh = 0;
  2479. tp->undo_marker = tp->snd_una;
  2480. tp->undo_retrans = tp->retrans_out;
  2481. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2482. if (!ece_ack)
  2483. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2484. tcp_init_cwnd_reduction(sk, true);
  2485. }
  2486. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2487. }
  2488. /* Process an event, which can update packets-in-flight not trivially.
  2489. * Main goal of this function is to calculate new estimate for left_out,
  2490. * taking into account both packets sitting in receiver's buffer and
  2491. * packets lost by network.
  2492. *
  2493. * Besides that it does CWND reduction, when packet loss is detected
  2494. * and changes state of machine.
  2495. *
  2496. * It does _not_ decide what to send, it is made in function
  2497. * tcp_xmit_retransmit_queue().
  2498. */
  2499. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2500. int prior_sacked, bool is_dupack,
  2501. int flag)
  2502. {
  2503. struct inet_connection_sock *icsk = inet_csk(sk);
  2504. struct tcp_sock *tp = tcp_sk(sk);
  2505. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2506. (tcp_fackets_out(tp) > tp->reordering));
  2507. int newly_acked_sacked = 0;
  2508. int fast_rexmit = 0;
  2509. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2510. tp->sacked_out = 0;
  2511. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2512. tp->fackets_out = 0;
  2513. /* Now state machine starts.
  2514. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2515. if (flag & FLAG_ECE)
  2516. tp->prior_ssthresh = 0;
  2517. /* B. In all the states check for reneging SACKs. */
  2518. if (tcp_check_sack_reneging(sk, flag))
  2519. return;
  2520. /* C. Check consistency of the current state. */
  2521. tcp_verify_left_out(tp);
  2522. /* D. Check state exit conditions. State can be terminated
  2523. * when high_seq is ACKed. */
  2524. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2525. WARN_ON(tp->retrans_out != 0);
  2526. tp->retrans_stamp = 0;
  2527. } else if (!before(tp->snd_una, tp->high_seq)) {
  2528. switch (icsk->icsk_ca_state) {
  2529. case TCP_CA_Loss:
  2530. icsk->icsk_retransmits = 0;
  2531. if (tcp_try_undo_recovery(sk))
  2532. return;
  2533. break;
  2534. case TCP_CA_CWR:
  2535. /* CWR is to be held something *above* high_seq
  2536. * is ACKed for CWR bit to reach receiver. */
  2537. if (tp->snd_una != tp->high_seq) {
  2538. tcp_end_cwnd_reduction(sk);
  2539. tcp_set_ca_state(sk, TCP_CA_Open);
  2540. }
  2541. break;
  2542. case TCP_CA_Recovery:
  2543. if (tcp_is_reno(tp))
  2544. tcp_reset_reno_sack(tp);
  2545. if (tcp_try_undo_recovery(sk))
  2546. return;
  2547. tcp_end_cwnd_reduction(sk);
  2548. break;
  2549. }
  2550. }
  2551. /* E. Process state. */
  2552. switch (icsk->icsk_ca_state) {
  2553. case TCP_CA_Recovery:
  2554. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2555. if (tcp_is_reno(tp) && is_dupack)
  2556. tcp_add_reno_sack(sk);
  2557. } else
  2558. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2559. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2560. break;
  2561. case TCP_CA_Loss:
  2562. if (flag & FLAG_DATA_ACKED)
  2563. icsk->icsk_retransmits = 0;
  2564. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2565. tcp_reset_reno_sack(tp);
  2566. if (!tcp_try_undo_loss(sk)) {
  2567. tcp_moderate_cwnd(tp);
  2568. tcp_xmit_retransmit_queue(sk);
  2569. return;
  2570. }
  2571. if (icsk->icsk_ca_state != TCP_CA_Open)
  2572. return;
  2573. /* Loss is undone; fall through to processing in Open state. */
  2574. default:
  2575. if (tcp_is_reno(tp)) {
  2576. if (flag & FLAG_SND_UNA_ADVANCED)
  2577. tcp_reset_reno_sack(tp);
  2578. if (is_dupack)
  2579. tcp_add_reno_sack(sk);
  2580. }
  2581. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2582. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2583. tcp_try_undo_dsack(sk);
  2584. if (!tcp_time_to_recover(sk, flag)) {
  2585. tcp_try_to_open(sk, flag, newly_acked_sacked);
  2586. return;
  2587. }
  2588. /* MTU probe failure: don't reduce cwnd */
  2589. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2590. icsk->icsk_mtup.probe_size &&
  2591. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2592. tcp_mtup_probe_failed(sk);
  2593. /* Restores the reduction we did in tcp_mtup_probe() */
  2594. tp->snd_cwnd++;
  2595. tcp_simple_retransmit(sk);
  2596. return;
  2597. }
  2598. /* Otherwise enter Recovery state */
  2599. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2600. fast_rexmit = 1;
  2601. }
  2602. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2603. tcp_update_scoreboard(sk, fast_rexmit);
  2604. tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
  2605. tcp_xmit_retransmit_queue(sk);
  2606. }
  2607. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2608. {
  2609. tcp_rtt_estimator(sk, seq_rtt);
  2610. tcp_set_rto(sk);
  2611. inet_csk(sk)->icsk_backoff = 0;
  2612. }
  2613. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2614. /* Read draft-ietf-tcplw-high-performance before mucking
  2615. * with this code. (Supersedes RFC1323)
  2616. */
  2617. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2618. {
  2619. /* RTTM Rule: A TSecr value received in a segment is used to
  2620. * update the averaged RTT measurement only if the segment
  2621. * acknowledges some new data, i.e., only if it advances the
  2622. * left edge of the send window.
  2623. *
  2624. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2625. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2626. *
  2627. * Changed: reset backoff as soon as we see the first valid sample.
  2628. * If we do not, we get strongly overestimated rto. With timestamps
  2629. * samples are accepted even from very old segments: f.e., when rtt=1
  2630. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2631. * answer arrives rto becomes 120 seconds! If at least one of segments
  2632. * in window is lost... Voila. --ANK (010210)
  2633. */
  2634. struct tcp_sock *tp = tcp_sk(sk);
  2635. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2636. }
  2637. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2638. {
  2639. /* We don't have a timestamp. Can only use
  2640. * packets that are not retransmitted to determine
  2641. * rtt estimates. Also, we must not reset the
  2642. * backoff for rto until we get a non-retransmitted
  2643. * packet. This allows us to deal with a situation
  2644. * where the network delay has increased suddenly.
  2645. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2646. */
  2647. if (flag & FLAG_RETRANS_DATA_ACKED)
  2648. return;
  2649. tcp_valid_rtt_meas(sk, seq_rtt);
  2650. }
  2651. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2652. const s32 seq_rtt)
  2653. {
  2654. const struct tcp_sock *tp = tcp_sk(sk);
  2655. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2656. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2657. tcp_ack_saw_tstamp(sk, flag);
  2658. else if (seq_rtt >= 0)
  2659. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2660. }
  2661. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2662. {
  2663. const struct inet_connection_sock *icsk = inet_csk(sk);
  2664. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2665. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2666. }
  2667. /* Restart timer after forward progress on connection.
  2668. * RFC2988 recommends to restart timer to now+rto.
  2669. */
  2670. void tcp_rearm_rto(struct sock *sk)
  2671. {
  2672. struct tcp_sock *tp = tcp_sk(sk);
  2673. /* If the retrans timer is currently being used by Fast Open
  2674. * for SYN-ACK retrans purpose, stay put.
  2675. */
  2676. if (tp->fastopen_rsk)
  2677. return;
  2678. if (!tp->packets_out) {
  2679. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2680. } else {
  2681. u32 rto = inet_csk(sk)->icsk_rto;
  2682. /* Offset the time elapsed after installing regular RTO */
  2683. if (tp->early_retrans_delayed) {
  2684. struct sk_buff *skb = tcp_write_queue_head(sk);
  2685. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2686. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2687. /* delta may not be positive if the socket is locked
  2688. * when the delayed ER timer fires and is rescheduled.
  2689. */
  2690. if (delta > 0)
  2691. rto = delta;
  2692. }
  2693. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2694. TCP_RTO_MAX);
  2695. }
  2696. tp->early_retrans_delayed = 0;
  2697. }
  2698. /* This function is called when the delayed ER timer fires. TCP enters
  2699. * fast recovery and performs fast-retransmit.
  2700. */
  2701. void tcp_resume_early_retransmit(struct sock *sk)
  2702. {
  2703. struct tcp_sock *tp = tcp_sk(sk);
  2704. tcp_rearm_rto(sk);
  2705. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2706. if (!tp->do_early_retrans)
  2707. return;
  2708. tcp_enter_recovery(sk, false);
  2709. tcp_update_scoreboard(sk, 1);
  2710. tcp_xmit_retransmit_queue(sk);
  2711. }
  2712. /* If we get here, the whole TSO packet has not been acked. */
  2713. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2714. {
  2715. struct tcp_sock *tp = tcp_sk(sk);
  2716. u32 packets_acked;
  2717. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2718. packets_acked = tcp_skb_pcount(skb);
  2719. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2720. return 0;
  2721. packets_acked -= tcp_skb_pcount(skb);
  2722. if (packets_acked) {
  2723. BUG_ON(tcp_skb_pcount(skb) == 0);
  2724. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2725. }
  2726. return packets_acked;
  2727. }
  2728. /* Remove acknowledged frames from the retransmission queue. If our packet
  2729. * is before the ack sequence we can discard it as it's confirmed to have
  2730. * arrived at the other end.
  2731. */
  2732. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2733. u32 prior_snd_una)
  2734. {
  2735. struct tcp_sock *tp = tcp_sk(sk);
  2736. const struct inet_connection_sock *icsk = inet_csk(sk);
  2737. struct sk_buff *skb;
  2738. u32 now = tcp_time_stamp;
  2739. int fully_acked = true;
  2740. int flag = 0;
  2741. u32 pkts_acked = 0;
  2742. u32 reord = tp->packets_out;
  2743. u32 prior_sacked = tp->sacked_out;
  2744. s32 seq_rtt = -1;
  2745. s32 ca_seq_rtt = -1;
  2746. ktime_t last_ackt = net_invalid_timestamp();
  2747. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2748. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2749. u32 acked_pcount;
  2750. u8 sacked = scb->sacked;
  2751. /* Determine how many packets and what bytes were acked, tso and else */
  2752. if (after(scb->end_seq, tp->snd_una)) {
  2753. if (tcp_skb_pcount(skb) == 1 ||
  2754. !after(tp->snd_una, scb->seq))
  2755. break;
  2756. acked_pcount = tcp_tso_acked(sk, skb);
  2757. if (!acked_pcount)
  2758. break;
  2759. fully_acked = false;
  2760. } else {
  2761. acked_pcount = tcp_skb_pcount(skb);
  2762. }
  2763. if (sacked & TCPCB_RETRANS) {
  2764. if (sacked & TCPCB_SACKED_RETRANS)
  2765. tp->retrans_out -= acked_pcount;
  2766. flag |= FLAG_RETRANS_DATA_ACKED;
  2767. ca_seq_rtt = -1;
  2768. seq_rtt = -1;
  2769. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2770. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2771. } else {
  2772. ca_seq_rtt = now - scb->when;
  2773. last_ackt = skb->tstamp;
  2774. if (seq_rtt < 0) {
  2775. seq_rtt = ca_seq_rtt;
  2776. }
  2777. if (!(sacked & TCPCB_SACKED_ACKED))
  2778. reord = min(pkts_acked, reord);
  2779. }
  2780. if (sacked & TCPCB_SACKED_ACKED)
  2781. tp->sacked_out -= acked_pcount;
  2782. if (sacked & TCPCB_LOST)
  2783. tp->lost_out -= acked_pcount;
  2784. tp->packets_out -= acked_pcount;
  2785. pkts_acked += acked_pcount;
  2786. /* Initial outgoing SYN's get put onto the write_queue
  2787. * just like anything else we transmit. It is not
  2788. * true data, and if we misinform our callers that
  2789. * this ACK acks real data, we will erroneously exit
  2790. * connection startup slow start one packet too
  2791. * quickly. This is severely frowned upon behavior.
  2792. */
  2793. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2794. flag |= FLAG_DATA_ACKED;
  2795. } else {
  2796. flag |= FLAG_SYN_ACKED;
  2797. tp->retrans_stamp = 0;
  2798. }
  2799. if (!fully_acked)
  2800. break;
  2801. tcp_unlink_write_queue(skb, sk);
  2802. sk_wmem_free_skb(sk, skb);
  2803. tp->scoreboard_skb_hint = NULL;
  2804. if (skb == tp->retransmit_skb_hint)
  2805. tp->retransmit_skb_hint = NULL;
  2806. if (skb == tp->lost_skb_hint)
  2807. tp->lost_skb_hint = NULL;
  2808. }
  2809. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2810. tp->snd_up = tp->snd_una;
  2811. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2812. flag |= FLAG_SACK_RENEGING;
  2813. if (flag & FLAG_ACKED) {
  2814. const struct tcp_congestion_ops *ca_ops
  2815. = inet_csk(sk)->icsk_ca_ops;
  2816. if (unlikely(icsk->icsk_mtup.probe_size &&
  2817. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2818. tcp_mtup_probe_success(sk);
  2819. }
  2820. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2821. tcp_rearm_rto(sk);
  2822. if (tcp_is_reno(tp)) {
  2823. tcp_remove_reno_sacks(sk, pkts_acked);
  2824. } else {
  2825. int delta;
  2826. /* Non-retransmitted hole got filled? That's reordering */
  2827. if (reord < prior_fackets)
  2828. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2829. delta = tcp_is_fack(tp) ? pkts_acked :
  2830. prior_sacked - tp->sacked_out;
  2831. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2832. }
  2833. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2834. if (ca_ops->pkts_acked) {
  2835. s32 rtt_us = -1;
  2836. /* Is the ACK triggering packet unambiguous? */
  2837. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2838. /* High resolution needed and available? */
  2839. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2840. !ktime_equal(last_ackt,
  2841. net_invalid_timestamp()))
  2842. rtt_us = ktime_us_delta(ktime_get_real(),
  2843. last_ackt);
  2844. else if (ca_seq_rtt >= 0)
  2845. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2846. }
  2847. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2848. }
  2849. }
  2850. #if FASTRETRANS_DEBUG > 0
  2851. WARN_ON((int)tp->sacked_out < 0);
  2852. WARN_ON((int)tp->lost_out < 0);
  2853. WARN_ON((int)tp->retrans_out < 0);
  2854. if (!tp->packets_out && tcp_is_sack(tp)) {
  2855. icsk = inet_csk(sk);
  2856. if (tp->lost_out) {
  2857. pr_debug("Leak l=%u %d\n",
  2858. tp->lost_out, icsk->icsk_ca_state);
  2859. tp->lost_out = 0;
  2860. }
  2861. if (tp->sacked_out) {
  2862. pr_debug("Leak s=%u %d\n",
  2863. tp->sacked_out, icsk->icsk_ca_state);
  2864. tp->sacked_out = 0;
  2865. }
  2866. if (tp->retrans_out) {
  2867. pr_debug("Leak r=%u %d\n",
  2868. tp->retrans_out, icsk->icsk_ca_state);
  2869. tp->retrans_out = 0;
  2870. }
  2871. }
  2872. #endif
  2873. return flag;
  2874. }
  2875. static void tcp_ack_probe(struct sock *sk)
  2876. {
  2877. const struct tcp_sock *tp = tcp_sk(sk);
  2878. struct inet_connection_sock *icsk = inet_csk(sk);
  2879. /* Was it a usable window open? */
  2880. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2881. icsk->icsk_backoff = 0;
  2882. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2883. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2884. * This function is not for random using!
  2885. */
  2886. } else {
  2887. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2888. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2889. TCP_RTO_MAX);
  2890. }
  2891. }
  2892. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2893. {
  2894. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2895. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2896. }
  2897. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2898. {
  2899. const struct tcp_sock *tp = tcp_sk(sk);
  2900. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2901. !tcp_in_cwnd_reduction(sk);
  2902. }
  2903. /* Check that window update is acceptable.
  2904. * The function assumes that snd_una<=ack<=snd_next.
  2905. */
  2906. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2907. const u32 ack, const u32 ack_seq,
  2908. const u32 nwin)
  2909. {
  2910. return after(ack, tp->snd_una) ||
  2911. after(ack_seq, tp->snd_wl1) ||
  2912. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2913. }
  2914. /* Update our send window.
  2915. *
  2916. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2917. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2918. */
  2919. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2920. u32 ack_seq)
  2921. {
  2922. struct tcp_sock *tp = tcp_sk(sk);
  2923. int flag = 0;
  2924. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2925. if (likely(!tcp_hdr(skb)->syn))
  2926. nwin <<= tp->rx_opt.snd_wscale;
  2927. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2928. flag |= FLAG_WIN_UPDATE;
  2929. tcp_update_wl(tp, ack_seq);
  2930. if (tp->snd_wnd != nwin) {
  2931. tp->snd_wnd = nwin;
  2932. /* Note, it is the only place, where
  2933. * fast path is recovered for sending TCP.
  2934. */
  2935. tp->pred_flags = 0;
  2936. tcp_fast_path_check(sk);
  2937. if (nwin > tp->max_window) {
  2938. tp->max_window = nwin;
  2939. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2940. }
  2941. }
  2942. }
  2943. tp->snd_una = ack;
  2944. return flag;
  2945. }
  2946. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2947. * continue in congestion avoidance.
  2948. */
  2949. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2950. {
  2951. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2952. tp->snd_cwnd_cnt = 0;
  2953. TCP_ECN_queue_cwr(tp);
  2954. tcp_moderate_cwnd(tp);
  2955. }
  2956. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2957. * PRR and continue in congestion avoidance.
  2958. */
  2959. static void tcp_cwr_spur_to_response(struct sock *sk)
  2960. {
  2961. tcp_enter_cwr(sk, 0);
  2962. }
  2963. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2964. {
  2965. if (flag & FLAG_ECE)
  2966. tcp_cwr_spur_to_response(sk);
  2967. else
  2968. tcp_undo_cwr(sk, true);
  2969. }
  2970. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2971. *
  2972. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2973. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2974. * window (but not to or beyond highest sequence sent before RTO):
  2975. * On First ACK, send two new segments out.
  2976. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2977. * algorithm is not part of the F-RTO detection algorithm
  2978. * given in RFC4138 but can be selected separately).
  2979. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2980. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2981. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2982. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2983. *
  2984. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2985. * original window even after we transmit two new data segments.
  2986. *
  2987. * SACK version:
  2988. * on first step, wait until first cumulative ACK arrives, then move to
  2989. * the second step. In second step, the next ACK decides.
  2990. *
  2991. * F-RTO is implemented (mainly) in four functions:
  2992. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  2993. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  2994. * called when tcp_use_frto() showed green light
  2995. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  2996. * - tcp_enter_frto_loss() is called if there is not enough evidence
  2997. * to prove that the RTO is indeed spurious. It transfers the control
  2998. * from F-RTO to the conventional RTO recovery
  2999. */
  3000. static bool tcp_process_frto(struct sock *sk, int flag)
  3001. {
  3002. struct tcp_sock *tp = tcp_sk(sk);
  3003. tcp_verify_left_out(tp);
  3004. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3005. if (flag & FLAG_DATA_ACKED)
  3006. inet_csk(sk)->icsk_retransmits = 0;
  3007. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3008. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3009. tp->undo_marker = 0;
  3010. if (!before(tp->snd_una, tp->frto_highmark)) {
  3011. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3012. return true;
  3013. }
  3014. if (!tcp_is_sackfrto(tp)) {
  3015. /* RFC4138 shortcoming in step 2; should also have case c):
  3016. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3017. * data, winupdate
  3018. */
  3019. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3020. return true;
  3021. if (!(flag & FLAG_DATA_ACKED)) {
  3022. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3023. flag);
  3024. return true;
  3025. }
  3026. } else {
  3027. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3028. if (!tcp_packets_in_flight(tp)) {
  3029. tcp_enter_frto_loss(sk, 2, flag);
  3030. return true;
  3031. }
  3032. /* Prevent sending of new data. */
  3033. tp->snd_cwnd = min(tp->snd_cwnd,
  3034. tcp_packets_in_flight(tp));
  3035. return true;
  3036. }
  3037. if ((tp->frto_counter >= 2) &&
  3038. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3039. ((flag & FLAG_DATA_SACKED) &&
  3040. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3041. /* RFC4138 shortcoming (see comment above) */
  3042. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3043. (flag & FLAG_NOT_DUP))
  3044. return true;
  3045. tcp_enter_frto_loss(sk, 3, flag);
  3046. return true;
  3047. }
  3048. }
  3049. if (tp->frto_counter == 1) {
  3050. /* tcp_may_send_now needs to see updated state */
  3051. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3052. tp->frto_counter = 2;
  3053. if (!tcp_may_send_now(sk))
  3054. tcp_enter_frto_loss(sk, 2, flag);
  3055. return true;
  3056. } else {
  3057. switch (sysctl_tcp_frto_response) {
  3058. case 2:
  3059. tcp_undo_spur_to_response(sk, flag);
  3060. break;
  3061. case 1:
  3062. tcp_conservative_spur_to_response(tp);
  3063. break;
  3064. default:
  3065. tcp_cwr_spur_to_response(sk);
  3066. break;
  3067. }
  3068. tp->frto_counter = 0;
  3069. tp->undo_marker = 0;
  3070. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3071. }
  3072. return false;
  3073. }
  3074. /* RFC 5961 7 [ACK Throttling] */
  3075. static void tcp_send_challenge_ack(struct sock *sk)
  3076. {
  3077. /* unprotected vars, we dont care of overwrites */
  3078. static u32 challenge_timestamp;
  3079. static unsigned int challenge_count;
  3080. u32 now = jiffies / HZ;
  3081. if (now != challenge_timestamp) {
  3082. challenge_timestamp = now;
  3083. challenge_count = 0;
  3084. }
  3085. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  3086. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3087. tcp_send_ack(sk);
  3088. }
  3089. }
  3090. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3091. {
  3092. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3093. tp->rx_opt.ts_recent_stamp = get_seconds();
  3094. }
  3095. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3096. {
  3097. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3098. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3099. * extra check below makes sure this can only happen
  3100. * for pure ACK frames. -DaveM
  3101. *
  3102. * Not only, also it occurs for expired timestamps.
  3103. */
  3104. if (tcp_paws_check(&tp->rx_opt, 0))
  3105. tcp_store_ts_recent(tp);
  3106. }
  3107. }
  3108. /* This routine deals with incoming acks, but not outgoing ones. */
  3109. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3110. {
  3111. struct inet_connection_sock *icsk = inet_csk(sk);
  3112. struct tcp_sock *tp = tcp_sk(sk);
  3113. u32 prior_snd_una = tp->snd_una;
  3114. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3115. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3116. bool is_dupack = false;
  3117. u32 prior_in_flight;
  3118. u32 prior_fackets;
  3119. int prior_packets;
  3120. int prior_sacked = tp->sacked_out;
  3121. int pkts_acked = 0;
  3122. bool frto_cwnd = false;
  3123. /* If the ack is older than previous acks
  3124. * then we can probably ignore it.
  3125. */
  3126. if (before(ack, prior_snd_una)) {
  3127. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3128. if (before(ack, prior_snd_una - tp->max_window)) {
  3129. tcp_send_challenge_ack(sk);
  3130. return -1;
  3131. }
  3132. goto old_ack;
  3133. }
  3134. /* If the ack includes data we haven't sent yet, discard
  3135. * this segment (RFC793 Section 3.9).
  3136. */
  3137. if (after(ack, tp->snd_nxt))
  3138. goto invalid_ack;
  3139. if (tp->early_retrans_delayed)
  3140. tcp_rearm_rto(sk);
  3141. if (after(ack, prior_snd_una))
  3142. flag |= FLAG_SND_UNA_ADVANCED;
  3143. prior_fackets = tp->fackets_out;
  3144. prior_in_flight = tcp_packets_in_flight(tp);
  3145. /* ts_recent update must be made after we are sure that the packet
  3146. * is in window.
  3147. */
  3148. if (flag & FLAG_UPDATE_TS_RECENT)
  3149. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3150. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3151. /* Window is constant, pure forward advance.
  3152. * No more checks are required.
  3153. * Note, we use the fact that SND.UNA>=SND.WL2.
  3154. */
  3155. tcp_update_wl(tp, ack_seq);
  3156. tp->snd_una = ack;
  3157. flag |= FLAG_WIN_UPDATE;
  3158. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3159. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3160. } else {
  3161. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3162. flag |= FLAG_DATA;
  3163. else
  3164. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3165. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3166. if (TCP_SKB_CB(skb)->sacked)
  3167. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3168. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3169. flag |= FLAG_ECE;
  3170. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3171. }
  3172. /* We passed data and got it acked, remove any soft error
  3173. * log. Something worked...
  3174. */
  3175. sk->sk_err_soft = 0;
  3176. icsk->icsk_probes_out = 0;
  3177. tp->rcv_tstamp = tcp_time_stamp;
  3178. prior_packets = tp->packets_out;
  3179. if (!prior_packets)
  3180. goto no_queue;
  3181. /* See if we can take anything off of the retransmit queue. */
  3182. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3183. pkts_acked = prior_packets - tp->packets_out;
  3184. if (tp->frto_counter)
  3185. frto_cwnd = tcp_process_frto(sk, flag);
  3186. /* Guarantee sacktag reordering detection against wrap-arounds */
  3187. if (before(tp->frto_highmark, tp->snd_una))
  3188. tp->frto_highmark = 0;
  3189. if (tcp_ack_is_dubious(sk, flag)) {
  3190. /* Advance CWND, if state allows this. */
  3191. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3192. tcp_may_raise_cwnd(sk, flag))
  3193. tcp_cong_avoid(sk, ack, prior_in_flight);
  3194. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3195. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3196. is_dupack, flag);
  3197. } else {
  3198. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3199. tcp_cong_avoid(sk, ack, prior_in_flight);
  3200. }
  3201. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3202. struct dst_entry *dst = __sk_dst_get(sk);
  3203. if (dst)
  3204. dst_confirm(dst);
  3205. }
  3206. return 1;
  3207. no_queue:
  3208. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3209. if (flag & FLAG_DSACKING_ACK)
  3210. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3211. is_dupack, flag);
  3212. /* If this ack opens up a zero window, clear backoff. It was
  3213. * being used to time the probes, and is probably far higher than
  3214. * it needs to be for normal retransmission.
  3215. */
  3216. if (tcp_send_head(sk))
  3217. tcp_ack_probe(sk);
  3218. return 1;
  3219. invalid_ack:
  3220. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3221. return -1;
  3222. old_ack:
  3223. /* If data was SACKed, tag it and see if we should send more data.
  3224. * If data was DSACKed, see if we can undo a cwnd reduction.
  3225. */
  3226. if (TCP_SKB_CB(skb)->sacked) {
  3227. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3228. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  3229. is_dupack, flag);
  3230. }
  3231. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3232. return 0;
  3233. }
  3234. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3235. * But, this can also be called on packets in the established flow when
  3236. * the fast version below fails.
  3237. */
  3238. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3239. const u8 **hvpp, int estab,
  3240. struct tcp_fastopen_cookie *foc)
  3241. {
  3242. const unsigned char *ptr;
  3243. const struct tcphdr *th = tcp_hdr(skb);
  3244. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3245. ptr = (const unsigned char *)(th + 1);
  3246. opt_rx->saw_tstamp = 0;
  3247. while (length > 0) {
  3248. int opcode = *ptr++;
  3249. int opsize;
  3250. switch (opcode) {
  3251. case TCPOPT_EOL:
  3252. return;
  3253. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3254. length--;
  3255. continue;
  3256. default:
  3257. opsize = *ptr++;
  3258. if (opsize < 2) /* "silly options" */
  3259. return;
  3260. if (opsize > length)
  3261. return; /* don't parse partial options */
  3262. switch (opcode) {
  3263. case TCPOPT_MSS:
  3264. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3265. u16 in_mss = get_unaligned_be16(ptr);
  3266. if (in_mss) {
  3267. if (opt_rx->user_mss &&
  3268. opt_rx->user_mss < in_mss)
  3269. in_mss = opt_rx->user_mss;
  3270. opt_rx->mss_clamp = in_mss;
  3271. }
  3272. }
  3273. break;
  3274. case TCPOPT_WINDOW:
  3275. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3276. !estab && sysctl_tcp_window_scaling) {
  3277. __u8 snd_wscale = *(__u8 *)ptr;
  3278. opt_rx->wscale_ok = 1;
  3279. if (snd_wscale > 14) {
  3280. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3281. __func__,
  3282. snd_wscale);
  3283. snd_wscale = 14;
  3284. }
  3285. opt_rx->snd_wscale = snd_wscale;
  3286. }
  3287. break;
  3288. case TCPOPT_TIMESTAMP:
  3289. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3290. ((estab && opt_rx->tstamp_ok) ||
  3291. (!estab && sysctl_tcp_timestamps))) {
  3292. opt_rx->saw_tstamp = 1;
  3293. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3294. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3295. }
  3296. break;
  3297. case TCPOPT_SACK_PERM:
  3298. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3299. !estab && sysctl_tcp_sack) {
  3300. opt_rx->sack_ok = TCP_SACK_SEEN;
  3301. tcp_sack_reset(opt_rx);
  3302. }
  3303. break;
  3304. case TCPOPT_SACK:
  3305. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3306. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3307. opt_rx->sack_ok) {
  3308. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3309. }
  3310. break;
  3311. #ifdef CONFIG_TCP_MD5SIG
  3312. case TCPOPT_MD5SIG:
  3313. /*
  3314. * The MD5 Hash has already been
  3315. * checked (see tcp_v{4,6}_do_rcv()).
  3316. */
  3317. break;
  3318. #endif
  3319. case TCPOPT_COOKIE:
  3320. /* This option is variable length.
  3321. */
  3322. switch (opsize) {
  3323. case TCPOLEN_COOKIE_BASE:
  3324. /* not yet implemented */
  3325. break;
  3326. case TCPOLEN_COOKIE_PAIR:
  3327. /* not yet implemented */
  3328. break;
  3329. case TCPOLEN_COOKIE_MIN+0:
  3330. case TCPOLEN_COOKIE_MIN+2:
  3331. case TCPOLEN_COOKIE_MIN+4:
  3332. case TCPOLEN_COOKIE_MIN+6:
  3333. case TCPOLEN_COOKIE_MAX:
  3334. /* 16-bit multiple */
  3335. opt_rx->cookie_plus = opsize;
  3336. *hvpp = ptr;
  3337. break;
  3338. default:
  3339. /* ignore option */
  3340. break;
  3341. }
  3342. break;
  3343. case TCPOPT_EXP:
  3344. /* Fast Open option shares code 254 using a
  3345. * 16 bits magic number. It's valid only in
  3346. * SYN or SYN-ACK with an even size.
  3347. */
  3348. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3349. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3350. foc == NULL || !th->syn || (opsize & 1))
  3351. break;
  3352. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3353. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3354. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3355. memcpy(foc->val, ptr + 2, foc->len);
  3356. else if (foc->len != 0)
  3357. foc->len = -1;
  3358. break;
  3359. }
  3360. ptr += opsize-2;
  3361. length -= opsize;
  3362. }
  3363. }
  3364. }
  3365. EXPORT_SYMBOL(tcp_parse_options);
  3366. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3367. {
  3368. const __be32 *ptr = (const __be32 *)(th + 1);
  3369. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3370. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3371. tp->rx_opt.saw_tstamp = 1;
  3372. ++ptr;
  3373. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3374. ++ptr;
  3375. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3376. return true;
  3377. }
  3378. return false;
  3379. }
  3380. /* Fast parse options. This hopes to only see timestamps.
  3381. * If it is wrong it falls back on tcp_parse_options().
  3382. */
  3383. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3384. const struct tcphdr *th,
  3385. struct tcp_sock *tp, const u8 **hvpp)
  3386. {
  3387. /* In the spirit of fast parsing, compare doff directly to constant
  3388. * values. Because equality is used, short doff can be ignored here.
  3389. */
  3390. if (th->doff == (sizeof(*th) / 4)) {
  3391. tp->rx_opt.saw_tstamp = 0;
  3392. return false;
  3393. } else if (tp->rx_opt.tstamp_ok &&
  3394. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3395. if (tcp_parse_aligned_timestamp(tp, th))
  3396. return true;
  3397. }
  3398. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
  3399. if (tp->rx_opt.saw_tstamp)
  3400. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3401. return true;
  3402. }
  3403. #ifdef CONFIG_TCP_MD5SIG
  3404. /*
  3405. * Parse MD5 Signature option
  3406. */
  3407. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3408. {
  3409. int length = (th->doff << 2) - sizeof(*th);
  3410. const u8 *ptr = (const u8 *)(th + 1);
  3411. /* If the TCP option is too short, we can short cut */
  3412. if (length < TCPOLEN_MD5SIG)
  3413. return NULL;
  3414. while (length > 0) {
  3415. int opcode = *ptr++;
  3416. int opsize;
  3417. switch(opcode) {
  3418. case TCPOPT_EOL:
  3419. return NULL;
  3420. case TCPOPT_NOP:
  3421. length--;
  3422. continue;
  3423. default:
  3424. opsize = *ptr++;
  3425. if (opsize < 2 || opsize > length)
  3426. return NULL;
  3427. if (opcode == TCPOPT_MD5SIG)
  3428. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3429. }
  3430. ptr += opsize - 2;
  3431. length -= opsize;
  3432. }
  3433. return NULL;
  3434. }
  3435. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3436. #endif
  3437. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3438. *
  3439. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3440. * it can pass through stack. So, the following predicate verifies that
  3441. * this segment is not used for anything but congestion avoidance or
  3442. * fast retransmit. Moreover, we even are able to eliminate most of such
  3443. * second order effects, if we apply some small "replay" window (~RTO)
  3444. * to timestamp space.
  3445. *
  3446. * All these measures still do not guarantee that we reject wrapped ACKs
  3447. * on networks with high bandwidth, when sequence space is recycled fastly,
  3448. * but it guarantees that such events will be very rare and do not affect
  3449. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3450. * buggy extension.
  3451. *
  3452. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3453. * states that events when retransmit arrives after original data are rare.
  3454. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3455. * the biggest problem on large power networks even with minor reordering.
  3456. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3457. * up to bandwidth of 18Gigabit/sec. 8) ]
  3458. */
  3459. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3460. {
  3461. const struct tcp_sock *tp = tcp_sk(sk);
  3462. const struct tcphdr *th = tcp_hdr(skb);
  3463. u32 seq = TCP_SKB_CB(skb)->seq;
  3464. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3465. return (/* 1. Pure ACK with correct sequence number. */
  3466. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3467. /* 2. ... and duplicate ACK. */
  3468. ack == tp->snd_una &&
  3469. /* 3. ... and does not update window. */
  3470. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3471. /* 4. ... and sits in replay window. */
  3472. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3473. }
  3474. static inline bool tcp_paws_discard(const struct sock *sk,
  3475. const struct sk_buff *skb)
  3476. {
  3477. const struct tcp_sock *tp = tcp_sk(sk);
  3478. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3479. !tcp_disordered_ack(sk, skb);
  3480. }
  3481. /* Check segment sequence number for validity.
  3482. *
  3483. * Segment controls are considered valid, if the segment
  3484. * fits to the window after truncation to the window. Acceptability
  3485. * of data (and SYN, FIN, of course) is checked separately.
  3486. * See tcp_data_queue(), for example.
  3487. *
  3488. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3489. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3490. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3491. * (borrowed from freebsd)
  3492. */
  3493. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3494. {
  3495. return !before(end_seq, tp->rcv_wup) &&
  3496. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3497. }
  3498. /* When we get a reset we do this. */
  3499. void tcp_reset(struct sock *sk)
  3500. {
  3501. /* We want the right error as BSD sees it (and indeed as we do). */
  3502. switch (sk->sk_state) {
  3503. case TCP_SYN_SENT:
  3504. sk->sk_err = ECONNREFUSED;
  3505. break;
  3506. case TCP_CLOSE_WAIT:
  3507. sk->sk_err = EPIPE;
  3508. break;
  3509. case TCP_CLOSE:
  3510. return;
  3511. default:
  3512. sk->sk_err = ECONNRESET;
  3513. }
  3514. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3515. smp_wmb();
  3516. if (!sock_flag(sk, SOCK_DEAD))
  3517. sk->sk_error_report(sk);
  3518. tcp_done(sk);
  3519. }
  3520. /*
  3521. * Process the FIN bit. This now behaves as it is supposed to work
  3522. * and the FIN takes effect when it is validly part of sequence
  3523. * space. Not before when we get holes.
  3524. *
  3525. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3526. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3527. * TIME-WAIT)
  3528. *
  3529. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3530. * close and we go into CLOSING (and later onto TIME-WAIT)
  3531. *
  3532. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3533. */
  3534. static void tcp_fin(struct sock *sk)
  3535. {
  3536. struct tcp_sock *tp = tcp_sk(sk);
  3537. inet_csk_schedule_ack(sk);
  3538. sk->sk_shutdown |= RCV_SHUTDOWN;
  3539. sock_set_flag(sk, SOCK_DONE);
  3540. switch (sk->sk_state) {
  3541. case TCP_SYN_RECV:
  3542. case TCP_ESTABLISHED:
  3543. /* Move to CLOSE_WAIT */
  3544. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3545. inet_csk(sk)->icsk_ack.pingpong = 1;
  3546. break;
  3547. case TCP_CLOSE_WAIT:
  3548. case TCP_CLOSING:
  3549. /* Received a retransmission of the FIN, do
  3550. * nothing.
  3551. */
  3552. break;
  3553. case TCP_LAST_ACK:
  3554. /* RFC793: Remain in the LAST-ACK state. */
  3555. break;
  3556. case TCP_FIN_WAIT1:
  3557. /* This case occurs when a simultaneous close
  3558. * happens, we must ack the received FIN and
  3559. * enter the CLOSING state.
  3560. */
  3561. tcp_send_ack(sk);
  3562. tcp_set_state(sk, TCP_CLOSING);
  3563. break;
  3564. case TCP_FIN_WAIT2:
  3565. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3566. tcp_send_ack(sk);
  3567. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3568. break;
  3569. default:
  3570. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3571. * cases we should never reach this piece of code.
  3572. */
  3573. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3574. __func__, sk->sk_state);
  3575. break;
  3576. }
  3577. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3578. * Probably, we should reset in this case. For now drop them.
  3579. */
  3580. __skb_queue_purge(&tp->out_of_order_queue);
  3581. if (tcp_is_sack(tp))
  3582. tcp_sack_reset(&tp->rx_opt);
  3583. sk_mem_reclaim(sk);
  3584. if (!sock_flag(sk, SOCK_DEAD)) {
  3585. sk->sk_state_change(sk);
  3586. /* Do not send POLL_HUP for half duplex close. */
  3587. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3588. sk->sk_state == TCP_CLOSE)
  3589. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3590. else
  3591. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3592. }
  3593. }
  3594. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3595. u32 end_seq)
  3596. {
  3597. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3598. if (before(seq, sp->start_seq))
  3599. sp->start_seq = seq;
  3600. if (after(end_seq, sp->end_seq))
  3601. sp->end_seq = end_seq;
  3602. return true;
  3603. }
  3604. return false;
  3605. }
  3606. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3607. {
  3608. struct tcp_sock *tp = tcp_sk(sk);
  3609. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3610. int mib_idx;
  3611. if (before(seq, tp->rcv_nxt))
  3612. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3613. else
  3614. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3615. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3616. tp->rx_opt.dsack = 1;
  3617. tp->duplicate_sack[0].start_seq = seq;
  3618. tp->duplicate_sack[0].end_seq = end_seq;
  3619. }
  3620. }
  3621. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3622. {
  3623. struct tcp_sock *tp = tcp_sk(sk);
  3624. if (!tp->rx_opt.dsack)
  3625. tcp_dsack_set(sk, seq, end_seq);
  3626. else
  3627. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3628. }
  3629. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3630. {
  3631. struct tcp_sock *tp = tcp_sk(sk);
  3632. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3633. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3634. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3635. tcp_enter_quickack_mode(sk);
  3636. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3637. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3638. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3639. end_seq = tp->rcv_nxt;
  3640. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3641. }
  3642. }
  3643. tcp_send_ack(sk);
  3644. }
  3645. /* These routines update the SACK block as out-of-order packets arrive or
  3646. * in-order packets close up the sequence space.
  3647. */
  3648. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3649. {
  3650. int this_sack;
  3651. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3652. struct tcp_sack_block *swalk = sp + 1;
  3653. /* See if the recent change to the first SACK eats into
  3654. * or hits the sequence space of other SACK blocks, if so coalesce.
  3655. */
  3656. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3657. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3658. int i;
  3659. /* Zap SWALK, by moving every further SACK up by one slot.
  3660. * Decrease num_sacks.
  3661. */
  3662. tp->rx_opt.num_sacks--;
  3663. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3664. sp[i] = sp[i + 1];
  3665. continue;
  3666. }
  3667. this_sack++, swalk++;
  3668. }
  3669. }
  3670. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3671. {
  3672. struct tcp_sock *tp = tcp_sk(sk);
  3673. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3674. int cur_sacks = tp->rx_opt.num_sacks;
  3675. int this_sack;
  3676. if (!cur_sacks)
  3677. goto new_sack;
  3678. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3679. if (tcp_sack_extend(sp, seq, end_seq)) {
  3680. /* Rotate this_sack to the first one. */
  3681. for (; this_sack > 0; this_sack--, sp--)
  3682. swap(*sp, *(sp - 1));
  3683. if (cur_sacks > 1)
  3684. tcp_sack_maybe_coalesce(tp);
  3685. return;
  3686. }
  3687. }
  3688. /* Could not find an adjacent existing SACK, build a new one,
  3689. * put it at the front, and shift everyone else down. We
  3690. * always know there is at least one SACK present already here.
  3691. *
  3692. * If the sack array is full, forget about the last one.
  3693. */
  3694. if (this_sack >= TCP_NUM_SACKS) {
  3695. this_sack--;
  3696. tp->rx_opt.num_sacks--;
  3697. sp--;
  3698. }
  3699. for (; this_sack > 0; this_sack--, sp--)
  3700. *sp = *(sp - 1);
  3701. new_sack:
  3702. /* Build the new head SACK, and we're done. */
  3703. sp->start_seq = seq;
  3704. sp->end_seq = end_seq;
  3705. tp->rx_opt.num_sacks++;
  3706. }
  3707. /* RCV.NXT advances, some SACKs should be eaten. */
  3708. static void tcp_sack_remove(struct tcp_sock *tp)
  3709. {
  3710. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3711. int num_sacks = tp->rx_opt.num_sacks;
  3712. int this_sack;
  3713. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3714. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3715. tp->rx_opt.num_sacks = 0;
  3716. return;
  3717. }
  3718. for (this_sack = 0; this_sack < num_sacks;) {
  3719. /* Check if the start of the sack is covered by RCV.NXT. */
  3720. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3721. int i;
  3722. /* RCV.NXT must cover all the block! */
  3723. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3724. /* Zap this SACK, by moving forward any other SACKS. */
  3725. for (i=this_sack+1; i < num_sacks; i++)
  3726. tp->selective_acks[i-1] = tp->selective_acks[i];
  3727. num_sacks--;
  3728. continue;
  3729. }
  3730. this_sack++;
  3731. sp++;
  3732. }
  3733. tp->rx_opt.num_sacks = num_sacks;
  3734. }
  3735. /* This one checks to see if we can put data from the
  3736. * out_of_order queue into the receive_queue.
  3737. */
  3738. static void tcp_ofo_queue(struct sock *sk)
  3739. {
  3740. struct tcp_sock *tp = tcp_sk(sk);
  3741. __u32 dsack_high = tp->rcv_nxt;
  3742. struct sk_buff *skb;
  3743. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3744. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3745. break;
  3746. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3747. __u32 dsack = dsack_high;
  3748. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3749. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3750. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3751. }
  3752. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3753. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3754. __skb_unlink(skb, &tp->out_of_order_queue);
  3755. __kfree_skb(skb);
  3756. continue;
  3757. }
  3758. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3759. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3760. TCP_SKB_CB(skb)->end_seq);
  3761. __skb_unlink(skb, &tp->out_of_order_queue);
  3762. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3763. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3764. if (tcp_hdr(skb)->fin)
  3765. tcp_fin(sk);
  3766. }
  3767. }
  3768. static bool tcp_prune_ofo_queue(struct sock *sk);
  3769. static int tcp_prune_queue(struct sock *sk);
  3770. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3771. unsigned int size)
  3772. {
  3773. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3774. !sk_rmem_schedule(sk, skb, size)) {
  3775. if (tcp_prune_queue(sk) < 0)
  3776. return -1;
  3777. if (!sk_rmem_schedule(sk, skb, size)) {
  3778. if (!tcp_prune_ofo_queue(sk))
  3779. return -1;
  3780. if (!sk_rmem_schedule(sk, skb, size))
  3781. return -1;
  3782. }
  3783. }
  3784. return 0;
  3785. }
  3786. /**
  3787. * tcp_try_coalesce - try to merge skb to prior one
  3788. * @sk: socket
  3789. * @to: prior buffer
  3790. * @from: buffer to add in queue
  3791. * @fragstolen: pointer to boolean
  3792. *
  3793. * Before queueing skb @from after @to, try to merge them
  3794. * to reduce overall memory use and queue lengths, if cost is small.
  3795. * Packets in ofo or receive queues can stay a long time.
  3796. * Better try to coalesce them right now to avoid future collapses.
  3797. * Returns true if caller should free @from instead of queueing it
  3798. */
  3799. static bool tcp_try_coalesce(struct sock *sk,
  3800. struct sk_buff *to,
  3801. struct sk_buff *from,
  3802. bool *fragstolen)
  3803. {
  3804. int delta;
  3805. *fragstolen = false;
  3806. if (tcp_hdr(from)->fin)
  3807. return false;
  3808. /* Its possible this segment overlaps with prior segment in queue */
  3809. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3810. return false;
  3811. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3812. return false;
  3813. atomic_add(delta, &sk->sk_rmem_alloc);
  3814. sk_mem_charge(sk, delta);
  3815. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3816. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3817. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3818. return true;
  3819. }
  3820. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3821. {
  3822. struct tcp_sock *tp = tcp_sk(sk);
  3823. struct sk_buff *skb1;
  3824. u32 seq, end_seq;
  3825. TCP_ECN_check_ce(tp, skb);
  3826. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3827. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3828. __kfree_skb(skb);
  3829. return;
  3830. }
  3831. /* Disable header prediction. */
  3832. tp->pred_flags = 0;
  3833. inet_csk_schedule_ack(sk);
  3834. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3835. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3836. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3837. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3838. if (!skb1) {
  3839. /* Initial out of order segment, build 1 SACK. */
  3840. if (tcp_is_sack(tp)) {
  3841. tp->rx_opt.num_sacks = 1;
  3842. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3843. tp->selective_acks[0].end_seq =
  3844. TCP_SKB_CB(skb)->end_seq;
  3845. }
  3846. __skb_queue_head(&tp->out_of_order_queue, skb);
  3847. goto end;
  3848. }
  3849. seq = TCP_SKB_CB(skb)->seq;
  3850. end_seq = TCP_SKB_CB(skb)->end_seq;
  3851. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3852. bool fragstolen;
  3853. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3854. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3855. } else {
  3856. kfree_skb_partial(skb, fragstolen);
  3857. skb = NULL;
  3858. }
  3859. if (!tp->rx_opt.num_sacks ||
  3860. tp->selective_acks[0].end_seq != seq)
  3861. goto add_sack;
  3862. /* Common case: data arrive in order after hole. */
  3863. tp->selective_acks[0].end_seq = end_seq;
  3864. goto end;
  3865. }
  3866. /* Find place to insert this segment. */
  3867. while (1) {
  3868. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3869. break;
  3870. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3871. skb1 = NULL;
  3872. break;
  3873. }
  3874. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3875. }
  3876. /* Do skb overlap to previous one? */
  3877. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3878. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3879. /* All the bits are present. Drop. */
  3880. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3881. __kfree_skb(skb);
  3882. skb = NULL;
  3883. tcp_dsack_set(sk, seq, end_seq);
  3884. goto add_sack;
  3885. }
  3886. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3887. /* Partial overlap. */
  3888. tcp_dsack_set(sk, seq,
  3889. TCP_SKB_CB(skb1)->end_seq);
  3890. } else {
  3891. if (skb_queue_is_first(&tp->out_of_order_queue,
  3892. skb1))
  3893. skb1 = NULL;
  3894. else
  3895. skb1 = skb_queue_prev(
  3896. &tp->out_of_order_queue,
  3897. skb1);
  3898. }
  3899. }
  3900. if (!skb1)
  3901. __skb_queue_head(&tp->out_of_order_queue, skb);
  3902. else
  3903. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3904. /* And clean segments covered by new one as whole. */
  3905. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3906. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3907. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3908. break;
  3909. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3910. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3911. end_seq);
  3912. break;
  3913. }
  3914. __skb_unlink(skb1, &tp->out_of_order_queue);
  3915. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3916. TCP_SKB_CB(skb1)->end_seq);
  3917. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3918. __kfree_skb(skb1);
  3919. }
  3920. add_sack:
  3921. if (tcp_is_sack(tp))
  3922. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3923. end:
  3924. if (skb)
  3925. skb_set_owner_r(skb, sk);
  3926. }
  3927. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3928. bool *fragstolen)
  3929. {
  3930. int eaten;
  3931. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3932. __skb_pull(skb, hdrlen);
  3933. eaten = (tail &&
  3934. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3935. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3936. if (!eaten) {
  3937. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3938. skb_set_owner_r(skb, sk);
  3939. }
  3940. return eaten;
  3941. }
  3942. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3943. {
  3944. struct sk_buff *skb = NULL;
  3945. struct tcphdr *th;
  3946. bool fragstolen;
  3947. if (size == 0)
  3948. return 0;
  3949. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3950. if (!skb)
  3951. goto err;
  3952. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3953. goto err_free;
  3954. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3955. skb_reset_transport_header(skb);
  3956. memset(th, 0, sizeof(*th));
  3957. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3958. goto err_free;
  3959. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3960. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3961. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3962. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3963. WARN_ON_ONCE(fragstolen); /* should not happen */
  3964. __kfree_skb(skb);
  3965. }
  3966. return size;
  3967. err_free:
  3968. kfree_skb(skb);
  3969. err:
  3970. return -ENOMEM;
  3971. }
  3972. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3973. {
  3974. const struct tcphdr *th = tcp_hdr(skb);
  3975. struct tcp_sock *tp = tcp_sk(sk);
  3976. int eaten = -1;
  3977. bool fragstolen = false;
  3978. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3979. goto drop;
  3980. skb_dst_drop(skb);
  3981. __skb_pull(skb, th->doff * 4);
  3982. TCP_ECN_accept_cwr(tp, skb);
  3983. tp->rx_opt.dsack = 0;
  3984. /* Queue data for delivery to the user.
  3985. * Packets in sequence go to the receive queue.
  3986. * Out of sequence packets to the out_of_order_queue.
  3987. */
  3988. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3989. if (tcp_receive_window(tp) == 0)
  3990. goto out_of_window;
  3991. /* Ok. In sequence. In window. */
  3992. if (tp->ucopy.task == current &&
  3993. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3994. sock_owned_by_user(sk) && !tp->urg_data) {
  3995. int chunk = min_t(unsigned int, skb->len,
  3996. tp->ucopy.len);
  3997. __set_current_state(TASK_RUNNING);
  3998. local_bh_enable();
  3999. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4000. tp->ucopy.len -= chunk;
  4001. tp->copied_seq += chunk;
  4002. eaten = (chunk == skb->len);
  4003. tcp_rcv_space_adjust(sk);
  4004. }
  4005. local_bh_disable();
  4006. }
  4007. if (eaten <= 0) {
  4008. queue_and_out:
  4009. if (eaten < 0 &&
  4010. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4011. goto drop;
  4012. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4013. }
  4014. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4015. if (skb->len)
  4016. tcp_event_data_recv(sk, skb);
  4017. if (th->fin)
  4018. tcp_fin(sk);
  4019. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4020. tcp_ofo_queue(sk);
  4021. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4022. * gap in queue is filled.
  4023. */
  4024. if (skb_queue_empty(&tp->out_of_order_queue))
  4025. inet_csk(sk)->icsk_ack.pingpong = 0;
  4026. }
  4027. if (tp->rx_opt.num_sacks)
  4028. tcp_sack_remove(tp);
  4029. tcp_fast_path_check(sk);
  4030. if (eaten > 0)
  4031. kfree_skb_partial(skb, fragstolen);
  4032. if (!sock_flag(sk, SOCK_DEAD))
  4033. sk->sk_data_ready(sk, 0);
  4034. return;
  4035. }
  4036. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4037. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4038. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4039. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4040. out_of_window:
  4041. tcp_enter_quickack_mode(sk);
  4042. inet_csk_schedule_ack(sk);
  4043. drop:
  4044. __kfree_skb(skb);
  4045. return;
  4046. }
  4047. /* Out of window. F.e. zero window probe. */
  4048. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4049. goto out_of_window;
  4050. tcp_enter_quickack_mode(sk);
  4051. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4052. /* Partial packet, seq < rcv_next < end_seq */
  4053. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4054. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4055. TCP_SKB_CB(skb)->end_seq);
  4056. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4057. /* If window is closed, drop tail of packet. But after
  4058. * remembering D-SACK for its head made in previous line.
  4059. */
  4060. if (!tcp_receive_window(tp))
  4061. goto out_of_window;
  4062. goto queue_and_out;
  4063. }
  4064. tcp_data_queue_ofo(sk, skb);
  4065. }
  4066. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4067. struct sk_buff_head *list)
  4068. {
  4069. struct sk_buff *next = NULL;
  4070. if (!skb_queue_is_last(list, skb))
  4071. next = skb_queue_next(list, skb);
  4072. __skb_unlink(skb, list);
  4073. __kfree_skb(skb);
  4074. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4075. return next;
  4076. }
  4077. /* Collapse contiguous sequence of skbs head..tail with
  4078. * sequence numbers start..end.
  4079. *
  4080. * If tail is NULL, this means until the end of the list.
  4081. *
  4082. * Segments with FIN/SYN are not collapsed (only because this
  4083. * simplifies code)
  4084. */
  4085. static void
  4086. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4087. struct sk_buff *head, struct sk_buff *tail,
  4088. u32 start, u32 end)
  4089. {
  4090. struct sk_buff *skb, *n;
  4091. bool end_of_skbs;
  4092. /* First, check that queue is collapsible and find
  4093. * the point where collapsing can be useful. */
  4094. skb = head;
  4095. restart:
  4096. end_of_skbs = true;
  4097. skb_queue_walk_from_safe(list, skb, n) {
  4098. if (skb == tail)
  4099. break;
  4100. /* No new bits? It is possible on ofo queue. */
  4101. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4102. skb = tcp_collapse_one(sk, skb, list);
  4103. if (!skb)
  4104. break;
  4105. goto restart;
  4106. }
  4107. /* The first skb to collapse is:
  4108. * - not SYN/FIN and
  4109. * - bloated or contains data before "start" or
  4110. * overlaps to the next one.
  4111. */
  4112. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4113. (tcp_win_from_space(skb->truesize) > skb->len ||
  4114. before(TCP_SKB_CB(skb)->seq, start))) {
  4115. end_of_skbs = false;
  4116. break;
  4117. }
  4118. if (!skb_queue_is_last(list, skb)) {
  4119. struct sk_buff *next = skb_queue_next(list, skb);
  4120. if (next != tail &&
  4121. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4122. end_of_skbs = false;
  4123. break;
  4124. }
  4125. }
  4126. /* Decided to skip this, advance start seq. */
  4127. start = TCP_SKB_CB(skb)->end_seq;
  4128. }
  4129. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4130. return;
  4131. while (before(start, end)) {
  4132. struct sk_buff *nskb;
  4133. unsigned int header = skb_headroom(skb);
  4134. int copy = SKB_MAX_ORDER(header, 0);
  4135. /* Too big header? This can happen with IPv6. */
  4136. if (copy < 0)
  4137. return;
  4138. if (end - start < copy)
  4139. copy = end - start;
  4140. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4141. if (!nskb)
  4142. return;
  4143. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4144. skb_set_network_header(nskb, (skb_network_header(skb) -
  4145. skb->head));
  4146. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4147. skb->head));
  4148. skb_reserve(nskb, header);
  4149. memcpy(nskb->head, skb->head, header);
  4150. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4151. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4152. __skb_queue_before(list, skb, nskb);
  4153. skb_set_owner_r(nskb, sk);
  4154. /* Copy data, releasing collapsed skbs. */
  4155. while (copy > 0) {
  4156. int offset = start - TCP_SKB_CB(skb)->seq;
  4157. int size = TCP_SKB_CB(skb)->end_seq - start;
  4158. BUG_ON(offset < 0);
  4159. if (size > 0) {
  4160. size = min(copy, size);
  4161. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4162. BUG();
  4163. TCP_SKB_CB(nskb)->end_seq += size;
  4164. copy -= size;
  4165. start += size;
  4166. }
  4167. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4168. skb = tcp_collapse_one(sk, skb, list);
  4169. if (!skb ||
  4170. skb == tail ||
  4171. tcp_hdr(skb)->syn ||
  4172. tcp_hdr(skb)->fin)
  4173. return;
  4174. }
  4175. }
  4176. }
  4177. }
  4178. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4179. * and tcp_collapse() them until all the queue is collapsed.
  4180. */
  4181. static void tcp_collapse_ofo_queue(struct sock *sk)
  4182. {
  4183. struct tcp_sock *tp = tcp_sk(sk);
  4184. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4185. struct sk_buff *head;
  4186. u32 start, end;
  4187. if (skb == NULL)
  4188. return;
  4189. start = TCP_SKB_CB(skb)->seq;
  4190. end = TCP_SKB_CB(skb)->end_seq;
  4191. head = skb;
  4192. for (;;) {
  4193. struct sk_buff *next = NULL;
  4194. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4195. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4196. skb = next;
  4197. /* Segment is terminated when we see gap or when
  4198. * we are at the end of all the queue. */
  4199. if (!skb ||
  4200. after(TCP_SKB_CB(skb)->seq, end) ||
  4201. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4202. tcp_collapse(sk, &tp->out_of_order_queue,
  4203. head, skb, start, end);
  4204. head = skb;
  4205. if (!skb)
  4206. break;
  4207. /* Start new segment */
  4208. start = TCP_SKB_CB(skb)->seq;
  4209. end = TCP_SKB_CB(skb)->end_seq;
  4210. } else {
  4211. if (before(TCP_SKB_CB(skb)->seq, start))
  4212. start = TCP_SKB_CB(skb)->seq;
  4213. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4214. end = TCP_SKB_CB(skb)->end_seq;
  4215. }
  4216. }
  4217. }
  4218. /*
  4219. * Purge the out-of-order queue.
  4220. * Return true if queue was pruned.
  4221. */
  4222. static bool tcp_prune_ofo_queue(struct sock *sk)
  4223. {
  4224. struct tcp_sock *tp = tcp_sk(sk);
  4225. bool res = false;
  4226. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4227. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4228. __skb_queue_purge(&tp->out_of_order_queue);
  4229. /* Reset SACK state. A conforming SACK implementation will
  4230. * do the same at a timeout based retransmit. When a connection
  4231. * is in a sad state like this, we care only about integrity
  4232. * of the connection not performance.
  4233. */
  4234. if (tp->rx_opt.sack_ok)
  4235. tcp_sack_reset(&tp->rx_opt);
  4236. sk_mem_reclaim(sk);
  4237. res = true;
  4238. }
  4239. return res;
  4240. }
  4241. /* Reduce allocated memory if we can, trying to get
  4242. * the socket within its memory limits again.
  4243. *
  4244. * Return less than zero if we should start dropping frames
  4245. * until the socket owning process reads some of the data
  4246. * to stabilize the situation.
  4247. */
  4248. static int tcp_prune_queue(struct sock *sk)
  4249. {
  4250. struct tcp_sock *tp = tcp_sk(sk);
  4251. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4252. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4253. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4254. tcp_clamp_window(sk);
  4255. else if (sk_under_memory_pressure(sk))
  4256. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4257. tcp_collapse_ofo_queue(sk);
  4258. if (!skb_queue_empty(&sk->sk_receive_queue))
  4259. tcp_collapse(sk, &sk->sk_receive_queue,
  4260. skb_peek(&sk->sk_receive_queue),
  4261. NULL,
  4262. tp->copied_seq, tp->rcv_nxt);
  4263. sk_mem_reclaim(sk);
  4264. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4265. return 0;
  4266. /* Collapsing did not help, destructive actions follow.
  4267. * This must not ever occur. */
  4268. tcp_prune_ofo_queue(sk);
  4269. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4270. return 0;
  4271. /* If we are really being abused, tell the caller to silently
  4272. * drop receive data on the floor. It will get retransmitted
  4273. * and hopefully then we'll have sufficient space.
  4274. */
  4275. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4276. /* Massive buffer overcommit. */
  4277. tp->pred_flags = 0;
  4278. return -1;
  4279. }
  4280. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4281. * As additional protections, we do not touch cwnd in retransmission phases,
  4282. * and if application hit its sndbuf limit recently.
  4283. */
  4284. void tcp_cwnd_application_limited(struct sock *sk)
  4285. {
  4286. struct tcp_sock *tp = tcp_sk(sk);
  4287. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4288. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4289. /* Limited by application or receiver window. */
  4290. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4291. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4292. if (win_used < tp->snd_cwnd) {
  4293. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4294. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4295. }
  4296. tp->snd_cwnd_used = 0;
  4297. }
  4298. tp->snd_cwnd_stamp = tcp_time_stamp;
  4299. }
  4300. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4301. {
  4302. const struct tcp_sock *tp = tcp_sk(sk);
  4303. /* If the user specified a specific send buffer setting, do
  4304. * not modify it.
  4305. */
  4306. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4307. return false;
  4308. /* If we are under global TCP memory pressure, do not expand. */
  4309. if (sk_under_memory_pressure(sk))
  4310. return false;
  4311. /* If we are under soft global TCP memory pressure, do not expand. */
  4312. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4313. return false;
  4314. /* If we filled the congestion window, do not expand. */
  4315. if (tp->packets_out >= tp->snd_cwnd)
  4316. return false;
  4317. return true;
  4318. }
  4319. /* When incoming ACK allowed to free some skb from write_queue,
  4320. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4321. * on the exit from tcp input handler.
  4322. *
  4323. * PROBLEM: sndbuf expansion does not work well with largesend.
  4324. */
  4325. static void tcp_new_space(struct sock *sk)
  4326. {
  4327. struct tcp_sock *tp = tcp_sk(sk);
  4328. if (tcp_should_expand_sndbuf(sk)) {
  4329. int sndmem = SKB_TRUESIZE(max_t(u32,
  4330. tp->rx_opt.mss_clamp,
  4331. tp->mss_cache) +
  4332. MAX_TCP_HEADER);
  4333. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4334. tp->reordering + 1);
  4335. sndmem *= 2 * demanded;
  4336. if (sndmem > sk->sk_sndbuf)
  4337. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4338. tp->snd_cwnd_stamp = tcp_time_stamp;
  4339. }
  4340. sk->sk_write_space(sk);
  4341. }
  4342. static void tcp_check_space(struct sock *sk)
  4343. {
  4344. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4345. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4346. if (sk->sk_socket &&
  4347. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4348. tcp_new_space(sk);
  4349. }
  4350. }
  4351. static inline void tcp_data_snd_check(struct sock *sk)
  4352. {
  4353. tcp_push_pending_frames(sk);
  4354. tcp_check_space(sk);
  4355. }
  4356. /*
  4357. * Check if sending an ack is needed.
  4358. */
  4359. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4360. {
  4361. struct tcp_sock *tp = tcp_sk(sk);
  4362. /* More than one full frame received... */
  4363. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4364. /* ... and right edge of window advances far enough.
  4365. * (tcp_recvmsg() will send ACK otherwise). Or...
  4366. */
  4367. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4368. /* We ACK each frame or... */
  4369. tcp_in_quickack_mode(sk) ||
  4370. /* We have out of order data. */
  4371. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4372. /* Then ack it now */
  4373. tcp_send_ack(sk);
  4374. } else {
  4375. /* Else, send delayed ack. */
  4376. tcp_send_delayed_ack(sk);
  4377. }
  4378. }
  4379. static inline void tcp_ack_snd_check(struct sock *sk)
  4380. {
  4381. if (!inet_csk_ack_scheduled(sk)) {
  4382. /* We sent a data segment already. */
  4383. return;
  4384. }
  4385. __tcp_ack_snd_check(sk, 1);
  4386. }
  4387. /*
  4388. * This routine is only called when we have urgent data
  4389. * signaled. Its the 'slow' part of tcp_urg. It could be
  4390. * moved inline now as tcp_urg is only called from one
  4391. * place. We handle URGent data wrong. We have to - as
  4392. * BSD still doesn't use the correction from RFC961.
  4393. * For 1003.1g we should support a new option TCP_STDURG to permit
  4394. * either form (or just set the sysctl tcp_stdurg).
  4395. */
  4396. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4397. {
  4398. struct tcp_sock *tp = tcp_sk(sk);
  4399. u32 ptr = ntohs(th->urg_ptr);
  4400. if (ptr && !sysctl_tcp_stdurg)
  4401. ptr--;
  4402. ptr += ntohl(th->seq);
  4403. /* Ignore urgent data that we've already seen and read. */
  4404. if (after(tp->copied_seq, ptr))
  4405. return;
  4406. /* Do not replay urg ptr.
  4407. *
  4408. * NOTE: interesting situation not covered by specs.
  4409. * Misbehaving sender may send urg ptr, pointing to segment,
  4410. * which we already have in ofo queue. We are not able to fetch
  4411. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4412. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4413. * situations. But it is worth to think about possibility of some
  4414. * DoSes using some hypothetical application level deadlock.
  4415. */
  4416. if (before(ptr, tp->rcv_nxt))
  4417. return;
  4418. /* Do we already have a newer (or duplicate) urgent pointer? */
  4419. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4420. return;
  4421. /* Tell the world about our new urgent pointer. */
  4422. sk_send_sigurg(sk);
  4423. /* We may be adding urgent data when the last byte read was
  4424. * urgent. To do this requires some care. We cannot just ignore
  4425. * tp->copied_seq since we would read the last urgent byte again
  4426. * as data, nor can we alter copied_seq until this data arrives
  4427. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4428. *
  4429. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4430. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4431. * and expect that both A and B disappear from stream. This is _wrong_.
  4432. * Though this happens in BSD with high probability, this is occasional.
  4433. * Any application relying on this is buggy. Note also, that fix "works"
  4434. * only in this artificial test. Insert some normal data between A and B and we will
  4435. * decline of BSD again. Verdict: it is better to remove to trap
  4436. * buggy users.
  4437. */
  4438. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4439. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4440. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4441. tp->copied_seq++;
  4442. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4443. __skb_unlink(skb, &sk->sk_receive_queue);
  4444. __kfree_skb(skb);
  4445. }
  4446. }
  4447. tp->urg_data = TCP_URG_NOTYET;
  4448. tp->urg_seq = ptr;
  4449. /* Disable header prediction. */
  4450. tp->pred_flags = 0;
  4451. }
  4452. /* This is the 'fast' part of urgent handling. */
  4453. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4454. {
  4455. struct tcp_sock *tp = tcp_sk(sk);
  4456. /* Check if we get a new urgent pointer - normally not. */
  4457. if (th->urg)
  4458. tcp_check_urg(sk, th);
  4459. /* Do we wait for any urgent data? - normally not... */
  4460. if (tp->urg_data == TCP_URG_NOTYET) {
  4461. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4462. th->syn;
  4463. /* Is the urgent pointer pointing into this packet? */
  4464. if (ptr < skb->len) {
  4465. u8 tmp;
  4466. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4467. BUG();
  4468. tp->urg_data = TCP_URG_VALID | tmp;
  4469. if (!sock_flag(sk, SOCK_DEAD))
  4470. sk->sk_data_ready(sk, 0);
  4471. }
  4472. }
  4473. }
  4474. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4475. {
  4476. struct tcp_sock *tp = tcp_sk(sk);
  4477. int chunk = skb->len - hlen;
  4478. int err;
  4479. local_bh_enable();
  4480. if (skb_csum_unnecessary(skb))
  4481. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4482. else
  4483. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4484. tp->ucopy.iov);
  4485. if (!err) {
  4486. tp->ucopy.len -= chunk;
  4487. tp->copied_seq += chunk;
  4488. tcp_rcv_space_adjust(sk);
  4489. }
  4490. local_bh_disable();
  4491. return err;
  4492. }
  4493. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4494. struct sk_buff *skb)
  4495. {
  4496. __sum16 result;
  4497. if (sock_owned_by_user(sk)) {
  4498. local_bh_enable();
  4499. result = __tcp_checksum_complete(skb);
  4500. local_bh_disable();
  4501. } else {
  4502. result = __tcp_checksum_complete(skb);
  4503. }
  4504. return result;
  4505. }
  4506. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4507. struct sk_buff *skb)
  4508. {
  4509. return !skb_csum_unnecessary(skb) &&
  4510. __tcp_checksum_complete_user(sk, skb);
  4511. }
  4512. #ifdef CONFIG_NET_DMA
  4513. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4514. int hlen)
  4515. {
  4516. struct tcp_sock *tp = tcp_sk(sk);
  4517. int chunk = skb->len - hlen;
  4518. int dma_cookie;
  4519. bool copied_early = false;
  4520. if (tp->ucopy.wakeup)
  4521. return false;
  4522. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4523. tp->ucopy.dma_chan = net_dma_find_channel();
  4524. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4525. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4526. skb, hlen,
  4527. tp->ucopy.iov, chunk,
  4528. tp->ucopy.pinned_list);
  4529. if (dma_cookie < 0)
  4530. goto out;
  4531. tp->ucopy.dma_cookie = dma_cookie;
  4532. copied_early = true;
  4533. tp->ucopy.len -= chunk;
  4534. tp->copied_seq += chunk;
  4535. tcp_rcv_space_adjust(sk);
  4536. if ((tp->ucopy.len == 0) ||
  4537. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4538. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4539. tp->ucopy.wakeup = 1;
  4540. sk->sk_data_ready(sk, 0);
  4541. }
  4542. } else if (chunk > 0) {
  4543. tp->ucopy.wakeup = 1;
  4544. sk->sk_data_ready(sk, 0);
  4545. }
  4546. out:
  4547. return copied_early;
  4548. }
  4549. #endif /* CONFIG_NET_DMA */
  4550. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4551. * play significant role here.
  4552. */
  4553. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4554. const struct tcphdr *th, int syn_inerr)
  4555. {
  4556. const u8 *hash_location;
  4557. struct tcp_sock *tp = tcp_sk(sk);
  4558. /* RFC1323: H1. Apply PAWS check first. */
  4559. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4560. tp->rx_opt.saw_tstamp &&
  4561. tcp_paws_discard(sk, skb)) {
  4562. if (!th->rst) {
  4563. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4564. tcp_send_dupack(sk, skb);
  4565. goto discard;
  4566. }
  4567. /* Reset is accepted even if it did not pass PAWS. */
  4568. }
  4569. /* Step 1: check sequence number */
  4570. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4571. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4572. * (RST) segments are validated by checking their SEQ-fields."
  4573. * And page 69: "If an incoming segment is not acceptable,
  4574. * an acknowledgment should be sent in reply (unless the RST
  4575. * bit is set, if so drop the segment and return)".
  4576. */
  4577. if (!th->rst) {
  4578. if (th->syn)
  4579. goto syn_challenge;
  4580. tcp_send_dupack(sk, skb);
  4581. }
  4582. goto discard;
  4583. }
  4584. /* Step 2: check RST bit */
  4585. if (th->rst) {
  4586. /* RFC 5961 3.2 :
  4587. * If sequence number exactly matches RCV.NXT, then
  4588. * RESET the connection
  4589. * else
  4590. * Send a challenge ACK
  4591. */
  4592. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4593. tcp_reset(sk);
  4594. else
  4595. tcp_send_challenge_ack(sk);
  4596. goto discard;
  4597. }
  4598. /* step 3: check security and precedence [ignored] */
  4599. /* step 4: Check for a SYN
  4600. * RFC 5691 4.2 : Send a challenge ack
  4601. */
  4602. if (th->syn) {
  4603. syn_challenge:
  4604. if (syn_inerr)
  4605. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4606. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4607. tcp_send_challenge_ack(sk);
  4608. goto discard;
  4609. }
  4610. return true;
  4611. discard:
  4612. __kfree_skb(skb);
  4613. return false;
  4614. }
  4615. /*
  4616. * TCP receive function for the ESTABLISHED state.
  4617. *
  4618. * It is split into a fast path and a slow path. The fast path is
  4619. * disabled when:
  4620. * - A zero window was announced from us - zero window probing
  4621. * is only handled properly in the slow path.
  4622. * - Out of order segments arrived.
  4623. * - Urgent data is expected.
  4624. * - There is no buffer space left
  4625. * - Unexpected TCP flags/window values/header lengths are received
  4626. * (detected by checking the TCP header against pred_flags)
  4627. * - Data is sent in both directions. Fast path only supports pure senders
  4628. * or pure receivers (this means either the sequence number or the ack
  4629. * value must stay constant)
  4630. * - Unexpected TCP option.
  4631. *
  4632. * When these conditions are not satisfied it drops into a standard
  4633. * receive procedure patterned after RFC793 to handle all cases.
  4634. * The first three cases are guaranteed by proper pred_flags setting,
  4635. * the rest is checked inline. Fast processing is turned on in
  4636. * tcp_data_queue when everything is OK.
  4637. */
  4638. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4639. const struct tcphdr *th, unsigned int len)
  4640. {
  4641. struct tcp_sock *tp = tcp_sk(sk);
  4642. if (unlikely(sk->sk_rx_dst == NULL))
  4643. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4644. /*
  4645. * Header prediction.
  4646. * The code loosely follows the one in the famous
  4647. * "30 instruction TCP receive" Van Jacobson mail.
  4648. *
  4649. * Van's trick is to deposit buffers into socket queue
  4650. * on a device interrupt, to call tcp_recv function
  4651. * on the receive process context and checksum and copy
  4652. * the buffer to user space. smart...
  4653. *
  4654. * Our current scheme is not silly either but we take the
  4655. * extra cost of the net_bh soft interrupt processing...
  4656. * We do checksum and copy also but from device to kernel.
  4657. */
  4658. tp->rx_opt.saw_tstamp = 0;
  4659. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4660. * if header_prediction is to be made
  4661. * 'S' will always be tp->tcp_header_len >> 2
  4662. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4663. * turn it off (when there are holes in the receive
  4664. * space for instance)
  4665. * PSH flag is ignored.
  4666. */
  4667. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4668. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4669. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4670. int tcp_header_len = tp->tcp_header_len;
  4671. /* Timestamp header prediction: tcp_header_len
  4672. * is automatically equal to th->doff*4 due to pred_flags
  4673. * match.
  4674. */
  4675. /* Check timestamp */
  4676. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4677. /* No? Slow path! */
  4678. if (!tcp_parse_aligned_timestamp(tp, th))
  4679. goto slow_path;
  4680. /* If PAWS failed, check it more carefully in slow path */
  4681. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4682. goto slow_path;
  4683. /* DO NOT update ts_recent here, if checksum fails
  4684. * and timestamp was corrupted part, it will result
  4685. * in a hung connection since we will drop all
  4686. * future packets due to the PAWS test.
  4687. */
  4688. }
  4689. if (len <= tcp_header_len) {
  4690. /* Bulk data transfer: sender */
  4691. if (len == tcp_header_len) {
  4692. /* Predicted packet is in window by definition.
  4693. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4694. * Hence, check seq<=rcv_wup reduces to:
  4695. */
  4696. if (tcp_header_len ==
  4697. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4698. tp->rcv_nxt == tp->rcv_wup)
  4699. tcp_store_ts_recent(tp);
  4700. /* We know that such packets are checksummed
  4701. * on entry.
  4702. */
  4703. tcp_ack(sk, skb, 0);
  4704. __kfree_skb(skb);
  4705. tcp_data_snd_check(sk);
  4706. return 0;
  4707. } else { /* Header too small */
  4708. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4709. goto discard;
  4710. }
  4711. } else {
  4712. int eaten = 0;
  4713. int copied_early = 0;
  4714. bool fragstolen = false;
  4715. if (tp->copied_seq == tp->rcv_nxt &&
  4716. len - tcp_header_len <= tp->ucopy.len) {
  4717. #ifdef CONFIG_NET_DMA
  4718. if (tp->ucopy.task == current &&
  4719. sock_owned_by_user(sk) &&
  4720. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4721. copied_early = 1;
  4722. eaten = 1;
  4723. }
  4724. #endif
  4725. if (tp->ucopy.task == current &&
  4726. sock_owned_by_user(sk) && !copied_early) {
  4727. __set_current_state(TASK_RUNNING);
  4728. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4729. eaten = 1;
  4730. }
  4731. if (eaten) {
  4732. /* Predicted packet is in window by definition.
  4733. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4734. * Hence, check seq<=rcv_wup reduces to:
  4735. */
  4736. if (tcp_header_len ==
  4737. (sizeof(struct tcphdr) +
  4738. TCPOLEN_TSTAMP_ALIGNED) &&
  4739. tp->rcv_nxt == tp->rcv_wup)
  4740. tcp_store_ts_recent(tp);
  4741. tcp_rcv_rtt_measure_ts(sk, skb);
  4742. __skb_pull(skb, tcp_header_len);
  4743. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4744. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4745. }
  4746. if (copied_early)
  4747. tcp_cleanup_rbuf(sk, skb->len);
  4748. }
  4749. if (!eaten) {
  4750. if (tcp_checksum_complete_user(sk, skb))
  4751. goto csum_error;
  4752. if ((int)skb->truesize > sk->sk_forward_alloc)
  4753. goto step5;
  4754. /* Predicted packet is in window by definition.
  4755. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4756. * Hence, check seq<=rcv_wup reduces to:
  4757. */
  4758. if (tcp_header_len ==
  4759. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4760. tp->rcv_nxt == tp->rcv_wup)
  4761. tcp_store_ts_recent(tp);
  4762. tcp_rcv_rtt_measure_ts(sk, skb);
  4763. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4764. /* Bulk data transfer: receiver */
  4765. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4766. &fragstolen);
  4767. }
  4768. tcp_event_data_recv(sk, skb);
  4769. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4770. /* Well, only one small jumplet in fast path... */
  4771. tcp_ack(sk, skb, FLAG_DATA);
  4772. tcp_data_snd_check(sk);
  4773. if (!inet_csk_ack_scheduled(sk))
  4774. goto no_ack;
  4775. }
  4776. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4777. __tcp_ack_snd_check(sk, 0);
  4778. no_ack:
  4779. #ifdef CONFIG_NET_DMA
  4780. if (copied_early)
  4781. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4782. else
  4783. #endif
  4784. if (eaten)
  4785. kfree_skb_partial(skb, fragstolen);
  4786. sk->sk_data_ready(sk, 0);
  4787. return 0;
  4788. }
  4789. }
  4790. slow_path:
  4791. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4792. goto csum_error;
  4793. if (!th->ack && !th->rst)
  4794. goto discard;
  4795. /*
  4796. * Standard slow path.
  4797. */
  4798. if (!tcp_validate_incoming(sk, skb, th, 1))
  4799. return 0;
  4800. step5:
  4801. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4802. goto discard;
  4803. tcp_rcv_rtt_measure_ts(sk, skb);
  4804. /* Process urgent data. */
  4805. tcp_urg(sk, skb, th);
  4806. /* step 7: process the segment text */
  4807. tcp_data_queue(sk, skb);
  4808. tcp_data_snd_check(sk);
  4809. tcp_ack_snd_check(sk);
  4810. return 0;
  4811. csum_error:
  4812. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4813. discard:
  4814. __kfree_skb(skb);
  4815. return 0;
  4816. }
  4817. EXPORT_SYMBOL(tcp_rcv_established);
  4818. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4819. {
  4820. struct tcp_sock *tp = tcp_sk(sk);
  4821. struct inet_connection_sock *icsk = inet_csk(sk);
  4822. tcp_set_state(sk, TCP_ESTABLISHED);
  4823. if (skb != NULL) {
  4824. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4825. security_inet_conn_established(sk, skb);
  4826. }
  4827. /* Make sure socket is routed, for correct metrics. */
  4828. icsk->icsk_af_ops->rebuild_header(sk);
  4829. tcp_init_metrics(sk);
  4830. tcp_init_congestion_control(sk);
  4831. /* Prevent spurious tcp_cwnd_restart() on first data
  4832. * packet.
  4833. */
  4834. tp->lsndtime = tcp_time_stamp;
  4835. tcp_init_buffer_space(sk);
  4836. if (sock_flag(sk, SOCK_KEEPOPEN))
  4837. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4838. if (!tp->rx_opt.snd_wscale)
  4839. __tcp_fast_path_on(tp, tp->snd_wnd);
  4840. else
  4841. tp->pred_flags = 0;
  4842. if (!sock_flag(sk, SOCK_DEAD)) {
  4843. sk->sk_state_change(sk);
  4844. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4845. }
  4846. }
  4847. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4848. struct tcp_fastopen_cookie *cookie)
  4849. {
  4850. struct tcp_sock *tp = tcp_sk(sk);
  4851. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4852. u16 mss = tp->rx_opt.mss_clamp;
  4853. bool syn_drop;
  4854. if (mss == tp->rx_opt.user_mss) {
  4855. struct tcp_options_received opt;
  4856. const u8 *hash_location;
  4857. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4858. tcp_clear_options(&opt);
  4859. opt.user_mss = opt.mss_clamp = 0;
  4860. tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
  4861. mss = opt.mss_clamp;
  4862. }
  4863. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4864. cookie->len = -1;
  4865. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4866. * the remote receives only the retransmitted (regular) SYNs: either
  4867. * the original SYN-data or the corresponding SYN-ACK is lost.
  4868. */
  4869. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4870. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4871. if (data) { /* Retransmit unacked data in SYN */
  4872. tcp_for_write_queue_from(data, sk) {
  4873. if (data == tcp_send_head(sk) ||
  4874. __tcp_retransmit_skb(sk, data))
  4875. break;
  4876. }
  4877. tcp_rearm_rto(sk);
  4878. return true;
  4879. }
  4880. tp->syn_data_acked = tp->syn_data;
  4881. return false;
  4882. }
  4883. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4884. const struct tcphdr *th, unsigned int len)
  4885. {
  4886. const u8 *hash_location;
  4887. struct inet_connection_sock *icsk = inet_csk(sk);
  4888. struct tcp_sock *tp = tcp_sk(sk);
  4889. struct tcp_cookie_values *cvp = tp->cookie_values;
  4890. struct tcp_fastopen_cookie foc = { .len = -1 };
  4891. int saved_clamp = tp->rx_opt.mss_clamp;
  4892. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
  4893. if (tp->rx_opt.saw_tstamp)
  4894. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4895. if (th->ack) {
  4896. /* rfc793:
  4897. * "If the state is SYN-SENT then
  4898. * first check the ACK bit
  4899. * If the ACK bit is set
  4900. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4901. * a reset (unless the RST bit is set, if so drop
  4902. * the segment and return)"
  4903. */
  4904. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4905. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4906. goto reset_and_undo;
  4907. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4908. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4909. tcp_time_stamp)) {
  4910. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4911. goto reset_and_undo;
  4912. }
  4913. /* Now ACK is acceptable.
  4914. *
  4915. * "If the RST bit is set
  4916. * If the ACK was acceptable then signal the user "error:
  4917. * connection reset", drop the segment, enter CLOSED state,
  4918. * delete TCB, and return."
  4919. */
  4920. if (th->rst) {
  4921. tcp_reset(sk);
  4922. goto discard;
  4923. }
  4924. /* rfc793:
  4925. * "fifth, if neither of the SYN or RST bits is set then
  4926. * drop the segment and return."
  4927. *
  4928. * See note below!
  4929. * --ANK(990513)
  4930. */
  4931. if (!th->syn)
  4932. goto discard_and_undo;
  4933. /* rfc793:
  4934. * "If the SYN bit is on ...
  4935. * are acceptable then ...
  4936. * (our SYN has been ACKed), change the connection
  4937. * state to ESTABLISHED..."
  4938. */
  4939. TCP_ECN_rcv_synack(tp, th);
  4940. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4941. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4942. /* Ok.. it's good. Set up sequence numbers and
  4943. * move to established.
  4944. */
  4945. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4946. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4947. /* RFC1323: The window in SYN & SYN/ACK segments is
  4948. * never scaled.
  4949. */
  4950. tp->snd_wnd = ntohs(th->window);
  4951. if (!tp->rx_opt.wscale_ok) {
  4952. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4953. tp->window_clamp = min(tp->window_clamp, 65535U);
  4954. }
  4955. if (tp->rx_opt.saw_tstamp) {
  4956. tp->rx_opt.tstamp_ok = 1;
  4957. tp->tcp_header_len =
  4958. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4959. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4960. tcp_store_ts_recent(tp);
  4961. } else {
  4962. tp->tcp_header_len = sizeof(struct tcphdr);
  4963. }
  4964. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4965. tcp_enable_fack(tp);
  4966. tcp_mtup_init(sk);
  4967. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4968. tcp_initialize_rcv_mss(sk);
  4969. /* Remember, tcp_poll() does not lock socket!
  4970. * Change state from SYN-SENT only after copied_seq
  4971. * is initialized. */
  4972. tp->copied_seq = tp->rcv_nxt;
  4973. if (cvp != NULL &&
  4974. cvp->cookie_pair_size > 0 &&
  4975. tp->rx_opt.cookie_plus > 0) {
  4976. int cookie_size = tp->rx_opt.cookie_plus
  4977. - TCPOLEN_COOKIE_BASE;
  4978. int cookie_pair_size = cookie_size
  4979. + cvp->cookie_desired;
  4980. /* A cookie extension option was sent and returned.
  4981. * Note that each incoming SYNACK replaces the
  4982. * Responder cookie. The initial exchange is most
  4983. * fragile, as protection against spoofing relies
  4984. * entirely upon the sequence and timestamp (above).
  4985. * This replacement strategy allows the correct pair to
  4986. * pass through, while any others will be filtered via
  4987. * Responder verification later.
  4988. */
  4989. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4990. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4991. hash_location, cookie_size);
  4992. cvp->cookie_pair_size = cookie_pair_size;
  4993. }
  4994. }
  4995. smp_mb();
  4996. tcp_finish_connect(sk, skb);
  4997. if ((tp->syn_fastopen || tp->syn_data) &&
  4998. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4999. return -1;
  5000. if (sk->sk_write_pending ||
  5001. icsk->icsk_accept_queue.rskq_defer_accept ||
  5002. icsk->icsk_ack.pingpong) {
  5003. /* Save one ACK. Data will be ready after
  5004. * several ticks, if write_pending is set.
  5005. *
  5006. * It may be deleted, but with this feature tcpdumps
  5007. * look so _wonderfully_ clever, that I was not able
  5008. * to stand against the temptation 8) --ANK
  5009. */
  5010. inet_csk_schedule_ack(sk);
  5011. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5012. tcp_enter_quickack_mode(sk);
  5013. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5014. TCP_DELACK_MAX, TCP_RTO_MAX);
  5015. discard:
  5016. __kfree_skb(skb);
  5017. return 0;
  5018. } else {
  5019. tcp_send_ack(sk);
  5020. }
  5021. return -1;
  5022. }
  5023. /* No ACK in the segment */
  5024. if (th->rst) {
  5025. /* rfc793:
  5026. * "If the RST bit is set
  5027. *
  5028. * Otherwise (no ACK) drop the segment and return."
  5029. */
  5030. goto discard_and_undo;
  5031. }
  5032. /* PAWS check. */
  5033. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5034. tcp_paws_reject(&tp->rx_opt, 0))
  5035. goto discard_and_undo;
  5036. if (th->syn) {
  5037. /* We see SYN without ACK. It is attempt of
  5038. * simultaneous connect with crossed SYNs.
  5039. * Particularly, it can be connect to self.
  5040. */
  5041. tcp_set_state(sk, TCP_SYN_RECV);
  5042. if (tp->rx_opt.saw_tstamp) {
  5043. tp->rx_opt.tstamp_ok = 1;
  5044. tcp_store_ts_recent(tp);
  5045. tp->tcp_header_len =
  5046. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5047. } else {
  5048. tp->tcp_header_len = sizeof(struct tcphdr);
  5049. }
  5050. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5051. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5052. /* RFC1323: The window in SYN & SYN/ACK segments is
  5053. * never scaled.
  5054. */
  5055. tp->snd_wnd = ntohs(th->window);
  5056. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5057. tp->max_window = tp->snd_wnd;
  5058. TCP_ECN_rcv_syn(tp, th);
  5059. tcp_mtup_init(sk);
  5060. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5061. tcp_initialize_rcv_mss(sk);
  5062. tcp_send_synack(sk);
  5063. #if 0
  5064. /* Note, we could accept data and URG from this segment.
  5065. * There are no obstacles to make this (except that we must
  5066. * either change tcp_recvmsg() to prevent it from returning data
  5067. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5068. *
  5069. * However, if we ignore data in ACKless segments sometimes,
  5070. * we have no reasons to accept it sometimes.
  5071. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5072. * is not flawless. So, discard packet for sanity.
  5073. * Uncomment this return to process the data.
  5074. */
  5075. return -1;
  5076. #else
  5077. goto discard;
  5078. #endif
  5079. }
  5080. /* "fifth, if neither of the SYN or RST bits is set then
  5081. * drop the segment and return."
  5082. */
  5083. discard_and_undo:
  5084. tcp_clear_options(&tp->rx_opt);
  5085. tp->rx_opt.mss_clamp = saved_clamp;
  5086. goto discard;
  5087. reset_and_undo:
  5088. tcp_clear_options(&tp->rx_opt);
  5089. tp->rx_opt.mss_clamp = saved_clamp;
  5090. return 1;
  5091. }
  5092. /*
  5093. * This function implements the receiving procedure of RFC 793 for
  5094. * all states except ESTABLISHED and TIME_WAIT.
  5095. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5096. * address independent.
  5097. */
  5098. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5099. const struct tcphdr *th, unsigned int len)
  5100. {
  5101. struct tcp_sock *tp = tcp_sk(sk);
  5102. struct inet_connection_sock *icsk = inet_csk(sk);
  5103. struct request_sock *req;
  5104. int queued = 0;
  5105. tp->rx_opt.saw_tstamp = 0;
  5106. switch (sk->sk_state) {
  5107. case TCP_CLOSE:
  5108. goto discard;
  5109. case TCP_LISTEN:
  5110. if (th->ack)
  5111. return 1;
  5112. if (th->rst)
  5113. goto discard;
  5114. if (th->syn) {
  5115. if (th->fin)
  5116. goto discard;
  5117. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5118. return 1;
  5119. /* Now we have several options: In theory there is
  5120. * nothing else in the frame. KA9Q has an option to
  5121. * send data with the syn, BSD accepts data with the
  5122. * syn up to the [to be] advertised window and
  5123. * Solaris 2.1 gives you a protocol error. For now
  5124. * we just ignore it, that fits the spec precisely
  5125. * and avoids incompatibilities. It would be nice in
  5126. * future to drop through and process the data.
  5127. *
  5128. * Now that TTCP is starting to be used we ought to
  5129. * queue this data.
  5130. * But, this leaves one open to an easy denial of
  5131. * service attack, and SYN cookies can't defend
  5132. * against this problem. So, we drop the data
  5133. * in the interest of security over speed unless
  5134. * it's still in use.
  5135. */
  5136. kfree_skb(skb);
  5137. return 0;
  5138. }
  5139. goto discard;
  5140. case TCP_SYN_SENT:
  5141. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5142. if (queued >= 0)
  5143. return queued;
  5144. /* Do step6 onward by hand. */
  5145. tcp_urg(sk, skb, th);
  5146. __kfree_skb(skb);
  5147. tcp_data_snd_check(sk);
  5148. return 0;
  5149. }
  5150. req = tp->fastopen_rsk;
  5151. if (req != NULL) {
  5152. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5153. sk->sk_state != TCP_FIN_WAIT1);
  5154. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  5155. goto discard;
  5156. }
  5157. if (!th->ack && !th->rst)
  5158. goto discard;
  5159. if (!tcp_validate_incoming(sk, skb, th, 0))
  5160. return 0;
  5161. /* step 5: check the ACK field */
  5162. if (true) {
  5163. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5164. FLAG_UPDATE_TS_RECENT) > 0;
  5165. switch (sk->sk_state) {
  5166. case TCP_SYN_RECV:
  5167. if (acceptable) {
  5168. /* Once we leave TCP_SYN_RECV, we no longer
  5169. * need req so release it.
  5170. */
  5171. if (req) {
  5172. tcp_synack_rtt_meas(sk, req);
  5173. tp->total_retrans = req->num_retrans;
  5174. reqsk_fastopen_remove(sk, req, false);
  5175. } else {
  5176. /* Make sure socket is routed, for
  5177. * correct metrics.
  5178. */
  5179. icsk->icsk_af_ops->rebuild_header(sk);
  5180. tcp_init_congestion_control(sk);
  5181. tcp_mtup_init(sk);
  5182. tcp_init_buffer_space(sk);
  5183. tp->copied_seq = tp->rcv_nxt;
  5184. }
  5185. smp_mb();
  5186. tcp_set_state(sk, TCP_ESTABLISHED);
  5187. sk->sk_state_change(sk);
  5188. /* Note, that this wakeup is only for marginal
  5189. * crossed SYN case. Passively open sockets
  5190. * are not waked up, because sk->sk_sleep ==
  5191. * NULL and sk->sk_socket == NULL.
  5192. */
  5193. if (sk->sk_socket)
  5194. sk_wake_async(sk,
  5195. SOCK_WAKE_IO, POLL_OUT);
  5196. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5197. tp->snd_wnd = ntohs(th->window) <<
  5198. tp->rx_opt.snd_wscale;
  5199. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5200. if (tp->rx_opt.tstamp_ok)
  5201. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5202. if (req) {
  5203. /* Re-arm the timer because data may
  5204. * have been sent out. This is similar
  5205. * to the regular data transmission case
  5206. * when new data has just been ack'ed.
  5207. *
  5208. * (TFO) - we could try to be more
  5209. * aggressive and retranmitting any data
  5210. * sooner based on when they were sent
  5211. * out.
  5212. */
  5213. tcp_rearm_rto(sk);
  5214. } else
  5215. tcp_init_metrics(sk);
  5216. /* Prevent spurious tcp_cwnd_restart() on
  5217. * first data packet.
  5218. */
  5219. tp->lsndtime = tcp_time_stamp;
  5220. tcp_initialize_rcv_mss(sk);
  5221. tcp_fast_path_on(tp);
  5222. } else {
  5223. return 1;
  5224. }
  5225. break;
  5226. case TCP_FIN_WAIT1:
  5227. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5228. * Fast Open socket and this is the first acceptable
  5229. * ACK we have received, this would have acknowledged
  5230. * our SYNACK so stop the SYNACK timer.
  5231. */
  5232. if (req != NULL) {
  5233. /* Return RST if ack_seq is invalid.
  5234. * Note that RFC793 only says to generate a
  5235. * DUPACK for it but for TCP Fast Open it seems
  5236. * better to treat this case like TCP_SYN_RECV
  5237. * above.
  5238. */
  5239. if (!acceptable)
  5240. return 1;
  5241. /* We no longer need the request sock. */
  5242. reqsk_fastopen_remove(sk, req, false);
  5243. tcp_rearm_rto(sk);
  5244. }
  5245. if (tp->snd_una == tp->write_seq) {
  5246. struct dst_entry *dst;
  5247. tcp_set_state(sk, TCP_FIN_WAIT2);
  5248. sk->sk_shutdown |= SEND_SHUTDOWN;
  5249. dst = __sk_dst_get(sk);
  5250. if (dst)
  5251. dst_confirm(dst);
  5252. if (!sock_flag(sk, SOCK_DEAD))
  5253. /* Wake up lingering close() */
  5254. sk->sk_state_change(sk);
  5255. else {
  5256. int tmo;
  5257. if (tp->linger2 < 0 ||
  5258. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5259. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5260. tcp_done(sk);
  5261. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5262. return 1;
  5263. }
  5264. tmo = tcp_fin_time(sk);
  5265. if (tmo > TCP_TIMEWAIT_LEN) {
  5266. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5267. } else if (th->fin || sock_owned_by_user(sk)) {
  5268. /* Bad case. We could lose such FIN otherwise.
  5269. * It is not a big problem, but it looks confusing
  5270. * and not so rare event. We still can lose it now,
  5271. * if it spins in bh_lock_sock(), but it is really
  5272. * marginal case.
  5273. */
  5274. inet_csk_reset_keepalive_timer(sk, tmo);
  5275. } else {
  5276. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5277. goto discard;
  5278. }
  5279. }
  5280. }
  5281. break;
  5282. case TCP_CLOSING:
  5283. if (tp->snd_una == tp->write_seq) {
  5284. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5285. goto discard;
  5286. }
  5287. break;
  5288. case TCP_LAST_ACK:
  5289. if (tp->snd_una == tp->write_seq) {
  5290. tcp_update_metrics(sk);
  5291. tcp_done(sk);
  5292. goto discard;
  5293. }
  5294. break;
  5295. }
  5296. }
  5297. /* step 6: check the URG bit */
  5298. tcp_urg(sk, skb, th);
  5299. /* step 7: process the segment text */
  5300. switch (sk->sk_state) {
  5301. case TCP_CLOSE_WAIT:
  5302. case TCP_CLOSING:
  5303. case TCP_LAST_ACK:
  5304. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5305. break;
  5306. case TCP_FIN_WAIT1:
  5307. case TCP_FIN_WAIT2:
  5308. /* RFC 793 says to queue data in these states,
  5309. * RFC 1122 says we MUST send a reset.
  5310. * BSD 4.4 also does reset.
  5311. */
  5312. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5313. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5314. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5315. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5316. tcp_reset(sk);
  5317. return 1;
  5318. }
  5319. }
  5320. /* Fall through */
  5321. case TCP_ESTABLISHED:
  5322. tcp_data_queue(sk, skb);
  5323. queued = 1;
  5324. break;
  5325. }
  5326. /* tcp_data could move socket to TIME-WAIT */
  5327. if (sk->sk_state != TCP_CLOSE) {
  5328. tcp_data_snd_check(sk);
  5329. tcp_ack_snd_check(sk);
  5330. }
  5331. if (!queued) {
  5332. discard:
  5333. __kfree_skb(skb);
  5334. }
  5335. return 0;
  5336. }
  5337. EXPORT_SYMBOL(tcp_rcv_state_process);