vmalloc.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. pte = pte_offset_kernel(pmd, addr);
  37. do {
  38. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  39. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  40. } while (pte++, addr += PAGE_SIZE, addr != end);
  41. }
  42. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  43. {
  44. pmd_t *pmd;
  45. unsigned long next;
  46. pmd = pmd_offset(pud, addr);
  47. do {
  48. next = pmd_addr_end(addr, end);
  49. if (pmd_none_or_clear_bad(pmd))
  50. continue;
  51. vunmap_pte_range(pmd, addr, next);
  52. } while (pmd++, addr = next, addr != end);
  53. }
  54. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  55. {
  56. pud_t *pud;
  57. unsigned long next;
  58. pud = pud_offset(pgd, addr);
  59. do {
  60. next = pud_addr_end(addr, end);
  61. if (pud_none_or_clear_bad(pud))
  62. continue;
  63. vunmap_pmd_range(pud, addr, next);
  64. } while (pud++, addr = next, addr != end);
  65. }
  66. static void vunmap_page_range(unsigned long addr, unsigned long end)
  67. {
  68. pgd_t *pgd;
  69. unsigned long next;
  70. BUG_ON(addr >= end);
  71. pgd = pgd_offset_k(addr);
  72. do {
  73. next = pgd_addr_end(addr, end);
  74. if (pgd_none_or_clear_bad(pgd))
  75. continue;
  76. vunmap_pud_range(pgd, addr, next);
  77. } while (pgd++, addr = next, addr != end);
  78. }
  79. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  80. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  81. {
  82. pte_t *pte;
  83. /*
  84. * nr is a running index into the array which helps higher level
  85. * callers keep track of where we're up to.
  86. */
  87. pte = pte_alloc_kernel(pmd, addr);
  88. if (!pte)
  89. return -ENOMEM;
  90. do {
  91. struct page *page = pages[*nr];
  92. if (WARN_ON(!pte_none(*pte)))
  93. return -EBUSY;
  94. if (WARN_ON(!page))
  95. return -ENOMEM;
  96. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  97. (*nr)++;
  98. } while (pte++, addr += PAGE_SIZE, addr != end);
  99. return 0;
  100. }
  101. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  102. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  103. {
  104. pmd_t *pmd;
  105. unsigned long next;
  106. pmd = pmd_alloc(&init_mm, pud, addr);
  107. if (!pmd)
  108. return -ENOMEM;
  109. do {
  110. next = pmd_addr_end(addr, end);
  111. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  112. return -ENOMEM;
  113. } while (pmd++, addr = next, addr != end);
  114. return 0;
  115. }
  116. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  117. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  118. {
  119. pud_t *pud;
  120. unsigned long next;
  121. pud = pud_alloc(&init_mm, pgd, addr);
  122. if (!pud)
  123. return -ENOMEM;
  124. do {
  125. next = pud_addr_end(addr, end);
  126. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  127. return -ENOMEM;
  128. } while (pud++, addr = next, addr != end);
  129. return 0;
  130. }
  131. /*
  132. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  133. * will have pfns corresponding to the "pages" array.
  134. *
  135. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  136. */
  137. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  138. pgprot_t prot, struct page **pages)
  139. {
  140. pgd_t *pgd;
  141. unsigned long next;
  142. unsigned long addr = start;
  143. int err = 0;
  144. int nr = 0;
  145. BUG_ON(addr >= end);
  146. pgd = pgd_offset_k(addr);
  147. do {
  148. next = pgd_addr_end(addr, end);
  149. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  150. if (err)
  151. return err;
  152. } while (pgd++, addr = next, addr != end);
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. static DEFINE_SPINLOCK(vmap_area_lock);
  220. /* Export for kexec only */
  221. LIST_HEAD(vmap_area_list);
  222. static struct rb_root vmap_area_root = RB_ROOT;
  223. /* The vmap cache globals are protected by vmap_area_lock */
  224. static struct rb_node *free_vmap_cache;
  225. static unsigned long cached_hole_size;
  226. static unsigned long cached_vstart;
  227. static unsigned long cached_align;
  228. static unsigned long vmap_area_pcpu_hole;
  229. static struct vmap_area *__find_vmap_area(unsigned long addr)
  230. {
  231. struct rb_node *n = vmap_area_root.rb_node;
  232. while (n) {
  233. struct vmap_area *va;
  234. va = rb_entry(n, struct vmap_area, rb_node);
  235. if (addr < va->va_start)
  236. n = n->rb_left;
  237. else if (addr > va->va_start)
  238. n = n->rb_right;
  239. else
  240. return va;
  241. }
  242. return NULL;
  243. }
  244. static void __insert_vmap_area(struct vmap_area *va)
  245. {
  246. struct rb_node **p = &vmap_area_root.rb_node;
  247. struct rb_node *parent = NULL;
  248. struct rb_node *tmp;
  249. while (*p) {
  250. struct vmap_area *tmp_va;
  251. parent = *p;
  252. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  253. if (va->va_start < tmp_va->va_end)
  254. p = &(*p)->rb_left;
  255. else if (va->va_end > tmp_va->va_start)
  256. p = &(*p)->rb_right;
  257. else
  258. BUG();
  259. }
  260. rb_link_node(&va->rb_node, parent, p);
  261. rb_insert_color(&va->rb_node, &vmap_area_root);
  262. /* address-sort this list */
  263. tmp = rb_prev(&va->rb_node);
  264. if (tmp) {
  265. struct vmap_area *prev;
  266. prev = rb_entry(tmp, struct vmap_area, rb_node);
  267. list_add_rcu(&va->list, &prev->list);
  268. } else
  269. list_add_rcu(&va->list, &vmap_area_list);
  270. }
  271. static void purge_vmap_area_lazy(void);
  272. /*
  273. * Allocate a region of KVA of the specified size and alignment, within the
  274. * vstart and vend.
  275. */
  276. static struct vmap_area *alloc_vmap_area(unsigned long size,
  277. unsigned long align,
  278. unsigned long vstart, unsigned long vend,
  279. int node, gfp_t gfp_mask)
  280. {
  281. struct vmap_area *va;
  282. struct rb_node *n;
  283. unsigned long addr;
  284. int purged = 0;
  285. struct vmap_area *first;
  286. BUG_ON(!size);
  287. BUG_ON(size & ~PAGE_MASK);
  288. BUG_ON(!is_power_of_2(align));
  289. va = kmalloc_node(sizeof(struct vmap_area),
  290. gfp_mask & GFP_RECLAIM_MASK, node);
  291. if (unlikely(!va))
  292. return ERR_PTR(-ENOMEM);
  293. retry:
  294. spin_lock(&vmap_area_lock);
  295. /*
  296. * Invalidate cache if we have more permissive parameters.
  297. * cached_hole_size notes the largest hole noticed _below_
  298. * the vmap_area cached in free_vmap_cache: if size fits
  299. * into that hole, we want to scan from vstart to reuse
  300. * the hole instead of allocating above free_vmap_cache.
  301. * Note that __free_vmap_area may update free_vmap_cache
  302. * without updating cached_hole_size or cached_align.
  303. */
  304. if (!free_vmap_cache ||
  305. size < cached_hole_size ||
  306. vstart < cached_vstart ||
  307. align < cached_align) {
  308. nocache:
  309. cached_hole_size = 0;
  310. free_vmap_cache = NULL;
  311. }
  312. /* record if we encounter less permissive parameters */
  313. cached_vstart = vstart;
  314. cached_align = align;
  315. /* find starting point for our search */
  316. if (free_vmap_cache) {
  317. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  318. addr = ALIGN(first->va_end, align);
  319. if (addr < vstart)
  320. goto nocache;
  321. if (addr + size - 1 < addr)
  322. goto overflow;
  323. } else {
  324. addr = ALIGN(vstart, align);
  325. if (addr + size - 1 < addr)
  326. goto overflow;
  327. n = vmap_area_root.rb_node;
  328. first = NULL;
  329. while (n) {
  330. struct vmap_area *tmp;
  331. tmp = rb_entry(n, struct vmap_area, rb_node);
  332. if (tmp->va_end >= addr) {
  333. first = tmp;
  334. if (tmp->va_start <= addr)
  335. break;
  336. n = n->rb_left;
  337. } else
  338. n = n->rb_right;
  339. }
  340. if (!first)
  341. goto found;
  342. }
  343. /* from the starting point, walk areas until a suitable hole is found */
  344. while (addr + size > first->va_start && addr + size <= vend) {
  345. if (addr + cached_hole_size < first->va_start)
  346. cached_hole_size = first->va_start - addr;
  347. addr = ALIGN(first->va_end, align);
  348. if (addr + size - 1 < addr)
  349. goto overflow;
  350. if (list_is_last(&first->list, &vmap_area_list))
  351. goto found;
  352. first = list_entry(first->list.next,
  353. struct vmap_area, list);
  354. }
  355. found:
  356. if (addr + size > vend)
  357. goto overflow;
  358. va->va_start = addr;
  359. va->va_end = addr + size;
  360. va->flags = 0;
  361. __insert_vmap_area(va);
  362. free_vmap_cache = &va->rb_node;
  363. spin_unlock(&vmap_area_lock);
  364. BUG_ON(va->va_start & (align-1));
  365. BUG_ON(va->va_start < vstart);
  366. BUG_ON(va->va_end > vend);
  367. return va;
  368. overflow:
  369. spin_unlock(&vmap_area_lock);
  370. if (!purged) {
  371. purge_vmap_area_lazy();
  372. purged = 1;
  373. goto retry;
  374. }
  375. if (printk_ratelimit())
  376. printk(KERN_WARNING
  377. "vmap allocation for size %lu failed: "
  378. "use vmalloc=<size> to increase size.\n", size);
  379. kfree(va);
  380. return ERR_PTR(-EBUSY);
  381. }
  382. static void __free_vmap_area(struct vmap_area *va)
  383. {
  384. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  385. if (free_vmap_cache) {
  386. if (va->va_end < cached_vstart) {
  387. free_vmap_cache = NULL;
  388. } else {
  389. struct vmap_area *cache;
  390. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  391. if (va->va_start <= cache->va_start) {
  392. free_vmap_cache = rb_prev(&va->rb_node);
  393. /*
  394. * We don't try to update cached_hole_size or
  395. * cached_align, but it won't go very wrong.
  396. */
  397. }
  398. }
  399. }
  400. rb_erase(&va->rb_node, &vmap_area_root);
  401. RB_CLEAR_NODE(&va->rb_node);
  402. list_del_rcu(&va->list);
  403. /*
  404. * Track the highest possible candidate for pcpu area
  405. * allocation. Areas outside of vmalloc area can be returned
  406. * here too, consider only end addresses which fall inside
  407. * vmalloc area proper.
  408. */
  409. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  410. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  411. kfree_rcu(va, rcu_head);
  412. }
  413. /*
  414. * Free a region of KVA allocated by alloc_vmap_area
  415. */
  416. static void free_vmap_area(struct vmap_area *va)
  417. {
  418. spin_lock(&vmap_area_lock);
  419. __free_vmap_area(va);
  420. spin_unlock(&vmap_area_lock);
  421. }
  422. /*
  423. * Clear the pagetable entries of a given vmap_area
  424. */
  425. static void unmap_vmap_area(struct vmap_area *va)
  426. {
  427. vunmap_page_range(va->va_start, va->va_end);
  428. }
  429. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  430. {
  431. /*
  432. * Unmap page tables and force a TLB flush immediately if
  433. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  434. * bugs similarly to those in linear kernel virtual address
  435. * space after a page has been freed.
  436. *
  437. * All the lazy freeing logic is still retained, in order to
  438. * minimise intrusiveness of this debugging feature.
  439. *
  440. * This is going to be *slow* (linear kernel virtual address
  441. * debugging doesn't do a broadcast TLB flush so it is a lot
  442. * faster).
  443. */
  444. #ifdef CONFIG_DEBUG_PAGEALLOC
  445. vunmap_page_range(start, end);
  446. flush_tlb_kernel_range(start, end);
  447. #endif
  448. }
  449. /*
  450. * lazy_max_pages is the maximum amount of virtual address space we gather up
  451. * before attempting to purge with a TLB flush.
  452. *
  453. * There is a tradeoff here: a larger number will cover more kernel page tables
  454. * and take slightly longer to purge, but it will linearly reduce the number of
  455. * global TLB flushes that must be performed. It would seem natural to scale
  456. * this number up linearly with the number of CPUs (because vmapping activity
  457. * could also scale linearly with the number of CPUs), however it is likely
  458. * that in practice, workloads might be constrained in other ways that mean
  459. * vmap activity will not scale linearly with CPUs. Also, I want to be
  460. * conservative and not introduce a big latency on huge systems, so go with
  461. * a less aggressive log scale. It will still be an improvement over the old
  462. * code, and it will be simple to change the scale factor if we find that it
  463. * becomes a problem on bigger systems.
  464. */
  465. static unsigned long lazy_max_pages(void)
  466. {
  467. unsigned int log;
  468. log = fls(num_online_cpus());
  469. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  470. }
  471. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  472. /* for per-CPU blocks */
  473. static void purge_fragmented_blocks_allcpus(void);
  474. /*
  475. * called before a call to iounmap() if the caller wants vm_area_struct's
  476. * immediately freed.
  477. */
  478. void set_iounmap_nonlazy(void)
  479. {
  480. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  481. }
  482. /*
  483. * Purges all lazily-freed vmap areas.
  484. *
  485. * If sync is 0 then don't purge if there is already a purge in progress.
  486. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  487. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  488. * their own TLB flushing).
  489. * Returns with *start = min(*start, lowest purged address)
  490. * *end = max(*end, highest purged address)
  491. */
  492. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  493. int sync, int force_flush)
  494. {
  495. static DEFINE_SPINLOCK(purge_lock);
  496. LIST_HEAD(valist);
  497. struct vmap_area *va;
  498. struct vmap_area *n_va;
  499. int nr = 0;
  500. /*
  501. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  502. * should not expect such behaviour. This just simplifies locking for
  503. * the case that isn't actually used at the moment anyway.
  504. */
  505. if (!sync && !force_flush) {
  506. if (!spin_trylock(&purge_lock))
  507. return;
  508. } else
  509. spin_lock(&purge_lock);
  510. if (sync)
  511. purge_fragmented_blocks_allcpus();
  512. rcu_read_lock();
  513. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  514. if (va->flags & VM_LAZY_FREE) {
  515. if (va->va_start < *start)
  516. *start = va->va_start;
  517. if (va->va_end > *end)
  518. *end = va->va_end;
  519. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  520. list_add_tail(&va->purge_list, &valist);
  521. va->flags |= VM_LAZY_FREEING;
  522. va->flags &= ~VM_LAZY_FREE;
  523. }
  524. }
  525. rcu_read_unlock();
  526. if (nr)
  527. atomic_sub(nr, &vmap_lazy_nr);
  528. if (nr || force_flush)
  529. flush_tlb_kernel_range(*start, *end);
  530. if (nr) {
  531. spin_lock(&vmap_area_lock);
  532. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  533. __free_vmap_area(va);
  534. spin_unlock(&vmap_area_lock);
  535. }
  536. spin_unlock(&purge_lock);
  537. }
  538. /*
  539. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  540. * is already purging.
  541. */
  542. static void try_purge_vmap_area_lazy(void)
  543. {
  544. unsigned long start = ULONG_MAX, end = 0;
  545. __purge_vmap_area_lazy(&start, &end, 0, 0);
  546. }
  547. /*
  548. * Kick off a purge of the outstanding lazy areas.
  549. */
  550. static void purge_vmap_area_lazy(void)
  551. {
  552. unsigned long start = ULONG_MAX, end = 0;
  553. __purge_vmap_area_lazy(&start, &end, 1, 0);
  554. }
  555. /*
  556. * Free a vmap area, caller ensuring that the area has been unmapped
  557. * and flush_cache_vunmap had been called for the correct range
  558. * previously.
  559. */
  560. static void free_vmap_area_noflush(struct vmap_area *va)
  561. {
  562. va->flags |= VM_LAZY_FREE;
  563. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  564. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  565. try_purge_vmap_area_lazy();
  566. }
  567. /*
  568. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  569. * called for the correct range previously.
  570. */
  571. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  572. {
  573. unmap_vmap_area(va);
  574. free_vmap_area_noflush(va);
  575. }
  576. /*
  577. * Free and unmap a vmap area
  578. */
  579. static void free_unmap_vmap_area(struct vmap_area *va)
  580. {
  581. flush_cache_vunmap(va->va_start, va->va_end);
  582. free_unmap_vmap_area_noflush(va);
  583. }
  584. static struct vmap_area *find_vmap_area(unsigned long addr)
  585. {
  586. struct vmap_area *va;
  587. spin_lock(&vmap_area_lock);
  588. va = __find_vmap_area(addr);
  589. spin_unlock(&vmap_area_lock);
  590. return va;
  591. }
  592. static void free_unmap_vmap_area_addr(unsigned long addr)
  593. {
  594. struct vmap_area *va;
  595. va = find_vmap_area(addr);
  596. BUG_ON(!va);
  597. free_unmap_vmap_area(va);
  598. }
  599. /*** Per cpu kva allocator ***/
  600. /*
  601. * vmap space is limited especially on 32 bit architectures. Ensure there is
  602. * room for at least 16 percpu vmap blocks per CPU.
  603. */
  604. /*
  605. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  606. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  607. * instead (we just need a rough idea)
  608. */
  609. #if BITS_PER_LONG == 32
  610. #define VMALLOC_SPACE (128UL*1024*1024)
  611. #else
  612. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  613. #endif
  614. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  615. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  616. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  617. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  618. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  619. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  620. #define VMAP_BBMAP_BITS \
  621. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  622. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  623. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  624. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  625. static bool vmap_initialized __read_mostly = false;
  626. struct vmap_block_queue {
  627. spinlock_t lock;
  628. struct list_head free;
  629. };
  630. struct vmap_block {
  631. spinlock_t lock;
  632. struct vmap_area *va;
  633. struct vmap_block_queue *vbq;
  634. unsigned long free, dirty;
  635. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  636. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  637. struct list_head free_list;
  638. struct rcu_head rcu_head;
  639. struct list_head purge;
  640. };
  641. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  642. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  643. /*
  644. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  645. * in the free path. Could get rid of this if we change the API to return a
  646. * "cookie" from alloc, to be passed to free. But no big deal yet.
  647. */
  648. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  649. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  650. /*
  651. * We should probably have a fallback mechanism to allocate virtual memory
  652. * out of partially filled vmap blocks. However vmap block sizing should be
  653. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  654. * big problem.
  655. */
  656. static unsigned long addr_to_vb_idx(unsigned long addr)
  657. {
  658. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  659. addr /= VMAP_BLOCK_SIZE;
  660. return addr;
  661. }
  662. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  663. {
  664. struct vmap_block_queue *vbq;
  665. struct vmap_block *vb;
  666. struct vmap_area *va;
  667. unsigned long vb_idx;
  668. int node, err;
  669. node = numa_node_id();
  670. vb = kmalloc_node(sizeof(struct vmap_block),
  671. gfp_mask & GFP_RECLAIM_MASK, node);
  672. if (unlikely(!vb))
  673. return ERR_PTR(-ENOMEM);
  674. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  675. VMALLOC_START, VMALLOC_END,
  676. node, gfp_mask);
  677. if (IS_ERR(va)) {
  678. kfree(vb);
  679. return ERR_CAST(va);
  680. }
  681. err = radix_tree_preload(gfp_mask);
  682. if (unlikely(err)) {
  683. kfree(vb);
  684. free_vmap_area(va);
  685. return ERR_PTR(err);
  686. }
  687. spin_lock_init(&vb->lock);
  688. vb->va = va;
  689. vb->free = VMAP_BBMAP_BITS;
  690. vb->dirty = 0;
  691. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  692. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  693. INIT_LIST_HEAD(&vb->free_list);
  694. vb_idx = addr_to_vb_idx(va->va_start);
  695. spin_lock(&vmap_block_tree_lock);
  696. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  697. spin_unlock(&vmap_block_tree_lock);
  698. BUG_ON(err);
  699. radix_tree_preload_end();
  700. vbq = &get_cpu_var(vmap_block_queue);
  701. vb->vbq = vbq;
  702. spin_lock(&vbq->lock);
  703. list_add_rcu(&vb->free_list, &vbq->free);
  704. spin_unlock(&vbq->lock);
  705. put_cpu_var(vmap_block_queue);
  706. return vb;
  707. }
  708. static void free_vmap_block(struct vmap_block *vb)
  709. {
  710. struct vmap_block *tmp;
  711. unsigned long vb_idx;
  712. vb_idx = addr_to_vb_idx(vb->va->va_start);
  713. spin_lock(&vmap_block_tree_lock);
  714. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  715. spin_unlock(&vmap_block_tree_lock);
  716. BUG_ON(tmp != vb);
  717. free_vmap_area_noflush(vb->va);
  718. kfree_rcu(vb, rcu_head);
  719. }
  720. static void purge_fragmented_blocks(int cpu)
  721. {
  722. LIST_HEAD(purge);
  723. struct vmap_block *vb;
  724. struct vmap_block *n_vb;
  725. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  726. rcu_read_lock();
  727. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  728. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  729. continue;
  730. spin_lock(&vb->lock);
  731. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  732. vb->free = 0; /* prevent further allocs after releasing lock */
  733. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  734. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  735. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  736. spin_lock(&vbq->lock);
  737. list_del_rcu(&vb->free_list);
  738. spin_unlock(&vbq->lock);
  739. spin_unlock(&vb->lock);
  740. list_add_tail(&vb->purge, &purge);
  741. } else
  742. spin_unlock(&vb->lock);
  743. }
  744. rcu_read_unlock();
  745. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  746. list_del(&vb->purge);
  747. free_vmap_block(vb);
  748. }
  749. }
  750. static void purge_fragmented_blocks_thiscpu(void)
  751. {
  752. purge_fragmented_blocks(smp_processor_id());
  753. }
  754. static void purge_fragmented_blocks_allcpus(void)
  755. {
  756. int cpu;
  757. for_each_possible_cpu(cpu)
  758. purge_fragmented_blocks(cpu);
  759. }
  760. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  761. {
  762. struct vmap_block_queue *vbq;
  763. struct vmap_block *vb;
  764. unsigned long addr = 0;
  765. unsigned int order;
  766. int purge = 0;
  767. BUG_ON(size & ~PAGE_MASK);
  768. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  769. if (WARN_ON(size == 0)) {
  770. /*
  771. * Allocating 0 bytes isn't what caller wants since
  772. * get_order(0) returns funny result. Just warn and terminate
  773. * early.
  774. */
  775. return NULL;
  776. }
  777. order = get_order(size);
  778. again:
  779. rcu_read_lock();
  780. vbq = &get_cpu_var(vmap_block_queue);
  781. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  782. int i;
  783. spin_lock(&vb->lock);
  784. if (vb->free < 1UL << order)
  785. goto next;
  786. i = bitmap_find_free_region(vb->alloc_map,
  787. VMAP_BBMAP_BITS, order);
  788. if (i < 0) {
  789. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  790. /* fragmented and no outstanding allocations */
  791. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  792. purge = 1;
  793. }
  794. goto next;
  795. }
  796. addr = vb->va->va_start + (i << PAGE_SHIFT);
  797. BUG_ON(addr_to_vb_idx(addr) !=
  798. addr_to_vb_idx(vb->va->va_start));
  799. vb->free -= 1UL << order;
  800. if (vb->free == 0) {
  801. spin_lock(&vbq->lock);
  802. list_del_rcu(&vb->free_list);
  803. spin_unlock(&vbq->lock);
  804. }
  805. spin_unlock(&vb->lock);
  806. break;
  807. next:
  808. spin_unlock(&vb->lock);
  809. }
  810. if (purge)
  811. purge_fragmented_blocks_thiscpu();
  812. put_cpu_var(vmap_block_queue);
  813. rcu_read_unlock();
  814. if (!addr) {
  815. vb = new_vmap_block(gfp_mask);
  816. if (IS_ERR(vb))
  817. return vb;
  818. goto again;
  819. }
  820. return (void *)addr;
  821. }
  822. static void vb_free(const void *addr, unsigned long size)
  823. {
  824. unsigned long offset;
  825. unsigned long vb_idx;
  826. unsigned int order;
  827. struct vmap_block *vb;
  828. BUG_ON(size & ~PAGE_MASK);
  829. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  830. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  831. order = get_order(size);
  832. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  833. vb_idx = addr_to_vb_idx((unsigned long)addr);
  834. rcu_read_lock();
  835. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  836. rcu_read_unlock();
  837. BUG_ON(!vb);
  838. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  839. spin_lock(&vb->lock);
  840. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  841. vb->dirty += 1UL << order;
  842. if (vb->dirty == VMAP_BBMAP_BITS) {
  843. BUG_ON(vb->free);
  844. spin_unlock(&vb->lock);
  845. free_vmap_block(vb);
  846. } else
  847. spin_unlock(&vb->lock);
  848. }
  849. /**
  850. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  851. *
  852. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  853. * to amortize TLB flushing overheads. What this means is that any page you
  854. * have now, may, in a former life, have been mapped into kernel virtual
  855. * address by the vmap layer and so there might be some CPUs with TLB entries
  856. * still referencing that page (additional to the regular 1:1 kernel mapping).
  857. *
  858. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  859. * be sure that none of the pages we have control over will have any aliases
  860. * from the vmap layer.
  861. */
  862. void vm_unmap_aliases(void)
  863. {
  864. unsigned long start = ULONG_MAX, end = 0;
  865. int cpu;
  866. int flush = 0;
  867. if (unlikely(!vmap_initialized))
  868. return;
  869. for_each_possible_cpu(cpu) {
  870. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  871. struct vmap_block *vb;
  872. rcu_read_lock();
  873. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  874. int i;
  875. spin_lock(&vb->lock);
  876. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  877. while (i < VMAP_BBMAP_BITS) {
  878. unsigned long s, e;
  879. int j;
  880. j = find_next_zero_bit(vb->dirty_map,
  881. VMAP_BBMAP_BITS, i);
  882. s = vb->va->va_start + (i << PAGE_SHIFT);
  883. e = vb->va->va_start + (j << PAGE_SHIFT);
  884. flush = 1;
  885. if (s < start)
  886. start = s;
  887. if (e > end)
  888. end = e;
  889. i = j;
  890. i = find_next_bit(vb->dirty_map,
  891. VMAP_BBMAP_BITS, i);
  892. }
  893. spin_unlock(&vb->lock);
  894. }
  895. rcu_read_unlock();
  896. }
  897. __purge_vmap_area_lazy(&start, &end, 1, flush);
  898. }
  899. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  900. /**
  901. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  902. * @mem: the pointer returned by vm_map_ram
  903. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  904. */
  905. void vm_unmap_ram(const void *mem, unsigned int count)
  906. {
  907. unsigned long size = count << PAGE_SHIFT;
  908. unsigned long addr = (unsigned long)mem;
  909. BUG_ON(!addr);
  910. BUG_ON(addr < VMALLOC_START);
  911. BUG_ON(addr > VMALLOC_END);
  912. BUG_ON(addr & (PAGE_SIZE-1));
  913. debug_check_no_locks_freed(mem, size);
  914. vmap_debug_free_range(addr, addr+size);
  915. if (likely(count <= VMAP_MAX_ALLOC))
  916. vb_free(mem, size);
  917. else
  918. free_unmap_vmap_area_addr(addr);
  919. }
  920. EXPORT_SYMBOL(vm_unmap_ram);
  921. /**
  922. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  923. * @pages: an array of pointers to the pages to be mapped
  924. * @count: number of pages
  925. * @node: prefer to allocate data structures on this node
  926. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  927. *
  928. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  929. */
  930. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  931. {
  932. unsigned long size = count << PAGE_SHIFT;
  933. unsigned long addr;
  934. void *mem;
  935. if (likely(count <= VMAP_MAX_ALLOC)) {
  936. mem = vb_alloc(size, GFP_KERNEL);
  937. if (IS_ERR(mem))
  938. return NULL;
  939. addr = (unsigned long)mem;
  940. } else {
  941. struct vmap_area *va;
  942. va = alloc_vmap_area(size, PAGE_SIZE,
  943. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  944. if (IS_ERR(va))
  945. return NULL;
  946. addr = va->va_start;
  947. mem = (void *)addr;
  948. }
  949. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  950. vm_unmap_ram(mem, count);
  951. return NULL;
  952. }
  953. return mem;
  954. }
  955. EXPORT_SYMBOL(vm_map_ram);
  956. static struct vm_struct *vmlist __initdata;
  957. /**
  958. * vm_area_add_early - add vmap area early during boot
  959. * @vm: vm_struct to add
  960. *
  961. * This function is used to add fixed kernel vm area to vmlist before
  962. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  963. * should contain proper values and the other fields should be zero.
  964. *
  965. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  966. */
  967. void __init vm_area_add_early(struct vm_struct *vm)
  968. {
  969. struct vm_struct *tmp, **p;
  970. BUG_ON(vmap_initialized);
  971. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  972. if (tmp->addr >= vm->addr) {
  973. BUG_ON(tmp->addr < vm->addr + vm->size);
  974. break;
  975. } else
  976. BUG_ON(tmp->addr + tmp->size > vm->addr);
  977. }
  978. vm->next = *p;
  979. *p = vm;
  980. }
  981. /**
  982. * vm_area_register_early - register vmap area early during boot
  983. * @vm: vm_struct to register
  984. * @align: requested alignment
  985. *
  986. * This function is used to register kernel vm area before
  987. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  988. * proper values on entry and other fields should be zero. On return,
  989. * vm->addr contains the allocated address.
  990. *
  991. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  992. */
  993. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  994. {
  995. static size_t vm_init_off __initdata;
  996. unsigned long addr;
  997. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  998. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  999. vm->addr = (void *)addr;
  1000. vm_area_add_early(vm);
  1001. }
  1002. void __init vmalloc_init(void)
  1003. {
  1004. struct vmap_area *va;
  1005. struct vm_struct *tmp;
  1006. int i;
  1007. for_each_possible_cpu(i) {
  1008. struct vmap_block_queue *vbq;
  1009. vbq = &per_cpu(vmap_block_queue, i);
  1010. spin_lock_init(&vbq->lock);
  1011. INIT_LIST_HEAD(&vbq->free);
  1012. }
  1013. /* Import existing vmlist entries. */
  1014. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1015. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1016. va->flags = VM_VM_AREA;
  1017. va->va_start = (unsigned long)tmp->addr;
  1018. va->va_end = va->va_start + tmp->size;
  1019. va->vm = tmp;
  1020. __insert_vmap_area(va);
  1021. }
  1022. vmap_area_pcpu_hole = VMALLOC_END;
  1023. vmap_initialized = true;
  1024. }
  1025. /**
  1026. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1027. * @addr: start of the VM area to map
  1028. * @size: size of the VM area to map
  1029. * @prot: page protection flags to use
  1030. * @pages: pages to map
  1031. *
  1032. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1033. * specify should have been allocated using get_vm_area() and its
  1034. * friends.
  1035. *
  1036. * NOTE:
  1037. * This function does NOT do any cache flushing. The caller is
  1038. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1039. * before calling this function.
  1040. *
  1041. * RETURNS:
  1042. * The number of pages mapped on success, -errno on failure.
  1043. */
  1044. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1045. pgprot_t prot, struct page **pages)
  1046. {
  1047. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1048. }
  1049. /**
  1050. * unmap_kernel_range_noflush - unmap kernel VM area
  1051. * @addr: start of the VM area to unmap
  1052. * @size: size of the VM area to unmap
  1053. *
  1054. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1055. * specify should have been allocated using get_vm_area() and its
  1056. * friends.
  1057. *
  1058. * NOTE:
  1059. * This function does NOT do any cache flushing. The caller is
  1060. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1061. * before calling this function and flush_tlb_kernel_range() after.
  1062. */
  1063. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1064. {
  1065. vunmap_page_range(addr, addr + size);
  1066. }
  1067. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1068. /**
  1069. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1070. * @addr: start of the VM area to unmap
  1071. * @size: size of the VM area to unmap
  1072. *
  1073. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1074. * the unmapping and tlb after.
  1075. */
  1076. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1077. {
  1078. unsigned long end = addr + size;
  1079. flush_cache_vunmap(addr, end);
  1080. vunmap_page_range(addr, end);
  1081. flush_tlb_kernel_range(addr, end);
  1082. }
  1083. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1084. {
  1085. unsigned long addr = (unsigned long)area->addr;
  1086. unsigned long end = addr + area->size - PAGE_SIZE;
  1087. int err;
  1088. err = vmap_page_range(addr, end, prot, *pages);
  1089. if (err > 0) {
  1090. *pages += err;
  1091. err = 0;
  1092. }
  1093. return err;
  1094. }
  1095. EXPORT_SYMBOL_GPL(map_vm_area);
  1096. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1097. unsigned long flags, const void *caller)
  1098. {
  1099. spin_lock(&vmap_area_lock);
  1100. vm->flags = flags;
  1101. vm->addr = (void *)va->va_start;
  1102. vm->size = va->va_end - va->va_start;
  1103. vm->caller = caller;
  1104. va->vm = vm;
  1105. va->flags |= VM_VM_AREA;
  1106. spin_unlock(&vmap_area_lock);
  1107. }
  1108. static void clear_vm_unlist(struct vm_struct *vm)
  1109. {
  1110. /*
  1111. * Before removing VM_UNLIST,
  1112. * we should make sure that vm has proper values.
  1113. * Pair with smp_rmb() in show_numa_info().
  1114. */
  1115. smp_wmb();
  1116. vm->flags &= ~VM_UNLIST;
  1117. }
  1118. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1119. unsigned long flags, const void *caller)
  1120. {
  1121. setup_vmalloc_vm(vm, va, flags, caller);
  1122. clear_vm_unlist(vm);
  1123. }
  1124. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1125. unsigned long align, unsigned long flags, unsigned long start,
  1126. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1127. {
  1128. struct vmap_area *va;
  1129. struct vm_struct *area;
  1130. BUG_ON(in_interrupt());
  1131. if (flags & VM_IOREMAP) {
  1132. int bit = fls(size);
  1133. if (bit > IOREMAP_MAX_ORDER)
  1134. bit = IOREMAP_MAX_ORDER;
  1135. else if (bit < PAGE_SHIFT)
  1136. bit = PAGE_SHIFT;
  1137. align = 1ul << bit;
  1138. }
  1139. size = PAGE_ALIGN(size);
  1140. if (unlikely(!size))
  1141. return NULL;
  1142. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1143. if (unlikely(!area))
  1144. return NULL;
  1145. /*
  1146. * We always allocate a guard page.
  1147. */
  1148. size += PAGE_SIZE;
  1149. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1150. if (IS_ERR(va)) {
  1151. kfree(area);
  1152. return NULL;
  1153. }
  1154. /*
  1155. * When this function is called from __vmalloc_node_range,
  1156. * we add VM_UNLIST flag to avoid accessing uninitialized
  1157. * members of vm_struct such as pages and nr_pages fields.
  1158. * They will be set later.
  1159. */
  1160. if (flags & VM_UNLIST)
  1161. setup_vmalloc_vm(area, va, flags, caller);
  1162. else
  1163. insert_vmalloc_vm(area, va, flags, caller);
  1164. return area;
  1165. }
  1166. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1167. unsigned long start, unsigned long end)
  1168. {
  1169. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1170. GFP_KERNEL, __builtin_return_address(0));
  1171. }
  1172. EXPORT_SYMBOL_GPL(__get_vm_area);
  1173. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1174. unsigned long start, unsigned long end,
  1175. const void *caller)
  1176. {
  1177. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1178. GFP_KERNEL, caller);
  1179. }
  1180. /**
  1181. * get_vm_area - reserve a contiguous kernel virtual area
  1182. * @size: size of the area
  1183. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1184. *
  1185. * Search an area of @size in the kernel virtual mapping area,
  1186. * and reserved it for out purposes. Returns the area descriptor
  1187. * on success or %NULL on failure.
  1188. */
  1189. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1190. {
  1191. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1192. NUMA_NO_NODE, GFP_KERNEL,
  1193. __builtin_return_address(0));
  1194. }
  1195. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1196. const void *caller)
  1197. {
  1198. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1199. NUMA_NO_NODE, GFP_KERNEL, caller);
  1200. }
  1201. /**
  1202. * find_vm_area - find a continuous kernel virtual area
  1203. * @addr: base address
  1204. *
  1205. * Search for the kernel VM area starting at @addr, and return it.
  1206. * It is up to the caller to do all required locking to keep the returned
  1207. * pointer valid.
  1208. */
  1209. struct vm_struct *find_vm_area(const void *addr)
  1210. {
  1211. struct vmap_area *va;
  1212. va = find_vmap_area((unsigned long)addr);
  1213. if (va && va->flags & VM_VM_AREA)
  1214. return va->vm;
  1215. return NULL;
  1216. }
  1217. /**
  1218. * remove_vm_area - find and remove a continuous kernel virtual area
  1219. * @addr: base address
  1220. *
  1221. * Search for the kernel VM area starting at @addr, and remove it.
  1222. * This function returns the found VM area, but using it is NOT safe
  1223. * on SMP machines, except for its size or flags.
  1224. */
  1225. struct vm_struct *remove_vm_area(const void *addr)
  1226. {
  1227. struct vmap_area *va;
  1228. va = find_vmap_area((unsigned long)addr);
  1229. if (va && va->flags & VM_VM_AREA) {
  1230. struct vm_struct *vm = va->vm;
  1231. spin_lock(&vmap_area_lock);
  1232. va->vm = NULL;
  1233. va->flags &= ~VM_VM_AREA;
  1234. spin_unlock(&vmap_area_lock);
  1235. vmap_debug_free_range(va->va_start, va->va_end);
  1236. free_unmap_vmap_area(va);
  1237. vm->size -= PAGE_SIZE;
  1238. return vm;
  1239. }
  1240. return NULL;
  1241. }
  1242. static void __vunmap(const void *addr, int deallocate_pages)
  1243. {
  1244. struct vm_struct *area;
  1245. if (!addr)
  1246. return;
  1247. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1248. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1249. return;
  1250. }
  1251. area = remove_vm_area(addr);
  1252. if (unlikely(!area)) {
  1253. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1254. addr);
  1255. return;
  1256. }
  1257. debug_check_no_locks_freed(addr, area->size);
  1258. debug_check_no_obj_freed(addr, area->size);
  1259. if (deallocate_pages) {
  1260. int i;
  1261. for (i = 0; i < area->nr_pages; i++) {
  1262. struct page *page = area->pages[i];
  1263. BUG_ON(!page);
  1264. __free_page(page);
  1265. }
  1266. if (area->flags & VM_VPAGES)
  1267. vfree(area->pages);
  1268. else
  1269. kfree(area->pages);
  1270. }
  1271. kfree(area);
  1272. return;
  1273. }
  1274. /**
  1275. * vfree - release memory allocated by vmalloc()
  1276. * @addr: memory base address
  1277. *
  1278. * Free the virtually continuous memory area starting at @addr, as
  1279. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1280. * NULL, no operation is performed.
  1281. *
  1282. * Must not be called in interrupt context.
  1283. */
  1284. void vfree(const void *addr)
  1285. {
  1286. BUG_ON(in_interrupt());
  1287. kmemleak_free(addr);
  1288. __vunmap(addr, 1);
  1289. }
  1290. EXPORT_SYMBOL(vfree);
  1291. /**
  1292. * vunmap - release virtual mapping obtained by vmap()
  1293. * @addr: memory base address
  1294. *
  1295. * Free the virtually contiguous memory area starting at @addr,
  1296. * which was created from the page array passed to vmap().
  1297. *
  1298. * Must not be called in interrupt context.
  1299. */
  1300. void vunmap(const void *addr)
  1301. {
  1302. BUG_ON(in_interrupt());
  1303. might_sleep();
  1304. __vunmap(addr, 0);
  1305. }
  1306. EXPORT_SYMBOL(vunmap);
  1307. /**
  1308. * vmap - map an array of pages into virtually contiguous space
  1309. * @pages: array of page pointers
  1310. * @count: number of pages to map
  1311. * @flags: vm_area->flags
  1312. * @prot: page protection for the mapping
  1313. *
  1314. * Maps @count pages from @pages into contiguous kernel virtual
  1315. * space.
  1316. */
  1317. void *vmap(struct page **pages, unsigned int count,
  1318. unsigned long flags, pgprot_t prot)
  1319. {
  1320. struct vm_struct *area;
  1321. might_sleep();
  1322. if (count > totalram_pages)
  1323. return NULL;
  1324. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1325. __builtin_return_address(0));
  1326. if (!area)
  1327. return NULL;
  1328. if (map_vm_area(area, prot, &pages)) {
  1329. vunmap(area->addr);
  1330. return NULL;
  1331. }
  1332. return area->addr;
  1333. }
  1334. EXPORT_SYMBOL(vmap);
  1335. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1336. gfp_t gfp_mask, pgprot_t prot,
  1337. int node, const void *caller);
  1338. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1339. pgprot_t prot, int node, const void *caller)
  1340. {
  1341. const int order = 0;
  1342. struct page **pages;
  1343. unsigned int nr_pages, array_size, i;
  1344. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1345. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1346. array_size = (nr_pages * sizeof(struct page *));
  1347. area->nr_pages = nr_pages;
  1348. /* Please note that the recursion is strictly bounded. */
  1349. if (array_size > PAGE_SIZE) {
  1350. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1351. PAGE_KERNEL, node, caller);
  1352. area->flags |= VM_VPAGES;
  1353. } else {
  1354. pages = kmalloc_node(array_size, nested_gfp, node);
  1355. }
  1356. area->pages = pages;
  1357. area->caller = caller;
  1358. if (!area->pages) {
  1359. remove_vm_area(area->addr);
  1360. kfree(area);
  1361. return NULL;
  1362. }
  1363. for (i = 0; i < area->nr_pages; i++) {
  1364. struct page *page;
  1365. gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
  1366. if (node < 0)
  1367. page = alloc_page(tmp_mask);
  1368. else
  1369. page = alloc_pages_node(node, tmp_mask, order);
  1370. if (unlikely(!page)) {
  1371. /* Successfully allocated i pages, free them in __vunmap() */
  1372. area->nr_pages = i;
  1373. goto fail;
  1374. }
  1375. area->pages[i] = page;
  1376. }
  1377. if (map_vm_area(area, prot, &pages))
  1378. goto fail;
  1379. return area->addr;
  1380. fail:
  1381. warn_alloc_failed(gfp_mask, order,
  1382. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1383. (area->nr_pages*PAGE_SIZE), area->size);
  1384. vfree(area->addr);
  1385. return NULL;
  1386. }
  1387. /**
  1388. * __vmalloc_node_range - allocate virtually contiguous memory
  1389. * @size: allocation size
  1390. * @align: desired alignment
  1391. * @start: vm area range start
  1392. * @end: vm area range end
  1393. * @gfp_mask: flags for the page level allocator
  1394. * @prot: protection mask for the allocated pages
  1395. * @node: node to use for allocation or NUMA_NO_NODE
  1396. * @caller: caller's return address
  1397. *
  1398. * Allocate enough pages to cover @size from the page level
  1399. * allocator with @gfp_mask flags. Map them into contiguous
  1400. * kernel virtual space, using a pagetable protection of @prot.
  1401. */
  1402. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1403. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1404. pgprot_t prot, int node, const void *caller)
  1405. {
  1406. struct vm_struct *area;
  1407. void *addr;
  1408. unsigned long real_size = size;
  1409. size = PAGE_ALIGN(size);
  1410. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1411. goto fail;
  1412. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
  1413. start, end, node, gfp_mask, caller);
  1414. if (!area)
  1415. goto fail;
  1416. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1417. if (!addr)
  1418. return NULL;
  1419. /*
  1420. * In this function, newly allocated vm_struct has VM_UNLIST flag.
  1421. * It means that vm_struct is not fully initialized.
  1422. * Now, it is fully initialized, so remove this flag here.
  1423. */
  1424. clear_vm_unlist(area);
  1425. /*
  1426. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1427. * structures allocated in the __get_vm_area_node() function contain
  1428. * references to the virtual address of the vmalloc'ed block.
  1429. */
  1430. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1431. return addr;
  1432. fail:
  1433. warn_alloc_failed(gfp_mask, 0,
  1434. "vmalloc: allocation failure: %lu bytes\n",
  1435. real_size);
  1436. return NULL;
  1437. }
  1438. /**
  1439. * __vmalloc_node - allocate virtually contiguous memory
  1440. * @size: allocation size
  1441. * @align: desired alignment
  1442. * @gfp_mask: flags for the page level allocator
  1443. * @prot: protection mask for the allocated pages
  1444. * @node: node to use for allocation or NUMA_NO_NODE
  1445. * @caller: caller's return address
  1446. *
  1447. * Allocate enough pages to cover @size from the page level
  1448. * allocator with @gfp_mask flags. Map them into contiguous
  1449. * kernel virtual space, using a pagetable protection of @prot.
  1450. */
  1451. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1452. gfp_t gfp_mask, pgprot_t prot,
  1453. int node, const void *caller)
  1454. {
  1455. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1456. gfp_mask, prot, node, caller);
  1457. }
  1458. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1459. {
  1460. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1461. __builtin_return_address(0));
  1462. }
  1463. EXPORT_SYMBOL(__vmalloc);
  1464. static inline void *__vmalloc_node_flags(unsigned long size,
  1465. int node, gfp_t flags)
  1466. {
  1467. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1468. node, __builtin_return_address(0));
  1469. }
  1470. /**
  1471. * vmalloc - allocate virtually contiguous memory
  1472. * @size: allocation size
  1473. * Allocate enough pages to cover @size from the page level
  1474. * allocator and map them into contiguous kernel virtual space.
  1475. *
  1476. * For tight control over page level allocator and protection flags
  1477. * use __vmalloc() instead.
  1478. */
  1479. void *vmalloc(unsigned long size)
  1480. {
  1481. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1482. GFP_KERNEL | __GFP_HIGHMEM);
  1483. }
  1484. EXPORT_SYMBOL(vmalloc);
  1485. /**
  1486. * vzalloc - allocate virtually contiguous memory with zero fill
  1487. * @size: allocation size
  1488. * Allocate enough pages to cover @size from the page level
  1489. * allocator and map them into contiguous kernel virtual space.
  1490. * The memory allocated is set to zero.
  1491. *
  1492. * For tight control over page level allocator and protection flags
  1493. * use __vmalloc() instead.
  1494. */
  1495. void *vzalloc(unsigned long size)
  1496. {
  1497. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1498. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1499. }
  1500. EXPORT_SYMBOL(vzalloc);
  1501. /**
  1502. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1503. * @size: allocation size
  1504. *
  1505. * The resulting memory area is zeroed so it can be mapped to userspace
  1506. * without leaking data.
  1507. */
  1508. void *vmalloc_user(unsigned long size)
  1509. {
  1510. struct vm_struct *area;
  1511. void *ret;
  1512. ret = __vmalloc_node(size, SHMLBA,
  1513. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1514. PAGE_KERNEL, NUMA_NO_NODE,
  1515. __builtin_return_address(0));
  1516. if (ret) {
  1517. area = find_vm_area(ret);
  1518. area->flags |= VM_USERMAP;
  1519. }
  1520. return ret;
  1521. }
  1522. EXPORT_SYMBOL(vmalloc_user);
  1523. /**
  1524. * vmalloc_node - allocate memory on a specific node
  1525. * @size: allocation size
  1526. * @node: numa node
  1527. *
  1528. * Allocate enough pages to cover @size from the page level
  1529. * allocator and map them into contiguous kernel virtual space.
  1530. *
  1531. * For tight control over page level allocator and protection flags
  1532. * use __vmalloc() instead.
  1533. */
  1534. void *vmalloc_node(unsigned long size, int node)
  1535. {
  1536. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1537. node, __builtin_return_address(0));
  1538. }
  1539. EXPORT_SYMBOL(vmalloc_node);
  1540. /**
  1541. * vzalloc_node - allocate memory on a specific node with zero fill
  1542. * @size: allocation size
  1543. * @node: numa node
  1544. *
  1545. * Allocate enough pages to cover @size from the page level
  1546. * allocator and map them into contiguous kernel virtual space.
  1547. * The memory allocated is set to zero.
  1548. *
  1549. * For tight control over page level allocator and protection flags
  1550. * use __vmalloc_node() instead.
  1551. */
  1552. void *vzalloc_node(unsigned long size, int node)
  1553. {
  1554. return __vmalloc_node_flags(size, node,
  1555. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1556. }
  1557. EXPORT_SYMBOL(vzalloc_node);
  1558. #ifndef PAGE_KERNEL_EXEC
  1559. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1560. #endif
  1561. /**
  1562. * vmalloc_exec - allocate virtually contiguous, executable memory
  1563. * @size: allocation size
  1564. *
  1565. * Kernel-internal function to allocate enough pages to cover @size
  1566. * the page level allocator and map them into contiguous and
  1567. * executable kernel virtual space.
  1568. *
  1569. * For tight control over page level allocator and protection flags
  1570. * use __vmalloc() instead.
  1571. */
  1572. void *vmalloc_exec(unsigned long size)
  1573. {
  1574. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1575. NUMA_NO_NODE, __builtin_return_address(0));
  1576. }
  1577. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1578. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1579. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1580. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1581. #else
  1582. #define GFP_VMALLOC32 GFP_KERNEL
  1583. #endif
  1584. /**
  1585. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1586. * @size: allocation size
  1587. *
  1588. * Allocate enough 32bit PA addressable pages to cover @size from the
  1589. * page level allocator and map them into contiguous kernel virtual space.
  1590. */
  1591. void *vmalloc_32(unsigned long size)
  1592. {
  1593. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1594. NUMA_NO_NODE, __builtin_return_address(0));
  1595. }
  1596. EXPORT_SYMBOL(vmalloc_32);
  1597. /**
  1598. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1599. * @size: allocation size
  1600. *
  1601. * The resulting memory area is 32bit addressable and zeroed so it can be
  1602. * mapped to userspace without leaking data.
  1603. */
  1604. void *vmalloc_32_user(unsigned long size)
  1605. {
  1606. struct vm_struct *area;
  1607. void *ret;
  1608. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1609. NUMA_NO_NODE, __builtin_return_address(0));
  1610. if (ret) {
  1611. area = find_vm_area(ret);
  1612. area->flags |= VM_USERMAP;
  1613. }
  1614. return ret;
  1615. }
  1616. EXPORT_SYMBOL(vmalloc_32_user);
  1617. /*
  1618. * small helper routine , copy contents to buf from addr.
  1619. * If the page is not present, fill zero.
  1620. */
  1621. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1622. {
  1623. struct page *p;
  1624. int copied = 0;
  1625. while (count) {
  1626. unsigned long offset, length;
  1627. offset = (unsigned long)addr & ~PAGE_MASK;
  1628. length = PAGE_SIZE - offset;
  1629. if (length > count)
  1630. length = count;
  1631. p = vmalloc_to_page(addr);
  1632. /*
  1633. * To do safe access to this _mapped_ area, we need
  1634. * lock. But adding lock here means that we need to add
  1635. * overhead of vmalloc()/vfree() calles for this _debug_
  1636. * interface, rarely used. Instead of that, we'll use
  1637. * kmap() and get small overhead in this access function.
  1638. */
  1639. if (p) {
  1640. /*
  1641. * we can expect USER0 is not used (see vread/vwrite's
  1642. * function description)
  1643. */
  1644. void *map = kmap_atomic(p);
  1645. memcpy(buf, map + offset, length);
  1646. kunmap_atomic(map);
  1647. } else
  1648. memset(buf, 0, length);
  1649. addr += length;
  1650. buf += length;
  1651. copied += length;
  1652. count -= length;
  1653. }
  1654. return copied;
  1655. }
  1656. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1657. {
  1658. struct page *p;
  1659. int copied = 0;
  1660. while (count) {
  1661. unsigned long offset, length;
  1662. offset = (unsigned long)addr & ~PAGE_MASK;
  1663. length = PAGE_SIZE - offset;
  1664. if (length > count)
  1665. length = count;
  1666. p = vmalloc_to_page(addr);
  1667. /*
  1668. * To do safe access to this _mapped_ area, we need
  1669. * lock. But adding lock here means that we need to add
  1670. * overhead of vmalloc()/vfree() calles for this _debug_
  1671. * interface, rarely used. Instead of that, we'll use
  1672. * kmap() and get small overhead in this access function.
  1673. */
  1674. if (p) {
  1675. /*
  1676. * we can expect USER0 is not used (see vread/vwrite's
  1677. * function description)
  1678. */
  1679. void *map = kmap_atomic(p);
  1680. memcpy(map + offset, buf, length);
  1681. kunmap_atomic(map);
  1682. }
  1683. addr += length;
  1684. buf += length;
  1685. copied += length;
  1686. count -= length;
  1687. }
  1688. return copied;
  1689. }
  1690. /**
  1691. * vread() - read vmalloc area in a safe way.
  1692. * @buf: buffer for reading data
  1693. * @addr: vm address.
  1694. * @count: number of bytes to be read.
  1695. *
  1696. * Returns # of bytes which addr and buf should be increased.
  1697. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1698. * includes any intersect with alive vmalloc area.
  1699. *
  1700. * This function checks that addr is a valid vmalloc'ed area, and
  1701. * copy data from that area to a given buffer. If the given memory range
  1702. * of [addr...addr+count) includes some valid address, data is copied to
  1703. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1704. * IOREMAP area is treated as memory hole and no copy is done.
  1705. *
  1706. * If [addr...addr+count) doesn't includes any intersects with alive
  1707. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1708. *
  1709. * Note: In usual ops, vread() is never necessary because the caller
  1710. * should know vmalloc() area is valid and can use memcpy().
  1711. * This is for routines which have to access vmalloc area without
  1712. * any informaion, as /dev/kmem.
  1713. *
  1714. */
  1715. long vread(char *buf, char *addr, unsigned long count)
  1716. {
  1717. struct vmap_area *va;
  1718. struct vm_struct *vm;
  1719. char *vaddr, *buf_start = buf;
  1720. unsigned long buflen = count;
  1721. unsigned long n;
  1722. /* Don't allow overflow */
  1723. if ((unsigned long) addr + count < count)
  1724. count = -(unsigned long) addr;
  1725. spin_lock(&vmap_area_lock);
  1726. list_for_each_entry(va, &vmap_area_list, list) {
  1727. if (!count)
  1728. break;
  1729. if (!(va->flags & VM_VM_AREA))
  1730. continue;
  1731. vm = va->vm;
  1732. vaddr = (char *) vm->addr;
  1733. if (addr >= vaddr + vm->size - PAGE_SIZE)
  1734. continue;
  1735. while (addr < vaddr) {
  1736. if (count == 0)
  1737. goto finished;
  1738. *buf = '\0';
  1739. buf++;
  1740. addr++;
  1741. count--;
  1742. }
  1743. n = vaddr + vm->size - PAGE_SIZE - addr;
  1744. if (n > count)
  1745. n = count;
  1746. if (!(vm->flags & VM_IOREMAP))
  1747. aligned_vread(buf, addr, n);
  1748. else /* IOREMAP area is treated as memory hole */
  1749. memset(buf, 0, n);
  1750. buf += n;
  1751. addr += n;
  1752. count -= n;
  1753. }
  1754. finished:
  1755. spin_unlock(&vmap_area_lock);
  1756. if (buf == buf_start)
  1757. return 0;
  1758. /* zero-fill memory holes */
  1759. if (buf != buf_start + buflen)
  1760. memset(buf, 0, buflen - (buf - buf_start));
  1761. return buflen;
  1762. }
  1763. /**
  1764. * vwrite() - write vmalloc area in a safe way.
  1765. * @buf: buffer for source data
  1766. * @addr: vm address.
  1767. * @count: number of bytes to be read.
  1768. *
  1769. * Returns # of bytes which addr and buf should be incresed.
  1770. * (same number to @count).
  1771. * If [addr...addr+count) doesn't includes any intersect with valid
  1772. * vmalloc area, returns 0.
  1773. *
  1774. * This function checks that addr is a valid vmalloc'ed area, and
  1775. * copy data from a buffer to the given addr. If specified range of
  1776. * [addr...addr+count) includes some valid address, data is copied from
  1777. * proper area of @buf. If there are memory holes, no copy to hole.
  1778. * IOREMAP area is treated as memory hole and no copy is done.
  1779. *
  1780. * If [addr...addr+count) doesn't includes any intersects with alive
  1781. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1782. *
  1783. * Note: In usual ops, vwrite() is never necessary because the caller
  1784. * should know vmalloc() area is valid and can use memcpy().
  1785. * This is for routines which have to access vmalloc area without
  1786. * any informaion, as /dev/kmem.
  1787. */
  1788. long vwrite(char *buf, char *addr, unsigned long count)
  1789. {
  1790. struct vmap_area *va;
  1791. struct vm_struct *vm;
  1792. char *vaddr;
  1793. unsigned long n, buflen;
  1794. int copied = 0;
  1795. /* Don't allow overflow */
  1796. if ((unsigned long) addr + count < count)
  1797. count = -(unsigned long) addr;
  1798. buflen = count;
  1799. spin_lock(&vmap_area_lock);
  1800. list_for_each_entry(va, &vmap_area_list, list) {
  1801. if (!count)
  1802. break;
  1803. if (!(va->flags & VM_VM_AREA))
  1804. continue;
  1805. vm = va->vm;
  1806. vaddr = (char *) vm->addr;
  1807. if (addr >= vaddr + vm->size - PAGE_SIZE)
  1808. continue;
  1809. while (addr < vaddr) {
  1810. if (count == 0)
  1811. goto finished;
  1812. buf++;
  1813. addr++;
  1814. count--;
  1815. }
  1816. n = vaddr + vm->size - PAGE_SIZE - addr;
  1817. if (n > count)
  1818. n = count;
  1819. if (!(vm->flags & VM_IOREMAP)) {
  1820. aligned_vwrite(buf, addr, n);
  1821. copied++;
  1822. }
  1823. buf += n;
  1824. addr += n;
  1825. count -= n;
  1826. }
  1827. finished:
  1828. spin_unlock(&vmap_area_lock);
  1829. if (!copied)
  1830. return 0;
  1831. return buflen;
  1832. }
  1833. /**
  1834. * remap_vmalloc_range - map vmalloc pages to userspace
  1835. * @vma: vma to cover (map full range of vma)
  1836. * @addr: vmalloc memory
  1837. * @pgoff: number of pages into addr before first page to map
  1838. *
  1839. * Returns: 0 for success, -Exxx on failure
  1840. *
  1841. * This function checks that addr is a valid vmalloc'ed area, and
  1842. * that it is big enough to cover the vma. Will return failure if
  1843. * that criteria isn't met.
  1844. *
  1845. * Similar to remap_pfn_range() (see mm/memory.c)
  1846. */
  1847. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1848. unsigned long pgoff)
  1849. {
  1850. struct vm_struct *area;
  1851. unsigned long uaddr = vma->vm_start;
  1852. unsigned long usize = vma->vm_end - vma->vm_start;
  1853. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1854. return -EINVAL;
  1855. area = find_vm_area(addr);
  1856. if (!area)
  1857. return -EINVAL;
  1858. if (!(area->flags & VM_USERMAP))
  1859. return -EINVAL;
  1860. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1861. return -EINVAL;
  1862. addr += pgoff << PAGE_SHIFT;
  1863. do {
  1864. struct page *page = vmalloc_to_page(addr);
  1865. int ret;
  1866. ret = vm_insert_page(vma, uaddr, page);
  1867. if (ret)
  1868. return ret;
  1869. uaddr += PAGE_SIZE;
  1870. addr += PAGE_SIZE;
  1871. usize -= PAGE_SIZE;
  1872. } while (usize > 0);
  1873. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1874. return 0;
  1875. }
  1876. EXPORT_SYMBOL(remap_vmalloc_range);
  1877. /*
  1878. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1879. * have one.
  1880. */
  1881. void __attribute__((weak)) vmalloc_sync_all(void)
  1882. {
  1883. }
  1884. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1885. {
  1886. pte_t ***p = data;
  1887. if (p) {
  1888. *(*p) = pte;
  1889. (*p)++;
  1890. }
  1891. return 0;
  1892. }
  1893. /**
  1894. * alloc_vm_area - allocate a range of kernel address space
  1895. * @size: size of the area
  1896. * @ptes: returns the PTEs for the address space
  1897. *
  1898. * Returns: NULL on failure, vm_struct on success
  1899. *
  1900. * This function reserves a range of kernel address space, and
  1901. * allocates pagetables to map that range. No actual mappings
  1902. * are created.
  1903. *
  1904. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1905. * allocated for the VM area are returned.
  1906. */
  1907. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1908. {
  1909. struct vm_struct *area;
  1910. area = get_vm_area_caller(size, VM_IOREMAP,
  1911. __builtin_return_address(0));
  1912. if (area == NULL)
  1913. return NULL;
  1914. /*
  1915. * This ensures that page tables are constructed for this region
  1916. * of kernel virtual address space and mapped into init_mm.
  1917. */
  1918. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1919. size, f, ptes ? &ptes : NULL)) {
  1920. free_vm_area(area);
  1921. return NULL;
  1922. }
  1923. return area;
  1924. }
  1925. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1926. void free_vm_area(struct vm_struct *area)
  1927. {
  1928. struct vm_struct *ret;
  1929. ret = remove_vm_area(area->addr);
  1930. BUG_ON(ret != area);
  1931. kfree(area);
  1932. }
  1933. EXPORT_SYMBOL_GPL(free_vm_area);
  1934. #ifdef CONFIG_SMP
  1935. static struct vmap_area *node_to_va(struct rb_node *n)
  1936. {
  1937. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1938. }
  1939. /**
  1940. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1941. * @end: target address
  1942. * @pnext: out arg for the next vmap_area
  1943. * @pprev: out arg for the previous vmap_area
  1944. *
  1945. * Returns: %true if either or both of next and prev are found,
  1946. * %false if no vmap_area exists
  1947. *
  1948. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1949. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1950. */
  1951. static bool pvm_find_next_prev(unsigned long end,
  1952. struct vmap_area **pnext,
  1953. struct vmap_area **pprev)
  1954. {
  1955. struct rb_node *n = vmap_area_root.rb_node;
  1956. struct vmap_area *va = NULL;
  1957. while (n) {
  1958. va = rb_entry(n, struct vmap_area, rb_node);
  1959. if (end < va->va_end)
  1960. n = n->rb_left;
  1961. else if (end > va->va_end)
  1962. n = n->rb_right;
  1963. else
  1964. break;
  1965. }
  1966. if (!va)
  1967. return false;
  1968. if (va->va_end > end) {
  1969. *pnext = va;
  1970. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1971. } else {
  1972. *pprev = va;
  1973. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1974. }
  1975. return true;
  1976. }
  1977. /**
  1978. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1979. * @pnext: in/out arg for the next vmap_area
  1980. * @pprev: in/out arg for the previous vmap_area
  1981. * @align: alignment
  1982. *
  1983. * Returns: determined end address
  1984. *
  1985. * Find the highest aligned address between *@pnext and *@pprev below
  1986. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1987. * down address is between the end addresses of the two vmap_areas.
  1988. *
  1989. * Please note that the address returned by this function may fall
  1990. * inside *@pnext vmap_area. The caller is responsible for checking
  1991. * that.
  1992. */
  1993. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1994. struct vmap_area **pprev,
  1995. unsigned long align)
  1996. {
  1997. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1998. unsigned long addr;
  1999. if (*pnext)
  2000. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2001. else
  2002. addr = vmalloc_end;
  2003. while (*pprev && (*pprev)->va_end > addr) {
  2004. *pnext = *pprev;
  2005. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2006. }
  2007. return addr;
  2008. }
  2009. /**
  2010. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2011. * @offsets: array containing offset of each area
  2012. * @sizes: array containing size of each area
  2013. * @nr_vms: the number of areas to allocate
  2014. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2015. *
  2016. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2017. * vm_structs on success, %NULL on failure
  2018. *
  2019. * Percpu allocator wants to use congruent vm areas so that it can
  2020. * maintain the offsets among percpu areas. This function allocates
  2021. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2022. * be scattered pretty far, distance between two areas easily going up
  2023. * to gigabytes. To avoid interacting with regular vmallocs, these
  2024. * areas are allocated from top.
  2025. *
  2026. * Despite its complicated look, this allocator is rather simple. It
  2027. * does everything top-down and scans areas from the end looking for
  2028. * matching slot. While scanning, if any of the areas overlaps with
  2029. * existing vmap_area, the base address is pulled down to fit the
  2030. * area. Scanning is repeated till all the areas fit and then all
  2031. * necessary data structres are inserted and the result is returned.
  2032. */
  2033. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2034. const size_t *sizes, int nr_vms,
  2035. size_t align)
  2036. {
  2037. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2038. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2039. struct vmap_area **vas, *prev, *next;
  2040. struct vm_struct **vms;
  2041. int area, area2, last_area, term_area;
  2042. unsigned long base, start, end, last_end;
  2043. bool purged = false;
  2044. /* verify parameters and allocate data structures */
  2045. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2046. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2047. start = offsets[area];
  2048. end = start + sizes[area];
  2049. /* is everything aligned properly? */
  2050. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2051. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2052. /* detect the area with the highest address */
  2053. if (start > offsets[last_area])
  2054. last_area = area;
  2055. for (area2 = 0; area2 < nr_vms; area2++) {
  2056. unsigned long start2 = offsets[area2];
  2057. unsigned long end2 = start2 + sizes[area2];
  2058. if (area2 == area)
  2059. continue;
  2060. BUG_ON(start2 >= start && start2 < end);
  2061. BUG_ON(end2 <= end && end2 > start);
  2062. }
  2063. }
  2064. last_end = offsets[last_area] + sizes[last_area];
  2065. if (vmalloc_end - vmalloc_start < last_end) {
  2066. WARN_ON(true);
  2067. return NULL;
  2068. }
  2069. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2070. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2071. if (!vas || !vms)
  2072. goto err_free2;
  2073. for (area = 0; area < nr_vms; area++) {
  2074. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2075. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2076. if (!vas[area] || !vms[area])
  2077. goto err_free;
  2078. }
  2079. retry:
  2080. spin_lock(&vmap_area_lock);
  2081. /* start scanning - we scan from the top, begin with the last area */
  2082. area = term_area = last_area;
  2083. start = offsets[area];
  2084. end = start + sizes[area];
  2085. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2086. base = vmalloc_end - last_end;
  2087. goto found;
  2088. }
  2089. base = pvm_determine_end(&next, &prev, align) - end;
  2090. while (true) {
  2091. BUG_ON(next && next->va_end <= base + end);
  2092. BUG_ON(prev && prev->va_end > base + end);
  2093. /*
  2094. * base might have underflowed, add last_end before
  2095. * comparing.
  2096. */
  2097. if (base + last_end < vmalloc_start + last_end) {
  2098. spin_unlock(&vmap_area_lock);
  2099. if (!purged) {
  2100. purge_vmap_area_lazy();
  2101. purged = true;
  2102. goto retry;
  2103. }
  2104. goto err_free;
  2105. }
  2106. /*
  2107. * If next overlaps, move base downwards so that it's
  2108. * right below next and then recheck.
  2109. */
  2110. if (next && next->va_start < base + end) {
  2111. base = pvm_determine_end(&next, &prev, align) - end;
  2112. term_area = area;
  2113. continue;
  2114. }
  2115. /*
  2116. * If prev overlaps, shift down next and prev and move
  2117. * base so that it's right below new next and then
  2118. * recheck.
  2119. */
  2120. if (prev && prev->va_end > base + start) {
  2121. next = prev;
  2122. prev = node_to_va(rb_prev(&next->rb_node));
  2123. base = pvm_determine_end(&next, &prev, align) - end;
  2124. term_area = area;
  2125. continue;
  2126. }
  2127. /*
  2128. * This area fits, move on to the previous one. If
  2129. * the previous one is the terminal one, we're done.
  2130. */
  2131. area = (area + nr_vms - 1) % nr_vms;
  2132. if (area == term_area)
  2133. break;
  2134. start = offsets[area];
  2135. end = start + sizes[area];
  2136. pvm_find_next_prev(base + end, &next, &prev);
  2137. }
  2138. found:
  2139. /* we've found a fitting base, insert all va's */
  2140. for (area = 0; area < nr_vms; area++) {
  2141. struct vmap_area *va = vas[area];
  2142. va->va_start = base + offsets[area];
  2143. va->va_end = va->va_start + sizes[area];
  2144. __insert_vmap_area(va);
  2145. }
  2146. vmap_area_pcpu_hole = base + offsets[last_area];
  2147. spin_unlock(&vmap_area_lock);
  2148. /* insert all vm's */
  2149. for (area = 0; area < nr_vms; area++)
  2150. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2151. pcpu_get_vm_areas);
  2152. kfree(vas);
  2153. return vms;
  2154. err_free:
  2155. for (area = 0; area < nr_vms; area++) {
  2156. kfree(vas[area]);
  2157. kfree(vms[area]);
  2158. }
  2159. err_free2:
  2160. kfree(vas);
  2161. kfree(vms);
  2162. return NULL;
  2163. }
  2164. /**
  2165. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2166. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2167. * @nr_vms: the number of allocated areas
  2168. *
  2169. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2170. */
  2171. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2172. {
  2173. int i;
  2174. for (i = 0; i < nr_vms; i++)
  2175. free_vm_area(vms[i]);
  2176. kfree(vms);
  2177. }
  2178. #endif /* CONFIG_SMP */
  2179. #ifdef CONFIG_PROC_FS
  2180. static void *s_start(struct seq_file *m, loff_t *pos)
  2181. __acquires(&vmap_area_lock)
  2182. {
  2183. loff_t n = *pos;
  2184. struct vmap_area *va;
  2185. spin_lock(&vmap_area_lock);
  2186. va = list_entry((&vmap_area_list)->next, typeof(*va), list);
  2187. while (n > 0 && &va->list != &vmap_area_list) {
  2188. n--;
  2189. va = list_entry(va->list.next, typeof(*va), list);
  2190. }
  2191. if (!n && &va->list != &vmap_area_list)
  2192. return va;
  2193. return NULL;
  2194. }
  2195. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2196. {
  2197. struct vmap_area *va = p, *next;
  2198. ++*pos;
  2199. next = list_entry(va->list.next, typeof(*va), list);
  2200. if (&next->list != &vmap_area_list)
  2201. return next;
  2202. return NULL;
  2203. }
  2204. static void s_stop(struct seq_file *m, void *p)
  2205. __releases(&vmap_area_lock)
  2206. {
  2207. spin_unlock(&vmap_area_lock);
  2208. }
  2209. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2210. {
  2211. if (IS_ENABLED(CONFIG_NUMA)) {
  2212. unsigned int nr, *counters = m->private;
  2213. if (!counters)
  2214. return;
  2215. /* Pair with smp_wmb() in clear_vm_unlist() */
  2216. smp_rmb();
  2217. if (v->flags & VM_UNLIST)
  2218. return;
  2219. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2220. for (nr = 0; nr < v->nr_pages; nr++)
  2221. counters[page_to_nid(v->pages[nr])]++;
  2222. for_each_node_state(nr, N_HIGH_MEMORY)
  2223. if (counters[nr])
  2224. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2225. }
  2226. }
  2227. static int s_show(struct seq_file *m, void *p)
  2228. {
  2229. struct vmap_area *va = p;
  2230. struct vm_struct *v;
  2231. if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
  2232. return 0;
  2233. if (!(va->flags & VM_VM_AREA)) {
  2234. seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
  2235. (void *)va->va_start, (void *)va->va_end,
  2236. va->va_end - va->va_start);
  2237. return 0;
  2238. }
  2239. v = va->vm;
  2240. seq_printf(m, "0x%pK-0x%pK %7ld",
  2241. v->addr, v->addr + v->size, v->size);
  2242. if (v->caller)
  2243. seq_printf(m, " %pS", v->caller);
  2244. if (v->nr_pages)
  2245. seq_printf(m, " pages=%d", v->nr_pages);
  2246. if (v->phys_addr)
  2247. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2248. if (v->flags & VM_IOREMAP)
  2249. seq_printf(m, " ioremap");
  2250. if (v->flags & VM_ALLOC)
  2251. seq_printf(m, " vmalloc");
  2252. if (v->flags & VM_MAP)
  2253. seq_printf(m, " vmap");
  2254. if (v->flags & VM_USERMAP)
  2255. seq_printf(m, " user");
  2256. if (v->flags & VM_VPAGES)
  2257. seq_printf(m, " vpages");
  2258. show_numa_info(m, v);
  2259. seq_putc(m, '\n');
  2260. return 0;
  2261. }
  2262. static const struct seq_operations vmalloc_op = {
  2263. .start = s_start,
  2264. .next = s_next,
  2265. .stop = s_stop,
  2266. .show = s_show,
  2267. };
  2268. static int vmalloc_open(struct inode *inode, struct file *file)
  2269. {
  2270. unsigned int *ptr = NULL;
  2271. int ret;
  2272. if (IS_ENABLED(CONFIG_NUMA)) {
  2273. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2274. if (ptr == NULL)
  2275. return -ENOMEM;
  2276. }
  2277. ret = seq_open(file, &vmalloc_op);
  2278. if (!ret) {
  2279. struct seq_file *m = file->private_data;
  2280. m->private = ptr;
  2281. } else
  2282. kfree(ptr);
  2283. return ret;
  2284. }
  2285. static const struct file_operations proc_vmalloc_operations = {
  2286. .open = vmalloc_open,
  2287. .read = seq_read,
  2288. .llseek = seq_lseek,
  2289. .release = seq_release_private,
  2290. };
  2291. static int __init proc_vmalloc_init(void)
  2292. {
  2293. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2294. return 0;
  2295. }
  2296. module_init(proc_vmalloc_init);
  2297. void get_vmalloc_info(struct vmalloc_info *vmi)
  2298. {
  2299. struct vmap_area *va;
  2300. unsigned long free_area_size;
  2301. unsigned long prev_end;
  2302. vmi->used = 0;
  2303. vmi->largest_chunk = 0;
  2304. prev_end = VMALLOC_START;
  2305. spin_lock(&vmap_area_lock);
  2306. if (list_empty(&vmap_area_list)) {
  2307. vmi->largest_chunk = VMALLOC_TOTAL;
  2308. goto out;
  2309. }
  2310. list_for_each_entry(va, &vmap_area_list, list) {
  2311. unsigned long addr = va->va_start;
  2312. /*
  2313. * Some archs keep another range for modules in vmalloc space
  2314. */
  2315. if (addr < VMALLOC_START)
  2316. continue;
  2317. if (addr >= VMALLOC_END)
  2318. break;
  2319. if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
  2320. continue;
  2321. vmi->used += (va->va_end - va->va_start);
  2322. free_area_size = addr - prev_end;
  2323. if (vmi->largest_chunk < free_area_size)
  2324. vmi->largest_chunk = free_area_size;
  2325. prev_end = va->va_end;
  2326. }
  2327. if (VMALLOC_END - prev_end > vmi->largest_chunk)
  2328. vmi->largest_chunk = VMALLOC_END - prev_end;
  2329. out:
  2330. spin_unlock(&vmap_area_lock);
  2331. }
  2332. #endif