swiotlb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/export.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <linux/gfp.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/scatterlist.h>
  34. #include <linux/init.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/iommu-helper.h>
  37. #define OFFSET(val,align) ((unsigned long) \
  38. ( (val) & ( (align) - 1)))
  39. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  40. /*
  41. * Minimum IO TLB size to bother booting with. Systems with mainly
  42. * 64bit capable cards will only lightly use the swiotlb. If we can't
  43. * allocate a contiguous 1MB, we're probably in trouble anyway.
  44. */
  45. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  46. int swiotlb_force;
  47. /*
  48. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  49. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  50. * API.
  51. */
  52. static phys_addr_t io_tlb_start, io_tlb_end;
  53. /*
  54. * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  55. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  56. */
  57. static unsigned long io_tlb_nslabs;
  58. /*
  59. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  60. */
  61. static unsigned long io_tlb_overflow = 32*1024;
  62. static phys_addr_t io_tlb_overflow_buffer;
  63. /*
  64. * This is a free list describing the number of free entries available from
  65. * each index
  66. */
  67. static unsigned int *io_tlb_list;
  68. static unsigned int io_tlb_index;
  69. /*
  70. * We need to save away the original address corresponding to a mapped entry
  71. * for the sync operations.
  72. */
  73. static phys_addr_t *io_tlb_orig_addr;
  74. /*
  75. * Protect the above data structures in the map and unmap calls
  76. */
  77. static DEFINE_SPINLOCK(io_tlb_lock);
  78. static int late_alloc;
  79. static int __init
  80. setup_io_tlb_npages(char *str)
  81. {
  82. if (isdigit(*str)) {
  83. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  84. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  85. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  86. }
  87. if (*str == ',')
  88. ++str;
  89. if (!strcmp(str, "force"))
  90. swiotlb_force = 1;
  91. return 0;
  92. }
  93. early_param("swiotlb", setup_io_tlb_npages);
  94. /* make io_tlb_overflow tunable too? */
  95. unsigned long swiotlb_nr_tbl(void)
  96. {
  97. return io_tlb_nslabs;
  98. }
  99. EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
  100. /* default to 64MB */
  101. #define IO_TLB_DEFAULT_SIZE (64UL<<20)
  102. unsigned long swiotlb_size_or_default(void)
  103. {
  104. unsigned long size;
  105. size = io_tlb_nslabs << IO_TLB_SHIFT;
  106. return size ? size : (IO_TLB_DEFAULT_SIZE);
  107. }
  108. /* Note that this doesn't work with highmem page */
  109. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  110. volatile void *address)
  111. {
  112. return phys_to_dma(hwdev, virt_to_phys(address));
  113. }
  114. static bool no_iotlb_memory;
  115. void swiotlb_print_info(void)
  116. {
  117. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  118. unsigned char *vstart, *vend;
  119. if (no_iotlb_memory) {
  120. pr_warn("software IO TLB: No low mem\n");
  121. return;
  122. }
  123. vstart = phys_to_virt(io_tlb_start);
  124. vend = phys_to_virt(io_tlb_end);
  125. printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
  126. (unsigned long long)io_tlb_start,
  127. (unsigned long long)io_tlb_end,
  128. bytes >> 20, vstart, vend - 1);
  129. }
  130. int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
  131. {
  132. void *v_overflow_buffer;
  133. unsigned long i, bytes;
  134. bytes = nslabs << IO_TLB_SHIFT;
  135. io_tlb_nslabs = nslabs;
  136. io_tlb_start = __pa(tlb);
  137. io_tlb_end = io_tlb_start + bytes;
  138. /*
  139. * Get the overflow emergency buffer
  140. */
  141. v_overflow_buffer = alloc_bootmem_low_pages_nopanic(
  142. PAGE_ALIGN(io_tlb_overflow));
  143. if (!v_overflow_buffer)
  144. return -ENOMEM;
  145. io_tlb_overflow_buffer = __pa(v_overflow_buffer);
  146. /*
  147. * Allocate and initialize the free list array. This array is used
  148. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  149. * between io_tlb_start and io_tlb_end.
  150. */
  151. io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  152. for (i = 0; i < io_tlb_nslabs; i++)
  153. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  154. io_tlb_index = 0;
  155. io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  156. if (verbose)
  157. swiotlb_print_info();
  158. return 0;
  159. }
  160. /*
  161. * Statically reserve bounce buffer space and initialize bounce buffer data
  162. * structures for the software IO TLB used to implement the DMA API.
  163. */
  164. void __init
  165. swiotlb_init(int verbose)
  166. {
  167. size_t default_size = IO_TLB_DEFAULT_SIZE;
  168. unsigned char *vstart;
  169. unsigned long bytes;
  170. if (!io_tlb_nslabs) {
  171. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  172. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  173. }
  174. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  175. /* Get IO TLB memory from the low pages */
  176. vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes));
  177. if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
  178. return;
  179. if (io_tlb_start)
  180. free_bootmem(io_tlb_start,
  181. PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
  182. pr_warn("Cannot allocate SWIOTLB buffer");
  183. no_iotlb_memory = true;
  184. }
  185. /*
  186. * Systems with larger DMA zones (those that don't support ISA) can
  187. * initialize the swiotlb later using the slab allocator if needed.
  188. * This should be just like above, but with some error catching.
  189. */
  190. int
  191. swiotlb_late_init_with_default_size(size_t default_size)
  192. {
  193. unsigned long bytes, req_nslabs = io_tlb_nslabs;
  194. unsigned char *vstart = NULL;
  195. unsigned int order;
  196. int rc = 0;
  197. if (!io_tlb_nslabs) {
  198. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  199. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  200. }
  201. /*
  202. * Get IO TLB memory from the low pages
  203. */
  204. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  205. io_tlb_nslabs = SLABS_PER_PAGE << order;
  206. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  207. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  208. vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  209. order);
  210. if (vstart)
  211. break;
  212. order--;
  213. }
  214. if (!vstart) {
  215. io_tlb_nslabs = req_nslabs;
  216. return -ENOMEM;
  217. }
  218. if (order != get_order(bytes)) {
  219. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  220. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  221. io_tlb_nslabs = SLABS_PER_PAGE << order;
  222. }
  223. rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
  224. if (rc)
  225. free_pages((unsigned long)vstart, order);
  226. return rc;
  227. }
  228. int
  229. swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
  230. {
  231. unsigned long i, bytes;
  232. unsigned char *v_overflow_buffer;
  233. bytes = nslabs << IO_TLB_SHIFT;
  234. io_tlb_nslabs = nslabs;
  235. io_tlb_start = virt_to_phys(tlb);
  236. io_tlb_end = io_tlb_start + bytes;
  237. memset(tlb, 0, bytes);
  238. /*
  239. * Get the overflow emergency buffer
  240. */
  241. v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  242. get_order(io_tlb_overflow));
  243. if (!v_overflow_buffer)
  244. goto cleanup2;
  245. io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
  246. /*
  247. * Allocate and initialize the free list array. This array is used
  248. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  249. * between io_tlb_start and io_tlb_end.
  250. */
  251. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  252. get_order(io_tlb_nslabs * sizeof(int)));
  253. if (!io_tlb_list)
  254. goto cleanup3;
  255. for (i = 0; i < io_tlb_nslabs; i++)
  256. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  257. io_tlb_index = 0;
  258. io_tlb_orig_addr = (phys_addr_t *)
  259. __get_free_pages(GFP_KERNEL,
  260. get_order(io_tlb_nslabs *
  261. sizeof(phys_addr_t)));
  262. if (!io_tlb_orig_addr)
  263. goto cleanup4;
  264. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  265. swiotlb_print_info();
  266. late_alloc = 1;
  267. return 0;
  268. cleanup4:
  269. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  270. sizeof(int)));
  271. io_tlb_list = NULL;
  272. cleanup3:
  273. free_pages((unsigned long)v_overflow_buffer,
  274. get_order(io_tlb_overflow));
  275. io_tlb_overflow_buffer = 0;
  276. cleanup2:
  277. io_tlb_end = 0;
  278. io_tlb_start = 0;
  279. io_tlb_nslabs = 0;
  280. return -ENOMEM;
  281. }
  282. void __init swiotlb_free(void)
  283. {
  284. if (!io_tlb_orig_addr)
  285. return;
  286. if (late_alloc) {
  287. free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
  288. get_order(io_tlb_overflow));
  289. free_pages((unsigned long)io_tlb_orig_addr,
  290. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  291. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  292. sizeof(int)));
  293. free_pages((unsigned long)phys_to_virt(io_tlb_start),
  294. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  295. } else {
  296. free_bootmem_late(io_tlb_overflow_buffer,
  297. PAGE_ALIGN(io_tlb_overflow));
  298. free_bootmem_late(__pa(io_tlb_orig_addr),
  299. PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  300. free_bootmem_late(__pa(io_tlb_list),
  301. PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  302. free_bootmem_late(io_tlb_start,
  303. PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
  304. }
  305. io_tlb_nslabs = 0;
  306. }
  307. static int is_swiotlb_buffer(phys_addr_t paddr)
  308. {
  309. return paddr >= io_tlb_start && paddr < io_tlb_end;
  310. }
  311. /*
  312. * Bounce: copy the swiotlb buffer back to the original dma location
  313. */
  314. static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
  315. size_t size, enum dma_data_direction dir)
  316. {
  317. unsigned long pfn = PFN_DOWN(orig_addr);
  318. unsigned char *vaddr = phys_to_virt(tlb_addr);
  319. if (PageHighMem(pfn_to_page(pfn))) {
  320. /* The buffer does not have a mapping. Map it in and copy */
  321. unsigned int offset = orig_addr & ~PAGE_MASK;
  322. char *buffer;
  323. unsigned int sz = 0;
  324. unsigned long flags;
  325. while (size) {
  326. sz = min_t(size_t, PAGE_SIZE - offset, size);
  327. local_irq_save(flags);
  328. buffer = kmap_atomic(pfn_to_page(pfn));
  329. if (dir == DMA_TO_DEVICE)
  330. memcpy(vaddr, buffer + offset, sz);
  331. else
  332. memcpy(buffer + offset, vaddr, sz);
  333. kunmap_atomic(buffer);
  334. local_irq_restore(flags);
  335. size -= sz;
  336. pfn++;
  337. vaddr += sz;
  338. offset = 0;
  339. }
  340. } else if (dir == DMA_TO_DEVICE) {
  341. memcpy(vaddr, phys_to_virt(orig_addr), size);
  342. } else {
  343. memcpy(phys_to_virt(orig_addr), vaddr, size);
  344. }
  345. }
  346. phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
  347. dma_addr_t tbl_dma_addr,
  348. phys_addr_t orig_addr, size_t size,
  349. enum dma_data_direction dir)
  350. {
  351. unsigned long flags;
  352. phys_addr_t tlb_addr;
  353. unsigned int nslots, stride, index, wrap;
  354. int i;
  355. unsigned long mask;
  356. unsigned long offset_slots;
  357. unsigned long max_slots;
  358. if (no_iotlb_memory)
  359. panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
  360. mask = dma_get_seg_boundary(hwdev);
  361. tbl_dma_addr &= mask;
  362. offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  363. /*
  364. * Carefully handle integer overflow which can occur when mask == ~0UL.
  365. */
  366. max_slots = mask + 1
  367. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  368. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  369. /*
  370. * For mappings greater than a page, we limit the stride (and
  371. * hence alignment) to a page size.
  372. */
  373. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  374. if (size > PAGE_SIZE)
  375. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  376. else
  377. stride = 1;
  378. BUG_ON(!nslots);
  379. /*
  380. * Find suitable number of IO TLB entries size that will fit this
  381. * request and allocate a buffer from that IO TLB pool.
  382. */
  383. spin_lock_irqsave(&io_tlb_lock, flags);
  384. index = ALIGN(io_tlb_index, stride);
  385. if (index >= io_tlb_nslabs)
  386. index = 0;
  387. wrap = index;
  388. do {
  389. while (iommu_is_span_boundary(index, nslots, offset_slots,
  390. max_slots)) {
  391. index += stride;
  392. if (index >= io_tlb_nslabs)
  393. index = 0;
  394. if (index == wrap)
  395. goto not_found;
  396. }
  397. /*
  398. * If we find a slot that indicates we have 'nslots' number of
  399. * contiguous buffers, we allocate the buffers from that slot
  400. * and mark the entries as '0' indicating unavailable.
  401. */
  402. if (io_tlb_list[index] >= nslots) {
  403. int count = 0;
  404. for (i = index; i < (int) (index + nslots); i++)
  405. io_tlb_list[i] = 0;
  406. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  407. io_tlb_list[i] = ++count;
  408. tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  409. /*
  410. * Update the indices to avoid searching in the next
  411. * round.
  412. */
  413. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  414. ? (index + nslots) : 0);
  415. goto found;
  416. }
  417. index += stride;
  418. if (index >= io_tlb_nslabs)
  419. index = 0;
  420. } while (index != wrap);
  421. not_found:
  422. spin_unlock_irqrestore(&io_tlb_lock, flags);
  423. return SWIOTLB_MAP_ERROR;
  424. found:
  425. spin_unlock_irqrestore(&io_tlb_lock, flags);
  426. /*
  427. * Save away the mapping from the original address to the DMA address.
  428. * This is needed when we sync the memory. Then we sync the buffer if
  429. * needed.
  430. */
  431. for (i = 0; i < nslots; i++)
  432. io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
  433. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  434. swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
  435. return tlb_addr;
  436. }
  437. EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
  438. /*
  439. * Allocates bounce buffer and returns its kernel virtual address.
  440. */
  441. phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
  442. enum dma_data_direction dir)
  443. {
  444. dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
  445. return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
  446. }
  447. /*
  448. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  449. */
  450. void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
  451. size_t size, enum dma_data_direction dir)
  452. {
  453. unsigned long flags;
  454. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  455. int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
  456. phys_addr_t orig_addr = io_tlb_orig_addr[index];
  457. /*
  458. * First, sync the memory before unmapping the entry
  459. */
  460. if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  461. swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
  462. /*
  463. * Return the buffer to the free list by setting the corresponding
  464. * entries to indicate the number of contiguous entries available.
  465. * While returning the entries to the free list, we merge the entries
  466. * with slots below and above the pool being returned.
  467. */
  468. spin_lock_irqsave(&io_tlb_lock, flags);
  469. {
  470. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  471. io_tlb_list[index + nslots] : 0);
  472. /*
  473. * Step 1: return the slots to the free list, merging the
  474. * slots with superceeding slots
  475. */
  476. for (i = index + nslots - 1; i >= index; i--)
  477. io_tlb_list[i] = ++count;
  478. /*
  479. * Step 2: merge the returned slots with the preceding slots,
  480. * if available (non zero)
  481. */
  482. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  483. io_tlb_list[i] = ++count;
  484. }
  485. spin_unlock_irqrestore(&io_tlb_lock, flags);
  486. }
  487. EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
  488. void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
  489. size_t size, enum dma_data_direction dir,
  490. enum dma_sync_target target)
  491. {
  492. int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
  493. phys_addr_t orig_addr = io_tlb_orig_addr[index];
  494. orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
  495. switch (target) {
  496. case SYNC_FOR_CPU:
  497. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  498. swiotlb_bounce(orig_addr, tlb_addr,
  499. size, DMA_FROM_DEVICE);
  500. else
  501. BUG_ON(dir != DMA_TO_DEVICE);
  502. break;
  503. case SYNC_FOR_DEVICE:
  504. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  505. swiotlb_bounce(orig_addr, tlb_addr,
  506. size, DMA_TO_DEVICE);
  507. else
  508. BUG_ON(dir != DMA_FROM_DEVICE);
  509. break;
  510. default:
  511. BUG();
  512. }
  513. }
  514. EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
  515. void *
  516. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  517. dma_addr_t *dma_handle, gfp_t flags)
  518. {
  519. dma_addr_t dev_addr;
  520. void *ret;
  521. int order = get_order(size);
  522. u64 dma_mask = DMA_BIT_MASK(32);
  523. if (hwdev && hwdev->coherent_dma_mask)
  524. dma_mask = hwdev->coherent_dma_mask;
  525. ret = (void *)__get_free_pages(flags, order);
  526. if (ret) {
  527. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  528. if (dev_addr + size - 1 > dma_mask) {
  529. /*
  530. * The allocated memory isn't reachable by the device.
  531. */
  532. free_pages((unsigned long) ret, order);
  533. ret = NULL;
  534. }
  535. }
  536. if (!ret) {
  537. /*
  538. * We are either out of memory or the device can't DMA to
  539. * GFP_DMA memory; fall back on map_single(), which
  540. * will grab memory from the lowest available address range.
  541. */
  542. phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  543. if (paddr == SWIOTLB_MAP_ERROR)
  544. return NULL;
  545. ret = phys_to_virt(paddr);
  546. dev_addr = phys_to_dma(hwdev, paddr);
  547. /* Confirm address can be DMA'd by device */
  548. if (dev_addr + size - 1 > dma_mask) {
  549. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  550. (unsigned long long)dma_mask,
  551. (unsigned long long)dev_addr);
  552. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  553. swiotlb_tbl_unmap_single(hwdev, paddr,
  554. size, DMA_TO_DEVICE);
  555. return NULL;
  556. }
  557. }
  558. *dma_handle = dev_addr;
  559. memset(ret, 0, size);
  560. return ret;
  561. }
  562. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  563. void
  564. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  565. dma_addr_t dev_addr)
  566. {
  567. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  568. WARN_ON(irqs_disabled());
  569. if (!is_swiotlb_buffer(paddr))
  570. free_pages((unsigned long)vaddr, get_order(size));
  571. else
  572. /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
  573. swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
  574. }
  575. EXPORT_SYMBOL(swiotlb_free_coherent);
  576. static void
  577. swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
  578. int do_panic)
  579. {
  580. /*
  581. * Ran out of IOMMU space for this operation. This is very bad.
  582. * Unfortunately the drivers cannot handle this operation properly.
  583. * unless they check for dma_mapping_error (most don't)
  584. * When the mapping is small enough return a static buffer to limit
  585. * the damage, or panic when the transfer is too big.
  586. */
  587. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  588. "device %s\n", size, dev ? dev_name(dev) : "?");
  589. if (size <= io_tlb_overflow || !do_panic)
  590. return;
  591. if (dir == DMA_BIDIRECTIONAL)
  592. panic("DMA: Random memory could be DMA accessed\n");
  593. if (dir == DMA_FROM_DEVICE)
  594. panic("DMA: Random memory could be DMA written\n");
  595. if (dir == DMA_TO_DEVICE)
  596. panic("DMA: Random memory could be DMA read\n");
  597. }
  598. /*
  599. * Map a single buffer of the indicated size for DMA in streaming mode. The
  600. * physical address to use is returned.
  601. *
  602. * Once the device is given the dma address, the device owns this memory until
  603. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  604. */
  605. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  606. unsigned long offset, size_t size,
  607. enum dma_data_direction dir,
  608. struct dma_attrs *attrs)
  609. {
  610. phys_addr_t map, phys = page_to_phys(page) + offset;
  611. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  612. BUG_ON(dir == DMA_NONE);
  613. /*
  614. * If the address happens to be in the device's DMA window,
  615. * we can safely return the device addr and not worry about bounce
  616. * buffering it.
  617. */
  618. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  619. return dev_addr;
  620. /* Oh well, have to allocate and map a bounce buffer. */
  621. map = map_single(dev, phys, size, dir);
  622. if (map == SWIOTLB_MAP_ERROR) {
  623. swiotlb_full(dev, size, dir, 1);
  624. return phys_to_dma(dev, io_tlb_overflow_buffer);
  625. }
  626. dev_addr = phys_to_dma(dev, map);
  627. /* Ensure that the address returned is DMA'ble */
  628. if (!dma_capable(dev, dev_addr, size)) {
  629. swiotlb_tbl_unmap_single(dev, map, size, dir);
  630. return phys_to_dma(dev, io_tlb_overflow_buffer);
  631. }
  632. return dev_addr;
  633. }
  634. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  635. /*
  636. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  637. * match what was provided for in a previous swiotlb_map_page call. All
  638. * other usages are undefined.
  639. *
  640. * After this call, reads by the cpu to the buffer are guaranteed to see
  641. * whatever the device wrote there.
  642. */
  643. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  644. size_t size, enum dma_data_direction dir)
  645. {
  646. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  647. BUG_ON(dir == DMA_NONE);
  648. if (is_swiotlb_buffer(paddr)) {
  649. swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
  650. return;
  651. }
  652. if (dir != DMA_FROM_DEVICE)
  653. return;
  654. /*
  655. * phys_to_virt doesn't work with hihgmem page but we could
  656. * call dma_mark_clean() with hihgmem page here. However, we
  657. * are fine since dma_mark_clean() is null on POWERPC. We can
  658. * make dma_mark_clean() take a physical address if necessary.
  659. */
  660. dma_mark_clean(phys_to_virt(paddr), size);
  661. }
  662. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  663. size_t size, enum dma_data_direction dir,
  664. struct dma_attrs *attrs)
  665. {
  666. unmap_single(hwdev, dev_addr, size, dir);
  667. }
  668. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  669. /*
  670. * Make physical memory consistent for a single streaming mode DMA translation
  671. * after a transfer.
  672. *
  673. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  674. * using the cpu, yet do not wish to teardown the dma mapping, you must
  675. * call this function before doing so. At the next point you give the dma
  676. * address back to the card, you must first perform a
  677. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  678. */
  679. static void
  680. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  681. size_t size, enum dma_data_direction dir,
  682. enum dma_sync_target target)
  683. {
  684. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  685. BUG_ON(dir == DMA_NONE);
  686. if (is_swiotlb_buffer(paddr)) {
  687. swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
  688. return;
  689. }
  690. if (dir != DMA_FROM_DEVICE)
  691. return;
  692. dma_mark_clean(phys_to_virt(paddr), size);
  693. }
  694. void
  695. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  696. size_t size, enum dma_data_direction dir)
  697. {
  698. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  699. }
  700. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  701. void
  702. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  703. size_t size, enum dma_data_direction dir)
  704. {
  705. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  706. }
  707. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  708. /*
  709. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  710. * This is the scatter-gather version of the above swiotlb_map_page
  711. * interface. Here the scatter gather list elements are each tagged with the
  712. * appropriate dma address and length. They are obtained via
  713. * sg_dma_{address,length}(SG).
  714. *
  715. * NOTE: An implementation may be able to use a smaller number of
  716. * DMA address/length pairs than there are SG table elements.
  717. * (for example via virtual mapping capabilities)
  718. * The routine returns the number of addr/length pairs actually
  719. * used, at most nents.
  720. *
  721. * Device ownership issues as mentioned above for swiotlb_map_page are the
  722. * same here.
  723. */
  724. int
  725. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  726. enum dma_data_direction dir, struct dma_attrs *attrs)
  727. {
  728. struct scatterlist *sg;
  729. int i;
  730. BUG_ON(dir == DMA_NONE);
  731. for_each_sg(sgl, sg, nelems, i) {
  732. phys_addr_t paddr = sg_phys(sg);
  733. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  734. if (swiotlb_force ||
  735. !dma_capable(hwdev, dev_addr, sg->length)) {
  736. phys_addr_t map = map_single(hwdev, sg_phys(sg),
  737. sg->length, dir);
  738. if (map == SWIOTLB_MAP_ERROR) {
  739. /* Don't panic here, we expect map_sg users
  740. to do proper error handling. */
  741. swiotlb_full(hwdev, sg->length, dir, 0);
  742. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  743. attrs);
  744. sgl[0].dma_length = 0;
  745. return 0;
  746. }
  747. sg->dma_address = phys_to_dma(hwdev, map);
  748. } else
  749. sg->dma_address = dev_addr;
  750. sg->dma_length = sg->length;
  751. }
  752. return nelems;
  753. }
  754. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  755. int
  756. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  757. enum dma_data_direction dir)
  758. {
  759. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  760. }
  761. EXPORT_SYMBOL(swiotlb_map_sg);
  762. /*
  763. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  764. * concerning calls here are the same as for swiotlb_unmap_page() above.
  765. */
  766. void
  767. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  768. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  769. {
  770. struct scatterlist *sg;
  771. int i;
  772. BUG_ON(dir == DMA_NONE);
  773. for_each_sg(sgl, sg, nelems, i)
  774. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  775. }
  776. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  777. void
  778. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  779. enum dma_data_direction dir)
  780. {
  781. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  782. }
  783. EXPORT_SYMBOL(swiotlb_unmap_sg);
  784. /*
  785. * Make physical memory consistent for a set of streaming mode DMA translations
  786. * after a transfer.
  787. *
  788. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  789. * and usage.
  790. */
  791. static void
  792. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  793. int nelems, enum dma_data_direction dir,
  794. enum dma_sync_target target)
  795. {
  796. struct scatterlist *sg;
  797. int i;
  798. for_each_sg(sgl, sg, nelems, i)
  799. swiotlb_sync_single(hwdev, sg->dma_address,
  800. sg->dma_length, dir, target);
  801. }
  802. void
  803. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  804. int nelems, enum dma_data_direction dir)
  805. {
  806. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  807. }
  808. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  809. void
  810. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  811. int nelems, enum dma_data_direction dir)
  812. {
  813. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  814. }
  815. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  816. int
  817. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  818. {
  819. return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
  820. }
  821. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  822. /*
  823. * Return whether the given device DMA address mask can be supported
  824. * properly. For example, if your device can only drive the low 24-bits
  825. * during bus mastering, then you would pass 0x00ffffff as the mask to
  826. * this function.
  827. */
  828. int
  829. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  830. {
  831. return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
  832. }
  833. EXPORT_SYMBOL(swiotlb_dma_supported);