ring_buffer.c 128 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ftrace_event.h>
  7. #include <linux/ring_buffer.h>
  8. #include <linux/trace_clock.h>
  9. #include <linux/trace_seq.h>
  10. #include <linux/spinlock.h>
  11. #include <linux/irq_work.h>
  12. #include <linux/debugfs.h>
  13. #include <linux/uaccess.h>
  14. #include <linux/hardirq.h>
  15. #include <linux/kthread.h> /* for self test */
  16. #include <linux/kmemcheck.h>
  17. #include <linux/module.h>
  18. #include <linux/percpu.h>
  19. #include <linux/mutex.h>
  20. #include <linux/delay.h>
  21. #include <linux/slab.h>
  22. #include <linux/init.h>
  23. #include <linux/hash.h>
  24. #include <linux/list.h>
  25. #include <linux/cpu.h>
  26. #include <linux/fs.h>
  27. #include <asm/local.h>
  28. static void update_pages_handler(struct work_struct *work);
  29. /*
  30. * The ring buffer header is special. We must manually up keep it.
  31. */
  32. int ring_buffer_print_entry_header(struct trace_seq *s)
  33. {
  34. int ret;
  35. ret = trace_seq_printf(s, "# compressed entry header\n");
  36. ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
  37. ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
  38. ret = trace_seq_printf(s, "\tarray : 32 bits\n");
  39. ret = trace_seq_printf(s, "\n");
  40. ret = trace_seq_printf(s, "\tpadding : type == %d\n",
  41. RINGBUF_TYPE_PADDING);
  42. ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43. RINGBUF_TYPE_TIME_EXTEND);
  44. ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
  45. RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46. return ret;
  47. }
  48. /*
  49. * The ring buffer is made up of a list of pages. A separate list of pages is
  50. * allocated for each CPU. A writer may only write to a buffer that is
  51. * associated with the CPU it is currently executing on. A reader may read
  52. * from any per cpu buffer.
  53. *
  54. * The reader is special. For each per cpu buffer, the reader has its own
  55. * reader page. When a reader has read the entire reader page, this reader
  56. * page is swapped with another page in the ring buffer.
  57. *
  58. * Now, as long as the writer is off the reader page, the reader can do what
  59. * ever it wants with that page. The writer will never write to that page
  60. * again (as long as it is out of the ring buffer).
  61. *
  62. * Here's some silly ASCII art.
  63. *
  64. * +------+
  65. * |reader| RING BUFFER
  66. * |page |
  67. * +------+ +---+ +---+ +---+
  68. * | |-->| |-->| |
  69. * +---+ +---+ +---+
  70. * ^ |
  71. * | |
  72. * +---------------+
  73. *
  74. *
  75. * +------+
  76. * |reader| RING BUFFER
  77. * |page |------------------v
  78. * +------+ +---+ +---+ +---+
  79. * | |-->| |-->| |
  80. * +---+ +---+ +---+
  81. * ^ |
  82. * | |
  83. * +---------------+
  84. *
  85. *
  86. * +------+
  87. * |reader| RING BUFFER
  88. * |page |------------------v
  89. * +------+ +---+ +---+ +---+
  90. * ^ | |-->| |-->| |
  91. * | +---+ +---+ +---+
  92. * | |
  93. * | |
  94. * +------------------------------+
  95. *
  96. *
  97. * +------+
  98. * |buffer| RING BUFFER
  99. * |page |------------------v
  100. * +------+ +---+ +---+ +---+
  101. * ^ | | | |-->| |
  102. * | New +---+ +---+ +---+
  103. * | Reader------^ |
  104. * | page |
  105. * +------------------------------+
  106. *
  107. *
  108. * After we make this swap, the reader can hand this page off to the splice
  109. * code and be done with it. It can even allocate a new page if it needs to
  110. * and swap that into the ring buffer.
  111. *
  112. * We will be using cmpxchg soon to make all this lockless.
  113. *
  114. */
  115. /*
  116. * A fast way to enable or disable all ring buffers is to
  117. * call tracing_on or tracing_off. Turning off the ring buffers
  118. * prevents all ring buffers from being recorded to.
  119. * Turning this switch on, makes it OK to write to the
  120. * ring buffer, if the ring buffer is enabled itself.
  121. *
  122. * There's three layers that must be on in order to write
  123. * to the ring buffer.
  124. *
  125. * 1) This global flag must be set.
  126. * 2) The ring buffer must be enabled for recording.
  127. * 3) The per cpu buffer must be enabled for recording.
  128. *
  129. * In case of an anomaly, this global flag has a bit set that
  130. * will permantly disable all ring buffers.
  131. */
  132. /*
  133. * Global flag to disable all recording to ring buffers
  134. * This has two bits: ON, DISABLED
  135. *
  136. * ON DISABLED
  137. * ---- ----------
  138. * 0 0 : ring buffers are off
  139. * 1 0 : ring buffers are on
  140. * X 1 : ring buffers are permanently disabled
  141. */
  142. enum {
  143. RB_BUFFERS_ON_BIT = 0,
  144. RB_BUFFERS_DISABLED_BIT = 1,
  145. };
  146. enum {
  147. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  148. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  149. };
  150. static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  151. /* Used for individual buffers (after the counter) */
  152. #define RB_BUFFER_OFF (1 << 20)
  153. #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
  154. /**
  155. * tracing_off_permanent - permanently disable ring buffers
  156. *
  157. * This function, once called, will disable all ring buffers
  158. * permanently.
  159. */
  160. void tracing_off_permanent(void)
  161. {
  162. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  163. }
  164. #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
  165. #define RB_ALIGNMENT 4U
  166. #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  167. #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
  168. #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
  169. # define RB_FORCE_8BYTE_ALIGNMENT 0
  170. # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
  171. #else
  172. # define RB_FORCE_8BYTE_ALIGNMENT 1
  173. # define RB_ARCH_ALIGNMENT 8U
  174. #endif
  175. #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
  176. /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
  177. #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
  178. enum {
  179. RB_LEN_TIME_EXTEND = 8,
  180. RB_LEN_TIME_STAMP = 16,
  181. };
  182. #define skip_time_extend(event) \
  183. ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
  184. static inline int rb_null_event(struct ring_buffer_event *event)
  185. {
  186. return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
  187. }
  188. static void rb_event_set_padding(struct ring_buffer_event *event)
  189. {
  190. /* padding has a NULL time_delta */
  191. event->type_len = RINGBUF_TYPE_PADDING;
  192. event->time_delta = 0;
  193. }
  194. static unsigned
  195. rb_event_data_length(struct ring_buffer_event *event)
  196. {
  197. unsigned length;
  198. if (event->type_len)
  199. length = event->type_len * RB_ALIGNMENT;
  200. else
  201. length = event->array[0];
  202. return length + RB_EVNT_HDR_SIZE;
  203. }
  204. /*
  205. * Return the length of the given event. Will return
  206. * the length of the time extend if the event is a
  207. * time extend.
  208. */
  209. static inline unsigned
  210. rb_event_length(struct ring_buffer_event *event)
  211. {
  212. switch (event->type_len) {
  213. case RINGBUF_TYPE_PADDING:
  214. if (rb_null_event(event))
  215. /* undefined */
  216. return -1;
  217. return event->array[0] + RB_EVNT_HDR_SIZE;
  218. case RINGBUF_TYPE_TIME_EXTEND:
  219. return RB_LEN_TIME_EXTEND;
  220. case RINGBUF_TYPE_TIME_STAMP:
  221. return RB_LEN_TIME_STAMP;
  222. case RINGBUF_TYPE_DATA:
  223. return rb_event_data_length(event);
  224. default:
  225. BUG();
  226. }
  227. /* not hit */
  228. return 0;
  229. }
  230. /*
  231. * Return total length of time extend and data,
  232. * or just the event length for all other events.
  233. */
  234. static inline unsigned
  235. rb_event_ts_length(struct ring_buffer_event *event)
  236. {
  237. unsigned len = 0;
  238. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  239. /* time extends include the data event after it */
  240. len = RB_LEN_TIME_EXTEND;
  241. event = skip_time_extend(event);
  242. }
  243. return len + rb_event_length(event);
  244. }
  245. /**
  246. * ring_buffer_event_length - return the length of the event
  247. * @event: the event to get the length of
  248. *
  249. * Returns the size of the data load of a data event.
  250. * If the event is something other than a data event, it
  251. * returns the size of the event itself. With the exception
  252. * of a TIME EXTEND, where it still returns the size of the
  253. * data load of the data event after it.
  254. */
  255. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  256. {
  257. unsigned length;
  258. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  259. event = skip_time_extend(event);
  260. length = rb_event_length(event);
  261. if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  262. return length;
  263. length -= RB_EVNT_HDR_SIZE;
  264. if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
  265. length -= sizeof(event->array[0]);
  266. return length;
  267. }
  268. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  269. /* inline for ring buffer fast paths */
  270. static void *
  271. rb_event_data(struct ring_buffer_event *event)
  272. {
  273. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  274. event = skip_time_extend(event);
  275. BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  276. /* If length is in len field, then array[0] has the data */
  277. if (event->type_len)
  278. return (void *)&event->array[0];
  279. /* Otherwise length is in array[0] and array[1] has the data */
  280. return (void *)&event->array[1];
  281. }
  282. /**
  283. * ring_buffer_event_data - return the data of the event
  284. * @event: the event to get the data from
  285. */
  286. void *ring_buffer_event_data(struct ring_buffer_event *event)
  287. {
  288. return rb_event_data(event);
  289. }
  290. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  291. #define for_each_buffer_cpu(buffer, cpu) \
  292. for_each_cpu(cpu, buffer->cpumask)
  293. #define TS_SHIFT 27
  294. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  295. #define TS_DELTA_TEST (~TS_MASK)
  296. /* Flag when events were overwritten */
  297. #define RB_MISSED_EVENTS (1 << 31)
  298. /* Missed count stored at end */
  299. #define RB_MISSED_STORED (1 << 30)
  300. struct buffer_data_page {
  301. u64 time_stamp; /* page time stamp */
  302. local_t commit; /* write committed index */
  303. unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
  304. };
  305. /*
  306. * Note, the buffer_page list must be first. The buffer pages
  307. * are allocated in cache lines, which means that each buffer
  308. * page will be at the beginning of a cache line, and thus
  309. * the least significant bits will be zero. We use this to
  310. * add flags in the list struct pointers, to make the ring buffer
  311. * lockless.
  312. */
  313. struct buffer_page {
  314. struct list_head list; /* list of buffer pages */
  315. local_t write; /* index for next write */
  316. unsigned read; /* index for next read */
  317. local_t entries; /* entries on this page */
  318. unsigned long real_end; /* real end of data */
  319. struct buffer_data_page *page; /* Actual data page */
  320. };
  321. /*
  322. * The buffer page counters, write and entries, must be reset
  323. * atomically when crossing page boundaries. To synchronize this
  324. * update, two counters are inserted into the number. One is
  325. * the actual counter for the write position or count on the page.
  326. *
  327. * The other is a counter of updaters. Before an update happens
  328. * the update partition of the counter is incremented. This will
  329. * allow the updater to update the counter atomically.
  330. *
  331. * The counter is 20 bits, and the state data is 12.
  332. */
  333. #define RB_WRITE_MASK 0xfffff
  334. #define RB_WRITE_INTCNT (1 << 20)
  335. static void rb_init_page(struct buffer_data_page *bpage)
  336. {
  337. local_set(&bpage->commit, 0);
  338. }
  339. /**
  340. * ring_buffer_page_len - the size of data on the page.
  341. * @page: The page to read
  342. *
  343. * Returns the amount of data on the page, including buffer page header.
  344. */
  345. size_t ring_buffer_page_len(void *page)
  346. {
  347. return local_read(&((struct buffer_data_page *)page)->commit)
  348. + BUF_PAGE_HDR_SIZE;
  349. }
  350. /*
  351. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  352. * this issue out.
  353. */
  354. static void free_buffer_page(struct buffer_page *bpage)
  355. {
  356. free_page((unsigned long)bpage->page);
  357. kfree(bpage);
  358. }
  359. /*
  360. * We need to fit the time_stamp delta into 27 bits.
  361. */
  362. static inline int test_time_stamp(u64 delta)
  363. {
  364. if (delta & TS_DELTA_TEST)
  365. return 1;
  366. return 0;
  367. }
  368. #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
  369. /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
  370. #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
  371. int ring_buffer_print_page_header(struct trace_seq *s)
  372. {
  373. struct buffer_data_page field;
  374. int ret;
  375. ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
  376. "offset:0;\tsize:%u;\tsigned:%u;\n",
  377. (unsigned int)sizeof(field.time_stamp),
  378. (unsigned int)is_signed_type(u64));
  379. ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
  380. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  381. (unsigned int)offsetof(typeof(field), commit),
  382. (unsigned int)sizeof(field.commit),
  383. (unsigned int)is_signed_type(long));
  384. ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
  385. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  386. (unsigned int)offsetof(typeof(field), commit),
  387. 1,
  388. (unsigned int)is_signed_type(long));
  389. ret = trace_seq_printf(s, "\tfield: char data;\t"
  390. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  391. (unsigned int)offsetof(typeof(field), data),
  392. (unsigned int)BUF_PAGE_SIZE,
  393. (unsigned int)is_signed_type(char));
  394. return ret;
  395. }
  396. struct rb_irq_work {
  397. struct irq_work work;
  398. wait_queue_head_t waiters;
  399. bool waiters_pending;
  400. };
  401. /*
  402. * head_page == tail_page && head == tail then buffer is empty.
  403. */
  404. struct ring_buffer_per_cpu {
  405. int cpu;
  406. atomic_t record_disabled;
  407. struct ring_buffer *buffer;
  408. raw_spinlock_t reader_lock; /* serialize readers */
  409. arch_spinlock_t lock;
  410. struct lock_class_key lock_key;
  411. unsigned int nr_pages;
  412. struct list_head *pages;
  413. struct buffer_page *head_page; /* read from head */
  414. struct buffer_page *tail_page; /* write to tail */
  415. struct buffer_page *commit_page; /* committed pages */
  416. struct buffer_page *reader_page;
  417. unsigned long lost_events;
  418. unsigned long last_overrun;
  419. local_t entries_bytes;
  420. local_t entries;
  421. local_t overrun;
  422. local_t commit_overrun;
  423. local_t dropped_events;
  424. local_t committing;
  425. local_t commits;
  426. unsigned long read;
  427. unsigned long read_bytes;
  428. u64 write_stamp;
  429. u64 read_stamp;
  430. /* ring buffer pages to update, > 0 to add, < 0 to remove */
  431. int nr_pages_to_update;
  432. struct list_head new_pages; /* new pages to add */
  433. struct work_struct update_pages_work;
  434. struct completion update_done;
  435. struct rb_irq_work irq_work;
  436. };
  437. struct ring_buffer {
  438. unsigned flags;
  439. int cpus;
  440. atomic_t record_disabled;
  441. atomic_t resize_disabled;
  442. cpumask_var_t cpumask;
  443. struct lock_class_key *reader_lock_key;
  444. struct mutex mutex;
  445. struct ring_buffer_per_cpu **buffers;
  446. #ifdef CONFIG_HOTPLUG_CPU
  447. struct notifier_block cpu_notify;
  448. #endif
  449. u64 (*clock)(void);
  450. struct rb_irq_work irq_work;
  451. };
  452. struct ring_buffer_iter {
  453. struct ring_buffer_per_cpu *cpu_buffer;
  454. unsigned long head;
  455. struct buffer_page *head_page;
  456. struct buffer_page *cache_reader_page;
  457. unsigned long cache_read;
  458. u64 read_stamp;
  459. };
  460. /*
  461. * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
  462. *
  463. * Schedules a delayed work to wake up any task that is blocked on the
  464. * ring buffer waiters queue.
  465. */
  466. static void rb_wake_up_waiters(struct irq_work *work)
  467. {
  468. struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
  469. wake_up_all(&rbwork->waiters);
  470. }
  471. /**
  472. * ring_buffer_wait - wait for input to the ring buffer
  473. * @buffer: buffer to wait on
  474. * @cpu: the cpu buffer to wait on
  475. *
  476. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  477. * as data is added to any of the @buffer's cpu buffers. Otherwise
  478. * it will wait for data to be added to a specific cpu buffer.
  479. */
  480. void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
  481. {
  482. struct ring_buffer_per_cpu *cpu_buffer;
  483. DEFINE_WAIT(wait);
  484. struct rb_irq_work *work;
  485. /*
  486. * Depending on what the caller is waiting for, either any
  487. * data in any cpu buffer, or a specific buffer, put the
  488. * caller on the appropriate wait queue.
  489. */
  490. if (cpu == RING_BUFFER_ALL_CPUS)
  491. work = &buffer->irq_work;
  492. else {
  493. cpu_buffer = buffer->buffers[cpu];
  494. work = &cpu_buffer->irq_work;
  495. }
  496. prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
  497. /*
  498. * The events can happen in critical sections where
  499. * checking a work queue can cause deadlocks.
  500. * After adding a task to the queue, this flag is set
  501. * only to notify events to try to wake up the queue
  502. * using irq_work.
  503. *
  504. * We don't clear it even if the buffer is no longer
  505. * empty. The flag only causes the next event to run
  506. * irq_work to do the work queue wake up. The worse
  507. * that can happen if we race with !trace_empty() is that
  508. * an event will cause an irq_work to try to wake up
  509. * an empty queue.
  510. *
  511. * There's no reason to protect this flag either, as
  512. * the work queue and irq_work logic will do the necessary
  513. * synchronization for the wake ups. The only thing
  514. * that is necessary is that the wake up happens after
  515. * a task has been queued. It's OK for spurious wake ups.
  516. */
  517. work->waiters_pending = true;
  518. if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
  519. (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
  520. schedule();
  521. finish_wait(&work->waiters, &wait);
  522. }
  523. /**
  524. * ring_buffer_poll_wait - poll on buffer input
  525. * @buffer: buffer to wait on
  526. * @cpu: the cpu buffer to wait on
  527. * @filp: the file descriptor
  528. * @poll_table: The poll descriptor
  529. *
  530. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  531. * as data is added to any of the @buffer's cpu buffers. Otherwise
  532. * it will wait for data to be added to a specific cpu buffer.
  533. *
  534. * Returns POLLIN | POLLRDNORM if data exists in the buffers,
  535. * zero otherwise.
  536. */
  537. int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
  538. struct file *filp, poll_table *poll_table)
  539. {
  540. struct ring_buffer_per_cpu *cpu_buffer;
  541. struct rb_irq_work *work;
  542. if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
  543. (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
  544. return POLLIN | POLLRDNORM;
  545. if (cpu == RING_BUFFER_ALL_CPUS)
  546. work = &buffer->irq_work;
  547. else {
  548. cpu_buffer = buffer->buffers[cpu];
  549. work = &cpu_buffer->irq_work;
  550. }
  551. work->waiters_pending = true;
  552. poll_wait(filp, &work->waiters, poll_table);
  553. if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
  554. (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
  555. return POLLIN | POLLRDNORM;
  556. return 0;
  557. }
  558. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  559. #define RB_WARN_ON(b, cond) \
  560. ({ \
  561. int _____ret = unlikely(cond); \
  562. if (_____ret) { \
  563. if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
  564. struct ring_buffer_per_cpu *__b = \
  565. (void *)b; \
  566. atomic_inc(&__b->buffer->record_disabled); \
  567. } else \
  568. atomic_inc(&b->record_disabled); \
  569. WARN_ON(1); \
  570. } \
  571. _____ret; \
  572. })
  573. /* Up this if you want to test the TIME_EXTENTS and normalization */
  574. #define DEBUG_SHIFT 0
  575. static inline u64 rb_time_stamp(struct ring_buffer *buffer)
  576. {
  577. /* shift to debug/test normalization and TIME_EXTENTS */
  578. return buffer->clock() << DEBUG_SHIFT;
  579. }
  580. u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
  581. {
  582. u64 time;
  583. preempt_disable_notrace();
  584. time = rb_time_stamp(buffer);
  585. preempt_enable_no_resched_notrace();
  586. return time;
  587. }
  588. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  589. void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
  590. int cpu, u64 *ts)
  591. {
  592. /* Just stupid testing the normalize function and deltas */
  593. *ts >>= DEBUG_SHIFT;
  594. }
  595. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  596. /*
  597. * Making the ring buffer lockless makes things tricky.
  598. * Although writes only happen on the CPU that they are on,
  599. * and they only need to worry about interrupts. Reads can
  600. * happen on any CPU.
  601. *
  602. * The reader page is always off the ring buffer, but when the
  603. * reader finishes with a page, it needs to swap its page with
  604. * a new one from the buffer. The reader needs to take from
  605. * the head (writes go to the tail). But if a writer is in overwrite
  606. * mode and wraps, it must push the head page forward.
  607. *
  608. * Here lies the problem.
  609. *
  610. * The reader must be careful to replace only the head page, and
  611. * not another one. As described at the top of the file in the
  612. * ASCII art, the reader sets its old page to point to the next
  613. * page after head. It then sets the page after head to point to
  614. * the old reader page. But if the writer moves the head page
  615. * during this operation, the reader could end up with the tail.
  616. *
  617. * We use cmpxchg to help prevent this race. We also do something
  618. * special with the page before head. We set the LSB to 1.
  619. *
  620. * When the writer must push the page forward, it will clear the
  621. * bit that points to the head page, move the head, and then set
  622. * the bit that points to the new head page.
  623. *
  624. * We also don't want an interrupt coming in and moving the head
  625. * page on another writer. Thus we use the second LSB to catch
  626. * that too. Thus:
  627. *
  628. * head->list->prev->next bit 1 bit 0
  629. * ------- -------
  630. * Normal page 0 0
  631. * Points to head page 0 1
  632. * New head page 1 0
  633. *
  634. * Note we can not trust the prev pointer of the head page, because:
  635. *
  636. * +----+ +-----+ +-----+
  637. * | |------>| T |---X--->| N |
  638. * | |<------| | | |
  639. * +----+ +-----+ +-----+
  640. * ^ ^ |
  641. * | +-----+ | |
  642. * +----------| R |----------+ |
  643. * | |<-----------+
  644. * +-----+
  645. *
  646. * Key: ---X--> HEAD flag set in pointer
  647. * T Tail page
  648. * R Reader page
  649. * N Next page
  650. *
  651. * (see __rb_reserve_next() to see where this happens)
  652. *
  653. * What the above shows is that the reader just swapped out
  654. * the reader page with a page in the buffer, but before it
  655. * could make the new header point back to the new page added
  656. * it was preempted by a writer. The writer moved forward onto
  657. * the new page added by the reader and is about to move forward
  658. * again.
  659. *
  660. * You can see, it is legitimate for the previous pointer of
  661. * the head (or any page) not to point back to itself. But only
  662. * temporarially.
  663. */
  664. #define RB_PAGE_NORMAL 0UL
  665. #define RB_PAGE_HEAD 1UL
  666. #define RB_PAGE_UPDATE 2UL
  667. #define RB_FLAG_MASK 3UL
  668. /* PAGE_MOVED is not part of the mask */
  669. #define RB_PAGE_MOVED 4UL
  670. /*
  671. * rb_list_head - remove any bit
  672. */
  673. static struct list_head *rb_list_head(struct list_head *list)
  674. {
  675. unsigned long val = (unsigned long)list;
  676. return (struct list_head *)(val & ~RB_FLAG_MASK);
  677. }
  678. /*
  679. * rb_is_head_page - test if the given page is the head page
  680. *
  681. * Because the reader may move the head_page pointer, we can
  682. * not trust what the head page is (it may be pointing to
  683. * the reader page). But if the next page is a header page,
  684. * its flags will be non zero.
  685. */
  686. static inline int
  687. rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  688. struct buffer_page *page, struct list_head *list)
  689. {
  690. unsigned long val;
  691. val = (unsigned long)list->next;
  692. if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
  693. return RB_PAGE_MOVED;
  694. return val & RB_FLAG_MASK;
  695. }
  696. /*
  697. * rb_is_reader_page
  698. *
  699. * The unique thing about the reader page, is that, if the
  700. * writer is ever on it, the previous pointer never points
  701. * back to the reader page.
  702. */
  703. static int rb_is_reader_page(struct buffer_page *page)
  704. {
  705. struct list_head *list = page->list.prev;
  706. return rb_list_head(list->next) != &page->list;
  707. }
  708. /*
  709. * rb_set_list_to_head - set a list_head to be pointing to head.
  710. */
  711. static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
  712. struct list_head *list)
  713. {
  714. unsigned long *ptr;
  715. ptr = (unsigned long *)&list->next;
  716. *ptr |= RB_PAGE_HEAD;
  717. *ptr &= ~RB_PAGE_UPDATE;
  718. }
  719. /*
  720. * rb_head_page_activate - sets up head page
  721. */
  722. static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
  723. {
  724. struct buffer_page *head;
  725. head = cpu_buffer->head_page;
  726. if (!head)
  727. return;
  728. /*
  729. * Set the previous list pointer to have the HEAD flag.
  730. */
  731. rb_set_list_to_head(cpu_buffer, head->list.prev);
  732. }
  733. static void rb_list_head_clear(struct list_head *list)
  734. {
  735. unsigned long *ptr = (unsigned long *)&list->next;
  736. *ptr &= ~RB_FLAG_MASK;
  737. }
  738. /*
  739. * rb_head_page_dactivate - clears head page ptr (for free list)
  740. */
  741. static void
  742. rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
  743. {
  744. struct list_head *hd;
  745. /* Go through the whole list and clear any pointers found. */
  746. rb_list_head_clear(cpu_buffer->pages);
  747. list_for_each(hd, cpu_buffer->pages)
  748. rb_list_head_clear(hd);
  749. }
  750. static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
  751. struct buffer_page *head,
  752. struct buffer_page *prev,
  753. int old_flag, int new_flag)
  754. {
  755. struct list_head *list;
  756. unsigned long val = (unsigned long)&head->list;
  757. unsigned long ret;
  758. list = &prev->list;
  759. val &= ~RB_FLAG_MASK;
  760. ret = cmpxchg((unsigned long *)&list->next,
  761. val | old_flag, val | new_flag);
  762. /* check if the reader took the page */
  763. if ((ret & ~RB_FLAG_MASK) != val)
  764. return RB_PAGE_MOVED;
  765. return ret & RB_FLAG_MASK;
  766. }
  767. static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
  768. struct buffer_page *head,
  769. struct buffer_page *prev,
  770. int old_flag)
  771. {
  772. return rb_head_page_set(cpu_buffer, head, prev,
  773. old_flag, RB_PAGE_UPDATE);
  774. }
  775. static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
  776. struct buffer_page *head,
  777. struct buffer_page *prev,
  778. int old_flag)
  779. {
  780. return rb_head_page_set(cpu_buffer, head, prev,
  781. old_flag, RB_PAGE_HEAD);
  782. }
  783. static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
  784. struct buffer_page *head,
  785. struct buffer_page *prev,
  786. int old_flag)
  787. {
  788. return rb_head_page_set(cpu_buffer, head, prev,
  789. old_flag, RB_PAGE_NORMAL);
  790. }
  791. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  792. struct buffer_page **bpage)
  793. {
  794. struct list_head *p = rb_list_head((*bpage)->list.next);
  795. *bpage = list_entry(p, struct buffer_page, list);
  796. }
  797. static struct buffer_page *
  798. rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
  799. {
  800. struct buffer_page *head;
  801. struct buffer_page *page;
  802. struct list_head *list;
  803. int i;
  804. if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
  805. return NULL;
  806. /* sanity check */
  807. list = cpu_buffer->pages;
  808. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
  809. return NULL;
  810. page = head = cpu_buffer->head_page;
  811. /*
  812. * It is possible that the writer moves the header behind
  813. * where we started, and we miss in one loop.
  814. * A second loop should grab the header, but we'll do
  815. * three loops just because I'm paranoid.
  816. */
  817. for (i = 0; i < 3; i++) {
  818. do {
  819. if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
  820. cpu_buffer->head_page = page;
  821. return page;
  822. }
  823. rb_inc_page(cpu_buffer, &page);
  824. } while (page != head);
  825. }
  826. RB_WARN_ON(cpu_buffer, 1);
  827. return NULL;
  828. }
  829. static int rb_head_page_replace(struct buffer_page *old,
  830. struct buffer_page *new)
  831. {
  832. unsigned long *ptr = (unsigned long *)&old->list.prev->next;
  833. unsigned long val;
  834. unsigned long ret;
  835. val = *ptr & ~RB_FLAG_MASK;
  836. val |= RB_PAGE_HEAD;
  837. ret = cmpxchg(ptr, val, (unsigned long)&new->list);
  838. return ret == val;
  839. }
  840. /*
  841. * rb_tail_page_update - move the tail page forward
  842. *
  843. * Returns 1 if moved tail page, 0 if someone else did.
  844. */
  845. static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
  846. struct buffer_page *tail_page,
  847. struct buffer_page *next_page)
  848. {
  849. struct buffer_page *old_tail;
  850. unsigned long old_entries;
  851. unsigned long old_write;
  852. int ret = 0;
  853. /*
  854. * The tail page now needs to be moved forward.
  855. *
  856. * We need to reset the tail page, but without messing
  857. * with possible erasing of data brought in by interrupts
  858. * that have moved the tail page and are currently on it.
  859. *
  860. * We add a counter to the write field to denote this.
  861. */
  862. old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
  863. old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
  864. /*
  865. * Just make sure we have seen our old_write and synchronize
  866. * with any interrupts that come in.
  867. */
  868. barrier();
  869. /*
  870. * If the tail page is still the same as what we think
  871. * it is, then it is up to us to update the tail
  872. * pointer.
  873. */
  874. if (tail_page == cpu_buffer->tail_page) {
  875. /* Zero the write counter */
  876. unsigned long val = old_write & ~RB_WRITE_MASK;
  877. unsigned long eval = old_entries & ~RB_WRITE_MASK;
  878. /*
  879. * This will only succeed if an interrupt did
  880. * not come in and change it. In which case, we
  881. * do not want to modify it.
  882. *
  883. * We add (void) to let the compiler know that we do not care
  884. * about the return value of these functions. We use the
  885. * cmpxchg to only update if an interrupt did not already
  886. * do it for us. If the cmpxchg fails, we don't care.
  887. */
  888. (void)local_cmpxchg(&next_page->write, old_write, val);
  889. (void)local_cmpxchg(&next_page->entries, old_entries, eval);
  890. /*
  891. * No need to worry about races with clearing out the commit.
  892. * it only can increment when a commit takes place. But that
  893. * only happens in the outer most nested commit.
  894. */
  895. local_set(&next_page->page->commit, 0);
  896. old_tail = cmpxchg(&cpu_buffer->tail_page,
  897. tail_page, next_page);
  898. if (old_tail == tail_page)
  899. ret = 1;
  900. }
  901. return ret;
  902. }
  903. static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
  904. struct buffer_page *bpage)
  905. {
  906. unsigned long val = (unsigned long)bpage;
  907. if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
  908. return 1;
  909. return 0;
  910. }
  911. /**
  912. * rb_check_list - make sure a pointer to a list has the last bits zero
  913. */
  914. static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
  915. struct list_head *list)
  916. {
  917. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
  918. return 1;
  919. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
  920. return 1;
  921. return 0;
  922. }
  923. /**
  924. * check_pages - integrity check of buffer pages
  925. * @cpu_buffer: CPU buffer with pages to test
  926. *
  927. * As a safety measure we check to make sure the data pages have not
  928. * been corrupted.
  929. */
  930. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  931. {
  932. struct list_head *head = cpu_buffer->pages;
  933. struct buffer_page *bpage, *tmp;
  934. /* Reset the head page if it exists */
  935. if (cpu_buffer->head_page)
  936. rb_set_head_page(cpu_buffer);
  937. rb_head_page_deactivate(cpu_buffer);
  938. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  939. return -1;
  940. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  941. return -1;
  942. if (rb_check_list(cpu_buffer, head))
  943. return -1;
  944. list_for_each_entry_safe(bpage, tmp, head, list) {
  945. if (RB_WARN_ON(cpu_buffer,
  946. bpage->list.next->prev != &bpage->list))
  947. return -1;
  948. if (RB_WARN_ON(cpu_buffer,
  949. bpage->list.prev->next != &bpage->list))
  950. return -1;
  951. if (rb_check_list(cpu_buffer, &bpage->list))
  952. return -1;
  953. }
  954. rb_head_page_activate(cpu_buffer);
  955. return 0;
  956. }
  957. static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
  958. {
  959. int i;
  960. struct buffer_page *bpage, *tmp;
  961. for (i = 0; i < nr_pages; i++) {
  962. struct page *page;
  963. /*
  964. * __GFP_NORETRY flag makes sure that the allocation fails
  965. * gracefully without invoking oom-killer and the system is
  966. * not destabilized.
  967. */
  968. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  969. GFP_KERNEL | __GFP_NORETRY,
  970. cpu_to_node(cpu));
  971. if (!bpage)
  972. goto free_pages;
  973. list_add(&bpage->list, pages);
  974. page = alloc_pages_node(cpu_to_node(cpu),
  975. GFP_KERNEL | __GFP_NORETRY, 0);
  976. if (!page)
  977. goto free_pages;
  978. bpage->page = page_address(page);
  979. rb_init_page(bpage->page);
  980. }
  981. return 0;
  982. free_pages:
  983. list_for_each_entry_safe(bpage, tmp, pages, list) {
  984. list_del_init(&bpage->list);
  985. free_buffer_page(bpage);
  986. }
  987. return -ENOMEM;
  988. }
  989. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  990. unsigned nr_pages)
  991. {
  992. LIST_HEAD(pages);
  993. WARN_ON(!nr_pages);
  994. if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
  995. return -ENOMEM;
  996. /*
  997. * The ring buffer page list is a circular list that does not
  998. * start and end with a list head. All page list items point to
  999. * other pages.
  1000. */
  1001. cpu_buffer->pages = pages.next;
  1002. list_del(&pages);
  1003. cpu_buffer->nr_pages = nr_pages;
  1004. rb_check_pages(cpu_buffer);
  1005. return 0;
  1006. }
  1007. static struct ring_buffer_per_cpu *
  1008. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
  1009. {
  1010. struct ring_buffer_per_cpu *cpu_buffer;
  1011. struct buffer_page *bpage;
  1012. struct page *page;
  1013. int ret;
  1014. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  1015. GFP_KERNEL, cpu_to_node(cpu));
  1016. if (!cpu_buffer)
  1017. return NULL;
  1018. cpu_buffer->cpu = cpu;
  1019. cpu_buffer->buffer = buffer;
  1020. raw_spin_lock_init(&cpu_buffer->reader_lock);
  1021. lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
  1022. cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
  1023. INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
  1024. init_completion(&cpu_buffer->update_done);
  1025. init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
  1026. init_waitqueue_head(&cpu_buffer->irq_work.waiters);
  1027. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  1028. GFP_KERNEL, cpu_to_node(cpu));
  1029. if (!bpage)
  1030. goto fail_free_buffer;
  1031. rb_check_bpage(cpu_buffer, bpage);
  1032. cpu_buffer->reader_page = bpage;
  1033. page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
  1034. if (!page)
  1035. goto fail_free_reader;
  1036. bpage->page = page_address(page);
  1037. rb_init_page(bpage->page);
  1038. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1039. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1040. ret = rb_allocate_pages(cpu_buffer, nr_pages);
  1041. if (ret < 0)
  1042. goto fail_free_reader;
  1043. cpu_buffer->head_page
  1044. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  1045. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  1046. rb_head_page_activate(cpu_buffer);
  1047. return cpu_buffer;
  1048. fail_free_reader:
  1049. free_buffer_page(cpu_buffer->reader_page);
  1050. fail_free_buffer:
  1051. kfree(cpu_buffer);
  1052. return NULL;
  1053. }
  1054. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  1055. {
  1056. struct list_head *head = cpu_buffer->pages;
  1057. struct buffer_page *bpage, *tmp;
  1058. free_buffer_page(cpu_buffer->reader_page);
  1059. rb_head_page_deactivate(cpu_buffer);
  1060. if (head) {
  1061. list_for_each_entry_safe(bpage, tmp, head, list) {
  1062. list_del_init(&bpage->list);
  1063. free_buffer_page(bpage);
  1064. }
  1065. bpage = list_entry(head, struct buffer_page, list);
  1066. free_buffer_page(bpage);
  1067. }
  1068. kfree(cpu_buffer);
  1069. }
  1070. #ifdef CONFIG_HOTPLUG_CPU
  1071. static int rb_cpu_notify(struct notifier_block *self,
  1072. unsigned long action, void *hcpu);
  1073. #endif
  1074. /**
  1075. * ring_buffer_alloc - allocate a new ring_buffer
  1076. * @size: the size in bytes per cpu that is needed.
  1077. * @flags: attributes to set for the ring buffer.
  1078. *
  1079. * Currently the only flag that is available is the RB_FL_OVERWRITE
  1080. * flag. This flag means that the buffer will overwrite old data
  1081. * when the buffer wraps. If this flag is not set, the buffer will
  1082. * drop data when the tail hits the head.
  1083. */
  1084. struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
  1085. struct lock_class_key *key)
  1086. {
  1087. struct ring_buffer *buffer;
  1088. int bsize;
  1089. int cpu, nr_pages;
  1090. /* keep it in its own cache line */
  1091. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  1092. GFP_KERNEL);
  1093. if (!buffer)
  1094. return NULL;
  1095. if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  1096. goto fail_free_buffer;
  1097. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1098. buffer->flags = flags;
  1099. buffer->clock = trace_clock_local;
  1100. buffer->reader_lock_key = key;
  1101. init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
  1102. init_waitqueue_head(&buffer->irq_work.waiters);
  1103. /* need at least two pages */
  1104. if (nr_pages < 2)
  1105. nr_pages = 2;
  1106. /*
  1107. * In case of non-hotplug cpu, if the ring-buffer is allocated
  1108. * in early initcall, it will not be notified of secondary cpus.
  1109. * In that off case, we need to allocate for all possible cpus.
  1110. */
  1111. #ifdef CONFIG_HOTPLUG_CPU
  1112. get_online_cpus();
  1113. cpumask_copy(buffer->cpumask, cpu_online_mask);
  1114. #else
  1115. cpumask_copy(buffer->cpumask, cpu_possible_mask);
  1116. #endif
  1117. buffer->cpus = nr_cpu_ids;
  1118. bsize = sizeof(void *) * nr_cpu_ids;
  1119. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  1120. GFP_KERNEL);
  1121. if (!buffer->buffers)
  1122. goto fail_free_cpumask;
  1123. for_each_buffer_cpu(buffer, cpu) {
  1124. buffer->buffers[cpu] =
  1125. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  1126. if (!buffer->buffers[cpu])
  1127. goto fail_free_buffers;
  1128. }
  1129. #ifdef CONFIG_HOTPLUG_CPU
  1130. buffer->cpu_notify.notifier_call = rb_cpu_notify;
  1131. buffer->cpu_notify.priority = 0;
  1132. register_cpu_notifier(&buffer->cpu_notify);
  1133. #endif
  1134. put_online_cpus();
  1135. mutex_init(&buffer->mutex);
  1136. return buffer;
  1137. fail_free_buffers:
  1138. for_each_buffer_cpu(buffer, cpu) {
  1139. if (buffer->buffers[cpu])
  1140. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1141. }
  1142. kfree(buffer->buffers);
  1143. fail_free_cpumask:
  1144. free_cpumask_var(buffer->cpumask);
  1145. put_online_cpus();
  1146. fail_free_buffer:
  1147. kfree(buffer);
  1148. return NULL;
  1149. }
  1150. EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
  1151. /**
  1152. * ring_buffer_free - free a ring buffer.
  1153. * @buffer: the buffer to free.
  1154. */
  1155. void
  1156. ring_buffer_free(struct ring_buffer *buffer)
  1157. {
  1158. int cpu;
  1159. get_online_cpus();
  1160. #ifdef CONFIG_HOTPLUG_CPU
  1161. unregister_cpu_notifier(&buffer->cpu_notify);
  1162. #endif
  1163. for_each_buffer_cpu(buffer, cpu)
  1164. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1165. put_online_cpus();
  1166. kfree(buffer->buffers);
  1167. free_cpumask_var(buffer->cpumask);
  1168. kfree(buffer);
  1169. }
  1170. EXPORT_SYMBOL_GPL(ring_buffer_free);
  1171. void ring_buffer_set_clock(struct ring_buffer *buffer,
  1172. u64 (*clock)(void))
  1173. {
  1174. buffer->clock = clock;
  1175. }
  1176. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  1177. static inline unsigned long rb_page_entries(struct buffer_page *bpage)
  1178. {
  1179. return local_read(&bpage->entries) & RB_WRITE_MASK;
  1180. }
  1181. static inline unsigned long rb_page_write(struct buffer_page *bpage)
  1182. {
  1183. return local_read(&bpage->write) & RB_WRITE_MASK;
  1184. }
  1185. static int
  1186. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
  1187. {
  1188. struct list_head *tail_page, *to_remove, *next_page;
  1189. struct buffer_page *to_remove_page, *tmp_iter_page;
  1190. struct buffer_page *last_page, *first_page;
  1191. unsigned int nr_removed;
  1192. unsigned long head_bit;
  1193. int page_entries;
  1194. head_bit = 0;
  1195. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1196. atomic_inc(&cpu_buffer->record_disabled);
  1197. /*
  1198. * We don't race with the readers since we have acquired the reader
  1199. * lock. We also don't race with writers after disabling recording.
  1200. * This makes it easy to figure out the first and the last page to be
  1201. * removed from the list. We unlink all the pages in between including
  1202. * the first and last pages. This is done in a busy loop so that we
  1203. * lose the least number of traces.
  1204. * The pages are freed after we restart recording and unlock readers.
  1205. */
  1206. tail_page = &cpu_buffer->tail_page->list;
  1207. /*
  1208. * tail page might be on reader page, we remove the next page
  1209. * from the ring buffer
  1210. */
  1211. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  1212. tail_page = rb_list_head(tail_page->next);
  1213. to_remove = tail_page;
  1214. /* start of pages to remove */
  1215. first_page = list_entry(rb_list_head(to_remove->next),
  1216. struct buffer_page, list);
  1217. for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
  1218. to_remove = rb_list_head(to_remove)->next;
  1219. head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
  1220. }
  1221. next_page = rb_list_head(to_remove)->next;
  1222. /*
  1223. * Now we remove all pages between tail_page and next_page.
  1224. * Make sure that we have head_bit value preserved for the
  1225. * next page
  1226. */
  1227. tail_page->next = (struct list_head *)((unsigned long)next_page |
  1228. head_bit);
  1229. next_page = rb_list_head(next_page);
  1230. next_page->prev = tail_page;
  1231. /* make sure pages points to a valid page in the ring buffer */
  1232. cpu_buffer->pages = next_page;
  1233. /* update head page */
  1234. if (head_bit)
  1235. cpu_buffer->head_page = list_entry(next_page,
  1236. struct buffer_page, list);
  1237. /*
  1238. * change read pointer to make sure any read iterators reset
  1239. * themselves
  1240. */
  1241. cpu_buffer->read = 0;
  1242. /* pages are removed, resume tracing and then free the pages */
  1243. atomic_dec(&cpu_buffer->record_disabled);
  1244. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1245. RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
  1246. /* last buffer page to remove */
  1247. last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
  1248. list);
  1249. tmp_iter_page = first_page;
  1250. do {
  1251. to_remove_page = tmp_iter_page;
  1252. rb_inc_page(cpu_buffer, &tmp_iter_page);
  1253. /* update the counters */
  1254. page_entries = rb_page_entries(to_remove_page);
  1255. if (page_entries) {
  1256. /*
  1257. * If something was added to this page, it was full
  1258. * since it is not the tail page. So we deduct the
  1259. * bytes consumed in ring buffer from here.
  1260. * Increment overrun to account for the lost events.
  1261. */
  1262. local_add(page_entries, &cpu_buffer->overrun);
  1263. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1264. }
  1265. /*
  1266. * We have already removed references to this list item, just
  1267. * free up the buffer_page and its page
  1268. */
  1269. free_buffer_page(to_remove_page);
  1270. nr_removed--;
  1271. } while (to_remove_page != last_page);
  1272. RB_WARN_ON(cpu_buffer, nr_removed);
  1273. return nr_removed == 0;
  1274. }
  1275. static int
  1276. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1277. {
  1278. struct list_head *pages = &cpu_buffer->new_pages;
  1279. int retries, success;
  1280. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1281. /*
  1282. * We are holding the reader lock, so the reader page won't be swapped
  1283. * in the ring buffer. Now we are racing with the writer trying to
  1284. * move head page and the tail page.
  1285. * We are going to adapt the reader page update process where:
  1286. * 1. We first splice the start and end of list of new pages between
  1287. * the head page and its previous page.
  1288. * 2. We cmpxchg the prev_page->next to point from head page to the
  1289. * start of new pages list.
  1290. * 3. Finally, we update the head->prev to the end of new list.
  1291. *
  1292. * We will try this process 10 times, to make sure that we don't keep
  1293. * spinning.
  1294. */
  1295. retries = 10;
  1296. success = 0;
  1297. while (retries--) {
  1298. struct list_head *head_page, *prev_page, *r;
  1299. struct list_head *last_page, *first_page;
  1300. struct list_head *head_page_with_bit;
  1301. head_page = &rb_set_head_page(cpu_buffer)->list;
  1302. if (!head_page)
  1303. break;
  1304. prev_page = head_page->prev;
  1305. first_page = pages->next;
  1306. last_page = pages->prev;
  1307. head_page_with_bit = (struct list_head *)
  1308. ((unsigned long)head_page | RB_PAGE_HEAD);
  1309. last_page->next = head_page_with_bit;
  1310. first_page->prev = prev_page;
  1311. r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
  1312. if (r == head_page_with_bit) {
  1313. /*
  1314. * yay, we replaced the page pointer to our new list,
  1315. * now, we just have to update to head page's prev
  1316. * pointer to point to end of list
  1317. */
  1318. head_page->prev = last_page;
  1319. success = 1;
  1320. break;
  1321. }
  1322. }
  1323. if (success)
  1324. INIT_LIST_HEAD(pages);
  1325. /*
  1326. * If we weren't successful in adding in new pages, warn and stop
  1327. * tracing
  1328. */
  1329. RB_WARN_ON(cpu_buffer, !success);
  1330. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1331. /* free pages if they weren't inserted */
  1332. if (!success) {
  1333. struct buffer_page *bpage, *tmp;
  1334. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1335. list) {
  1336. list_del_init(&bpage->list);
  1337. free_buffer_page(bpage);
  1338. }
  1339. }
  1340. return success;
  1341. }
  1342. static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1343. {
  1344. int success;
  1345. if (cpu_buffer->nr_pages_to_update > 0)
  1346. success = rb_insert_pages(cpu_buffer);
  1347. else
  1348. success = rb_remove_pages(cpu_buffer,
  1349. -cpu_buffer->nr_pages_to_update);
  1350. if (success)
  1351. cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
  1352. }
  1353. static void update_pages_handler(struct work_struct *work)
  1354. {
  1355. struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
  1356. struct ring_buffer_per_cpu, update_pages_work);
  1357. rb_update_pages(cpu_buffer);
  1358. complete(&cpu_buffer->update_done);
  1359. }
  1360. /**
  1361. * ring_buffer_resize - resize the ring buffer
  1362. * @buffer: the buffer to resize.
  1363. * @size: the new size.
  1364. *
  1365. * Minimum size is 2 * BUF_PAGE_SIZE.
  1366. *
  1367. * Returns 0 on success and < 0 on failure.
  1368. */
  1369. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
  1370. int cpu_id)
  1371. {
  1372. struct ring_buffer_per_cpu *cpu_buffer;
  1373. unsigned nr_pages;
  1374. int cpu, err = 0;
  1375. /*
  1376. * Always succeed at resizing a non-existent buffer:
  1377. */
  1378. if (!buffer)
  1379. return size;
  1380. /* Make sure the requested buffer exists */
  1381. if (cpu_id != RING_BUFFER_ALL_CPUS &&
  1382. !cpumask_test_cpu(cpu_id, buffer->cpumask))
  1383. return size;
  1384. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1385. size *= BUF_PAGE_SIZE;
  1386. /* we need a minimum of two pages */
  1387. if (size < BUF_PAGE_SIZE * 2)
  1388. size = BUF_PAGE_SIZE * 2;
  1389. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1390. /*
  1391. * Don't succeed if resizing is disabled, as a reader might be
  1392. * manipulating the ring buffer and is expecting a sane state while
  1393. * this is true.
  1394. */
  1395. if (atomic_read(&buffer->resize_disabled))
  1396. return -EBUSY;
  1397. /* prevent another thread from changing buffer sizes */
  1398. mutex_lock(&buffer->mutex);
  1399. if (cpu_id == RING_BUFFER_ALL_CPUS) {
  1400. /* calculate the pages to update */
  1401. for_each_buffer_cpu(buffer, cpu) {
  1402. cpu_buffer = buffer->buffers[cpu];
  1403. cpu_buffer->nr_pages_to_update = nr_pages -
  1404. cpu_buffer->nr_pages;
  1405. /*
  1406. * nothing more to do for removing pages or no update
  1407. */
  1408. if (cpu_buffer->nr_pages_to_update <= 0)
  1409. continue;
  1410. /*
  1411. * to add pages, make sure all new pages can be
  1412. * allocated without receiving ENOMEM
  1413. */
  1414. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1415. if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1416. &cpu_buffer->new_pages, cpu)) {
  1417. /* not enough memory for new pages */
  1418. err = -ENOMEM;
  1419. goto out_err;
  1420. }
  1421. }
  1422. get_online_cpus();
  1423. /*
  1424. * Fire off all the required work handlers
  1425. * We can't schedule on offline CPUs, but it's not necessary
  1426. * since we can change their buffer sizes without any race.
  1427. */
  1428. for_each_buffer_cpu(buffer, cpu) {
  1429. cpu_buffer = buffer->buffers[cpu];
  1430. if (!cpu_buffer->nr_pages_to_update)
  1431. continue;
  1432. /* The update must run on the CPU that is being updated. */
  1433. preempt_disable();
  1434. if (cpu == smp_processor_id() || !cpu_online(cpu)) {
  1435. rb_update_pages(cpu_buffer);
  1436. cpu_buffer->nr_pages_to_update = 0;
  1437. } else {
  1438. /*
  1439. * Can not disable preemption for schedule_work_on()
  1440. * on PREEMPT_RT.
  1441. */
  1442. preempt_enable();
  1443. schedule_work_on(cpu,
  1444. &cpu_buffer->update_pages_work);
  1445. preempt_disable();
  1446. }
  1447. preempt_enable();
  1448. }
  1449. /* wait for all the updates to complete */
  1450. for_each_buffer_cpu(buffer, cpu) {
  1451. cpu_buffer = buffer->buffers[cpu];
  1452. if (!cpu_buffer->nr_pages_to_update)
  1453. continue;
  1454. if (cpu_online(cpu))
  1455. wait_for_completion(&cpu_buffer->update_done);
  1456. cpu_buffer->nr_pages_to_update = 0;
  1457. }
  1458. put_online_cpus();
  1459. } else {
  1460. /* Make sure this CPU has been intitialized */
  1461. if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
  1462. goto out;
  1463. cpu_buffer = buffer->buffers[cpu_id];
  1464. if (nr_pages == cpu_buffer->nr_pages)
  1465. goto out;
  1466. cpu_buffer->nr_pages_to_update = nr_pages -
  1467. cpu_buffer->nr_pages;
  1468. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1469. if (cpu_buffer->nr_pages_to_update > 0 &&
  1470. __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1471. &cpu_buffer->new_pages, cpu_id)) {
  1472. err = -ENOMEM;
  1473. goto out_err;
  1474. }
  1475. get_online_cpus();
  1476. preempt_disable();
  1477. /* The update must run on the CPU that is being updated. */
  1478. if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
  1479. rb_update_pages(cpu_buffer);
  1480. else {
  1481. /*
  1482. * Can not disable preemption for schedule_work_on()
  1483. * on PREEMPT_RT.
  1484. */
  1485. preempt_enable();
  1486. schedule_work_on(cpu_id,
  1487. &cpu_buffer->update_pages_work);
  1488. wait_for_completion(&cpu_buffer->update_done);
  1489. preempt_disable();
  1490. }
  1491. preempt_enable();
  1492. cpu_buffer->nr_pages_to_update = 0;
  1493. put_online_cpus();
  1494. }
  1495. out:
  1496. /*
  1497. * The ring buffer resize can happen with the ring buffer
  1498. * enabled, so that the update disturbs the tracing as little
  1499. * as possible. But if the buffer is disabled, we do not need
  1500. * to worry about that, and we can take the time to verify
  1501. * that the buffer is not corrupt.
  1502. */
  1503. if (atomic_read(&buffer->record_disabled)) {
  1504. atomic_inc(&buffer->record_disabled);
  1505. /*
  1506. * Even though the buffer was disabled, we must make sure
  1507. * that it is truly disabled before calling rb_check_pages.
  1508. * There could have been a race between checking
  1509. * record_disable and incrementing it.
  1510. */
  1511. synchronize_sched();
  1512. for_each_buffer_cpu(buffer, cpu) {
  1513. cpu_buffer = buffer->buffers[cpu];
  1514. rb_check_pages(cpu_buffer);
  1515. }
  1516. atomic_dec(&buffer->record_disabled);
  1517. }
  1518. mutex_unlock(&buffer->mutex);
  1519. return size;
  1520. out_err:
  1521. for_each_buffer_cpu(buffer, cpu) {
  1522. struct buffer_page *bpage, *tmp;
  1523. cpu_buffer = buffer->buffers[cpu];
  1524. cpu_buffer->nr_pages_to_update = 0;
  1525. if (list_empty(&cpu_buffer->new_pages))
  1526. continue;
  1527. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1528. list) {
  1529. list_del_init(&bpage->list);
  1530. free_buffer_page(bpage);
  1531. }
  1532. }
  1533. mutex_unlock(&buffer->mutex);
  1534. return err;
  1535. }
  1536. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  1537. void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
  1538. {
  1539. mutex_lock(&buffer->mutex);
  1540. if (val)
  1541. buffer->flags |= RB_FL_OVERWRITE;
  1542. else
  1543. buffer->flags &= ~RB_FL_OVERWRITE;
  1544. mutex_unlock(&buffer->mutex);
  1545. }
  1546. EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
  1547. static inline void *
  1548. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  1549. {
  1550. return bpage->data + index;
  1551. }
  1552. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  1553. {
  1554. return bpage->page->data + index;
  1555. }
  1556. static inline struct ring_buffer_event *
  1557. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  1558. {
  1559. return __rb_page_index(cpu_buffer->reader_page,
  1560. cpu_buffer->reader_page->read);
  1561. }
  1562. static inline struct ring_buffer_event *
  1563. rb_iter_head_event(struct ring_buffer_iter *iter)
  1564. {
  1565. return __rb_page_index(iter->head_page, iter->head);
  1566. }
  1567. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  1568. {
  1569. return local_read(&bpage->page->commit);
  1570. }
  1571. /* Size is determined by what has been committed */
  1572. static inline unsigned rb_page_size(struct buffer_page *bpage)
  1573. {
  1574. return rb_page_commit(bpage);
  1575. }
  1576. static inline unsigned
  1577. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  1578. {
  1579. return rb_page_commit(cpu_buffer->commit_page);
  1580. }
  1581. static inline unsigned
  1582. rb_event_index(struct ring_buffer_event *event)
  1583. {
  1584. unsigned long addr = (unsigned long)event;
  1585. return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
  1586. }
  1587. static inline int
  1588. rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1589. struct ring_buffer_event *event)
  1590. {
  1591. unsigned long addr = (unsigned long)event;
  1592. unsigned long index;
  1593. index = rb_event_index(event);
  1594. addr &= PAGE_MASK;
  1595. return cpu_buffer->commit_page->page == (void *)addr &&
  1596. rb_commit_index(cpu_buffer) == index;
  1597. }
  1598. static void
  1599. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  1600. {
  1601. unsigned long max_count;
  1602. /*
  1603. * We only race with interrupts and NMIs on this CPU.
  1604. * If we own the commit event, then we can commit
  1605. * all others that interrupted us, since the interruptions
  1606. * are in stack format (they finish before they come
  1607. * back to us). This allows us to do a simple loop to
  1608. * assign the commit to the tail.
  1609. */
  1610. again:
  1611. max_count = cpu_buffer->nr_pages * 100;
  1612. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  1613. if (RB_WARN_ON(cpu_buffer, !(--max_count)))
  1614. return;
  1615. if (RB_WARN_ON(cpu_buffer,
  1616. rb_is_reader_page(cpu_buffer->tail_page)))
  1617. return;
  1618. local_set(&cpu_buffer->commit_page->page->commit,
  1619. rb_page_write(cpu_buffer->commit_page));
  1620. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  1621. cpu_buffer->write_stamp =
  1622. cpu_buffer->commit_page->page->time_stamp;
  1623. /* add barrier to keep gcc from optimizing too much */
  1624. barrier();
  1625. }
  1626. while (rb_commit_index(cpu_buffer) !=
  1627. rb_page_write(cpu_buffer->commit_page)) {
  1628. local_set(&cpu_buffer->commit_page->page->commit,
  1629. rb_page_write(cpu_buffer->commit_page));
  1630. RB_WARN_ON(cpu_buffer,
  1631. local_read(&cpu_buffer->commit_page->page->commit) &
  1632. ~RB_WRITE_MASK);
  1633. barrier();
  1634. }
  1635. /* again, keep gcc from optimizing */
  1636. barrier();
  1637. /*
  1638. * If an interrupt came in just after the first while loop
  1639. * and pushed the tail page forward, we will be left with
  1640. * a dangling commit that will never go forward.
  1641. */
  1642. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  1643. goto again;
  1644. }
  1645. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1646. {
  1647. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  1648. cpu_buffer->reader_page->read = 0;
  1649. }
  1650. static void rb_inc_iter(struct ring_buffer_iter *iter)
  1651. {
  1652. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1653. /*
  1654. * The iterator could be on the reader page (it starts there).
  1655. * But the head could have moved, since the reader was
  1656. * found. Check for this case and assign the iterator
  1657. * to the head page instead of next.
  1658. */
  1659. if (iter->head_page == cpu_buffer->reader_page)
  1660. iter->head_page = rb_set_head_page(cpu_buffer);
  1661. else
  1662. rb_inc_page(cpu_buffer, &iter->head_page);
  1663. iter->read_stamp = iter->head_page->page->time_stamp;
  1664. iter->head = 0;
  1665. }
  1666. /* Slow path, do not inline */
  1667. static noinline struct ring_buffer_event *
  1668. rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
  1669. {
  1670. event->type_len = RINGBUF_TYPE_TIME_EXTEND;
  1671. /* Not the first event on the page? */
  1672. if (rb_event_index(event)) {
  1673. event->time_delta = delta & TS_MASK;
  1674. event->array[0] = delta >> TS_SHIFT;
  1675. } else {
  1676. /* nope, just zero it */
  1677. event->time_delta = 0;
  1678. event->array[0] = 0;
  1679. }
  1680. return skip_time_extend(event);
  1681. }
  1682. /**
  1683. * rb_update_event - update event type and data
  1684. * @event: the even to update
  1685. * @type: the type of event
  1686. * @length: the size of the event field in the ring buffer
  1687. *
  1688. * Update the type and data fields of the event. The length
  1689. * is the actual size that is written to the ring buffer,
  1690. * and with this, we can determine what to place into the
  1691. * data field.
  1692. */
  1693. static void
  1694. rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
  1695. struct ring_buffer_event *event, unsigned length,
  1696. int add_timestamp, u64 delta)
  1697. {
  1698. /* Only a commit updates the timestamp */
  1699. if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
  1700. delta = 0;
  1701. /*
  1702. * If we need to add a timestamp, then we
  1703. * add it to the start of the resevered space.
  1704. */
  1705. if (unlikely(add_timestamp)) {
  1706. event = rb_add_time_stamp(event, delta);
  1707. length -= RB_LEN_TIME_EXTEND;
  1708. delta = 0;
  1709. }
  1710. event->time_delta = delta;
  1711. length -= RB_EVNT_HDR_SIZE;
  1712. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
  1713. event->type_len = 0;
  1714. event->array[0] = length;
  1715. } else
  1716. event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
  1717. }
  1718. /*
  1719. * rb_handle_head_page - writer hit the head page
  1720. *
  1721. * Returns: +1 to retry page
  1722. * 0 to continue
  1723. * -1 on error
  1724. */
  1725. static int
  1726. rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  1727. struct buffer_page *tail_page,
  1728. struct buffer_page *next_page)
  1729. {
  1730. struct buffer_page *new_head;
  1731. int entries;
  1732. int type;
  1733. int ret;
  1734. entries = rb_page_entries(next_page);
  1735. /*
  1736. * The hard part is here. We need to move the head
  1737. * forward, and protect against both readers on
  1738. * other CPUs and writers coming in via interrupts.
  1739. */
  1740. type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
  1741. RB_PAGE_HEAD);
  1742. /*
  1743. * type can be one of four:
  1744. * NORMAL - an interrupt already moved it for us
  1745. * HEAD - we are the first to get here.
  1746. * UPDATE - we are the interrupt interrupting
  1747. * a current move.
  1748. * MOVED - a reader on another CPU moved the next
  1749. * pointer to its reader page. Give up
  1750. * and try again.
  1751. */
  1752. switch (type) {
  1753. case RB_PAGE_HEAD:
  1754. /*
  1755. * We changed the head to UPDATE, thus
  1756. * it is our responsibility to update
  1757. * the counters.
  1758. */
  1759. local_add(entries, &cpu_buffer->overrun);
  1760. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1761. /*
  1762. * The entries will be zeroed out when we move the
  1763. * tail page.
  1764. */
  1765. /* still more to do */
  1766. break;
  1767. case RB_PAGE_UPDATE:
  1768. /*
  1769. * This is an interrupt that interrupt the
  1770. * previous update. Still more to do.
  1771. */
  1772. break;
  1773. case RB_PAGE_NORMAL:
  1774. /*
  1775. * An interrupt came in before the update
  1776. * and processed this for us.
  1777. * Nothing left to do.
  1778. */
  1779. return 1;
  1780. case RB_PAGE_MOVED:
  1781. /*
  1782. * The reader is on another CPU and just did
  1783. * a swap with our next_page.
  1784. * Try again.
  1785. */
  1786. return 1;
  1787. default:
  1788. RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
  1789. return -1;
  1790. }
  1791. /*
  1792. * Now that we are here, the old head pointer is
  1793. * set to UPDATE. This will keep the reader from
  1794. * swapping the head page with the reader page.
  1795. * The reader (on another CPU) will spin till
  1796. * we are finished.
  1797. *
  1798. * We just need to protect against interrupts
  1799. * doing the job. We will set the next pointer
  1800. * to HEAD. After that, we set the old pointer
  1801. * to NORMAL, but only if it was HEAD before.
  1802. * otherwise we are an interrupt, and only
  1803. * want the outer most commit to reset it.
  1804. */
  1805. new_head = next_page;
  1806. rb_inc_page(cpu_buffer, &new_head);
  1807. ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
  1808. RB_PAGE_NORMAL);
  1809. /*
  1810. * Valid returns are:
  1811. * HEAD - an interrupt came in and already set it.
  1812. * NORMAL - One of two things:
  1813. * 1) We really set it.
  1814. * 2) A bunch of interrupts came in and moved
  1815. * the page forward again.
  1816. */
  1817. switch (ret) {
  1818. case RB_PAGE_HEAD:
  1819. case RB_PAGE_NORMAL:
  1820. /* OK */
  1821. break;
  1822. default:
  1823. RB_WARN_ON(cpu_buffer, 1);
  1824. return -1;
  1825. }
  1826. /*
  1827. * It is possible that an interrupt came in,
  1828. * set the head up, then more interrupts came in
  1829. * and moved it again. When we get back here,
  1830. * the page would have been set to NORMAL but we
  1831. * just set it back to HEAD.
  1832. *
  1833. * How do you detect this? Well, if that happened
  1834. * the tail page would have moved.
  1835. */
  1836. if (ret == RB_PAGE_NORMAL) {
  1837. /*
  1838. * If the tail had moved passed next, then we need
  1839. * to reset the pointer.
  1840. */
  1841. if (cpu_buffer->tail_page != tail_page &&
  1842. cpu_buffer->tail_page != next_page)
  1843. rb_head_page_set_normal(cpu_buffer, new_head,
  1844. next_page,
  1845. RB_PAGE_HEAD);
  1846. }
  1847. /*
  1848. * If this was the outer most commit (the one that
  1849. * changed the original pointer from HEAD to UPDATE),
  1850. * then it is up to us to reset it to NORMAL.
  1851. */
  1852. if (type == RB_PAGE_HEAD) {
  1853. ret = rb_head_page_set_normal(cpu_buffer, next_page,
  1854. tail_page,
  1855. RB_PAGE_UPDATE);
  1856. if (RB_WARN_ON(cpu_buffer,
  1857. ret != RB_PAGE_UPDATE))
  1858. return -1;
  1859. }
  1860. return 0;
  1861. }
  1862. static unsigned rb_calculate_event_length(unsigned length)
  1863. {
  1864. struct ring_buffer_event event; /* Used only for sizeof array */
  1865. /* zero length can cause confusions */
  1866. if (!length)
  1867. length = 1;
  1868. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
  1869. length += sizeof(event.array[0]);
  1870. length += RB_EVNT_HDR_SIZE;
  1871. length = ALIGN(length, RB_ARCH_ALIGNMENT);
  1872. return length;
  1873. }
  1874. static inline void
  1875. rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1876. struct buffer_page *tail_page,
  1877. unsigned long tail, unsigned long length)
  1878. {
  1879. struct ring_buffer_event *event;
  1880. /*
  1881. * Only the event that crossed the page boundary
  1882. * must fill the old tail_page with padding.
  1883. */
  1884. if (tail >= BUF_PAGE_SIZE) {
  1885. /*
  1886. * If the page was filled, then we still need
  1887. * to update the real_end. Reset it to zero
  1888. * and the reader will ignore it.
  1889. */
  1890. if (tail == BUF_PAGE_SIZE)
  1891. tail_page->real_end = 0;
  1892. local_sub(length, &tail_page->write);
  1893. return;
  1894. }
  1895. event = __rb_page_index(tail_page, tail);
  1896. kmemcheck_annotate_bitfield(event, bitfield);
  1897. /* account for padding bytes */
  1898. local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
  1899. /*
  1900. * Save the original length to the meta data.
  1901. * This will be used by the reader to add lost event
  1902. * counter.
  1903. */
  1904. tail_page->real_end = tail;
  1905. /*
  1906. * If this event is bigger than the minimum size, then
  1907. * we need to be careful that we don't subtract the
  1908. * write counter enough to allow another writer to slip
  1909. * in on this page.
  1910. * We put in a discarded commit instead, to make sure
  1911. * that this space is not used again.
  1912. *
  1913. * If we are less than the minimum size, we don't need to
  1914. * worry about it.
  1915. */
  1916. if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
  1917. /* No room for any events */
  1918. /* Mark the rest of the page with padding */
  1919. rb_event_set_padding(event);
  1920. /* Set the write back to the previous setting */
  1921. local_sub(length, &tail_page->write);
  1922. return;
  1923. }
  1924. /* Put in a discarded event */
  1925. event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
  1926. event->type_len = RINGBUF_TYPE_PADDING;
  1927. /* time delta must be non zero */
  1928. event->time_delta = 1;
  1929. /* Set write to end of buffer */
  1930. length = (tail + length) - BUF_PAGE_SIZE;
  1931. local_sub(length, &tail_page->write);
  1932. }
  1933. /*
  1934. * This is the slow path, force gcc not to inline it.
  1935. */
  1936. static noinline struct ring_buffer_event *
  1937. rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1938. unsigned long length, unsigned long tail,
  1939. struct buffer_page *tail_page, u64 ts)
  1940. {
  1941. struct buffer_page *commit_page = cpu_buffer->commit_page;
  1942. struct ring_buffer *buffer = cpu_buffer->buffer;
  1943. struct buffer_page *next_page;
  1944. int ret;
  1945. next_page = tail_page;
  1946. rb_inc_page(cpu_buffer, &next_page);
  1947. /*
  1948. * If for some reason, we had an interrupt storm that made
  1949. * it all the way around the buffer, bail, and warn
  1950. * about it.
  1951. */
  1952. if (unlikely(next_page == commit_page)) {
  1953. local_inc(&cpu_buffer->commit_overrun);
  1954. goto out_reset;
  1955. }
  1956. /*
  1957. * This is where the fun begins!
  1958. *
  1959. * We are fighting against races between a reader that
  1960. * could be on another CPU trying to swap its reader
  1961. * page with the buffer head.
  1962. *
  1963. * We are also fighting against interrupts coming in and
  1964. * moving the head or tail on us as well.
  1965. *
  1966. * If the next page is the head page then we have filled
  1967. * the buffer, unless the commit page is still on the
  1968. * reader page.
  1969. */
  1970. if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
  1971. /*
  1972. * If the commit is not on the reader page, then
  1973. * move the header page.
  1974. */
  1975. if (!rb_is_reader_page(cpu_buffer->commit_page)) {
  1976. /*
  1977. * If we are not in overwrite mode,
  1978. * this is easy, just stop here.
  1979. */
  1980. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  1981. local_inc(&cpu_buffer->dropped_events);
  1982. goto out_reset;
  1983. }
  1984. ret = rb_handle_head_page(cpu_buffer,
  1985. tail_page,
  1986. next_page);
  1987. if (ret < 0)
  1988. goto out_reset;
  1989. if (ret)
  1990. goto out_again;
  1991. } else {
  1992. /*
  1993. * We need to be careful here too. The
  1994. * commit page could still be on the reader
  1995. * page. We could have a small buffer, and
  1996. * have filled up the buffer with events
  1997. * from interrupts and such, and wrapped.
  1998. *
  1999. * Note, if the tail page is also the on the
  2000. * reader_page, we let it move out.
  2001. */
  2002. if (unlikely((cpu_buffer->commit_page !=
  2003. cpu_buffer->tail_page) &&
  2004. (cpu_buffer->commit_page ==
  2005. cpu_buffer->reader_page))) {
  2006. local_inc(&cpu_buffer->commit_overrun);
  2007. goto out_reset;
  2008. }
  2009. }
  2010. }
  2011. ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
  2012. if (ret) {
  2013. /*
  2014. * Nested commits always have zero deltas, so
  2015. * just reread the time stamp
  2016. */
  2017. ts = rb_time_stamp(buffer);
  2018. next_page->page->time_stamp = ts;
  2019. }
  2020. out_again:
  2021. rb_reset_tail(cpu_buffer, tail_page, tail, length);
  2022. /* fail and let the caller try again */
  2023. return ERR_PTR(-EAGAIN);
  2024. out_reset:
  2025. /* reset write */
  2026. rb_reset_tail(cpu_buffer, tail_page, tail, length);
  2027. return NULL;
  2028. }
  2029. static struct ring_buffer_event *
  2030. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  2031. unsigned long length, u64 ts,
  2032. u64 delta, int add_timestamp)
  2033. {
  2034. struct buffer_page *tail_page;
  2035. struct ring_buffer_event *event;
  2036. unsigned long tail, write;
  2037. /*
  2038. * If the time delta since the last event is too big to
  2039. * hold in the time field of the event, then we append a
  2040. * TIME EXTEND event ahead of the data event.
  2041. */
  2042. if (unlikely(add_timestamp))
  2043. length += RB_LEN_TIME_EXTEND;
  2044. tail_page = cpu_buffer->tail_page;
  2045. write = local_add_return(length, &tail_page->write);
  2046. /* set write to only the index of the write */
  2047. write &= RB_WRITE_MASK;
  2048. tail = write - length;
  2049. /* See if we shot pass the end of this buffer page */
  2050. if (unlikely(write > BUF_PAGE_SIZE))
  2051. return rb_move_tail(cpu_buffer, length, tail,
  2052. tail_page, ts);
  2053. /* We reserved something on the buffer */
  2054. event = __rb_page_index(tail_page, tail);
  2055. kmemcheck_annotate_bitfield(event, bitfield);
  2056. rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
  2057. local_inc(&tail_page->entries);
  2058. /*
  2059. * If this is the first commit on the page, then update
  2060. * its timestamp.
  2061. */
  2062. if (!tail)
  2063. tail_page->page->time_stamp = ts;
  2064. /* account for these added bytes */
  2065. local_add(length, &cpu_buffer->entries_bytes);
  2066. return event;
  2067. }
  2068. static inline int
  2069. rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
  2070. struct ring_buffer_event *event)
  2071. {
  2072. unsigned long new_index, old_index;
  2073. struct buffer_page *bpage;
  2074. unsigned long index;
  2075. unsigned long addr;
  2076. new_index = rb_event_index(event);
  2077. old_index = new_index + rb_event_ts_length(event);
  2078. addr = (unsigned long)event;
  2079. addr &= PAGE_MASK;
  2080. bpage = cpu_buffer->tail_page;
  2081. if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
  2082. unsigned long write_mask =
  2083. local_read(&bpage->write) & ~RB_WRITE_MASK;
  2084. unsigned long event_length = rb_event_length(event);
  2085. /*
  2086. * This is on the tail page. It is possible that
  2087. * a write could come in and move the tail page
  2088. * and write to the next page. That is fine
  2089. * because we just shorten what is on this page.
  2090. */
  2091. old_index += write_mask;
  2092. new_index += write_mask;
  2093. index = local_cmpxchg(&bpage->write, old_index, new_index);
  2094. if (index == old_index) {
  2095. /* update counters */
  2096. local_sub(event_length, &cpu_buffer->entries_bytes);
  2097. return 1;
  2098. }
  2099. }
  2100. /* could not discard */
  2101. return 0;
  2102. }
  2103. static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2104. {
  2105. local_inc(&cpu_buffer->committing);
  2106. local_inc(&cpu_buffer->commits);
  2107. }
  2108. static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2109. {
  2110. unsigned long commits;
  2111. if (RB_WARN_ON(cpu_buffer,
  2112. !local_read(&cpu_buffer->committing)))
  2113. return;
  2114. again:
  2115. commits = local_read(&cpu_buffer->commits);
  2116. /* synchronize with interrupts */
  2117. barrier();
  2118. if (local_read(&cpu_buffer->committing) == 1)
  2119. rb_set_commit_to_write(cpu_buffer);
  2120. local_dec(&cpu_buffer->committing);
  2121. /* synchronize with interrupts */
  2122. barrier();
  2123. /*
  2124. * Need to account for interrupts coming in between the
  2125. * updating of the commit page and the clearing of the
  2126. * committing counter.
  2127. */
  2128. if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
  2129. !local_read(&cpu_buffer->committing)) {
  2130. local_inc(&cpu_buffer->committing);
  2131. goto again;
  2132. }
  2133. }
  2134. static struct ring_buffer_event *
  2135. rb_reserve_next_event(struct ring_buffer *buffer,
  2136. struct ring_buffer_per_cpu *cpu_buffer,
  2137. unsigned long length)
  2138. {
  2139. struct ring_buffer_event *event;
  2140. u64 ts, delta;
  2141. int nr_loops = 0;
  2142. int add_timestamp;
  2143. u64 diff;
  2144. rb_start_commit(cpu_buffer);
  2145. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  2146. /*
  2147. * Due to the ability to swap a cpu buffer from a buffer
  2148. * it is possible it was swapped before we committed.
  2149. * (committing stops a swap). We check for it here and
  2150. * if it happened, we have to fail the write.
  2151. */
  2152. barrier();
  2153. if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
  2154. local_dec(&cpu_buffer->committing);
  2155. local_dec(&cpu_buffer->commits);
  2156. return NULL;
  2157. }
  2158. #endif
  2159. length = rb_calculate_event_length(length);
  2160. again:
  2161. add_timestamp = 0;
  2162. delta = 0;
  2163. /*
  2164. * We allow for interrupts to reenter here and do a trace.
  2165. * If one does, it will cause this original code to loop
  2166. * back here. Even with heavy interrupts happening, this
  2167. * should only happen a few times in a row. If this happens
  2168. * 1000 times in a row, there must be either an interrupt
  2169. * storm or we have something buggy.
  2170. * Bail!
  2171. */
  2172. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  2173. goto out_fail;
  2174. ts = rb_time_stamp(cpu_buffer->buffer);
  2175. diff = ts - cpu_buffer->write_stamp;
  2176. /* make sure this diff is calculated here */
  2177. barrier();
  2178. /* Did the write stamp get updated already? */
  2179. if (likely(ts >= cpu_buffer->write_stamp)) {
  2180. delta = diff;
  2181. if (unlikely(test_time_stamp(delta))) {
  2182. int local_clock_stable = 1;
  2183. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  2184. local_clock_stable = sched_clock_stable;
  2185. #endif
  2186. WARN_ONCE(delta > (1ULL << 59),
  2187. KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
  2188. (unsigned long long)delta,
  2189. (unsigned long long)ts,
  2190. (unsigned long long)cpu_buffer->write_stamp,
  2191. local_clock_stable ? "" :
  2192. "If you just came from a suspend/resume,\n"
  2193. "please switch to the trace global clock:\n"
  2194. " echo global > /sys/kernel/debug/tracing/trace_clock\n");
  2195. add_timestamp = 1;
  2196. }
  2197. }
  2198. event = __rb_reserve_next(cpu_buffer, length, ts,
  2199. delta, add_timestamp);
  2200. if (unlikely(PTR_ERR(event) == -EAGAIN))
  2201. goto again;
  2202. if (!event)
  2203. goto out_fail;
  2204. return event;
  2205. out_fail:
  2206. rb_end_commit(cpu_buffer);
  2207. return NULL;
  2208. }
  2209. #ifdef CONFIG_TRACING
  2210. /*
  2211. * The lock and unlock are done within a preempt disable section.
  2212. * The current_context per_cpu variable can only be modified
  2213. * by the current task between lock and unlock. But it can
  2214. * be modified more than once via an interrupt. To pass this
  2215. * information from the lock to the unlock without having to
  2216. * access the 'in_interrupt()' functions again (which do show
  2217. * a bit of overhead in something as critical as function tracing,
  2218. * we use a bitmask trick.
  2219. *
  2220. * bit 0 = NMI context
  2221. * bit 1 = IRQ context
  2222. * bit 2 = SoftIRQ context
  2223. * bit 3 = normal context.
  2224. *
  2225. * This works because this is the order of contexts that can
  2226. * preempt other contexts. A SoftIRQ never preempts an IRQ
  2227. * context.
  2228. *
  2229. * When the context is determined, the corresponding bit is
  2230. * checked and set (if it was set, then a recursion of that context
  2231. * happened).
  2232. *
  2233. * On unlock, we need to clear this bit. To do so, just subtract
  2234. * 1 from the current_context and AND it to itself.
  2235. *
  2236. * (binary)
  2237. * 101 - 1 = 100
  2238. * 101 & 100 = 100 (clearing bit zero)
  2239. *
  2240. * 1010 - 1 = 1001
  2241. * 1010 & 1001 = 1000 (clearing bit 1)
  2242. *
  2243. * The least significant bit can be cleared this way, and it
  2244. * just so happens that it is the same bit corresponding to
  2245. * the current context.
  2246. */
  2247. static DEFINE_PER_CPU(unsigned int, current_context);
  2248. static __always_inline int trace_recursive_lock(void)
  2249. {
  2250. unsigned int val = this_cpu_read(current_context);
  2251. int bit;
  2252. if (in_interrupt()) {
  2253. if (in_nmi())
  2254. bit = 0;
  2255. else if (in_irq())
  2256. bit = 1;
  2257. else
  2258. bit = 2;
  2259. } else
  2260. bit = 3;
  2261. if (unlikely(val & (1 << bit)))
  2262. return 1;
  2263. val |= (1 << bit);
  2264. this_cpu_write(current_context, val);
  2265. return 0;
  2266. }
  2267. static __always_inline void trace_recursive_unlock(void)
  2268. {
  2269. unsigned int val = this_cpu_read(current_context);
  2270. val--;
  2271. val &= this_cpu_read(current_context);
  2272. this_cpu_write(current_context, val);
  2273. }
  2274. #else
  2275. #define trace_recursive_lock() (0)
  2276. #define trace_recursive_unlock() do { } while (0)
  2277. #endif
  2278. /**
  2279. * ring_buffer_lock_reserve - reserve a part of the buffer
  2280. * @buffer: the ring buffer to reserve from
  2281. * @length: the length of the data to reserve (excluding event header)
  2282. *
  2283. * Returns a reseverd event on the ring buffer to copy directly to.
  2284. * The user of this interface will need to get the body to write into
  2285. * and can use the ring_buffer_event_data() interface.
  2286. *
  2287. * The length is the length of the data needed, not the event length
  2288. * which also includes the event header.
  2289. *
  2290. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  2291. * If NULL is returned, then nothing has been allocated or locked.
  2292. */
  2293. struct ring_buffer_event *
  2294. ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
  2295. {
  2296. struct ring_buffer_per_cpu *cpu_buffer;
  2297. struct ring_buffer_event *event;
  2298. int cpu;
  2299. if (ring_buffer_flags != RB_BUFFERS_ON)
  2300. return NULL;
  2301. /* If we are tracing schedule, we don't want to recurse */
  2302. preempt_disable_notrace();
  2303. if (atomic_read(&buffer->record_disabled))
  2304. goto out_nocheck;
  2305. if (trace_recursive_lock())
  2306. goto out_nocheck;
  2307. cpu = raw_smp_processor_id();
  2308. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2309. goto out;
  2310. cpu_buffer = buffer->buffers[cpu];
  2311. if (atomic_read(&cpu_buffer->record_disabled))
  2312. goto out;
  2313. if (length > BUF_MAX_DATA_SIZE)
  2314. goto out;
  2315. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2316. if (!event)
  2317. goto out;
  2318. return event;
  2319. out:
  2320. trace_recursive_unlock();
  2321. out_nocheck:
  2322. preempt_enable_notrace();
  2323. return NULL;
  2324. }
  2325. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  2326. static void
  2327. rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2328. struct ring_buffer_event *event)
  2329. {
  2330. u64 delta;
  2331. /*
  2332. * The event first in the commit queue updates the
  2333. * time stamp.
  2334. */
  2335. if (rb_event_is_commit(cpu_buffer, event)) {
  2336. /*
  2337. * A commit event that is first on a page
  2338. * updates the write timestamp with the page stamp
  2339. */
  2340. if (!rb_event_index(event))
  2341. cpu_buffer->write_stamp =
  2342. cpu_buffer->commit_page->page->time_stamp;
  2343. else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  2344. delta = event->array[0];
  2345. delta <<= TS_SHIFT;
  2346. delta += event->time_delta;
  2347. cpu_buffer->write_stamp += delta;
  2348. } else
  2349. cpu_buffer->write_stamp += event->time_delta;
  2350. }
  2351. }
  2352. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  2353. struct ring_buffer_event *event)
  2354. {
  2355. local_inc(&cpu_buffer->entries);
  2356. rb_update_write_stamp(cpu_buffer, event);
  2357. rb_end_commit(cpu_buffer);
  2358. }
  2359. static __always_inline void
  2360. rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
  2361. {
  2362. if (buffer->irq_work.waiters_pending) {
  2363. buffer->irq_work.waiters_pending = false;
  2364. /* irq_work_queue() supplies it's own memory barriers */
  2365. irq_work_queue(&buffer->irq_work.work);
  2366. }
  2367. if (cpu_buffer->irq_work.waiters_pending) {
  2368. cpu_buffer->irq_work.waiters_pending = false;
  2369. /* irq_work_queue() supplies it's own memory barriers */
  2370. irq_work_queue(&cpu_buffer->irq_work.work);
  2371. }
  2372. }
  2373. /**
  2374. * ring_buffer_unlock_commit - commit a reserved
  2375. * @buffer: The buffer to commit to
  2376. * @event: The event pointer to commit.
  2377. *
  2378. * This commits the data to the ring buffer, and releases any locks held.
  2379. *
  2380. * Must be paired with ring_buffer_lock_reserve.
  2381. */
  2382. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  2383. struct ring_buffer_event *event)
  2384. {
  2385. struct ring_buffer_per_cpu *cpu_buffer;
  2386. int cpu = raw_smp_processor_id();
  2387. cpu_buffer = buffer->buffers[cpu];
  2388. rb_commit(cpu_buffer, event);
  2389. rb_wakeups(buffer, cpu_buffer);
  2390. trace_recursive_unlock();
  2391. preempt_enable_notrace();
  2392. return 0;
  2393. }
  2394. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  2395. static inline void rb_event_discard(struct ring_buffer_event *event)
  2396. {
  2397. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  2398. event = skip_time_extend(event);
  2399. /* array[0] holds the actual length for the discarded event */
  2400. event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
  2401. event->type_len = RINGBUF_TYPE_PADDING;
  2402. /* time delta must be non zero */
  2403. if (!event->time_delta)
  2404. event->time_delta = 1;
  2405. }
  2406. /*
  2407. * Decrement the entries to the page that an event is on.
  2408. * The event does not even need to exist, only the pointer
  2409. * to the page it is on. This may only be called before the commit
  2410. * takes place.
  2411. */
  2412. static inline void
  2413. rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
  2414. struct ring_buffer_event *event)
  2415. {
  2416. unsigned long addr = (unsigned long)event;
  2417. struct buffer_page *bpage = cpu_buffer->commit_page;
  2418. struct buffer_page *start;
  2419. addr &= PAGE_MASK;
  2420. /* Do the likely case first */
  2421. if (likely(bpage->page == (void *)addr)) {
  2422. local_dec(&bpage->entries);
  2423. return;
  2424. }
  2425. /*
  2426. * Because the commit page may be on the reader page we
  2427. * start with the next page and check the end loop there.
  2428. */
  2429. rb_inc_page(cpu_buffer, &bpage);
  2430. start = bpage;
  2431. do {
  2432. if (bpage->page == (void *)addr) {
  2433. local_dec(&bpage->entries);
  2434. return;
  2435. }
  2436. rb_inc_page(cpu_buffer, &bpage);
  2437. } while (bpage != start);
  2438. /* commit not part of this buffer?? */
  2439. RB_WARN_ON(cpu_buffer, 1);
  2440. }
  2441. /**
  2442. * ring_buffer_commit_discard - discard an event that has not been committed
  2443. * @buffer: the ring buffer
  2444. * @event: non committed event to discard
  2445. *
  2446. * Sometimes an event that is in the ring buffer needs to be ignored.
  2447. * This function lets the user discard an event in the ring buffer
  2448. * and then that event will not be read later.
  2449. *
  2450. * This function only works if it is called before the the item has been
  2451. * committed. It will try to free the event from the ring buffer
  2452. * if another event has not been added behind it.
  2453. *
  2454. * If another event has been added behind it, it will set the event
  2455. * up as discarded, and perform the commit.
  2456. *
  2457. * If this function is called, do not call ring_buffer_unlock_commit on
  2458. * the event.
  2459. */
  2460. void ring_buffer_discard_commit(struct ring_buffer *buffer,
  2461. struct ring_buffer_event *event)
  2462. {
  2463. struct ring_buffer_per_cpu *cpu_buffer;
  2464. int cpu;
  2465. /* The event is discarded regardless */
  2466. rb_event_discard(event);
  2467. cpu = smp_processor_id();
  2468. cpu_buffer = buffer->buffers[cpu];
  2469. /*
  2470. * This must only be called if the event has not been
  2471. * committed yet. Thus we can assume that preemption
  2472. * is still disabled.
  2473. */
  2474. RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
  2475. rb_decrement_entry(cpu_buffer, event);
  2476. if (rb_try_to_discard(cpu_buffer, event))
  2477. goto out;
  2478. /*
  2479. * The commit is still visible by the reader, so we
  2480. * must still update the timestamp.
  2481. */
  2482. rb_update_write_stamp(cpu_buffer, event);
  2483. out:
  2484. rb_end_commit(cpu_buffer);
  2485. trace_recursive_unlock();
  2486. preempt_enable_notrace();
  2487. }
  2488. EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
  2489. /**
  2490. * ring_buffer_write - write data to the buffer without reserving
  2491. * @buffer: The ring buffer to write to.
  2492. * @length: The length of the data being written (excluding the event header)
  2493. * @data: The data to write to the buffer.
  2494. *
  2495. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  2496. * one function. If you already have the data to write to the buffer, it
  2497. * may be easier to simply call this function.
  2498. *
  2499. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  2500. * and not the length of the event which would hold the header.
  2501. */
  2502. int ring_buffer_write(struct ring_buffer *buffer,
  2503. unsigned long length,
  2504. void *data)
  2505. {
  2506. struct ring_buffer_per_cpu *cpu_buffer;
  2507. struct ring_buffer_event *event;
  2508. void *body;
  2509. int ret = -EBUSY;
  2510. int cpu;
  2511. if (ring_buffer_flags != RB_BUFFERS_ON)
  2512. return -EBUSY;
  2513. preempt_disable_notrace();
  2514. if (atomic_read(&buffer->record_disabled))
  2515. goto out;
  2516. cpu = raw_smp_processor_id();
  2517. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2518. goto out;
  2519. cpu_buffer = buffer->buffers[cpu];
  2520. if (atomic_read(&cpu_buffer->record_disabled))
  2521. goto out;
  2522. if (length > BUF_MAX_DATA_SIZE)
  2523. goto out;
  2524. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2525. if (!event)
  2526. goto out;
  2527. body = rb_event_data(event);
  2528. memcpy(body, data, length);
  2529. rb_commit(cpu_buffer, event);
  2530. rb_wakeups(buffer, cpu_buffer);
  2531. ret = 0;
  2532. out:
  2533. preempt_enable_notrace();
  2534. return ret;
  2535. }
  2536. EXPORT_SYMBOL_GPL(ring_buffer_write);
  2537. static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  2538. {
  2539. struct buffer_page *reader = cpu_buffer->reader_page;
  2540. struct buffer_page *head = rb_set_head_page(cpu_buffer);
  2541. struct buffer_page *commit = cpu_buffer->commit_page;
  2542. /* In case of error, head will be NULL */
  2543. if (unlikely(!head))
  2544. return 1;
  2545. return reader->read == rb_page_commit(reader) &&
  2546. (commit == reader ||
  2547. (commit == head &&
  2548. head->read == rb_page_commit(commit)));
  2549. }
  2550. /**
  2551. * ring_buffer_record_disable - stop all writes into the buffer
  2552. * @buffer: The ring buffer to stop writes to.
  2553. *
  2554. * This prevents all writes to the buffer. Any attempt to write
  2555. * to the buffer after this will fail and return NULL.
  2556. *
  2557. * The caller should call synchronize_sched() after this.
  2558. */
  2559. void ring_buffer_record_disable(struct ring_buffer *buffer)
  2560. {
  2561. atomic_inc(&buffer->record_disabled);
  2562. }
  2563. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  2564. /**
  2565. * ring_buffer_record_enable - enable writes to the buffer
  2566. * @buffer: The ring buffer to enable writes
  2567. *
  2568. * Note, multiple disables will need the same number of enables
  2569. * to truly enable the writing (much like preempt_disable).
  2570. */
  2571. void ring_buffer_record_enable(struct ring_buffer *buffer)
  2572. {
  2573. atomic_dec(&buffer->record_disabled);
  2574. }
  2575. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  2576. /**
  2577. * ring_buffer_record_off - stop all writes into the buffer
  2578. * @buffer: The ring buffer to stop writes to.
  2579. *
  2580. * This prevents all writes to the buffer. Any attempt to write
  2581. * to the buffer after this will fail and return NULL.
  2582. *
  2583. * This is different than ring_buffer_record_disable() as
  2584. * it works like an on/off switch, where as the disable() version
  2585. * must be paired with a enable().
  2586. */
  2587. void ring_buffer_record_off(struct ring_buffer *buffer)
  2588. {
  2589. unsigned int rd;
  2590. unsigned int new_rd;
  2591. do {
  2592. rd = atomic_read(&buffer->record_disabled);
  2593. new_rd = rd | RB_BUFFER_OFF;
  2594. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2595. }
  2596. EXPORT_SYMBOL_GPL(ring_buffer_record_off);
  2597. /**
  2598. * ring_buffer_record_on - restart writes into the buffer
  2599. * @buffer: The ring buffer to start writes to.
  2600. *
  2601. * This enables all writes to the buffer that was disabled by
  2602. * ring_buffer_record_off().
  2603. *
  2604. * This is different than ring_buffer_record_enable() as
  2605. * it works like an on/off switch, where as the enable() version
  2606. * must be paired with a disable().
  2607. */
  2608. void ring_buffer_record_on(struct ring_buffer *buffer)
  2609. {
  2610. unsigned int rd;
  2611. unsigned int new_rd;
  2612. do {
  2613. rd = atomic_read(&buffer->record_disabled);
  2614. new_rd = rd & ~RB_BUFFER_OFF;
  2615. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2616. }
  2617. EXPORT_SYMBOL_GPL(ring_buffer_record_on);
  2618. /**
  2619. * ring_buffer_record_is_on - return true if the ring buffer can write
  2620. * @buffer: The ring buffer to see if write is enabled
  2621. *
  2622. * Returns true if the ring buffer is in a state that it accepts writes.
  2623. */
  2624. int ring_buffer_record_is_on(struct ring_buffer *buffer)
  2625. {
  2626. return !atomic_read(&buffer->record_disabled);
  2627. }
  2628. /**
  2629. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  2630. * @buffer: The ring buffer to stop writes to.
  2631. * @cpu: The CPU buffer to stop
  2632. *
  2633. * This prevents all writes to the buffer. Any attempt to write
  2634. * to the buffer after this will fail and return NULL.
  2635. *
  2636. * The caller should call synchronize_sched() after this.
  2637. */
  2638. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  2639. {
  2640. struct ring_buffer_per_cpu *cpu_buffer;
  2641. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2642. return;
  2643. cpu_buffer = buffer->buffers[cpu];
  2644. atomic_inc(&cpu_buffer->record_disabled);
  2645. }
  2646. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  2647. /**
  2648. * ring_buffer_record_enable_cpu - enable writes to the buffer
  2649. * @buffer: The ring buffer to enable writes
  2650. * @cpu: The CPU to enable.
  2651. *
  2652. * Note, multiple disables will need the same number of enables
  2653. * to truly enable the writing (much like preempt_disable).
  2654. */
  2655. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  2656. {
  2657. struct ring_buffer_per_cpu *cpu_buffer;
  2658. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2659. return;
  2660. cpu_buffer = buffer->buffers[cpu];
  2661. atomic_dec(&cpu_buffer->record_disabled);
  2662. }
  2663. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  2664. /*
  2665. * The total entries in the ring buffer is the running counter
  2666. * of entries entered into the ring buffer, minus the sum of
  2667. * the entries read from the ring buffer and the number of
  2668. * entries that were overwritten.
  2669. */
  2670. static inline unsigned long
  2671. rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
  2672. {
  2673. return local_read(&cpu_buffer->entries) -
  2674. (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
  2675. }
  2676. /**
  2677. * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
  2678. * @buffer: The ring buffer
  2679. * @cpu: The per CPU buffer to read from.
  2680. */
  2681. u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
  2682. {
  2683. unsigned long flags;
  2684. struct ring_buffer_per_cpu *cpu_buffer;
  2685. struct buffer_page *bpage;
  2686. u64 ret = 0;
  2687. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2688. return 0;
  2689. cpu_buffer = buffer->buffers[cpu];
  2690. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2691. /*
  2692. * if the tail is on reader_page, oldest time stamp is on the reader
  2693. * page
  2694. */
  2695. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  2696. bpage = cpu_buffer->reader_page;
  2697. else
  2698. bpage = rb_set_head_page(cpu_buffer);
  2699. if (bpage)
  2700. ret = bpage->page->time_stamp;
  2701. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2702. return ret;
  2703. }
  2704. EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
  2705. /**
  2706. * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
  2707. * @buffer: The ring buffer
  2708. * @cpu: The per CPU buffer to read from.
  2709. */
  2710. unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
  2711. {
  2712. struct ring_buffer_per_cpu *cpu_buffer;
  2713. unsigned long ret;
  2714. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2715. return 0;
  2716. cpu_buffer = buffer->buffers[cpu];
  2717. ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
  2718. return ret;
  2719. }
  2720. EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
  2721. /**
  2722. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  2723. * @buffer: The ring buffer
  2724. * @cpu: The per CPU buffer to get the entries from.
  2725. */
  2726. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  2727. {
  2728. struct ring_buffer_per_cpu *cpu_buffer;
  2729. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2730. return 0;
  2731. cpu_buffer = buffer->buffers[cpu];
  2732. return rb_num_of_entries(cpu_buffer);
  2733. }
  2734. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  2735. /**
  2736. * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
  2737. * buffer wrapping around (only if RB_FL_OVERWRITE is on).
  2738. * @buffer: The ring buffer
  2739. * @cpu: The per CPU buffer to get the number of overruns from
  2740. */
  2741. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2742. {
  2743. struct ring_buffer_per_cpu *cpu_buffer;
  2744. unsigned long ret;
  2745. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2746. return 0;
  2747. cpu_buffer = buffer->buffers[cpu];
  2748. ret = local_read(&cpu_buffer->overrun);
  2749. return ret;
  2750. }
  2751. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  2752. /**
  2753. * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
  2754. * commits failing due to the buffer wrapping around while there are uncommitted
  2755. * events, such as during an interrupt storm.
  2756. * @buffer: The ring buffer
  2757. * @cpu: The per CPU buffer to get the number of overruns from
  2758. */
  2759. unsigned long
  2760. ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2761. {
  2762. struct ring_buffer_per_cpu *cpu_buffer;
  2763. unsigned long ret;
  2764. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2765. return 0;
  2766. cpu_buffer = buffer->buffers[cpu];
  2767. ret = local_read(&cpu_buffer->commit_overrun);
  2768. return ret;
  2769. }
  2770. EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
  2771. /**
  2772. * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
  2773. * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
  2774. * @buffer: The ring buffer
  2775. * @cpu: The per CPU buffer to get the number of overruns from
  2776. */
  2777. unsigned long
  2778. ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
  2779. {
  2780. struct ring_buffer_per_cpu *cpu_buffer;
  2781. unsigned long ret;
  2782. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2783. return 0;
  2784. cpu_buffer = buffer->buffers[cpu];
  2785. ret = local_read(&cpu_buffer->dropped_events);
  2786. return ret;
  2787. }
  2788. EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
  2789. /**
  2790. * ring_buffer_read_events_cpu - get the number of events successfully read
  2791. * @buffer: The ring buffer
  2792. * @cpu: The per CPU buffer to get the number of events read
  2793. */
  2794. unsigned long
  2795. ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
  2796. {
  2797. struct ring_buffer_per_cpu *cpu_buffer;
  2798. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2799. return 0;
  2800. cpu_buffer = buffer->buffers[cpu];
  2801. return cpu_buffer->read;
  2802. }
  2803. EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
  2804. /**
  2805. * ring_buffer_entries - get the number of entries in a buffer
  2806. * @buffer: The ring buffer
  2807. *
  2808. * Returns the total number of entries in the ring buffer
  2809. * (all CPU entries)
  2810. */
  2811. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  2812. {
  2813. struct ring_buffer_per_cpu *cpu_buffer;
  2814. unsigned long entries = 0;
  2815. int cpu;
  2816. /* if you care about this being correct, lock the buffer */
  2817. for_each_buffer_cpu(buffer, cpu) {
  2818. cpu_buffer = buffer->buffers[cpu];
  2819. entries += rb_num_of_entries(cpu_buffer);
  2820. }
  2821. return entries;
  2822. }
  2823. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  2824. /**
  2825. * ring_buffer_overruns - get the number of overruns in buffer
  2826. * @buffer: The ring buffer
  2827. *
  2828. * Returns the total number of overruns in the ring buffer
  2829. * (all CPU entries)
  2830. */
  2831. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  2832. {
  2833. struct ring_buffer_per_cpu *cpu_buffer;
  2834. unsigned long overruns = 0;
  2835. int cpu;
  2836. /* if you care about this being correct, lock the buffer */
  2837. for_each_buffer_cpu(buffer, cpu) {
  2838. cpu_buffer = buffer->buffers[cpu];
  2839. overruns += local_read(&cpu_buffer->overrun);
  2840. }
  2841. return overruns;
  2842. }
  2843. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  2844. static void rb_iter_reset(struct ring_buffer_iter *iter)
  2845. {
  2846. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  2847. /* Iterator usage is expected to have record disabled */
  2848. if (list_empty(&cpu_buffer->reader_page->list)) {
  2849. iter->head_page = rb_set_head_page(cpu_buffer);
  2850. if (unlikely(!iter->head_page))
  2851. return;
  2852. iter->head = iter->head_page->read;
  2853. } else {
  2854. iter->head_page = cpu_buffer->reader_page;
  2855. iter->head = cpu_buffer->reader_page->read;
  2856. }
  2857. if (iter->head)
  2858. iter->read_stamp = cpu_buffer->read_stamp;
  2859. else
  2860. iter->read_stamp = iter->head_page->page->time_stamp;
  2861. iter->cache_reader_page = cpu_buffer->reader_page;
  2862. iter->cache_read = cpu_buffer->read;
  2863. }
  2864. /**
  2865. * ring_buffer_iter_reset - reset an iterator
  2866. * @iter: The iterator to reset
  2867. *
  2868. * Resets the iterator, so that it will start from the beginning
  2869. * again.
  2870. */
  2871. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  2872. {
  2873. struct ring_buffer_per_cpu *cpu_buffer;
  2874. unsigned long flags;
  2875. if (!iter)
  2876. return;
  2877. cpu_buffer = iter->cpu_buffer;
  2878. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2879. rb_iter_reset(iter);
  2880. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2881. }
  2882. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  2883. /**
  2884. * ring_buffer_iter_empty - check if an iterator has no more to read
  2885. * @iter: The iterator to check
  2886. */
  2887. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  2888. {
  2889. struct ring_buffer_per_cpu *cpu_buffer;
  2890. cpu_buffer = iter->cpu_buffer;
  2891. return iter->head_page == cpu_buffer->commit_page &&
  2892. iter->head == rb_commit_index(cpu_buffer);
  2893. }
  2894. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  2895. static void
  2896. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2897. struct ring_buffer_event *event)
  2898. {
  2899. u64 delta;
  2900. switch (event->type_len) {
  2901. case RINGBUF_TYPE_PADDING:
  2902. return;
  2903. case RINGBUF_TYPE_TIME_EXTEND:
  2904. delta = event->array[0];
  2905. delta <<= TS_SHIFT;
  2906. delta += event->time_delta;
  2907. cpu_buffer->read_stamp += delta;
  2908. return;
  2909. case RINGBUF_TYPE_TIME_STAMP:
  2910. /* FIXME: not implemented */
  2911. return;
  2912. case RINGBUF_TYPE_DATA:
  2913. cpu_buffer->read_stamp += event->time_delta;
  2914. return;
  2915. default:
  2916. BUG();
  2917. }
  2918. return;
  2919. }
  2920. static void
  2921. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  2922. struct ring_buffer_event *event)
  2923. {
  2924. u64 delta;
  2925. switch (event->type_len) {
  2926. case RINGBUF_TYPE_PADDING:
  2927. return;
  2928. case RINGBUF_TYPE_TIME_EXTEND:
  2929. delta = event->array[0];
  2930. delta <<= TS_SHIFT;
  2931. delta += event->time_delta;
  2932. iter->read_stamp += delta;
  2933. return;
  2934. case RINGBUF_TYPE_TIME_STAMP:
  2935. /* FIXME: not implemented */
  2936. return;
  2937. case RINGBUF_TYPE_DATA:
  2938. iter->read_stamp += event->time_delta;
  2939. return;
  2940. default:
  2941. BUG();
  2942. }
  2943. return;
  2944. }
  2945. static struct buffer_page *
  2946. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  2947. {
  2948. struct buffer_page *reader = NULL;
  2949. unsigned long overwrite;
  2950. unsigned long flags;
  2951. int nr_loops = 0;
  2952. int ret;
  2953. local_irq_save(flags);
  2954. arch_spin_lock(&cpu_buffer->lock);
  2955. again:
  2956. /*
  2957. * This should normally only loop twice. But because the
  2958. * start of the reader inserts an empty page, it causes
  2959. * a case where we will loop three times. There should be no
  2960. * reason to loop four times (that I know of).
  2961. */
  2962. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  2963. reader = NULL;
  2964. goto out;
  2965. }
  2966. reader = cpu_buffer->reader_page;
  2967. /* If there's more to read, return this page */
  2968. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  2969. goto out;
  2970. /* Never should we have an index greater than the size */
  2971. if (RB_WARN_ON(cpu_buffer,
  2972. cpu_buffer->reader_page->read > rb_page_size(reader)))
  2973. goto out;
  2974. /* check if we caught up to the tail */
  2975. reader = NULL;
  2976. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  2977. goto out;
  2978. /* Don't bother swapping if the ring buffer is empty */
  2979. if (rb_num_of_entries(cpu_buffer) == 0)
  2980. goto out;
  2981. /*
  2982. * Reset the reader page to size zero.
  2983. */
  2984. local_set(&cpu_buffer->reader_page->write, 0);
  2985. local_set(&cpu_buffer->reader_page->entries, 0);
  2986. local_set(&cpu_buffer->reader_page->page->commit, 0);
  2987. cpu_buffer->reader_page->real_end = 0;
  2988. spin:
  2989. /*
  2990. * Splice the empty reader page into the list around the head.
  2991. */
  2992. reader = rb_set_head_page(cpu_buffer);
  2993. if (!reader)
  2994. goto out;
  2995. cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
  2996. cpu_buffer->reader_page->list.prev = reader->list.prev;
  2997. /*
  2998. * cpu_buffer->pages just needs to point to the buffer, it
  2999. * has no specific buffer page to point to. Lets move it out
  3000. * of our way so we don't accidentally swap it.
  3001. */
  3002. cpu_buffer->pages = reader->list.prev;
  3003. /* The reader page will be pointing to the new head */
  3004. rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
  3005. /*
  3006. * We want to make sure we read the overruns after we set up our
  3007. * pointers to the next object. The writer side does a
  3008. * cmpxchg to cross pages which acts as the mb on the writer
  3009. * side. Note, the reader will constantly fail the swap
  3010. * while the writer is updating the pointers, so this
  3011. * guarantees that the overwrite recorded here is the one we
  3012. * want to compare with the last_overrun.
  3013. */
  3014. smp_mb();
  3015. overwrite = local_read(&(cpu_buffer->overrun));
  3016. /*
  3017. * Here's the tricky part.
  3018. *
  3019. * We need to move the pointer past the header page.
  3020. * But we can only do that if a writer is not currently
  3021. * moving it. The page before the header page has the
  3022. * flag bit '1' set if it is pointing to the page we want.
  3023. * but if the writer is in the process of moving it
  3024. * than it will be '2' or already moved '0'.
  3025. */
  3026. ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
  3027. /*
  3028. * If we did not convert it, then we must try again.
  3029. */
  3030. if (!ret)
  3031. goto spin;
  3032. /*
  3033. * Yeah! We succeeded in replacing the page.
  3034. *
  3035. * Now make the new head point back to the reader page.
  3036. */
  3037. rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
  3038. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  3039. /* Finally update the reader page to the new head */
  3040. cpu_buffer->reader_page = reader;
  3041. rb_reset_reader_page(cpu_buffer);
  3042. if (overwrite != cpu_buffer->last_overrun) {
  3043. cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
  3044. cpu_buffer->last_overrun = overwrite;
  3045. }
  3046. goto again;
  3047. out:
  3048. arch_spin_unlock(&cpu_buffer->lock);
  3049. local_irq_restore(flags);
  3050. return reader;
  3051. }
  3052. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  3053. {
  3054. struct ring_buffer_event *event;
  3055. struct buffer_page *reader;
  3056. unsigned length;
  3057. reader = rb_get_reader_page(cpu_buffer);
  3058. /* This function should not be called when buffer is empty */
  3059. if (RB_WARN_ON(cpu_buffer, !reader))
  3060. return;
  3061. event = rb_reader_event(cpu_buffer);
  3062. if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  3063. cpu_buffer->read++;
  3064. rb_update_read_stamp(cpu_buffer, event);
  3065. length = rb_event_length(event);
  3066. cpu_buffer->reader_page->read += length;
  3067. }
  3068. static void rb_advance_iter(struct ring_buffer_iter *iter)
  3069. {
  3070. struct ring_buffer_per_cpu *cpu_buffer;
  3071. struct ring_buffer_event *event;
  3072. unsigned length;
  3073. cpu_buffer = iter->cpu_buffer;
  3074. /*
  3075. * Check if we are at the end of the buffer.
  3076. */
  3077. if (iter->head >= rb_page_size(iter->head_page)) {
  3078. /* discarded commits can make the page empty */
  3079. if (iter->head_page == cpu_buffer->commit_page)
  3080. return;
  3081. rb_inc_iter(iter);
  3082. return;
  3083. }
  3084. event = rb_iter_head_event(iter);
  3085. length = rb_event_length(event);
  3086. /*
  3087. * This should not be called to advance the header if we are
  3088. * at the tail of the buffer.
  3089. */
  3090. if (RB_WARN_ON(cpu_buffer,
  3091. (iter->head_page == cpu_buffer->commit_page) &&
  3092. (iter->head + length > rb_commit_index(cpu_buffer))))
  3093. return;
  3094. rb_update_iter_read_stamp(iter, event);
  3095. iter->head += length;
  3096. /* check for end of page padding */
  3097. if ((iter->head >= rb_page_size(iter->head_page)) &&
  3098. (iter->head_page != cpu_buffer->commit_page))
  3099. rb_inc_iter(iter);
  3100. }
  3101. static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
  3102. {
  3103. return cpu_buffer->lost_events;
  3104. }
  3105. static struct ring_buffer_event *
  3106. rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
  3107. unsigned long *lost_events)
  3108. {
  3109. struct ring_buffer_event *event;
  3110. struct buffer_page *reader;
  3111. int nr_loops = 0;
  3112. again:
  3113. /*
  3114. * We repeat when a time extend is encountered.
  3115. * Since the time extend is always attached to a data event,
  3116. * we should never loop more than once.
  3117. * (We never hit the following condition more than twice).
  3118. */
  3119. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
  3120. return NULL;
  3121. reader = rb_get_reader_page(cpu_buffer);
  3122. if (!reader)
  3123. return NULL;
  3124. event = rb_reader_event(cpu_buffer);
  3125. switch (event->type_len) {
  3126. case RINGBUF_TYPE_PADDING:
  3127. if (rb_null_event(event))
  3128. RB_WARN_ON(cpu_buffer, 1);
  3129. /*
  3130. * Because the writer could be discarding every
  3131. * event it creates (which would probably be bad)
  3132. * if we were to go back to "again" then we may never
  3133. * catch up, and will trigger the warn on, or lock
  3134. * the box. Return the padding, and we will release
  3135. * the current locks, and try again.
  3136. */
  3137. return event;
  3138. case RINGBUF_TYPE_TIME_EXTEND:
  3139. /* Internal data, OK to advance */
  3140. rb_advance_reader(cpu_buffer);
  3141. goto again;
  3142. case RINGBUF_TYPE_TIME_STAMP:
  3143. /* FIXME: not implemented */
  3144. rb_advance_reader(cpu_buffer);
  3145. goto again;
  3146. case RINGBUF_TYPE_DATA:
  3147. if (ts) {
  3148. *ts = cpu_buffer->read_stamp + event->time_delta;
  3149. ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
  3150. cpu_buffer->cpu, ts);
  3151. }
  3152. if (lost_events)
  3153. *lost_events = rb_lost_events(cpu_buffer);
  3154. return event;
  3155. default:
  3156. BUG();
  3157. }
  3158. return NULL;
  3159. }
  3160. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  3161. static struct ring_buffer_event *
  3162. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3163. {
  3164. struct ring_buffer *buffer;
  3165. struct ring_buffer_per_cpu *cpu_buffer;
  3166. struct ring_buffer_event *event;
  3167. int nr_loops = 0;
  3168. cpu_buffer = iter->cpu_buffer;
  3169. buffer = cpu_buffer->buffer;
  3170. /*
  3171. * Check if someone performed a consuming read to
  3172. * the buffer. A consuming read invalidates the iterator
  3173. * and we need to reset the iterator in this case.
  3174. */
  3175. if (unlikely(iter->cache_read != cpu_buffer->read ||
  3176. iter->cache_reader_page != cpu_buffer->reader_page))
  3177. rb_iter_reset(iter);
  3178. again:
  3179. if (ring_buffer_iter_empty(iter))
  3180. return NULL;
  3181. /*
  3182. * We repeat when a time extend is encountered.
  3183. * Since the time extend is always attached to a data event,
  3184. * we should never loop more than once.
  3185. * (We never hit the following condition more than twice).
  3186. */
  3187. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
  3188. return NULL;
  3189. if (rb_per_cpu_empty(cpu_buffer))
  3190. return NULL;
  3191. if (iter->head >= local_read(&iter->head_page->page->commit)) {
  3192. rb_inc_iter(iter);
  3193. goto again;
  3194. }
  3195. event = rb_iter_head_event(iter);
  3196. switch (event->type_len) {
  3197. case RINGBUF_TYPE_PADDING:
  3198. if (rb_null_event(event)) {
  3199. rb_inc_iter(iter);
  3200. goto again;
  3201. }
  3202. rb_advance_iter(iter);
  3203. return event;
  3204. case RINGBUF_TYPE_TIME_EXTEND:
  3205. /* Internal data, OK to advance */
  3206. rb_advance_iter(iter);
  3207. goto again;
  3208. case RINGBUF_TYPE_TIME_STAMP:
  3209. /* FIXME: not implemented */
  3210. rb_advance_iter(iter);
  3211. goto again;
  3212. case RINGBUF_TYPE_DATA:
  3213. if (ts) {
  3214. *ts = iter->read_stamp + event->time_delta;
  3215. ring_buffer_normalize_time_stamp(buffer,
  3216. cpu_buffer->cpu, ts);
  3217. }
  3218. return event;
  3219. default:
  3220. BUG();
  3221. }
  3222. return NULL;
  3223. }
  3224. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  3225. static inline int rb_ok_to_lock(void)
  3226. {
  3227. /*
  3228. * If an NMI die dumps out the content of the ring buffer
  3229. * do not grab locks. We also permanently disable the ring
  3230. * buffer too. A one time deal is all you get from reading
  3231. * the ring buffer from an NMI.
  3232. */
  3233. if (likely(!in_nmi()))
  3234. return 1;
  3235. tracing_off_permanent();
  3236. return 0;
  3237. }
  3238. /**
  3239. * ring_buffer_peek - peek at the next event to be read
  3240. * @buffer: The ring buffer to read
  3241. * @cpu: The cpu to peak at
  3242. * @ts: The timestamp counter of this event.
  3243. * @lost_events: a variable to store if events were lost (may be NULL)
  3244. *
  3245. * This will return the event that will be read next, but does
  3246. * not consume the data.
  3247. */
  3248. struct ring_buffer_event *
  3249. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
  3250. unsigned long *lost_events)
  3251. {
  3252. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3253. struct ring_buffer_event *event;
  3254. unsigned long flags;
  3255. int dolock;
  3256. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3257. return NULL;
  3258. dolock = rb_ok_to_lock();
  3259. again:
  3260. local_irq_save(flags);
  3261. if (dolock)
  3262. raw_spin_lock(&cpu_buffer->reader_lock);
  3263. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3264. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3265. rb_advance_reader(cpu_buffer);
  3266. if (dolock)
  3267. raw_spin_unlock(&cpu_buffer->reader_lock);
  3268. local_irq_restore(flags);
  3269. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3270. goto again;
  3271. return event;
  3272. }
  3273. /**
  3274. * ring_buffer_iter_peek - peek at the next event to be read
  3275. * @iter: The ring buffer iterator
  3276. * @ts: The timestamp counter of this event.
  3277. *
  3278. * This will return the event that will be read next, but does
  3279. * not increment the iterator.
  3280. */
  3281. struct ring_buffer_event *
  3282. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3283. {
  3284. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3285. struct ring_buffer_event *event;
  3286. unsigned long flags;
  3287. again:
  3288. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3289. event = rb_iter_peek(iter, ts);
  3290. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3291. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3292. goto again;
  3293. return event;
  3294. }
  3295. /**
  3296. * ring_buffer_consume - return an event and consume it
  3297. * @buffer: The ring buffer to get the next event from
  3298. * @cpu: the cpu to read the buffer from
  3299. * @ts: a variable to store the timestamp (may be NULL)
  3300. * @lost_events: a variable to store if events were lost (may be NULL)
  3301. *
  3302. * Returns the next event in the ring buffer, and that event is consumed.
  3303. * Meaning, that sequential reads will keep returning a different event,
  3304. * and eventually empty the ring buffer if the producer is slower.
  3305. */
  3306. struct ring_buffer_event *
  3307. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
  3308. unsigned long *lost_events)
  3309. {
  3310. struct ring_buffer_per_cpu *cpu_buffer;
  3311. struct ring_buffer_event *event = NULL;
  3312. unsigned long flags;
  3313. int dolock;
  3314. dolock = rb_ok_to_lock();
  3315. again:
  3316. /* might be called in atomic */
  3317. preempt_disable();
  3318. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3319. goto out;
  3320. cpu_buffer = buffer->buffers[cpu];
  3321. local_irq_save(flags);
  3322. if (dolock)
  3323. raw_spin_lock(&cpu_buffer->reader_lock);
  3324. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3325. if (event) {
  3326. cpu_buffer->lost_events = 0;
  3327. rb_advance_reader(cpu_buffer);
  3328. }
  3329. if (dolock)
  3330. raw_spin_unlock(&cpu_buffer->reader_lock);
  3331. local_irq_restore(flags);
  3332. out:
  3333. preempt_enable();
  3334. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3335. goto again;
  3336. return event;
  3337. }
  3338. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  3339. /**
  3340. * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
  3341. * @buffer: The ring buffer to read from
  3342. * @cpu: The cpu buffer to iterate over
  3343. *
  3344. * This performs the initial preparations necessary to iterate
  3345. * through the buffer. Memory is allocated, buffer recording
  3346. * is disabled, and the iterator pointer is returned to the caller.
  3347. *
  3348. * Disabling buffer recordng prevents the reading from being
  3349. * corrupted. This is not a consuming read, so a producer is not
  3350. * expected.
  3351. *
  3352. * After a sequence of ring_buffer_read_prepare calls, the user is
  3353. * expected to make at least one call to ring_buffer_prepare_sync.
  3354. * Afterwards, ring_buffer_read_start is invoked to get things going
  3355. * for real.
  3356. *
  3357. * This overall must be paired with ring_buffer_finish.
  3358. */
  3359. struct ring_buffer_iter *
  3360. ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
  3361. {
  3362. struct ring_buffer_per_cpu *cpu_buffer;
  3363. struct ring_buffer_iter *iter;
  3364. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3365. return NULL;
  3366. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  3367. if (!iter)
  3368. return NULL;
  3369. cpu_buffer = buffer->buffers[cpu];
  3370. iter->cpu_buffer = cpu_buffer;
  3371. atomic_inc(&buffer->resize_disabled);
  3372. atomic_inc(&cpu_buffer->record_disabled);
  3373. return iter;
  3374. }
  3375. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
  3376. /**
  3377. * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
  3378. *
  3379. * All previously invoked ring_buffer_read_prepare calls to prepare
  3380. * iterators will be synchronized. Afterwards, read_buffer_read_start
  3381. * calls on those iterators are allowed.
  3382. */
  3383. void
  3384. ring_buffer_read_prepare_sync(void)
  3385. {
  3386. synchronize_sched();
  3387. }
  3388. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
  3389. /**
  3390. * ring_buffer_read_start - start a non consuming read of the buffer
  3391. * @iter: The iterator returned by ring_buffer_read_prepare
  3392. *
  3393. * This finalizes the startup of an iteration through the buffer.
  3394. * The iterator comes from a call to ring_buffer_read_prepare and
  3395. * an intervening ring_buffer_read_prepare_sync must have been
  3396. * performed.
  3397. *
  3398. * Must be paired with ring_buffer_finish.
  3399. */
  3400. void
  3401. ring_buffer_read_start(struct ring_buffer_iter *iter)
  3402. {
  3403. struct ring_buffer_per_cpu *cpu_buffer;
  3404. unsigned long flags;
  3405. if (!iter)
  3406. return;
  3407. cpu_buffer = iter->cpu_buffer;
  3408. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3409. arch_spin_lock(&cpu_buffer->lock);
  3410. rb_iter_reset(iter);
  3411. arch_spin_unlock(&cpu_buffer->lock);
  3412. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3413. }
  3414. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  3415. /**
  3416. * ring_buffer_finish - finish reading the iterator of the buffer
  3417. * @iter: The iterator retrieved by ring_buffer_start
  3418. *
  3419. * This re-enables the recording to the buffer, and frees the
  3420. * iterator.
  3421. */
  3422. void
  3423. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  3424. {
  3425. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3426. unsigned long flags;
  3427. /*
  3428. * Ring buffer is disabled from recording, here's a good place
  3429. * to check the integrity of the ring buffer.
  3430. * Must prevent readers from trying to read, as the check
  3431. * clears the HEAD page and readers require it.
  3432. */
  3433. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3434. rb_check_pages(cpu_buffer);
  3435. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3436. atomic_dec(&cpu_buffer->record_disabled);
  3437. atomic_dec(&cpu_buffer->buffer->resize_disabled);
  3438. kfree(iter);
  3439. }
  3440. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  3441. /**
  3442. * ring_buffer_read - read the next item in the ring buffer by the iterator
  3443. * @iter: The ring buffer iterator
  3444. * @ts: The time stamp of the event read.
  3445. *
  3446. * This reads the next event in the ring buffer and increments the iterator.
  3447. */
  3448. struct ring_buffer_event *
  3449. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  3450. {
  3451. struct ring_buffer_event *event;
  3452. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3453. unsigned long flags;
  3454. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3455. again:
  3456. event = rb_iter_peek(iter, ts);
  3457. if (!event)
  3458. goto out;
  3459. if (event->type_len == RINGBUF_TYPE_PADDING)
  3460. goto again;
  3461. rb_advance_iter(iter);
  3462. out:
  3463. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3464. return event;
  3465. }
  3466. EXPORT_SYMBOL_GPL(ring_buffer_read);
  3467. /**
  3468. * ring_buffer_size - return the size of the ring buffer (in bytes)
  3469. * @buffer: The ring buffer.
  3470. */
  3471. unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
  3472. {
  3473. /*
  3474. * Earlier, this method returned
  3475. * BUF_PAGE_SIZE * buffer->nr_pages
  3476. * Since the nr_pages field is now removed, we have converted this to
  3477. * return the per cpu buffer value.
  3478. */
  3479. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3480. return 0;
  3481. return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
  3482. }
  3483. EXPORT_SYMBOL_GPL(ring_buffer_size);
  3484. static void
  3485. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  3486. {
  3487. rb_head_page_deactivate(cpu_buffer);
  3488. cpu_buffer->head_page
  3489. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  3490. local_set(&cpu_buffer->head_page->write, 0);
  3491. local_set(&cpu_buffer->head_page->entries, 0);
  3492. local_set(&cpu_buffer->head_page->page->commit, 0);
  3493. cpu_buffer->head_page->read = 0;
  3494. cpu_buffer->tail_page = cpu_buffer->head_page;
  3495. cpu_buffer->commit_page = cpu_buffer->head_page;
  3496. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  3497. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  3498. local_set(&cpu_buffer->reader_page->write, 0);
  3499. local_set(&cpu_buffer->reader_page->entries, 0);
  3500. local_set(&cpu_buffer->reader_page->page->commit, 0);
  3501. cpu_buffer->reader_page->read = 0;
  3502. local_set(&cpu_buffer->entries_bytes, 0);
  3503. local_set(&cpu_buffer->overrun, 0);
  3504. local_set(&cpu_buffer->commit_overrun, 0);
  3505. local_set(&cpu_buffer->dropped_events, 0);
  3506. local_set(&cpu_buffer->entries, 0);
  3507. local_set(&cpu_buffer->committing, 0);
  3508. local_set(&cpu_buffer->commits, 0);
  3509. cpu_buffer->read = 0;
  3510. cpu_buffer->read_bytes = 0;
  3511. cpu_buffer->write_stamp = 0;
  3512. cpu_buffer->read_stamp = 0;
  3513. cpu_buffer->lost_events = 0;
  3514. cpu_buffer->last_overrun = 0;
  3515. rb_head_page_activate(cpu_buffer);
  3516. }
  3517. /**
  3518. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  3519. * @buffer: The ring buffer to reset a per cpu buffer of
  3520. * @cpu: The CPU buffer to be reset
  3521. */
  3522. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  3523. {
  3524. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3525. unsigned long flags;
  3526. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3527. return;
  3528. atomic_inc(&buffer->resize_disabled);
  3529. atomic_inc(&cpu_buffer->record_disabled);
  3530. /* Make sure all commits have finished */
  3531. synchronize_sched();
  3532. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3533. if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
  3534. goto out;
  3535. arch_spin_lock(&cpu_buffer->lock);
  3536. rb_reset_cpu(cpu_buffer);
  3537. arch_spin_unlock(&cpu_buffer->lock);
  3538. out:
  3539. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3540. atomic_dec(&cpu_buffer->record_disabled);
  3541. atomic_dec(&buffer->resize_disabled);
  3542. }
  3543. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  3544. /**
  3545. * ring_buffer_reset - reset a ring buffer
  3546. * @buffer: The ring buffer to reset all cpu buffers
  3547. */
  3548. void ring_buffer_reset(struct ring_buffer *buffer)
  3549. {
  3550. int cpu;
  3551. for_each_buffer_cpu(buffer, cpu)
  3552. ring_buffer_reset_cpu(buffer, cpu);
  3553. }
  3554. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  3555. /**
  3556. * rind_buffer_empty - is the ring buffer empty?
  3557. * @buffer: The ring buffer to test
  3558. */
  3559. int ring_buffer_empty(struct ring_buffer *buffer)
  3560. {
  3561. struct ring_buffer_per_cpu *cpu_buffer;
  3562. unsigned long flags;
  3563. int dolock;
  3564. int cpu;
  3565. int ret;
  3566. dolock = rb_ok_to_lock();
  3567. /* yes this is racy, but if you don't like the race, lock the buffer */
  3568. for_each_buffer_cpu(buffer, cpu) {
  3569. cpu_buffer = buffer->buffers[cpu];
  3570. local_irq_save(flags);
  3571. if (dolock)
  3572. raw_spin_lock(&cpu_buffer->reader_lock);
  3573. ret = rb_per_cpu_empty(cpu_buffer);
  3574. if (dolock)
  3575. raw_spin_unlock(&cpu_buffer->reader_lock);
  3576. local_irq_restore(flags);
  3577. if (!ret)
  3578. return 0;
  3579. }
  3580. return 1;
  3581. }
  3582. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  3583. /**
  3584. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  3585. * @buffer: The ring buffer
  3586. * @cpu: The CPU buffer to test
  3587. */
  3588. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  3589. {
  3590. struct ring_buffer_per_cpu *cpu_buffer;
  3591. unsigned long flags;
  3592. int dolock;
  3593. int ret;
  3594. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3595. return 1;
  3596. dolock = rb_ok_to_lock();
  3597. cpu_buffer = buffer->buffers[cpu];
  3598. local_irq_save(flags);
  3599. if (dolock)
  3600. raw_spin_lock(&cpu_buffer->reader_lock);
  3601. ret = rb_per_cpu_empty(cpu_buffer);
  3602. if (dolock)
  3603. raw_spin_unlock(&cpu_buffer->reader_lock);
  3604. local_irq_restore(flags);
  3605. return ret;
  3606. }
  3607. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  3608. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  3609. /**
  3610. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  3611. * @buffer_a: One buffer to swap with
  3612. * @buffer_b: The other buffer to swap with
  3613. *
  3614. * This function is useful for tracers that want to take a "snapshot"
  3615. * of a CPU buffer and has another back up buffer lying around.
  3616. * it is expected that the tracer handles the cpu buffer not being
  3617. * used at the moment.
  3618. */
  3619. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  3620. struct ring_buffer *buffer_b, int cpu)
  3621. {
  3622. struct ring_buffer_per_cpu *cpu_buffer_a;
  3623. struct ring_buffer_per_cpu *cpu_buffer_b;
  3624. int ret = -EINVAL;
  3625. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  3626. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  3627. goto out;
  3628. cpu_buffer_a = buffer_a->buffers[cpu];
  3629. cpu_buffer_b = buffer_b->buffers[cpu];
  3630. /* At least make sure the two buffers are somewhat the same */
  3631. if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
  3632. goto out;
  3633. ret = -EAGAIN;
  3634. if (ring_buffer_flags != RB_BUFFERS_ON)
  3635. goto out;
  3636. if (atomic_read(&buffer_a->record_disabled))
  3637. goto out;
  3638. if (atomic_read(&buffer_b->record_disabled))
  3639. goto out;
  3640. if (atomic_read(&cpu_buffer_a->record_disabled))
  3641. goto out;
  3642. if (atomic_read(&cpu_buffer_b->record_disabled))
  3643. goto out;
  3644. /*
  3645. * We can't do a synchronize_sched here because this
  3646. * function can be called in atomic context.
  3647. * Normally this will be called from the same CPU as cpu.
  3648. * If not it's up to the caller to protect this.
  3649. */
  3650. atomic_inc(&cpu_buffer_a->record_disabled);
  3651. atomic_inc(&cpu_buffer_b->record_disabled);
  3652. ret = -EBUSY;
  3653. if (local_read(&cpu_buffer_a->committing))
  3654. goto out_dec;
  3655. if (local_read(&cpu_buffer_b->committing))
  3656. goto out_dec;
  3657. buffer_a->buffers[cpu] = cpu_buffer_b;
  3658. buffer_b->buffers[cpu] = cpu_buffer_a;
  3659. cpu_buffer_b->buffer = buffer_a;
  3660. cpu_buffer_a->buffer = buffer_b;
  3661. ret = 0;
  3662. out_dec:
  3663. atomic_dec(&cpu_buffer_a->record_disabled);
  3664. atomic_dec(&cpu_buffer_b->record_disabled);
  3665. out:
  3666. return ret;
  3667. }
  3668. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  3669. #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
  3670. /**
  3671. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  3672. * @buffer: the buffer to allocate for.
  3673. *
  3674. * This function is used in conjunction with ring_buffer_read_page.
  3675. * When reading a full page from the ring buffer, these functions
  3676. * can be used to speed up the process. The calling function should
  3677. * allocate a few pages first with this function. Then when it
  3678. * needs to get pages from the ring buffer, it passes the result
  3679. * of this function into ring_buffer_read_page, which will swap
  3680. * the page that was allocated, with the read page of the buffer.
  3681. *
  3682. * Returns:
  3683. * The page allocated, or NULL on error.
  3684. */
  3685. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
  3686. {
  3687. struct buffer_data_page *bpage;
  3688. struct page *page;
  3689. page = alloc_pages_node(cpu_to_node(cpu),
  3690. GFP_KERNEL | __GFP_NORETRY, 0);
  3691. if (!page)
  3692. return NULL;
  3693. bpage = page_address(page);
  3694. rb_init_page(bpage);
  3695. return bpage;
  3696. }
  3697. EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
  3698. /**
  3699. * ring_buffer_free_read_page - free an allocated read page
  3700. * @buffer: the buffer the page was allocate for
  3701. * @data: the page to free
  3702. *
  3703. * Free a page allocated from ring_buffer_alloc_read_page.
  3704. */
  3705. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  3706. {
  3707. free_page((unsigned long)data);
  3708. }
  3709. EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
  3710. /**
  3711. * ring_buffer_read_page - extract a page from the ring buffer
  3712. * @buffer: buffer to extract from
  3713. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  3714. * @len: amount to extract
  3715. * @cpu: the cpu of the buffer to extract
  3716. * @full: should the extraction only happen when the page is full.
  3717. *
  3718. * This function will pull out a page from the ring buffer and consume it.
  3719. * @data_page must be the address of the variable that was returned
  3720. * from ring_buffer_alloc_read_page. This is because the page might be used
  3721. * to swap with a page in the ring buffer.
  3722. *
  3723. * for example:
  3724. * rpage = ring_buffer_alloc_read_page(buffer);
  3725. * if (!rpage)
  3726. * return error;
  3727. * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
  3728. * if (ret >= 0)
  3729. * process_page(rpage, ret);
  3730. *
  3731. * When @full is set, the function will not return true unless
  3732. * the writer is off the reader page.
  3733. *
  3734. * Note: it is up to the calling functions to handle sleeps and wakeups.
  3735. * The ring buffer can be used anywhere in the kernel and can not
  3736. * blindly call wake_up. The layer that uses the ring buffer must be
  3737. * responsible for that.
  3738. *
  3739. * Returns:
  3740. * >=0 if data has been transferred, returns the offset of consumed data.
  3741. * <0 if no data has been transferred.
  3742. */
  3743. int ring_buffer_read_page(struct ring_buffer *buffer,
  3744. void **data_page, size_t len, int cpu, int full)
  3745. {
  3746. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3747. struct ring_buffer_event *event;
  3748. struct buffer_data_page *bpage;
  3749. struct buffer_page *reader;
  3750. unsigned long missed_events;
  3751. unsigned long flags;
  3752. unsigned int commit;
  3753. unsigned int read;
  3754. u64 save_timestamp;
  3755. int ret = -1;
  3756. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3757. goto out;
  3758. /*
  3759. * If len is not big enough to hold the page header, then
  3760. * we can not copy anything.
  3761. */
  3762. if (len <= BUF_PAGE_HDR_SIZE)
  3763. goto out;
  3764. len -= BUF_PAGE_HDR_SIZE;
  3765. if (!data_page)
  3766. goto out;
  3767. bpage = *data_page;
  3768. if (!bpage)
  3769. goto out;
  3770. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3771. reader = rb_get_reader_page(cpu_buffer);
  3772. if (!reader)
  3773. goto out_unlock;
  3774. event = rb_reader_event(cpu_buffer);
  3775. read = reader->read;
  3776. commit = rb_page_commit(reader);
  3777. /* Check if any events were dropped */
  3778. missed_events = cpu_buffer->lost_events;
  3779. /*
  3780. * If this page has been partially read or
  3781. * if len is not big enough to read the rest of the page or
  3782. * a writer is still on the page, then
  3783. * we must copy the data from the page to the buffer.
  3784. * Otherwise, we can simply swap the page with the one passed in.
  3785. */
  3786. if (read || (len < (commit - read)) ||
  3787. cpu_buffer->reader_page == cpu_buffer->commit_page) {
  3788. struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
  3789. unsigned int rpos = read;
  3790. unsigned int pos = 0;
  3791. unsigned int size;
  3792. if (full)
  3793. goto out_unlock;
  3794. if (len > (commit - read))
  3795. len = (commit - read);
  3796. /* Always keep the time extend and data together */
  3797. size = rb_event_ts_length(event);
  3798. if (len < size)
  3799. goto out_unlock;
  3800. /* save the current timestamp, since the user will need it */
  3801. save_timestamp = cpu_buffer->read_stamp;
  3802. /* Need to copy one event at a time */
  3803. do {
  3804. /* We need the size of one event, because
  3805. * rb_advance_reader only advances by one event,
  3806. * whereas rb_event_ts_length may include the size of
  3807. * one or two events.
  3808. * We have already ensured there's enough space if this
  3809. * is a time extend. */
  3810. size = rb_event_length(event);
  3811. memcpy(bpage->data + pos, rpage->data + rpos, size);
  3812. len -= size;
  3813. rb_advance_reader(cpu_buffer);
  3814. rpos = reader->read;
  3815. pos += size;
  3816. if (rpos >= commit)
  3817. break;
  3818. event = rb_reader_event(cpu_buffer);
  3819. /* Always keep the time extend and data together */
  3820. size = rb_event_ts_length(event);
  3821. } while (len >= size);
  3822. /* update bpage */
  3823. local_set(&bpage->commit, pos);
  3824. bpage->time_stamp = save_timestamp;
  3825. /* we copied everything to the beginning */
  3826. read = 0;
  3827. } else {
  3828. /* update the entry counter */
  3829. cpu_buffer->read += rb_page_entries(reader);
  3830. cpu_buffer->read_bytes += BUF_PAGE_SIZE;
  3831. /* swap the pages */
  3832. rb_init_page(bpage);
  3833. bpage = reader->page;
  3834. reader->page = *data_page;
  3835. local_set(&reader->write, 0);
  3836. local_set(&reader->entries, 0);
  3837. reader->read = 0;
  3838. *data_page = bpage;
  3839. /*
  3840. * Use the real_end for the data size,
  3841. * This gives us a chance to store the lost events
  3842. * on the page.
  3843. */
  3844. if (reader->real_end)
  3845. local_set(&bpage->commit, reader->real_end);
  3846. }
  3847. ret = read;
  3848. cpu_buffer->lost_events = 0;
  3849. commit = local_read(&bpage->commit);
  3850. /*
  3851. * Set a flag in the commit field if we lost events
  3852. */
  3853. if (missed_events) {
  3854. /* If there is room at the end of the page to save the
  3855. * missed events, then record it there.
  3856. */
  3857. if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
  3858. memcpy(&bpage->data[commit], &missed_events,
  3859. sizeof(missed_events));
  3860. local_add(RB_MISSED_STORED, &bpage->commit);
  3861. commit += sizeof(missed_events);
  3862. }
  3863. local_add(RB_MISSED_EVENTS, &bpage->commit);
  3864. }
  3865. /*
  3866. * This page may be off to user land. Zero it out here.
  3867. */
  3868. if (commit < BUF_PAGE_SIZE)
  3869. memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
  3870. out_unlock:
  3871. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3872. out:
  3873. return ret;
  3874. }
  3875. EXPORT_SYMBOL_GPL(ring_buffer_read_page);
  3876. #ifdef CONFIG_HOTPLUG_CPU
  3877. static int rb_cpu_notify(struct notifier_block *self,
  3878. unsigned long action, void *hcpu)
  3879. {
  3880. struct ring_buffer *buffer =
  3881. container_of(self, struct ring_buffer, cpu_notify);
  3882. long cpu = (long)hcpu;
  3883. int cpu_i, nr_pages_same;
  3884. unsigned int nr_pages;
  3885. switch (action) {
  3886. case CPU_UP_PREPARE:
  3887. case CPU_UP_PREPARE_FROZEN:
  3888. if (cpumask_test_cpu(cpu, buffer->cpumask))
  3889. return NOTIFY_OK;
  3890. nr_pages = 0;
  3891. nr_pages_same = 1;
  3892. /* check if all cpu sizes are same */
  3893. for_each_buffer_cpu(buffer, cpu_i) {
  3894. /* fill in the size from first enabled cpu */
  3895. if (nr_pages == 0)
  3896. nr_pages = buffer->buffers[cpu_i]->nr_pages;
  3897. if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
  3898. nr_pages_same = 0;
  3899. break;
  3900. }
  3901. }
  3902. /* allocate minimum pages, user can later expand it */
  3903. if (!nr_pages_same)
  3904. nr_pages = 2;
  3905. buffer->buffers[cpu] =
  3906. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  3907. if (!buffer->buffers[cpu]) {
  3908. WARN(1, "failed to allocate ring buffer on CPU %ld\n",
  3909. cpu);
  3910. return NOTIFY_OK;
  3911. }
  3912. smp_wmb();
  3913. cpumask_set_cpu(cpu, buffer->cpumask);
  3914. break;
  3915. case CPU_DOWN_PREPARE:
  3916. case CPU_DOWN_PREPARE_FROZEN:
  3917. /*
  3918. * Do nothing.
  3919. * If we were to free the buffer, then the user would
  3920. * lose any trace that was in the buffer.
  3921. */
  3922. break;
  3923. default:
  3924. break;
  3925. }
  3926. return NOTIFY_OK;
  3927. }
  3928. #endif
  3929. #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
  3930. /*
  3931. * This is a basic integrity check of the ring buffer.
  3932. * Late in the boot cycle this test will run when configured in.
  3933. * It will kick off a thread per CPU that will go into a loop
  3934. * writing to the per cpu ring buffer various sizes of data.
  3935. * Some of the data will be large items, some small.
  3936. *
  3937. * Another thread is created that goes into a spin, sending out
  3938. * IPIs to the other CPUs to also write into the ring buffer.
  3939. * this is to test the nesting ability of the buffer.
  3940. *
  3941. * Basic stats are recorded and reported. If something in the
  3942. * ring buffer should happen that's not expected, a big warning
  3943. * is displayed and all ring buffers are disabled.
  3944. */
  3945. static struct task_struct *rb_threads[NR_CPUS] __initdata;
  3946. struct rb_test_data {
  3947. struct ring_buffer *buffer;
  3948. unsigned long events;
  3949. unsigned long bytes_written;
  3950. unsigned long bytes_alloc;
  3951. unsigned long bytes_dropped;
  3952. unsigned long events_nested;
  3953. unsigned long bytes_written_nested;
  3954. unsigned long bytes_alloc_nested;
  3955. unsigned long bytes_dropped_nested;
  3956. int min_size_nested;
  3957. int max_size_nested;
  3958. int max_size;
  3959. int min_size;
  3960. int cpu;
  3961. int cnt;
  3962. };
  3963. static struct rb_test_data rb_data[NR_CPUS] __initdata;
  3964. /* 1 meg per cpu */
  3965. #define RB_TEST_BUFFER_SIZE 1048576
  3966. static char rb_string[] __initdata =
  3967. "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
  3968. "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
  3969. "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
  3970. static bool rb_test_started __initdata;
  3971. struct rb_item {
  3972. int size;
  3973. char str[];
  3974. };
  3975. static __init int rb_write_something(struct rb_test_data *data, bool nested)
  3976. {
  3977. struct ring_buffer_event *event;
  3978. struct rb_item *item;
  3979. bool started;
  3980. int event_len;
  3981. int size;
  3982. int len;
  3983. int cnt;
  3984. /* Have nested writes different that what is written */
  3985. cnt = data->cnt + (nested ? 27 : 0);
  3986. /* Multiply cnt by ~e, to make some unique increment */
  3987. size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
  3988. len = size + sizeof(struct rb_item);
  3989. started = rb_test_started;
  3990. /* read rb_test_started before checking buffer enabled */
  3991. smp_rmb();
  3992. event = ring_buffer_lock_reserve(data->buffer, len);
  3993. if (!event) {
  3994. /* Ignore dropped events before test starts. */
  3995. if (started) {
  3996. if (nested)
  3997. data->bytes_dropped += len;
  3998. else
  3999. data->bytes_dropped_nested += len;
  4000. }
  4001. return len;
  4002. }
  4003. event_len = ring_buffer_event_length(event);
  4004. if (RB_WARN_ON(data->buffer, event_len < len))
  4005. goto out;
  4006. item = ring_buffer_event_data(event);
  4007. item->size = size;
  4008. memcpy(item->str, rb_string, size);
  4009. if (nested) {
  4010. data->bytes_alloc_nested += event_len;
  4011. data->bytes_written_nested += len;
  4012. data->events_nested++;
  4013. if (!data->min_size_nested || len < data->min_size_nested)
  4014. data->min_size_nested = len;
  4015. if (len > data->max_size_nested)
  4016. data->max_size_nested = len;
  4017. } else {
  4018. data->bytes_alloc += event_len;
  4019. data->bytes_written += len;
  4020. data->events++;
  4021. if (!data->min_size || len < data->min_size)
  4022. data->max_size = len;
  4023. if (len > data->max_size)
  4024. data->max_size = len;
  4025. }
  4026. out:
  4027. ring_buffer_unlock_commit(data->buffer, event);
  4028. return 0;
  4029. }
  4030. static __init int rb_test(void *arg)
  4031. {
  4032. struct rb_test_data *data = arg;
  4033. while (!kthread_should_stop()) {
  4034. rb_write_something(data, false);
  4035. data->cnt++;
  4036. set_current_state(TASK_INTERRUPTIBLE);
  4037. /* Now sleep between a min of 100-300us and a max of 1ms */
  4038. usleep_range(((data->cnt % 3) + 1) * 100, 1000);
  4039. }
  4040. return 0;
  4041. }
  4042. static __init void rb_ipi(void *ignore)
  4043. {
  4044. struct rb_test_data *data;
  4045. int cpu = smp_processor_id();
  4046. data = &rb_data[cpu];
  4047. rb_write_something(data, true);
  4048. }
  4049. static __init int rb_hammer_test(void *arg)
  4050. {
  4051. while (!kthread_should_stop()) {
  4052. /* Send an IPI to all cpus to write data! */
  4053. smp_call_function(rb_ipi, NULL, 1);
  4054. /* No sleep, but for non preempt, let others run */
  4055. schedule();
  4056. }
  4057. return 0;
  4058. }
  4059. static __init int test_ringbuffer(void)
  4060. {
  4061. struct task_struct *rb_hammer;
  4062. struct ring_buffer *buffer;
  4063. int cpu;
  4064. int ret = 0;
  4065. pr_info("Running ring buffer tests...\n");
  4066. buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
  4067. if (WARN_ON(!buffer))
  4068. return 0;
  4069. /* Disable buffer so that threads can't write to it yet */
  4070. ring_buffer_record_off(buffer);
  4071. for_each_online_cpu(cpu) {
  4072. rb_data[cpu].buffer = buffer;
  4073. rb_data[cpu].cpu = cpu;
  4074. rb_data[cpu].cnt = cpu;
  4075. rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
  4076. "rbtester/%d", cpu);
  4077. if (WARN_ON(!rb_threads[cpu])) {
  4078. pr_cont("FAILED\n");
  4079. ret = -1;
  4080. goto out_free;
  4081. }
  4082. kthread_bind(rb_threads[cpu], cpu);
  4083. wake_up_process(rb_threads[cpu]);
  4084. }
  4085. /* Now create the rb hammer! */
  4086. rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
  4087. if (WARN_ON(!rb_hammer)) {
  4088. pr_cont("FAILED\n");
  4089. ret = -1;
  4090. goto out_free;
  4091. }
  4092. ring_buffer_record_on(buffer);
  4093. /*
  4094. * Show buffer is enabled before setting rb_test_started.
  4095. * Yes there's a small race window where events could be
  4096. * dropped and the thread wont catch it. But when a ring
  4097. * buffer gets enabled, there will always be some kind of
  4098. * delay before other CPUs see it. Thus, we don't care about
  4099. * those dropped events. We care about events dropped after
  4100. * the threads see that the buffer is active.
  4101. */
  4102. smp_wmb();
  4103. rb_test_started = true;
  4104. set_current_state(TASK_INTERRUPTIBLE);
  4105. /* Just run for 10 seconds */;
  4106. schedule_timeout(10 * HZ);
  4107. kthread_stop(rb_hammer);
  4108. out_free:
  4109. for_each_online_cpu(cpu) {
  4110. if (!rb_threads[cpu])
  4111. break;
  4112. kthread_stop(rb_threads[cpu]);
  4113. }
  4114. if (ret) {
  4115. ring_buffer_free(buffer);
  4116. return ret;
  4117. }
  4118. /* Report! */
  4119. pr_info("finished\n");
  4120. for_each_online_cpu(cpu) {
  4121. struct ring_buffer_event *event;
  4122. struct rb_test_data *data = &rb_data[cpu];
  4123. struct rb_item *item;
  4124. unsigned long total_events;
  4125. unsigned long total_dropped;
  4126. unsigned long total_written;
  4127. unsigned long total_alloc;
  4128. unsigned long total_read = 0;
  4129. unsigned long total_size = 0;
  4130. unsigned long total_len = 0;
  4131. unsigned long total_lost = 0;
  4132. unsigned long lost;
  4133. int big_event_size;
  4134. int small_event_size;
  4135. ret = -1;
  4136. total_events = data->events + data->events_nested;
  4137. total_written = data->bytes_written + data->bytes_written_nested;
  4138. total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
  4139. total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
  4140. big_event_size = data->max_size + data->max_size_nested;
  4141. small_event_size = data->min_size + data->min_size_nested;
  4142. pr_info("CPU %d:\n", cpu);
  4143. pr_info(" events: %ld\n", total_events);
  4144. pr_info(" dropped bytes: %ld\n", total_dropped);
  4145. pr_info(" alloced bytes: %ld\n", total_alloc);
  4146. pr_info(" written bytes: %ld\n", total_written);
  4147. pr_info(" biggest event: %d\n", big_event_size);
  4148. pr_info(" smallest event: %d\n", small_event_size);
  4149. if (RB_WARN_ON(buffer, total_dropped))
  4150. break;
  4151. ret = 0;
  4152. while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
  4153. total_lost += lost;
  4154. item = ring_buffer_event_data(event);
  4155. total_len += ring_buffer_event_length(event);
  4156. total_size += item->size + sizeof(struct rb_item);
  4157. if (memcmp(&item->str[0], rb_string, item->size) != 0) {
  4158. pr_info("FAILED!\n");
  4159. pr_info("buffer had: %.*s\n", item->size, item->str);
  4160. pr_info("expected: %.*s\n", item->size, rb_string);
  4161. RB_WARN_ON(buffer, 1);
  4162. ret = -1;
  4163. break;
  4164. }
  4165. total_read++;
  4166. }
  4167. if (ret)
  4168. break;
  4169. ret = -1;
  4170. pr_info(" read events: %ld\n", total_read);
  4171. pr_info(" lost events: %ld\n", total_lost);
  4172. pr_info(" total events: %ld\n", total_lost + total_read);
  4173. pr_info(" recorded len bytes: %ld\n", total_len);
  4174. pr_info(" recorded size bytes: %ld\n", total_size);
  4175. if (total_lost)
  4176. pr_info(" With dropped events, record len and size may not match\n"
  4177. " alloced and written from above\n");
  4178. if (!total_lost) {
  4179. if (RB_WARN_ON(buffer, total_len != total_alloc ||
  4180. total_size != total_written))
  4181. break;
  4182. }
  4183. if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
  4184. break;
  4185. ret = 0;
  4186. }
  4187. if (!ret)
  4188. pr_info("Ring buffer PASSED!\n");
  4189. ring_buffer_free(buffer);
  4190. return 0;
  4191. }
  4192. late_initcall(test_ringbuffer);
  4193. #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */