debug.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * kernel/sched/debug.c
  3. *
  4. * Print the CFS rbtree
  5. *
  6. * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/proc_fs.h>
  13. #include <linux/sched.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/utsname.h>
  17. #include "sched.h"
  18. static DEFINE_SPINLOCK(sched_debug_lock);
  19. /*
  20. * This allows printing both to /proc/sched_debug and
  21. * to the console
  22. */
  23. #define SEQ_printf(m, x...) \
  24. do { \
  25. if (m) \
  26. seq_printf(m, x); \
  27. else \
  28. printk(x); \
  29. } while (0)
  30. /*
  31. * Ease the printing of nsec fields:
  32. */
  33. static long long nsec_high(unsigned long long nsec)
  34. {
  35. if ((long long)nsec < 0) {
  36. nsec = -nsec;
  37. do_div(nsec, 1000000);
  38. return -nsec;
  39. }
  40. do_div(nsec, 1000000);
  41. return nsec;
  42. }
  43. static unsigned long nsec_low(unsigned long long nsec)
  44. {
  45. if ((long long)nsec < 0)
  46. nsec = -nsec;
  47. return do_div(nsec, 1000000);
  48. }
  49. #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  50. #ifdef CONFIG_FAIR_GROUP_SCHED
  51. static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
  52. {
  53. struct sched_entity *se = tg->se[cpu];
  54. #define P(F) \
  55. SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
  56. #define PN(F) \
  57. SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
  58. if (!se) {
  59. struct sched_avg *avg = &cpu_rq(cpu)->avg;
  60. P(avg->runnable_avg_sum);
  61. P(avg->runnable_avg_period);
  62. return;
  63. }
  64. PN(se->exec_start);
  65. PN(se->vruntime);
  66. PN(se->sum_exec_runtime);
  67. #ifdef CONFIG_SCHEDSTATS
  68. PN(se->statistics.wait_start);
  69. PN(se->statistics.sleep_start);
  70. PN(se->statistics.block_start);
  71. PN(se->statistics.sleep_max);
  72. PN(se->statistics.block_max);
  73. PN(se->statistics.exec_max);
  74. PN(se->statistics.slice_max);
  75. PN(se->statistics.wait_max);
  76. PN(se->statistics.wait_sum);
  77. P(se->statistics.wait_count);
  78. #endif
  79. P(se->load.weight);
  80. #ifdef CONFIG_SMP
  81. P(se->avg.runnable_avg_sum);
  82. P(se->avg.runnable_avg_period);
  83. P(se->avg.load_avg_contrib);
  84. P(se->avg.decay_count);
  85. #endif
  86. #undef PN
  87. #undef P
  88. }
  89. #endif
  90. #ifdef CONFIG_CGROUP_SCHED
  91. static char group_path[PATH_MAX];
  92. static char *task_group_path(struct task_group *tg)
  93. {
  94. if (autogroup_path(tg, group_path, PATH_MAX))
  95. return group_path;
  96. cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
  97. return group_path;
  98. }
  99. #endif
  100. static void
  101. print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
  102. {
  103. if (rq->curr == p)
  104. SEQ_printf(m, "R");
  105. else
  106. SEQ_printf(m, " ");
  107. SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
  108. p->comm, p->pid,
  109. SPLIT_NS(p->se.vruntime),
  110. (long long)(p->nvcsw + p->nivcsw),
  111. p->prio);
  112. #ifdef CONFIG_SCHEDSTATS
  113. SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
  114. SPLIT_NS(p->se.vruntime),
  115. SPLIT_NS(p->se.sum_exec_runtime),
  116. SPLIT_NS(p->se.statistics.sum_sleep_runtime));
  117. #else
  118. SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
  119. 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
  120. #endif
  121. #ifdef CONFIG_CGROUP_SCHED
  122. SEQ_printf(m, " %s", task_group_path(task_group(p)));
  123. #endif
  124. SEQ_printf(m, "\n");
  125. }
  126. static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
  127. {
  128. struct task_struct *g, *p;
  129. unsigned long flags;
  130. SEQ_printf(m,
  131. "\nrunnable tasks:\n"
  132. " task PID tree-key switches prio"
  133. " exec-runtime sum-exec sum-sleep\n"
  134. "------------------------------------------------------"
  135. "----------------------------------------------------\n");
  136. read_lock_irqsave(&tasklist_lock, flags);
  137. do_each_thread(g, p) {
  138. if (!p->on_rq || task_cpu(p) != rq_cpu)
  139. continue;
  140. print_task(m, rq, p);
  141. } while_each_thread(g, p);
  142. read_unlock_irqrestore(&tasklist_lock, flags);
  143. }
  144. void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
  145. {
  146. s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
  147. spread, rq0_min_vruntime, spread0;
  148. struct rq *rq = cpu_rq(cpu);
  149. struct sched_entity *last;
  150. unsigned long flags;
  151. #ifdef CONFIG_FAIR_GROUP_SCHED
  152. SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
  153. #else
  154. SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
  155. #endif
  156. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
  157. SPLIT_NS(cfs_rq->exec_clock));
  158. raw_spin_lock_irqsave(&rq->lock, flags);
  159. if (cfs_rq->rb_leftmost)
  160. MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
  161. last = __pick_last_entity(cfs_rq);
  162. if (last)
  163. max_vruntime = last->vruntime;
  164. min_vruntime = cfs_rq->min_vruntime;
  165. rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
  166. raw_spin_unlock_irqrestore(&rq->lock, flags);
  167. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
  168. SPLIT_NS(MIN_vruntime));
  169. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
  170. SPLIT_NS(min_vruntime));
  171. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
  172. SPLIT_NS(max_vruntime));
  173. spread = max_vruntime - MIN_vruntime;
  174. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
  175. SPLIT_NS(spread));
  176. spread0 = min_vruntime - rq0_min_vruntime;
  177. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
  178. SPLIT_NS(spread0));
  179. SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
  180. cfs_rq->nr_spread_over);
  181. SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
  182. SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
  183. #ifdef CONFIG_FAIR_GROUP_SCHED
  184. #ifdef CONFIG_SMP
  185. SEQ_printf(m, " .%-30s: %lld\n", "runnable_load_avg",
  186. cfs_rq->runnable_load_avg);
  187. SEQ_printf(m, " .%-30s: %lld\n", "blocked_load_avg",
  188. cfs_rq->blocked_load_avg);
  189. SEQ_printf(m, " .%-30s: %lld\n", "tg_load_avg",
  190. (unsigned long long)atomic64_read(&cfs_rq->tg->load_avg));
  191. SEQ_printf(m, " .%-30s: %lld\n", "tg_load_contrib",
  192. cfs_rq->tg_load_contrib);
  193. SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib",
  194. cfs_rq->tg_runnable_contrib);
  195. SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg",
  196. atomic_read(&cfs_rq->tg->runnable_avg));
  197. #endif
  198. print_cfs_group_stats(m, cpu, cfs_rq->tg);
  199. #endif
  200. }
  201. void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
  202. {
  203. #ifdef CONFIG_RT_GROUP_SCHED
  204. SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
  205. #else
  206. SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
  207. #endif
  208. #define P(x) \
  209. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
  210. #define PN(x) \
  211. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
  212. P(rt_nr_running);
  213. P(rt_throttled);
  214. PN(rt_time);
  215. PN(rt_runtime);
  216. #undef PN
  217. #undef P
  218. }
  219. extern __read_mostly int sched_clock_running;
  220. static void print_cpu(struct seq_file *m, int cpu)
  221. {
  222. struct rq *rq = cpu_rq(cpu);
  223. unsigned long flags;
  224. #ifdef CONFIG_X86
  225. {
  226. unsigned int freq = cpu_khz ? : 1;
  227. SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
  228. cpu, freq / 1000, (freq % 1000));
  229. }
  230. #else
  231. SEQ_printf(m, "cpu#%d\n", cpu);
  232. #endif
  233. #define P(x) \
  234. do { \
  235. if (sizeof(rq->x) == 4) \
  236. SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
  237. else \
  238. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
  239. } while (0)
  240. #define PN(x) \
  241. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
  242. P(nr_running);
  243. SEQ_printf(m, " .%-30s: %lu\n", "load",
  244. rq->load.weight);
  245. P(nr_switches);
  246. P(nr_load_updates);
  247. P(nr_uninterruptible);
  248. PN(next_balance);
  249. P(curr->pid);
  250. PN(clock);
  251. P(cpu_load[0]);
  252. P(cpu_load[1]);
  253. P(cpu_load[2]);
  254. P(cpu_load[3]);
  255. P(cpu_load[4]);
  256. #undef P
  257. #undef PN
  258. #ifdef CONFIG_SCHEDSTATS
  259. #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
  260. #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
  261. P(yld_count);
  262. P(sched_count);
  263. P(sched_goidle);
  264. #ifdef CONFIG_SMP
  265. P64(avg_idle);
  266. #endif
  267. P(ttwu_count);
  268. P(ttwu_local);
  269. #undef P
  270. #undef P64
  271. #endif
  272. spin_lock_irqsave(&sched_debug_lock, flags);
  273. print_cfs_stats(m, cpu);
  274. print_rt_stats(m, cpu);
  275. rcu_read_lock();
  276. print_rq(m, rq, cpu);
  277. rcu_read_unlock();
  278. spin_unlock_irqrestore(&sched_debug_lock, flags);
  279. SEQ_printf(m, "\n");
  280. }
  281. static const char *sched_tunable_scaling_names[] = {
  282. "none",
  283. "logaritmic",
  284. "linear"
  285. };
  286. static void sched_debug_header(struct seq_file *m)
  287. {
  288. u64 ktime, sched_clk, cpu_clk;
  289. unsigned long flags;
  290. local_irq_save(flags);
  291. ktime = ktime_to_ns(ktime_get());
  292. sched_clk = sched_clock();
  293. cpu_clk = local_clock();
  294. local_irq_restore(flags);
  295. SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n",
  296. init_utsname()->release,
  297. (int)strcspn(init_utsname()->version, " "),
  298. init_utsname()->version);
  299. #define P(x) \
  300. SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
  301. #define PN(x) \
  302. SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
  303. PN(ktime);
  304. PN(sched_clk);
  305. PN(cpu_clk);
  306. P(jiffies);
  307. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  308. P(sched_clock_stable);
  309. #endif
  310. #undef PN
  311. #undef P
  312. SEQ_printf(m, "\n");
  313. SEQ_printf(m, "sysctl_sched\n");
  314. #define P(x) \
  315. SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
  316. #define PN(x) \
  317. SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
  318. PN(sysctl_sched_latency);
  319. PN(sysctl_sched_min_granularity);
  320. PN(sysctl_sched_wakeup_granularity);
  321. P(sysctl_sched_child_runs_first);
  322. P(sysctl_sched_features);
  323. #undef PN
  324. #undef P
  325. SEQ_printf(m, " .%-40s: %d (%s)\n",
  326. "sysctl_sched_tunable_scaling",
  327. sysctl_sched_tunable_scaling,
  328. sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
  329. SEQ_printf(m, "\n");
  330. }
  331. static int sched_debug_show(struct seq_file *m, void *v)
  332. {
  333. int cpu = (unsigned long)(v - 2);
  334. if (cpu != -1)
  335. print_cpu(m, cpu);
  336. else
  337. sched_debug_header(m);
  338. return 0;
  339. }
  340. void sysrq_sched_debug_show(void)
  341. {
  342. int cpu;
  343. sched_debug_header(NULL);
  344. for_each_online_cpu(cpu)
  345. print_cpu(NULL, cpu);
  346. }
  347. /*
  348. * This itererator needs some explanation.
  349. * It returns 1 for the header position.
  350. * This means 2 is cpu 0.
  351. * In a hotplugged system some cpus, including cpu 0, may be missing so we have
  352. * to use cpumask_* to iterate over the cpus.
  353. */
  354. static void *sched_debug_start(struct seq_file *file, loff_t *offset)
  355. {
  356. unsigned long n = *offset;
  357. if (n == 0)
  358. return (void *) 1;
  359. n--;
  360. if (n > 0)
  361. n = cpumask_next(n - 1, cpu_online_mask);
  362. else
  363. n = cpumask_first(cpu_online_mask);
  364. *offset = n + 1;
  365. if (n < nr_cpu_ids)
  366. return (void *)(unsigned long)(n + 2);
  367. return NULL;
  368. }
  369. static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
  370. {
  371. (*offset)++;
  372. return sched_debug_start(file, offset);
  373. }
  374. static void sched_debug_stop(struct seq_file *file, void *data)
  375. {
  376. }
  377. static const struct seq_operations sched_debug_sops = {
  378. .start = sched_debug_start,
  379. .next = sched_debug_next,
  380. .stop = sched_debug_stop,
  381. .show = sched_debug_show,
  382. };
  383. static int sched_debug_release(struct inode *inode, struct file *file)
  384. {
  385. seq_release(inode, file);
  386. return 0;
  387. }
  388. static int sched_debug_open(struct inode *inode, struct file *filp)
  389. {
  390. int ret = 0;
  391. ret = seq_open(filp, &sched_debug_sops);
  392. return ret;
  393. }
  394. static const struct file_operations sched_debug_fops = {
  395. .open = sched_debug_open,
  396. .read = seq_read,
  397. .llseek = seq_lseek,
  398. .release = sched_debug_release,
  399. };
  400. static int __init init_sched_debug_procfs(void)
  401. {
  402. struct proc_dir_entry *pe;
  403. pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
  404. if (!pe)
  405. return -ENOMEM;
  406. return 0;
  407. }
  408. __initcall(init_sched_debug_procfs);
  409. void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
  410. {
  411. unsigned long nr_switches;
  412. SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid,
  413. get_nr_threads(p));
  414. SEQ_printf(m,
  415. "---------------------------------------------------------\n");
  416. #define __P(F) \
  417. SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
  418. #define P(F) \
  419. SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
  420. #define __PN(F) \
  421. SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
  422. #define PN(F) \
  423. SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
  424. PN(se.exec_start);
  425. PN(se.vruntime);
  426. PN(se.sum_exec_runtime);
  427. nr_switches = p->nvcsw + p->nivcsw;
  428. #ifdef CONFIG_SCHEDSTATS
  429. PN(se.statistics.wait_start);
  430. PN(se.statistics.sleep_start);
  431. PN(se.statistics.block_start);
  432. PN(se.statistics.sleep_max);
  433. PN(se.statistics.block_max);
  434. PN(se.statistics.exec_max);
  435. PN(se.statistics.slice_max);
  436. PN(se.statistics.wait_max);
  437. PN(se.statistics.wait_sum);
  438. P(se.statistics.wait_count);
  439. PN(se.statistics.iowait_sum);
  440. P(se.statistics.iowait_count);
  441. P(se.nr_migrations);
  442. P(se.statistics.nr_migrations_cold);
  443. P(se.statistics.nr_failed_migrations_affine);
  444. P(se.statistics.nr_failed_migrations_running);
  445. P(se.statistics.nr_failed_migrations_hot);
  446. P(se.statistics.nr_forced_migrations);
  447. P(se.statistics.nr_wakeups);
  448. P(se.statistics.nr_wakeups_sync);
  449. P(se.statistics.nr_wakeups_migrate);
  450. P(se.statistics.nr_wakeups_local);
  451. P(se.statistics.nr_wakeups_remote);
  452. P(se.statistics.nr_wakeups_affine);
  453. P(se.statistics.nr_wakeups_affine_attempts);
  454. P(se.statistics.nr_wakeups_passive);
  455. P(se.statistics.nr_wakeups_idle);
  456. {
  457. u64 avg_atom, avg_per_cpu;
  458. avg_atom = p->se.sum_exec_runtime;
  459. if (nr_switches)
  460. do_div(avg_atom, nr_switches);
  461. else
  462. avg_atom = -1LL;
  463. avg_per_cpu = p->se.sum_exec_runtime;
  464. if (p->se.nr_migrations) {
  465. avg_per_cpu = div64_u64(avg_per_cpu,
  466. p->se.nr_migrations);
  467. } else {
  468. avg_per_cpu = -1LL;
  469. }
  470. __PN(avg_atom);
  471. __PN(avg_per_cpu);
  472. }
  473. #endif
  474. __P(nr_switches);
  475. SEQ_printf(m, "%-35s:%21Ld\n",
  476. "nr_voluntary_switches", (long long)p->nvcsw);
  477. SEQ_printf(m, "%-35s:%21Ld\n",
  478. "nr_involuntary_switches", (long long)p->nivcsw);
  479. P(se.load.weight);
  480. P(policy);
  481. P(prio);
  482. #undef PN
  483. #undef __PN
  484. #undef P
  485. #undef __P
  486. {
  487. unsigned int this_cpu = raw_smp_processor_id();
  488. u64 t0, t1;
  489. t0 = cpu_clock(this_cpu);
  490. t1 = cpu_clock(this_cpu);
  491. SEQ_printf(m, "%-35s:%21Ld\n",
  492. "clock-delta", (long long)(t1-t0));
  493. }
  494. }
  495. void proc_sched_set_task(struct task_struct *p)
  496. {
  497. #ifdef CONFIG_SCHEDSTATS
  498. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  499. #endif
  500. }