cputime.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. #include <linux/export.h>
  2. #include <linux/sched.h>
  3. #include <linux/tsacct_kern.h>
  4. #include <linux/kernel_stat.h>
  5. #include <linux/static_key.h>
  6. #include <linux/context_tracking.h>
  7. #include "sched.h"
  8. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  9. /*
  10. * There are no locks covering percpu hardirq/softirq time.
  11. * They are only modified in vtime_account, on corresponding CPU
  12. * with interrupts disabled. So, writes are safe.
  13. * They are read and saved off onto struct rq in update_rq_clock().
  14. * This may result in other CPU reading this CPU's irq time and can
  15. * race with irq/vtime_account on this CPU. We would either get old
  16. * or new value with a side effect of accounting a slice of irq time to wrong
  17. * task when irq is in progress while we read rq->clock. That is a worthy
  18. * compromise in place of having locks on each irq in account_system_time.
  19. */
  20. DEFINE_PER_CPU(u64, cpu_hardirq_time);
  21. DEFINE_PER_CPU(u64, cpu_softirq_time);
  22. static DEFINE_PER_CPU(u64, irq_start_time);
  23. static int sched_clock_irqtime;
  24. void enable_sched_clock_irqtime(void)
  25. {
  26. sched_clock_irqtime = 1;
  27. }
  28. void disable_sched_clock_irqtime(void)
  29. {
  30. sched_clock_irqtime = 0;
  31. }
  32. #ifndef CONFIG_64BIT
  33. DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  34. #endif /* CONFIG_64BIT */
  35. /*
  36. * Called before incrementing preempt_count on {soft,}irq_enter
  37. * and before decrementing preempt_count on {soft,}irq_exit.
  38. */
  39. void irqtime_account_irq(struct task_struct *curr)
  40. {
  41. unsigned long flags;
  42. s64 delta;
  43. int cpu;
  44. if (!sched_clock_irqtime)
  45. return;
  46. local_irq_save(flags);
  47. cpu = smp_processor_id();
  48. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  49. __this_cpu_add(irq_start_time, delta);
  50. irq_time_write_begin();
  51. /*
  52. * We do not account for softirq time from ksoftirqd here.
  53. * We want to continue accounting softirq time to ksoftirqd thread
  54. * in that case, so as not to confuse scheduler with a special task
  55. * that do not consume any time, but still wants to run.
  56. */
  57. if (hardirq_count())
  58. __this_cpu_add(cpu_hardirq_time, delta);
  59. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  60. __this_cpu_add(cpu_softirq_time, delta);
  61. irq_time_write_end();
  62. local_irq_restore(flags);
  63. }
  64. EXPORT_SYMBOL_GPL(irqtime_account_irq);
  65. static int irqtime_account_hi_update(void)
  66. {
  67. u64 *cpustat = kcpustat_this_cpu->cpustat;
  68. unsigned long flags;
  69. u64 latest_ns;
  70. int ret = 0;
  71. local_irq_save(flags);
  72. latest_ns = this_cpu_read(cpu_hardirq_time);
  73. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  74. ret = 1;
  75. local_irq_restore(flags);
  76. return ret;
  77. }
  78. static int irqtime_account_si_update(void)
  79. {
  80. u64 *cpustat = kcpustat_this_cpu->cpustat;
  81. unsigned long flags;
  82. u64 latest_ns;
  83. int ret = 0;
  84. local_irq_save(flags);
  85. latest_ns = this_cpu_read(cpu_softirq_time);
  86. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  87. ret = 1;
  88. local_irq_restore(flags);
  89. return ret;
  90. }
  91. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  92. #define sched_clock_irqtime (0)
  93. #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  94. static inline void task_group_account_field(struct task_struct *p, int index,
  95. u64 tmp)
  96. {
  97. /*
  98. * Since all updates are sure to touch the root cgroup, we
  99. * get ourselves ahead and touch it first. If the root cgroup
  100. * is the only cgroup, then nothing else should be necessary.
  101. *
  102. */
  103. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  104. cpuacct_account_field(p, index, tmp);
  105. }
  106. /*
  107. * Account user cpu time to a process.
  108. * @p: the process that the cpu time gets accounted to
  109. * @cputime: the cpu time spent in user space since the last update
  110. * @cputime_scaled: cputime scaled by cpu frequency
  111. */
  112. void account_user_time(struct task_struct *p, cputime_t cputime,
  113. cputime_t cputime_scaled)
  114. {
  115. int index;
  116. /* Add user time to process. */
  117. p->utime += cputime;
  118. p->utimescaled += cputime_scaled;
  119. account_group_user_time(p, cputime);
  120. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  121. /* Add user time to cpustat. */
  122. task_group_account_field(p, index, (__force u64) cputime);
  123. /* Account for user time used */
  124. acct_account_cputime(p);
  125. }
  126. /*
  127. * Account guest cpu time to a process.
  128. * @p: the process that the cpu time gets accounted to
  129. * @cputime: the cpu time spent in virtual machine since the last update
  130. * @cputime_scaled: cputime scaled by cpu frequency
  131. */
  132. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  133. cputime_t cputime_scaled)
  134. {
  135. u64 *cpustat = kcpustat_this_cpu->cpustat;
  136. /* Add guest time to process. */
  137. p->utime += cputime;
  138. p->utimescaled += cputime_scaled;
  139. account_group_user_time(p, cputime);
  140. p->gtime += cputime;
  141. /* Add guest time to cpustat. */
  142. if (TASK_NICE(p) > 0) {
  143. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  144. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  145. } else {
  146. cpustat[CPUTIME_USER] += (__force u64) cputime;
  147. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  148. }
  149. }
  150. /*
  151. * Account system cpu time to a process and desired cpustat field
  152. * @p: the process that the cpu time gets accounted to
  153. * @cputime: the cpu time spent in kernel space since the last update
  154. * @cputime_scaled: cputime scaled by cpu frequency
  155. * @target_cputime64: pointer to cpustat field that has to be updated
  156. */
  157. static inline
  158. void __account_system_time(struct task_struct *p, cputime_t cputime,
  159. cputime_t cputime_scaled, int index)
  160. {
  161. /* Add system time to process. */
  162. p->stime += cputime;
  163. p->stimescaled += cputime_scaled;
  164. account_group_system_time(p, cputime);
  165. /* Add system time to cpustat. */
  166. task_group_account_field(p, index, (__force u64) cputime);
  167. /* Account for system time used */
  168. acct_account_cputime(p);
  169. }
  170. /*
  171. * Account system cpu time to a process.
  172. * @p: the process that the cpu time gets accounted to
  173. * @hardirq_offset: the offset to subtract from hardirq_count()
  174. * @cputime: the cpu time spent in kernel space since the last update
  175. * @cputime_scaled: cputime scaled by cpu frequency
  176. */
  177. void account_system_time(struct task_struct *p, int hardirq_offset,
  178. cputime_t cputime, cputime_t cputime_scaled)
  179. {
  180. int index;
  181. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  182. account_guest_time(p, cputime, cputime_scaled);
  183. return;
  184. }
  185. if (hardirq_count() - hardirq_offset)
  186. index = CPUTIME_IRQ;
  187. else if (in_serving_softirq())
  188. index = CPUTIME_SOFTIRQ;
  189. else
  190. index = CPUTIME_SYSTEM;
  191. __account_system_time(p, cputime, cputime_scaled, index);
  192. }
  193. /*
  194. * Account for involuntary wait time.
  195. * @cputime: the cpu time spent in involuntary wait
  196. */
  197. void account_steal_time(cputime_t cputime)
  198. {
  199. u64 *cpustat = kcpustat_this_cpu->cpustat;
  200. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  201. }
  202. /*
  203. * Account for idle time.
  204. * @cputime: the cpu time spent in idle wait
  205. */
  206. void account_idle_time(cputime_t cputime)
  207. {
  208. u64 *cpustat = kcpustat_this_cpu->cpustat;
  209. struct rq *rq = this_rq();
  210. if (atomic_read(&rq->nr_iowait) > 0)
  211. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  212. else
  213. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  214. }
  215. static __always_inline bool steal_account_process_tick(void)
  216. {
  217. #ifdef CONFIG_PARAVIRT
  218. if (static_key_false(&paravirt_steal_enabled)) {
  219. u64 steal, st = 0;
  220. steal = paravirt_steal_clock(smp_processor_id());
  221. steal -= this_rq()->prev_steal_time;
  222. st = steal_ticks(steal);
  223. this_rq()->prev_steal_time += st * TICK_NSEC;
  224. account_steal_time(st);
  225. return st;
  226. }
  227. #endif
  228. return false;
  229. }
  230. /*
  231. * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
  232. * tasks (sum on group iteration) belonging to @tsk's group.
  233. */
  234. void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
  235. {
  236. struct signal_struct *sig = tsk->signal;
  237. cputime_t utime, stime;
  238. struct task_struct *t;
  239. times->utime = sig->utime;
  240. times->stime = sig->stime;
  241. times->sum_exec_runtime = sig->sum_sched_runtime;
  242. rcu_read_lock();
  243. /* make sure we can trust tsk->thread_group list */
  244. if (!likely(pid_alive(tsk)))
  245. goto out;
  246. t = tsk;
  247. do {
  248. task_cputime(t, &utime, &stime);
  249. times->utime += utime;
  250. times->stime += stime;
  251. times->sum_exec_runtime += task_sched_runtime(t);
  252. } while_each_thread(tsk, t);
  253. out:
  254. rcu_read_unlock();
  255. }
  256. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  257. /*
  258. * Account a tick to a process and cpustat
  259. * @p: the process that the cpu time gets accounted to
  260. * @user_tick: is the tick from userspace
  261. * @rq: the pointer to rq
  262. *
  263. * Tick demultiplexing follows the order
  264. * - pending hardirq update
  265. * - pending softirq update
  266. * - user_time
  267. * - idle_time
  268. * - system time
  269. * - check for guest_time
  270. * - else account as system_time
  271. *
  272. * Check for hardirq is done both for system and user time as there is
  273. * no timer going off while we are on hardirq and hence we may never get an
  274. * opportunity to update it solely in system time.
  275. * p->stime and friends are only updated on system time and not on irq
  276. * softirq as those do not count in task exec_runtime any more.
  277. */
  278. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  279. struct rq *rq)
  280. {
  281. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  282. u64 *cpustat = kcpustat_this_cpu->cpustat;
  283. if (steal_account_process_tick())
  284. return;
  285. if (irqtime_account_hi_update()) {
  286. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  287. } else if (irqtime_account_si_update()) {
  288. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  289. } else if (this_cpu_ksoftirqd() == p) {
  290. /*
  291. * ksoftirqd time do not get accounted in cpu_softirq_time.
  292. * So, we have to handle it separately here.
  293. * Also, p->stime needs to be updated for ksoftirqd.
  294. */
  295. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  296. CPUTIME_SOFTIRQ);
  297. } else if (user_tick) {
  298. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  299. } else if (p == rq->idle) {
  300. account_idle_time(cputime_one_jiffy);
  301. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  302. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  303. } else {
  304. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  305. CPUTIME_SYSTEM);
  306. }
  307. }
  308. static void irqtime_account_idle_ticks(int ticks)
  309. {
  310. int i;
  311. struct rq *rq = this_rq();
  312. for (i = 0; i < ticks; i++)
  313. irqtime_account_process_tick(current, 0, rq);
  314. }
  315. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  316. static inline void irqtime_account_idle_ticks(int ticks) {}
  317. static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  318. struct rq *rq) {}
  319. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  320. /*
  321. * Use precise platform statistics if available:
  322. */
  323. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  324. #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
  325. void vtime_task_switch(struct task_struct *prev)
  326. {
  327. if (!vtime_accounting_enabled())
  328. return;
  329. if (is_idle_task(prev))
  330. vtime_account_idle(prev);
  331. else
  332. vtime_account_system(prev);
  333. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  334. vtime_account_user(prev);
  335. #endif
  336. arch_vtime_task_switch(prev);
  337. }
  338. #endif
  339. /*
  340. * Archs that account the whole time spent in the idle task
  341. * (outside irq) as idle time can rely on this and just implement
  342. * vtime_account_system() and vtime_account_idle(). Archs that
  343. * have other meaning of the idle time (s390 only includes the
  344. * time spent by the CPU when it's in low power mode) must override
  345. * vtime_account().
  346. */
  347. #ifndef __ARCH_HAS_VTIME_ACCOUNT
  348. void vtime_account_irq_enter(struct task_struct *tsk)
  349. {
  350. if (!vtime_accounting_enabled())
  351. return;
  352. if (!in_interrupt()) {
  353. /*
  354. * If we interrupted user, context_tracking_in_user()
  355. * is 1 because the context tracking don't hook
  356. * on irq entry/exit. This way we know if
  357. * we need to flush user time on kernel entry.
  358. */
  359. if (context_tracking_in_user()) {
  360. vtime_account_user(tsk);
  361. return;
  362. }
  363. if (is_idle_task(tsk)) {
  364. vtime_account_idle(tsk);
  365. return;
  366. }
  367. }
  368. vtime_account_system(tsk);
  369. }
  370. EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
  371. #endif /* __ARCH_HAS_VTIME_ACCOUNT */
  372. #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
  373. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  374. void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  375. {
  376. *ut = p->utime;
  377. *st = p->stime;
  378. }
  379. void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  380. {
  381. struct task_cputime cputime;
  382. thread_group_cputime(p, &cputime);
  383. *ut = cputime.utime;
  384. *st = cputime.stime;
  385. }
  386. #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  387. /*
  388. * Account a single tick of cpu time.
  389. * @p: the process that the cpu time gets accounted to
  390. * @user_tick: indicates if the tick is a user or a system tick
  391. */
  392. void account_process_tick(struct task_struct *p, int user_tick)
  393. {
  394. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  395. struct rq *rq = this_rq();
  396. if (vtime_accounting_enabled())
  397. return;
  398. if (sched_clock_irqtime) {
  399. irqtime_account_process_tick(p, user_tick, rq);
  400. return;
  401. }
  402. if (steal_account_process_tick())
  403. return;
  404. if (user_tick)
  405. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  406. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  407. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  408. one_jiffy_scaled);
  409. else
  410. account_idle_time(cputime_one_jiffy);
  411. }
  412. /*
  413. * Account multiple ticks of steal time.
  414. * @p: the process from which the cpu time has been stolen
  415. * @ticks: number of stolen ticks
  416. */
  417. void account_steal_ticks(unsigned long ticks)
  418. {
  419. account_steal_time(jiffies_to_cputime(ticks));
  420. }
  421. /*
  422. * Account multiple ticks of idle time.
  423. * @ticks: number of stolen ticks
  424. */
  425. void account_idle_ticks(unsigned long ticks)
  426. {
  427. if (sched_clock_irqtime) {
  428. irqtime_account_idle_ticks(ticks);
  429. return;
  430. }
  431. account_idle_time(jiffies_to_cputime(ticks));
  432. }
  433. /*
  434. * Perform (stime * rtime) / total with reduced chances
  435. * of multiplication overflows by using smaller factors
  436. * like quotient and remainders of divisions between
  437. * rtime and total.
  438. */
  439. static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
  440. {
  441. u64 rem, res, scaled;
  442. if (rtime >= total) {
  443. /*
  444. * Scale up to rtime / total then add
  445. * the remainder scaled to stime / total.
  446. */
  447. res = div64_u64_rem(rtime, total, &rem);
  448. scaled = stime * res;
  449. scaled += div64_u64(stime * rem, total);
  450. } else {
  451. /*
  452. * Same in reverse: scale down to total / rtime
  453. * then substract that result scaled to
  454. * to the remaining part.
  455. */
  456. res = div64_u64_rem(total, rtime, &rem);
  457. scaled = div64_u64(stime, res);
  458. scaled -= div64_u64(scaled * rem, total);
  459. }
  460. return (__force cputime_t) scaled;
  461. }
  462. /*
  463. * Adjust tick based cputime random precision against scheduler
  464. * runtime accounting.
  465. */
  466. static void cputime_adjust(struct task_cputime *curr,
  467. struct cputime *prev,
  468. cputime_t *ut, cputime_t *st)
  469. {
  470. cputime_t rtime, stime, total;
  471. if (vtime_accounting_enabled()) {
  472. *ut = curr->utime;
  473. *st = curr->stime;
  474. return;
  475. }
  476. stime = curr->stime;
  477. total = stime + curr->utime;
  478. /*
  479. * Tick based cputime accounting depend on random scheduling
  480. * timeslices of a task to be interrupted or not by the timer.
  481. * Depending on these circumstances, the number of these interrupts
  482. * may be over or under-optimistic, matching the real user and system
  483. * cputime with a variable precision.
  484. *
  485. * Fix this by scaling these tick based values against the total
  486. * runtime accounted by the CFS scheduler.
  487. */
  488. rtime = nsecs_to_cputime(curr->sum_exec_runtime);
  489. if (!rtime) {
  490. stime = 0;
  491. } else if (!total) {
  492. stime = rtime;
  493. } else {
  494. stime = scale_stime((__force u64)stime,
  495. (__force u64)rtime, (__force u64)total);
  496. }
  497. /*
  498. * If the tick based count grows faster than the scheduler one,
  499. * the result of the scaling may go backward.
  500. * Let's enforce monotonicity.
  501. */
  502. prev->stime = max(prev->stime, stime);
  503. prev->utime = max(prev->utime, rtime - prev->stime);
  504. *ut = prev->utime;
  505. *st = prev->stime;
  506. }
  507. void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  508. {
  509. struct task_cputime cputime = {
  510. .sum_exec_runtime = p->se.sum_exec_runtime,
  511. };
  512. task_cputime(p, &cputime.utime, &cputime.stime);
  513. cputime_adjust(&cputime, &p->prev_cputime, ut, st);
  514. }
  515. /*
  516. * Must be called with siglock held.
  517. */
  518. void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  519. {
  520. struct task_cputime cputime;
  521. thread_group_cputime(p, &cputime);
  522. cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
  523. }
  524. #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  525. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  526. static unsigned long long vtime_delta(struct task_struct *tsk)
  527. {
  528. unsigned long long clock;
  529. clock = local_clock();
  530. if (clock < tsk->vtime_snap)
  531. return 0;
  532. return clock - tsk->vtime_snap;
  533. }
  534. static cputime_t get_vtime_delta(struct task_struct *tsk)
  535. {
  536. unsigned long long delta = vtime_delta(tsk);
  537. WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
  538. tsk->vtime_snap += delta;
  539. /* CHECKME: always safe to convert nsecs to cputime? */
  540. return nsecs_to_cputime(delta);
  541. }
  542. static void __vtime_account_system(struct task_struct *tsk)
  543. {
  544. cputime_t delta_cpu = get_vtime_delta(tsk);
  545. account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
  546. }
  547. void vtime_account_system(struct task_struct *tsk)
  548. {
  549. if (!vtime_accounting_enabled())
  550. return;
  551. write_seqlock(&tsk->vtime_seqlock);
  552. __vtime_account_system(tsk);
  553. write_sequnlock(&tsk->vtime_seqlock);
  554. }
  555. void vtime_account_irq_exit(struct task_struct *tsk)
  556. {
  557. if (!vtime_accounting_enabled())
  558. return;
  559. write_seqlock(&tsk->vtime_seqlock);
  560. if (context_tracking_in_user())
  561. tsk->vtime_snap_whence = VTIME_USER;
  562. __vtime_account_system(tsk);
  563. write_sequnlock(&tsk->vtime_seqlock);
  564. }
  565. void vtime_account_user(struct task_struct *tsk)
  566. {
  567. cputime_t delta_cpu;
  568. if (!vtime_accounting_enabled())
  569. return;
  570. delta_cpu = get_vtime_delta(tsk);
  571. write_seqlock(&tsk->vtime_seqlock);
  572. tsk->vtime_snap_whence = VTIME_SYS;
  573. account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
  574. write_sequnlock(&tsk->vtime_seqlock);
  575. }
  576. void vtime_user_enter(struct task_struct *tsk)
  577. {
  578. if (!vtime_accounting_enabled())
  579. return;
  580. write_seqlock(&tsk->vtime_seqlock);
  581. tsk->vtime_snap_whence = VTIME_USER;
  582. __vtime_account_system(tsk);
  583. write_sequnlock(&tsk->vtime_seqlock);
  584. }
  585. void vtime_guest_enter(struct task_struct *tsk)
  586. {
  587. write_seqlock(&tsk->vtime_seqlock);
  588. __vtime_account_system(tsk);
  589. current->flags |= PF_VCPU;
  590. write_sequnlock(&tsk->vtime_seqlock);
  591. }
  592. void vtime_guest_exit(struct task_struct *tsk)
  593. {
  594. write_seqlock(&tsk->vtime_seqlock);
  595. __vtime_account_system(tsk);
  596. current->flags &= ~PF_VCPU;
  597. write_sequnlock(&tsk->vtime_seqlock);
  598. }
  599. void vtime_account_idle(struct task_struct *tsk)
  600. {
  601. cputime_t delta_cpu = get_vtime_delta(tsk);
  602. account_idle_time(delta_cpu);
  603. }
  604. bool vtime_accounting_enabled(void)
  605. {
  606. return context_tracking_active();
  607. }
  608. void arch_vtime_task_switch(struct task_struct *prev)
  609. {
  610. write_seqlock(&prev->vtime_seqlock);
  611. prev->vtime_snap_whence = VTIME_SLEEPING;
  612. write_sequnlock(&prev->vtime_seqlock);
  613. write_seqlock(&current->vtime_seqlock);
  614. current->vtime_snap_whence = VTIME_SYS;
  615. current->vtime_snap = sched_clock();
  616. write_sequnlock(&current->vtime_seqlock);
  617. }
  618. void vtime_init_idle(struct task_struct *t)
  619. {
  620. unsigned long flags;
  621. write_seqlock_irqsave(&t->vtime_seqlock, flags);
  622. t->vtime_snap_whence = VTIME_SYS;
  623. t->vtime_snap = sched_clock();
  624. write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
  625. }
  626. cputime_t task_gtime(struct task_struct *t)
  627. {
  628. unsigned int seq;
  629. cputime_t gtime;
  630. do {
  631. seq = read_seqbegin(&t->vtime_seqlock);
  632. gtime = t->gtime;
  633. if (t->flags & PF_VCPU)
  634. gtime += vtime_delta(t);
  635. } while (read_seqretry(&t->vtime_seqlock, seq));
  636. return gtime;
  637. }
  638. /*
  639. * Fetch cputime raw values from fields of task_struct and
  640. * add up the pending nohz execution time since the last
  641. * cputime snapshot.
  642. */
  643. static void
  644. fetch_task_cputime(struct task_struct *t,
  645. cputime_t *u_dst, cputime_t *s_dst,
  646. cputime_t *u_src, cputime_t *s_src,
  647. cputime_t *udelta, cputime_t *sdelta)
  648. {
  649. unsigned int seq;
  650. unsigned long long delta;
  651. do {
  652. *udelta = 0;
  653. *sdelta = 0;
  654. seq = read_seqbegin(&t->vtime_seqlock);
  655. if (u_dst)
  656. *u_dst = *u_src;
  657. if (s_dst)
  658. *s_dst = *s_src;
  659. /* Task is sleeping, nothing to add */
  660. if (t->vtime_snap_whence == VTIME_SLEEPING ||
  661. is_idle_task(t))
  662. continue;
  663. delta = vtime_delta(t);
  664. /*
  665. * Task runs either in user or kernel space, add pending nohz time to
  666. * the right place.
  667. */
  668. if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
  669. *udelta = delta;
  670. } else {
  671. if (t->vtime_snap_whence == VTIME_SYS)
  672. *sdelta = delta;
  673. }
  674. } while (read_seqretry(&t->vtime_seqlock, seq));
  675. }
  676. void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
  677. {
  678. cputime_t udelta, sdelta;
  679. fetch_task_cputime(t, utime, stime, &t->utime,
  680. &t->stime, &udelta, &sdelta);
  681. if (utime)
  682. *utime += udelta;
  683. if (stime)
  684. *stime += sdelta;
  685. }
  686. void task_cputime_scaled(struct task_struct *t,
  687. cputime_t *utimescaled, cputime_t *stimescaled)
  688. {
  689. cputime_t udelta, sdelta;
  690. fetch_task_cputime(t, utimescaled, stimescaled,
  691. &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
  692. if (utimescaled)
  693. *utimescaled += cputime_to_scaled(udelta);
  694. if (stimescaled)
  695. *stimescaled += cputime_to_scaled(sdelta);
  696. }
  697. #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */