ring_buffer.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. /*
  2. * Performance events ring-buffer code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/perf_event.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/slab.h>
  14. #include "internal.h"
  15. static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
  16. unsigned long offset, unsigned long head)
  17. {
  18. unsigned long sz = perf_data_size(rb);
  19. unsigned long mask = sz - 1;
  20. /*
  21. * check if user-writable
  22. * overwrite : over-write its own tail
  23. * !overwrite: buffer possibly drops events.
  24. */
  25. if (rb->overwrite)
  26. return true;
  27. /*
  28. * verify that payload is not bigger than buffer
  29. * otherwise masking logic may fail to detect
  30. * the "not enough space" condition
  31. */
  32. if ((head - offset) > sz)
  33. return false;
  34. offset = (offset - tail) & mask;
  35. head = (head - tail) & mask;
  36. if ((int)(head - offset) < 0)
  37. return false;
  38. return true;
  39. }
  40. static void perf_output_wakeup(struct perf_output_handle *handle)
  41. {
  42. atomic_set(&handle->rb->poll, POLL_IN);
  43. handle->event->pending_wakeup = 1;
  44. irq_work_queue(&handle->event->pending);
  45. }
  46. /*
  47. * We need to ensure a later event_id doesn't publish a head when a former
  48. * event isn't done writing. However since we need to deal with NMIs we
  49. * cannot fully serialize things.
  50. *
  51. * We only publish the head (and generate a wakeup) when the outer-most
  52. * event completes.
  53. */
  54. static void perf_output_get_handle(struct perf_output_handle *handle)
  55. {
  56. struct ring_buffer *rb = handle->rb;
  57. preempt_disable();
  58. local_inc(&rb->nest);
  59. handle->wakeup = local_read(&rb->wakeup);
  60. }
  61. static void perf_output_put_handle(struct perf_output_handle *handle)
  62. {
  63. struct ring_buffer *rb = handle->rb;
  64. unsigned long head;
  65. again:
  66. head = local_read(&rb->head);
  67. /*
  68. * IRQ/NMI can happen here, which means we can miss a head update.
  69. */
  70. if (!local_dec_and_test(&rb->nest))
  71. goto out;
  72. /*
  73. * Publish the known good head. Rely on the full barrier implied
  74. * by atomic_dec_and_test() order the rb->head read and this
  75. * write.
  76. */
  77. rb->user_page->data_head = head;
  78. /*
  79. * Now check if we missed an update, rely on the (compiler)
  80. * barrier in atomic_dec_and_test() to re-read rb->head.
  81. */
  82. if (unlikely(head != local_read(&rb->head))) {
  83. local_inc(&rb->nest);
  84. goto again;
  85. }
  86. if (handle->wakeup != local_read(&rb->wakeup))
  87. perf_output_wakeup(handle);
  88. out:
  89. preempt_enable();
  90. }
  91. int perf_output_begin(struct perf_output_handle *handle,
  92. struct perf_event *event, unsigned int size)
  93. {
  94. struct ring_buffer *rb;
  95. unsigned long tail, offset, head;
  96. int have_lost;
  97. struct perf_sample_data sample_data;
  98. struct {
  99. struct perf_event_header header;
  100. u64 id;
  101. u64 lost;
  102. } lost_event;
  103. rcu_read_lock();
  104. /*
  105. * For inherited events we send all the output towards the parent.
  106. */
  107. if (event->parent)
  108. event = event->parent;
  109. rb = rcu_dereference(event->rb);
  110. if (!rb)
  111. goto out;
  112. handle->rb = rb;
  113. handle->event = event;
  114. if (!rb->nr_pages)
  115. goto out;
  116. have_lost = local_read(&rb->lost);
  117. if (have_lost) {
  118. lost_event.header.size = sizeof(lost_event);
  119. perf_event_header__init_id(&lost_event.header, &sample_data,
  120. event);
  121. size += lost_event.header.size;
  122. }
  123. perf_output_get_handle(handle);
  124. do {
  125. /*
  126. * Userspace could choose to issue a mb() before updating the
  127. * tail pointer. So that all reads will be completed before the
  128. * write is issued.
  129. */
  130. tail = ACCESS_ONCE(rb->user_page->data_tail);
  131. smp_rmb();
  132. offset = head = local_read(&rb->head);
  133. head += size;
  134. if (unlikely(!perf_output_space(rb, tail, offset, head)))
  135. goto fail;
  136. } while (local_cmpxchg(&rb->head, offset, head) != offset);
  137. if (head - local_read(&rb->wakeup) > rb->watermark)
  138. local_add(rb->watermark, &rb->wakeup);
  139. handle->page = offset >> (PAGE_SHIFT + page_order(rb));
  140. handle->page &= rb->nr_pages - 1;
  141. handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
  142. handle->addr = rb->data_pages[handle->page];
  143. handle->addr += handle->size;
  144. handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
  145. if (have_lost) {
  146. lost_event.header.type = PERF_RECORD_LOST;
  147. lost_event.header.misc = 0;
  148. lost_event.id = event->id;
  149. lost_event.lost = local_xchg(&rb->lost, 0);
  150. perf_output_put(handle, lost_event);
  151. perf_event__output_id_sample(event, handle, &sample_data);
  152. }
  153. return 0;
  154. fail:
  155. local_inc(&rb->lost);
  156. perf_output_put_handle(handle);
  157. out:
  158. rcu_read_unlock();
  159. return -ENOSPC;
  160. }
  161. unsigned int perf_output_copy(struct perf_output_handle *handle,
  162. const void *buf, unsigned int len)
  163. {
  164. return __output_copy(handle, buf, len);
  165. }
  166. unsigned int perf_output_skip(struct perf_output_handle *handle,
  167. unsigned int len)
  168. {
  169. return __output_skip(handle, NULL, len);
  170. }
  171. void perf_output_end(struct perf_output_handle *handle)
  172. {
  173. perf_output_put_handle(handle);
  174. rcu_read_unlock();
  175. }
  176. static void
  177. ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
  178. {
  179. long max_size = perf_data_size(rb);
  180. if (watermark)
  181. rb->watermark = min(max_size, watermark);
  182. if (!rb->watermark)
  183. rb->watermark = max_size / 2;
  184. if (flags & RING_BUFFER_WRITABLE)
  185. rb->overwrite = 0;
  186. else
  187. rb->overwrite = 1;
  188. atomic_set(&rb->refcount, 1);
  189. INIT_LIST_HEAD(&rb->event_list);
  190. spin_lock_init(&rb->event_lock);
  191. }
  192. #ifndef CONFIG_PERF_USE_VMALLOC
  193. /*
  194. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  195. */
  196. struct page *
  197. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  198. {
  199. if (pgoff > rb->nr_pages)
  200. return NULL;
  201. if (pgoff == 0)
  202. return virt_to_page(rb->user_page);
  203. return virt_to_page(rb->data_pages[pgoff - 1]);
  204. }
  205. static void *perf_mmap_alloc_page(int cpu)
  206. {
  207. struct page *page;
  208. int node;
  209. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  210. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  211. if (!page)
  212. return NULL;
  213. return page_address(page);
  214. }
  215. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  216. {
  217. struct ring_buffer *rb;
  218. unsigned long size;
  219. int i;
  220. size = sizeof(struct ring_buffer);
  221. size += nr_pages * sizeof(void *);
  222. rb = kzalloc(size, GFP_KERNEL);
  223. if (!rb)
  224. goto fail;
  225. rb->user_page = perf_mmap_alloc_page(cpu);
  226. if (!rb->user_page)
  227. goto fail_user_page;
  228. for (i = 0; i < nr_pages; i++) {
  229. rb->data_pages[i] = perf_mmap_alloc_page(cpu);
  230. if (!rb->data_pages[i])
  231. goto fail_data_pages;
  232. }
  233. rb->nr_pages = nr_pages;
  234. ring_buffer_init(rb, watermark, flags);
  235. return rb;
  236. fail_data_pages:
  237. for (i--; i >= 0; i--)
  238. free_page((unsigned long)rb->data_pages[i]);
  239. free_page((unsigned long)rb->user_page);
  240. fail_user_page:
  241. kfree(rb);
  242. fail:
  243. return NULL;
  244. }
  245. static void perf_mmap_free_page(unsigned long addr)
  246. {
  247. struct page *page = virt_to_page((void *)addr);
  248. page->mapping = NULL;
  249. __free_page(page);
  250. }
  251. void rb_free(struct ring_buffer *rb)
  252. {
  253. int i;
  254. perf_mmap_free_page((unsigned long)rb->user_page);
  255. for (i = 0; i < rb->nr_pages; i++)
  256. perf_mmap_free_page((unsigned long)rb->data_pages[i]);
  257. kfree(rb);
  258. }
  259. #else
  260. struct page *
  261. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  262. {
  263. if (pgoff > (1UL << page_order(rb)))
  264. return NULL;
  265. return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
  266. }
  267. static void perf_mmap_unmark_page(void *addr)
  268. {
  269. struct page *page = vmalloc_to_page(addr);
  270. page->mapping = NULL;
  271. }
  272. static void rb_free_work(struct work_struct *work)
  273. {
  274. struct ring_buffer *rb;
  275. void *base;
  276. int i, nr;
  277. rb = container_of(work, struct ring_buffer, work);
  278. nr = 1 << page_order(rb);
  279. base = rb->user_page;
  280. for (i = 0; i < nr + 1; i++)
  281. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  282. vfree(base);
  283. kfree(rb);
  284. }
  285. void rb_free(struct ring_buffer *rb)
  286. {
  287. schedule_work(&rb->work);
  288. }
  289. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  290. {
  291. struct ring_buffer *rb;
  292. unsigned long size;
  293. void *all_buf;
  294. size = sizeof(struct ring_buffer);
  295. size += sizeof(void *);
  296. rb = kzalloc(size, GFP_KERNEL);
  297. if (!rb)
  298. goto fail;
  299. INIT_WORK(&rb->work, rb_free_work);
  300. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  301. if (!all_buf)
  302. goto fail_all_buf;
  303. rb->user_page = all_buf;
  304. rb->data_pages[0] = all_buf + PAGE_SIZE;
  305. rb->page_order = ilog2(nr_pages);
  306. rb->nr_pages = 1;
  307. ring_buffer_init(rb, watermark, flags);
  308. return rb;
  309. fail_all_buf:
  310. kfree(rb);
  311. fail:
  312. return NULL;
  313. }
  314. #endif