ipv6.h 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851
  1. /*
  2. * Linux INET6 implementation
  3. *
  4. * Authors:
  5. * Pedro Roque <roque@di.fc.ul.pt>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _NET_IPV6_H
  13. #define _NET_IPV6_H
  14. #include <linux/ipv6.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/jhash.h>
  17. #include <net/if_inet6.h>
  18. #include <net/ndisc.h>
  19. #include <net/flow.h>
  20. #include <net/snmp.h>
  21. #define SIN6_LEN_RFC2133 24
  22. #define IPV6_MAXPLEN 65535
  23. /*
  24. * NextHeader field of IPv6 header
  25. */
  26. #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
  27. #define NEXTHDR_TCP 6 /* TCP segment. */
  28. #define NEXTHDR_UDP 17 /* UDP message. */
  29. #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
  30. #define NEXTHDR_ROUTING 43 /* Routing header. */
  31. #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
  32. #define NEXTHDR_GRE 47 /* GRE header. */
  33. #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
  34. #define NEXTHDR_AUTH 51 /* Authentication header. */
  35. #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
  36. #define NEXTHDR_NONE 59 /* No next header */
  37. #define NEXTHDR_DEST 60 /* Destination options header. */
  38. #define NEXTHDR_MOBILITY 135 /* Mobility header. */
  39. #define NEXTHDR_MAX 255
  40. #define IPV6_DEFAULT_HOPLIMIT 64
  41. #define IPV6_DEFAULT_MCASTHOPS 1
  42. /*
  43. * Addr type
  44. *
  45. * type - unicast | multicast
  46. * scope - local | site | global
  47. * v4 - compat
  48. * v4mapped
  49. * any
  50. * loopback
  51. */
  52. #define IPV6_ADDR_ANY 0x0000U
  53. #define IPV6_ADDR_UNICAST 0x0001U
  54. #define IPV6_ADDR_MULTICAST 0x0002U
  55. #define IPV6_ADDR_LOOPBACK 0x0010U
  56. #define IPV6_ADDR_LINKLOCAL 0x0020U
  57. #define IPV6_ADDR_SITELOCAL 0x0040U
  58. #define IPV6_ADDR_COMPATv4 0x0080U
  59. #define IPV6_ADDR_SCOPE_MASK 0x00f0U
  60. #define IPV6_ADDR_MAPPED 0x1000U
  61. /*
  62. * Addr scopes
  63. */
  64. #define IPV6_ADDR_MC_SCOPE(a) \
  65. ((a)->s6_addr[1] & 0x0f) /* nonstandard */
  66. #define __IPV6_ADDR_SCOPE_INVALID -1
  67. #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
  68. #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
  69. #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
  70. #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
  71. #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
  72. /*
  73. * Addr flags
  74. */
  75. #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
  76. ((a)->s6_addr[1] & 0x10)
  77. #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
  78. ((a)->s6_addr[1] & 0x20)
  79. #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
  80. ((a)->s6_addr[1] & 0x40)
  81. /*
  82. * fragmentation header
  83. */
  84. struct frag_hdr {
  85. __u8 nexthdr;
  86. __u8 reserved;
  87. __be16 frag_off;
  88. __be32 identification;
  89. };
  90. #define IP6_MF 0x0001
  91. #include <net/sock.h>
  92. /* sysctls */
  93. extern int sysctl_mld_max_msf;
  94. #define _DEVINC(net, statname, modifier, idev, field) \
  95. ({ \
  96. struct inet6_dev *_idev = (idev); \
  97. if (likely(_idev != NULL)) \
  98. SNMP_INC_STATS##modifier((_idev)->stats.statname, (field)); \
  99. SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\
  100. })
  101. /* per device counters are atomic_long_t */
  102. #define _DEVINCATOMIC(net, statname, modifier, idev, field) \
  103. ({ \
  104. struct inet6_dev *_idev = (idev); \
  105. if (likely(_idev != NULL)) \
  106. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  107. SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\
  108. })
  109. /* per device and per net counters are atomic_long_t */
  110. #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
  111. ({ \
  112. struct inet6_dev *_idev = (idev); \
  113. if (likely(_idev != NULL)) \
  114. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  115. SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
  116. })
  117. #define _DEVADD(net, statname, modifier, idev, field, val) \
  118. ({ \
  119. struct inet6_dev *_idev = (idev); \
  120. if (likely(_idev != NULL)) \
  121. SNMP_ADD_STATS##modifier((_idev)->stats.statname, (field), (val)); \
  122. SNMP_ADD_STATS##modifier((net)->mib.statname##_statistics, (field), (val));\
  123. })
  124. #define _DEVUPD(net, statname, modifier, idev, field, val) \
  125. ({ \
  126. struct inet6_dev *_idev = (idev); \
  127. if (likely(_idev != NULL)) \
  128. SNMP_UPD_PO_STATS##modifier((_idev)->stats.statname, field, (val)); \
  129. SNMP_UPD_PO_STATS##modifier((net)->mib.statname##_statistics, field, (val));\
  130. })
  131. /* MIBs */
  132. #define IP6_INC_STATS(net, idev,field) \
  133. _DEVINC(net, ipv6, 64, idev, field)
  134. #define IP6_INC_STATS_BH(net, idev,field) \
  135. _DEVINC(net, ipv6, 64_BH, idev, field)
  136. #define IP6_ADD_STATS(net, idev,field,val) \
  137. _DEVADD(net, ipv6, 64, idev, field, val)
  138. #define IP6_ADD_STATS_BH(net, idev,field,val) \
  139. _DEVADD(net, ipv6, 64_BH, idev, field, val)
  140. #define IP6_UPD_PO_STATS(net, idev,field,val) \
  141. _DEVUPD(net, ipv6, 64, idev, field, val)
  142. #define IP6_UPD_PO_STATS_BH(net, idev,field,val) \
  143. _DEVUPD(net, ipv6, 64_BH, idev, field, val)
  144. #define ICMP6_INC_STATS(net, idev, field) \
  145. _DEVINCATOMIC(net, icmpv6, , idev, field)
  146. #define ICMP6_INC_STATS_BH(net, idev, field) \
  147. _DEVINCATOMIC(net, icmpv6, _BH, idev, field)
  148. #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
  149. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
  150. #define ICMP6MSGOUT_INC_STATS_BH(net, idev, field) \
  151. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
  152. #define ICMP6MSGIN_INC_STATS_BH(net, idev, field) \
  153. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
  154. struct ip6_ra_chain {
  155. struct ip6_ra_chain *next;
  156. struct sock *sk;
  157. int sel;
  158. void (*destructor)(struct sock *);
  159. };
  160. extern struct ip6_ra_chain *ip6_ra_chain;
  161. extern rwlock_t ip6_ra_lock;
  162. /*
  163. This structure is prepared by protocol, when parsing
  164. ancillary data and passed to IPv6.
  165. */
  166. struct ipv6_txoptions {
  167. /* Length of this structure */
  168. int tot_len;
  169. /* length of extension headers */
  170. __u16 opt_flen; /* after fragment hdr */
  171. __u16 opt_nflen; /* before fragment hdr */
  172. struct ipv6_opt_hdr *hopopt;
  173. struct ipv6_opt_hdr *dst0opt;
  174. struct ipv6_rt_hdr *srcrt; /* Routing Header */
  175. struct ipv6_opt_hdr *dst1opt;
  176. /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
  177. };
  178. struct ip6_flowlabel {
  179. struct ip6_flowlabel *next;
  180. __be32 label;
  181. atomic_t users;
  182. struct in6_addr dst;
  183. struct ipv6_txoptions *opt;
  184. unsigned long linger;
  185. struct rcu_head rcu;
  186. u8 share;
  187. union {
  188. struct pid *pid;
  189. kuid_t uid;
  190. } owner;
  191. unsigned long lastuse;
  192. unsigned long expires;
  193. struct net *fl_net;
  194. };
  195. #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
  196. #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
  197. struct ipv6_fl_socklist {
  198. struct ipv6_fl_socklist *next;
  199. struct ip6_flowlabel *fl;
  200. struct rcu_head rcu;
  201. };
  202. extern struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
  203. extern struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions * opt_space,
  204. struct ip6_flowlabel * fl,
  205. struct ipv6_txoptions * fopt);
  206. extern void fl6_free_socklist(struct sock *sk);
  207. extern int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
  208. extern int ip6_flowlabel_init(void);
  209. extern void ip6_flowlabel_cleanup(void);
  210. static inline void fl6_sock_release(struct ip6_flowlabel *fl)
  211. {
  212. if (fl)
  213. atomic_dec(&fl->users);
  214. }
  215. extern void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
  216. extern int ip6_ra_control(struct sock *sk, int sel);
  217. extern int ipv6_parse_hopopts(struct sk_buff *skb);
  218. extern struct ipv6_txoptions * ipv6_dup_options(struct sock *sk, struct ipv6_txoptions *opt);
  219. extern struct ipv6_txoptions * ipv6_renew_options(struct sock *sk, struct ipv6_txoptions *opt,
  220. int newtype,
  221. struct ipv6_opt_hdr __user *newopt,
  222. int newoptlen);
  223. struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
  224. struct ipv6_txoptions *opt);
  225. extern bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb);
  226. static inline bool ipv6_accept_ra(struct inet6_dev *idev)
  227. {
  228. /* If forwarding is enabled, RA are not accepted unless the special
  229. * hybrid mode (accept_ra=2) is enabled.
  230. */
  231. return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
  232. idev->cnf.accept_ra;
  233. }
  234. #if IS_ENABLED(CONFIG_IPV6)
  235. static inline int ip6_frag_nqueues(struct net *net)
  236. {
  237. return net->ipv6.frags.nqueues;
  238. }
  239. static inline int ip6_frag_mem(struct net *net)
  240. {
  241. return sum_frag_mem_limit(&net->ipv6.frags);
  242. }
  243. #endif
  244. #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
  245. #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
  246. #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
  247. extern int __ipv6_addr_type(const struct in6_addr *addr);
  248. static inline int ipv6_addr_type(const struct in6_addr *addr)
  249. {
  250. return __ipv6_addr_type(addr) & 0xffff;
  251. }
  252. static inline int ipv6_addr_scope(const struct in6_addr *addr)
  253. {
  254. return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
  255. }
  256. static inline int __ipv6_addr_src_scope(int type)
  257. {
  258. return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
  259. }
  260. static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
  261. {
  262. return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
  263. }
  264. static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
  265. {
  266. return memcmp(a1, a2, sizeof(struct in6_addr));
  267. }
  268. static inline bool
  269. ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
  270. const struct in6_addr *a2)
  271. {
  272. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  273. const unsigned long *ul1 = (const unsigned long *)a1;
  274. const unsigned long *ulm = (const unsigned long *)m;
  275. const unsigned long *ul2 = (const unsigned long *)a2;
  276. return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
  277. ((ul1[1] ^ ul2[1]) & ulm[1]));
  278. #else
  279. return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
  280. ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
  281. ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
  282. ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
  283. #endif
  284. }
  285. static inline void ipv6_addr_prefix(struct in6_addr *pfx,
  286. const struct in6_addr *addr,
  287. int plen)
  288. {
  289. /* caller must guarantee 0 <= plen <= 128 */
  290. int o = plen >> 3,
  291. b = plen & 0x7;
  292. memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
  293. memcpy(pfx->s6_addr, addr, o);
  294. if (b != 0)
  295. pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
  296. }
  297. static inline void __ipv6_addr_set_half(__be32 *addr,
  298. __be32 wh, __be32 wl)
  299. {
  300. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  301. #if defined(__BIG_ENDIAN)
  302. if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
  303. *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
  304. return;
  305. }
  306. #elif defined(__LITTLE_ENDIAN)
  307. if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
  308. *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
  309. return;
  310. }
  311. #endif
  312. #endif
  313. addr[0] = wh;
  314. addr[1] = wl;
  315. }
  316. static inline void ipv6_addr_set(struct in6_addr *addr,
  317. __be32 w1, __be32 w2,
  318. __be32 w3, __be32 w4)
  319. {
  320. __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
  321. __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
  322. }
  323. static inline bool ipv6_addr_equal(const struct in6_addr *a1,
  324. const struct in6_addr *a2)
  325. {
  326. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  327. const unsigned long *ul1 = (const unsigned long *)a1;
  328. const unsigned long *ul2 = (const unsigned long *)a2;
  329. return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
  330. #else
  331. return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
  332. (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
  333. (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
  334. (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
  335. #endif
  336. }
  337. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  338. static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
  339. const __be64 *a2,
  340. unsigned int len)
  341. {
  342. if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
  343. return false;
  344. return true;
  345. }
  346. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  347. const struct in6_addr *addr2,
  348. unsigned int prefixlen)
  349. {
  350. const __be64 *a1 = (const __be64 *)addr1;
  351. const __be64 *a2 = (const __be64 *)addr2;
  352. if (prefixlen >= 64) {
  353. if (a1[0] ^ a2[0])
  354. return false;
  355. return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
  356. }
  357. return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
  358. }
  359. #else
  360. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  361. const struct in6_addr *addr2,
  362. unsigned int prefixlen)
  363. {
  364. const __be32 *a1 = addr1->s6_addr32;
  365. const __be32 *a2 = addr2->s6_addr32;
  366. unsigned int pdw, pbi;
  367. /* check complete u32 in prefix */
  368. pdw = prefixlen >> 5;
  369. if (pdw && memcmp(a1, a2, pdw << 2))
  370. return false;
  371. /* check incomplete u32 in prefix */
  372. pbi = prefixlen & 0x1f;
  373. if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
  374. return false;
  375. return true;
  376. }
  377. #endif
  378. struct inet_frag_queue;
  379. enum ip6_defrag_users {
  380. IP6_DEFRAG_LOCAL_DELIVER,
  381. IP6_DEFRAG_CONNTRACK_IN,
  382. __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
  383. IP6_DEFRAG_CONNTRACK_OUT,
  384. __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
  385. IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
  386. __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
  387. };
  388. struct ip6_create_arg {
  389. __be32 id;
  390. u32 user;
  391. const struct in6_addr *src;
  392. const struct in6_addr *dst;
  393. };
  394. void ip6_frag_init(struct inet_frag_queue *q, void *a);
  395. bool ip6_frag_match(struct inet_frag_queue *q, void *a);
  396. /*
  397. * Equivalent of ipv4 struct ip
  398. */
  399. struct frag_queue {
  400. struct inet_frag_queue q;
  401. __be32 id; /* fragment id */
  402. u32 user;
  403. struct in6_addr saddr;
  404. struct in6_addr daddr;
  405. int iif;
  406. unsigned int csum;
  407. __u16 nhoffset;
  408. };
  409. void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
  410. struct inet_frags *frags);
  411. static inline bool ipv6_addr_any(const struct in6_addr *a)
  412. {
  413. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  414. const unsigned long *ul = (const unsigned long *)a;
  415. return (ul[0] | ul[1]) == 0UL;
  416. #else
  417. return (a->s6_addr32[0] | a->s6_addr32[1] |
  418. a->s6_addr32[2] | a->s6_addr32[3]) == 0;
  419. #endif
  420. }
  421. static inline u32 ipv6_addr_hash(const struct in6_addr *a)
  422. {
  423. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  424. const unsigned long *ul = (const unsigned long *)a;
  425. unsigned long x = ul[0] ^ ul[1];
  426. return (u32)(x ^ (x >> 32));
  427. #else
  428. return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
  429. a->s6_addr32[2] ^ a->s6_addr32[3]);
  430. #endif
  431. }
  432. /* more secured version of ipv6_addr_hash() */
  433. static inline u32 ipv6_addr_jhash(const struct in6_addr *a)
  434. {
  435. u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
  436. return jhash_3words(v,
  437. (__force u32)a->s6_addr32[2],
  438. (__force u32)a->s6_addr32[3],
  439. ipv6_hash_secret);
  440. }
  441. static inline bool ipv6_addr_loopback(const struct in6_addr *a)
  442. {
  443. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  444. const unsigned long *ul = (const unsigned long *)a;
  445. return (ul[0] | (ul[1] ^ cpu_to_be64(1))) == 0UL;
  446. #else
  447. return (a->s6_addr32[0] | a->s6_addr32[1] |
  448. a->s6_addr32[2] | (a->s6_addr32[3] ^ htonl(1))) == 0;
  449. #endif
  450. }
  451. static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
  452. {
  453. return (
  454. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  455. *(__be64 *)a |
  456. #else
  457. (a->s6_addr32[0] | a->s6_addr32[1]) |
  458. #endif
  459. (a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL;
  460. }
  461. /*
  462. * Check for a RFC 4843 ORCHID address
  463. * (Overlay Routable Cryptographic Hash Identifiers)
  464. */
  465. static inline bool ipv6_addr_orchid(const struct in6_addr *a)
  466. {
  467. return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
  468. }
  469. static inline void ipv6_addr_set_v4mapped(const __be32 addr,
  470. struct in6_addr *v4mapped)
  471. {
  472. ipv6_addr_set(v4mapped,
  473. 0, 0,
  474. htonl(0x0000FFFF),
  475. addr);
  476. }
  477. /*
  478. * find the first different bit between two addresses
  479. * length of address must be a multiple of 32bits
  480. */
  481. static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
  482. {
  483. const __be32 *a1 = token1, *a2 = token2;
  484. int i;
  485. addrlen >>= 2;
  486. for (i = 0; i < addrlen; i++) {
  487. __be32 xb = a1[i] ^ a2[i];
  488. if (xb)
  489. return i * 32 + 31 - __fls(ntohl(xb));
  490. }
  491. /*
  492. * we should *never* get to this point since that
  493. * would mean the addrs are equal
  494. *
  495. * However, we do get to it 8) And exacly, when
  496. * addresses are equal 8)
  497. *
  498. * ip route add 1111::/128 via ...
  499. * ip route add 1111::/64 via ...
  500. * and we are here.
  501. *
  502. * Ideally, this function should stop comparison
  503. * at prefix length. It does not, but it is still OK,
  504. * if returned value is greater than prefix length.
  505. * --ANK (980803)
  506. */
  507. return addrlen << 5;
  508. }
  509. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  510. static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
  511. {
  512. const __be64 *a1 = token1, *a2 = token2;
  513. int i;
  514. addrlen >>= 3;
  515. for (i = 0; i < addrlen; i++) {
  516. __be64 xb = a1[i] ^ a2[i];
  517. if (xb)
  518. return i * 64 + 63 - __fls(be64_to_cpu(xb));
  519. }
  520. return addrlen << 6;
  521. }
  522. #endif
  523. static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
  524. {
  525. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  526. if (__builtin_constant_p(addrlen) && !(addrlen & 7))
  527. return __ipv6_addr_diff64(token1, token2, addrlen);
  528. #endif
  529. return __ipv6_addr_diff32(token1, token2, addrlen);
  530. }
  531. static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
  532. {
  533. return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
  534. }
  535. extern void ipv6_select_ident(struct frag_hdr *fhdr, struct rt6_info *rt);
  536. /*
  537. * Header manipulation
  538. */
  539. static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
  540. __be32 flowlabel)
  541. {
  542. *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
  543. }
  544. static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
  545. {
  546. return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
  547. }
  548. /*
  549. * Prototypes exported by ipv6
  550. */
  551. /*
  552. * rcv function (called from netdevice level)
  553. */
  554. extern int ipv6_rcv(struct sk_buff *skb,
  555. struct net_device *dev,
  556. struct packet_type *pt,
  557. struct net_device *orig_dev);
  558. extern int ip6_rcv_finish(struct sk_buff *skb);
  559. /*
  560. * upper-layer output functions
  561. */
  562. extern int ip6_xmit(struct sock *sk,
  563. struct sk_buff *skb,
  564. struct flowi6 *fl6,
  565. struct ipv6_txoptions *opt,
  566. int tclass);
  567. extern int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
  568. extern int ip6_append_data(struct sock *sk,
  569. int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb),
  570. void *from,
  571. int length,
  572. int transhdrlen,
  573. int hlimit,
  574. int tclass,
  575. struct ipv6_txoptions *opt,
  576. struct flowi6 *fl6,
  577. struct rt6_info *rt,
  578. unsigned int flags,
  579. int dontfrag);
  580. extern int ip6_push_pending_frames(struct sock *sk);
  581. extern void ip6_flush_pending_frames(struct sock *sk);
  582. extern int ip6_dst_lookup(struct sock *sk,
  583. struct dst_entry **dst,
  584. struct flowi6 *fl6);
  585. extern struct dst_entry * ip6_dst_lookup_flow(struct sock *sk,
  586. struct flowi6 *fl6,
  587. const struct in6_addr *final_dst,
  588. bool can_sleep);
  589. extern struct dst_entry * ip6_sk_dst_lookup_flow(struct sock *sk,
  590. struct flowi6 *fl6,
  591. const struct in6_addr *final_dst,
  592. bool can_sleep);
  593. extern struct dst_entry * ip6_blackhole_route(struct net *net,
  594. struct dst_entry *orig_dst);
  595. /*
  596. * skb processing functions
  597. */
  598. extern int ip6_output(struct sk_buff *skb);
  599. extern int ip6_forward(struct sk_buff *skb);
  600. extern int ip6_input(struct sk_buff *skb);
  601. extern int ip6_mc_input(struct sk_buff *skb);
  602. extern int __ip6_local_out(struct sk_buff *skb);
  603. extern int ip6_local_out(struct sk_buff *skb);
  604. /*
  605. * Extension header (options) processing
  606. */
  607. extern void ipv6_push_nfrag_opts(struct sk_buff *skb,
  608. struct ipv6_txoptions *opt,
  609. u8 *proto,
  610. struct in6_addr **daddr_p);
  611. extern void ipv6_push_frag_opts(struct sk_buff *skb,
  612. struct ipv6_txoptions *opt,
  613. u8 *proto);
  614. extern int ipv6_skip_exthdr(const struct sk_buff *, int start,
  615. u8 *nexthdrp, __be16 *frag_offp);
  616. extern bool ipv6_ext_hdr(u8 nexthdr);
  617. enum {
  618. IP6_FH_F_FRAG = (1 << 0),
  619. IP6_FH_F_AUTH = (1 << 1),
  620. IP6_FH_F_SKIP_RH = (1 << 2),
  621. };
  622. /* find specified header and get offset to it */
  623. extern int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset,
  624. int target, unsigned short *fragoff, int *fragflg);
  625. extern int ipv6_find_tlv(struct sk_buff *skb, int offset, int type);
  626. extern struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
  627. const struct ipv6_txoptions *opt,
  628. struct in6_addr *orig);
  629. /*
  630. * socket options (ipv6_sockglue.c)
  631. */
  632. extern int ipv6_setsockopt(struct sock *sk, int level,
  633. int optname,
  634. char __user *optval,
  635. unsigned int optlen);
  636. extern int ipv6_getsockopt(struct sock *sk, int level,
  637. int optname,
  638. char __user *optval,
  639. int __user *optlen);
  640. extern int compat_ipv6_setsockopt(struct sock *sk,
  641. int level,
  642. int optname,
  643. char __user *optval,
  644. unsigned int optlen);
  645. extern int compat_ipv6_getsockopt(struct sock *sk,
  646. int level,
  647. int optname,
  648. char __user *optval,
  649. int __user *optlen);
  650. extern int ip6_datagram_connect(struct sock *sk,
  651. struct sockaddr *addr, int addr_len);
  652. extern int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len);
  653. extern int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len);
  654. extern void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
  655. u32 info, u8 *payload);
  656. extern void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
  657. extern void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
  658. extern int inet6_release(struct socket *sock);
  659. extern int inet6_bind(struct socket *sock, struct sockaddr *uaddr,
  660. int addr_len);
  661. extern int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
  662. int *uaddr_len, int peer);
  663. extern int inet6_ioctl(struct socket *sock, unsigned int cmd,
  664. unsigned long arg);
  665. extern int inet6_hash_connect(struct inet_timewait_death_row *death_row,
  666. struct sock *sk);
  667. /*
  668. * reassembly.c
  669. */
  670. extern const struct proto_ops inet6_stream_ops;
  671. extern const struct proto_ops inet6_dgram_ops;
  672. struct group_source_req;
  673. struct group_filter;
  674. extern int ip6_mc_source(int add, int omode, struct sock *sk,
  675. struct group_source_req *pgsr);
  676. extern int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
  677. extern int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
  678. struct group_filter __user *optval,
  679. int __user *optlen);
  680. extern unsigned int inet6_hash_frag(__be32 id, const struct in6_addr *saddr,
  681. const struct in6_addr *daddr, u32 rnd);
  682. #ifdef CONFIG_PROC_FS
  683. extern int ac6_proc_init(struct net *net);
  684. extern void ac6_proc_exit(struct net *net);
  685. extern int raw6_proc_init(void);
  686. extern void raw6_proc_exit(void);
  687. extern int tcp6_proc_init(struct net *net);
  688. extern void tcp6_proc_exit(struct net *net);
  689. extern int udp6_proc_init(struct net *net);
  690. extern void udp6_proc_exit(struct net *net);
  691. extern int udplite6_proc_init(void);
  692. extern void udplite6_proc_exit(void);
  693. extern int ipv6_misc_proc_init(void);
  694. extern void ipv6_misc_proc_exit(void);
  695. extern int snmp6_register_dev(struct inet6_dev *idev);
  696. extern int snmp6_unregister_dev(struct inet6_dev *idev);
  697. #else
  698. static inline int ac6_proc_init(struct net *net) { return 0; }
  699. static inline void ac6_proc_exit(struct net *net) { }
  700. static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
  701. static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
  702. #endif
  703. #ifdef CONFIG_SYSCTL
  704. extern ctl_table ipv6_route_table_template[];
  705. extern ctl_table ipv6_icmp_table_template[];
  706. extern struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
  707. extern struct ctl_table *ipv6_route_sysctl_init(struct net *net);
  708. extern int ipv6_sysctl_register(void);
  709. extern void ipv6_sysctl_unregister(void);
  710. #endif
  711. #endif /* _NET_IPV6_H */