pgtable.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. #ifndef _ASM_GENERIC_PGTABLE_H
  2. #define _ASM_GENERIC_PGTABLE_H
  3. #ifndef __ASSEMBLY__
  4. #ifdef CONFIG_MMU
  5. #include <linux/mm_types.h>
  6. #include <linux/bug.h>
  7. /*
  8. * On almost all architectures and configurations, 0 can be used as the
  9. * upper ceiling to free_pgtables(): on many architectures it has the same
  10. * effect as using TASK_SIZE. However, there is one configuration which
  11. * must impose a more careful limit, to avoid freeing kernel pgtables.
  12. */
  13. #ifndef USER_PGTABLES_CEILING
  14. #define USER_PGTABLES_CEILING 0UL
  15. #endif
  16. #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  17. extern int ptep_set_access_flags(struct vm_area_struct *vma,
  18. unsigned long address, pte_t *ptep,
  19. pte_t entry, int dirty);
  20. #endif
  21. #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  22. extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  23. unsigned long address, pmd_t *pmdp,
  24. pmd_t entry, int dirty);
  25. #endif
  26. #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  27. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  28. unsigned long address,
  29. pte_t *ptep)
  30. {
  31. pte_t pte = *ptep;
  32. int r = 1;
  33. if (!pte_young(pte))
  34. r = 0;
  35. else
  36. set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
  37. return r;
  38. }
  39. #endif
  40. #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  41. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  42. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  43. unsigned long address,
  44. pmd_t *pmdp)
  45. {
  46. pmd_t pmd = *pmdp;
  47. int r = 1;
  48. if (!pmd_young(pmd))
  49. r = 0;
  50. else
  51. set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
  52. return r;
  53. }
  54. #else /* CONFIG_TRANSPARENT_HUGEPAGE */
  55. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  56. unsigned long address,
  57. pmd_t *pmdp)
  58. {
  59. BUG();
  60. return 0;
  61. }
  62. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  63. #endif
  64. #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  65. int ptep_clear_flush_young(struct vm_area_struct *vma,
  66. unsigned long address, pte_t *ptep);
  67. #endif
  68. #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  69. int pmdp_clear_flush_young(struct vm_area_struct *vma,
  70. unsigned long address, pmd_t *pmdp);
  71. #endif
  72. #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
  73. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  74. unsigned long address,
  75. pte_t *ptep)
  76. {
  77. pte_t pte = *ptep;
  78. pte_clear(mm, address, ptep);
  79. return pte;
  80. }
  81. #endif
  82. #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
  83. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  84. static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
  85. unsigned long address,
  86. pmd_t *pmdp)
  87. {
  88. pmd_t pmd = *pmdp;
  89. pmd_clear(pmdp);
  90. return pmd;
  91. }
  92. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  93. #endif
  94. #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  95. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  96. unsigned long address, pte_t *ptep,
  97. int full)
  98. {
  99. pte_t pte;
  100. pte = ptep_get_and_clear(mm, address, ptep);
  101. return pte;
  102. }
  103. #endif
  104. /*
  105. * Some architectures may be able to avoid expensive synchronization
  106. * primitives when modifications are made to PTE's which are already
  107. * not present, or in the process of an address space destruction.
  108. */
  109. #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
  110. static inline void pte_clear_not_present_full(struct mm_struct *mm,
  111. unsigned long address,
  112. pte_t *ptep,
  113. int full)
  114. {
  115. pte_clear(mm, address, ptep);
  116. }
  117. #endif
  118. #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
  119. extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
  120. unsigned long address,
  121. pte_t *ptep);
  122. #endif
  123. #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
  124. extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
  125. unsigned long address,
  126. pmd_t *pmdp);
  127. #endif
  128. #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
  129. struct mm_struct;
  130. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
  131. {
  132. pte_t old_pte = *ptep;
  133. set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
  134. }
  135. #endif
  136. #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
  137. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  138. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  139. unsigned long address, pmd_t *pmdp)
  140. {
  141. pmd_t old_pmd = *pmdp;
  142. set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
  143. }
  144. #else /* CONFIG_TRANSPARENT_HUGEPAGE */
  145. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  146. unsigned long address, pmd_t *pmdp)
  147. {
  148. BUG();
  149. }
  150. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  151. #endif
  152. #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
  153. extern void pmdp_splitting_flush(struct vm_area_struct *vma,
  154. unsigned long address, pmd_t *pmdp);
  155. #endif
  156. #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
  157. extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
  158. #endif
  159. #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
  160. extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
  161. #endif
  162. #ifndef __HAVE_ARCH_PMDP_INVALIDATE
  163. extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
  164. pmd_t *pmdp);
  165. #endif
  166. #ifndef __HAVE_ARCH_PTE_SAME
  167. static inline int pte_same(pte_t pte_a, pte_t pte_b)
  168. {
  169. return pte_val(pte_a) == pte_val(pte_b);
  170. }
  171. #endif
  172. #ifndef __HAVE_ARCH_PMD_SAME
  173. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  174. static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
  175. {
  176. return pmd_val(pmd_a) == pmd_val(pmd_b);
  177. }
  178. #else /* CONFIG_TRANSPARENT_HUGEPAGE */
  179. static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
  180. {
  181. BUG();
  182. return 0;
  183. }
  184. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  185. #endif
  186. #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
  187. #define page_test_and_clear_young(pfn) (0)
  188. #endif
  189. #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
  190. #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
  191. #endif
  192. #ifndef __HAVE_ARCH_MOVE_PTE
  193. #define move_pte(pte, prot, old_addr, new_addr) (pte)
  194. #endif
  195. #ifndef pte_accessible
  196. # define pte_accessible(pte) ((void)(pte),1)
  197. #endif
  198. #ifndef flush_tlb_fix_spurious_fault
  199. #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
  200. #endif
  201. #ifndef pgprot_noncached
  202. #define pgprot_noncached(prot) (prot)
  203. #endif
  204. #ifndef pgprot_writecombine
  205. #define pgprot_writecombine pgprot_noncached
  206. #endif
  207. /*
  208. * When walking page tables, get the address of the next boundary,
  209. * or the end address of the range if that comes earlier. Although no
  210. * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
  211. */
  212. #define pgd_addr_end(addr, end) \
  213. ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
  214. (__boundary - 1 < (end) - 1)? __boundary: (end); \
  215. })
  216. #ifndef pud_addr_end
  217. #define pud_addr_end(addr, end) \
  218. ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
  219. (__boundary - 1 < (end) - 1)? __boundary: (end); \
  220. })
  221. #endif
  222. #ifndef pmd_addr_end
  223. #define pmd_addr_end(addr, end) \
  224. ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
  225. (__boundary - 1 < (end) - 1)? __boundary: (end); \
  226. })
  227. #endif
  228. /*
  229. * When walking page tables, we usually want to skip any p?d_none entries;
  230. * and any p?d_bad entries - reporting the error before resetting to none.
  231. * Do the tests inline, but report and clear the bad entry in mm/memory.c.
  232. */
  233. void pgd_clear_bad(pgd_t *);
  234. void pud_clear_bad(pud_t *);
  235. void pmd_clear_bad(pmd_t *);
  236. static inline int pgd_none_or_clear_bad(pgd_t *pgd)
  237. {
  238. if (pgd_none(*pgd))
  239. return 1;
  240. if (unlikely(pgd_bad(*pgd))) {
  241. pgd_clear_bad(pgd);
  242. return 1;
  243. }
  244. return 0;
  245. }
  246. static inline int pud_none_or_clear_bad(pud_t *pud)
  247. {
  248. if (pud_none(*pud))
  249. return 1;
  250. if (unlikely(pud_bad(*pud))) {
  251. pud_clear_bad(pud);
  252. return 1;
  253. }
  254. return 0;
  255. }
  256. static inline int pmd_none_or_clear_bad(pmd_t *pmd)
  257. {
  258. if (pmd_none(*pmd))
  259. return 1;
  260. if (unlikely(pmd_bad(*pmd))) {
  261. pmd_clear_bad(pmd);
  262. return 1;
  263. }
  264. return 0;
  265. }
  266. static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
  267. unsigned long addr,
  268. pte_t *ptep)
  269. {
  270. /*
  271. * Get the current pte state, but zero it out to make it
  272. * non-present, preventing the hardware from asynchronously
  273. * updating it.
  274. */
  275. return ptep_get_and_clear(mm, addr, ptep);
  276. }
  277. static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
  278. unsigned long addr,
  279. pte_t *ptep, pte_t pte)
  280. {
  281. /*
  282. * The pte is non-present, so there's no hardware state to
  283. * preserve.
  284. */
  285. set_pte_at(mm, addr, ptep, pte);
  286. }
  287. #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  288. /*
  289. * Start a pte protection read-modify-write transaction, which
  290. * protects against asynchronous hardware modifications to the pte.
  291. * The intention is not to prevent the hardware from making pte
  292. * updates, but to prevent any updates it may make from being lost.
  293. *
  294. * This does not protect against other software modifications of the
  295. * pte; the appropriate pte lock must be held over the transation.
  296. *
  297. * Note that this interface is intended to be batchable, meaning that
  298. * ptep_modify_prot_commit may not actually update the pte, but merely
  299. * queue the update to be done at some later time. The update must be
  300. * actually committed before the pte lock is released, however.
  301. */
  302. static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
  303. unsigned long addr,
  304. pte_t *ptep)
  305. {
  306. return __ptep_modify_prot_start(mm, addr, ptep);
  307. }
  308. /*
  309. * Commit an update to a pte, leaving any hardware-controlled bits in
  310. * the PTE unmodified.
  311. */
  312. static inline void ptep_modify_prot_commit(struct mm_struct *mm,
  313. unsigned long addr,
  314. pte_t *ptep, pte_t pte)
  315. {
  316. __ptep_modify_prot_commit(mm, addr, ptep, pte);
  317. }
  318. #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
  319. #endif /* CONFIG_MMU */
  320. /*
  321. * A facility to provide lazy MMU batching. This allows PTE updates and
  322. * page invalidations to be delayed until a call to leave lazy MMU mode
  323. * is issued. Some architectures may benefit from doing this, and it is
  324. * beneficial for both shadow and direct mode hypervisors, which may batch
  325. * the PTE updates which happen during this window. Note that using this
  326. * interface requires that read hazards be removed from the code. A read
  327. * hazard could result in the direct mode hypervisor case, since the actual
  328. * write to the page tables may not yet have taken place, so reads though
  329. * a raw PTE pointer after it has been modified are not guaranteed to be
  330. * up to date. This mode can only be entered and left under the protection of
  331. * the page table locks for all page tables which may be modified. In the UP
  332. * case, this is required so that preemption is disabled, and in the SMP case,
  333. * it must synchronize the delayed page table writes properly on other CPUs.
  334. */
  335. #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
  336. #define arch_enter_lazy_mmu_mode() do {} while (0)
  337. #define arch_leave_lazy_mmu_mode() do {} while (0)
  338. #define arch_flush_lazy_mmu_mode() do {} while (0)
  339. #endif
  340. /*
  341. * A facility to provide batching of the reload of page tables and
  342. * other process state with the actual context switch code for
  343. * paravirtualized guests. By convention, only one of the batched
  344. * update (lazy) modes (CPU, MMU) should be active at any given time,
  345. * entry should never be nested, and entry and exits should always be
  346. * paired. This is for sanity of maintaining and reasoning about the
  347. * kernel code. In this case, the exit (end of the context switch) is
  348. * in architecture-specific code, and so doesn't need a generic
  349. * definition.
  350. */
  351. #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
  352. #define arch_start_context_switch(prev) do {} while (0)
  353. #endif
  354. #ifndef __HAVE_PFNMAP_TRACKING
  355. /*
  356. * Interfaces that can be used by architecture code to keep track of
  357. * memory type of pfn mappings specified by the remap_pfn_range,
  358. * vm_insert_pfn.
  359. */
  360. /*
  361. * track_pfn_remap is called when a _new_ pfn mapping is being established
  362. * by remap_pfn_range() for physical range indicated by pfn and size.
  363. */
  364. static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
  365. unsigned long pfn, unsigned long addr,
  366. unsigned long size)
  367. {
  368. return 0;
  369. }
  370. /*
  371. * track_pfn_insert is called when a _new_ single pfn is established
  372. * by vm_insert_pfn().
  373. */
  374. static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
  375. unsigned long pfn)
  376. {
  377. return 0;
  378. }
  379. /*
  380. * track_pfn_copy is called when vma that is covering the pfnmap gets
  381. * copied through copy_page_range().
  382. */
  383. static inline int track_pfn_copy(struct vm_area_struct *vma)
  384. {
  385. return 0;
  386. }
  387. /*
  388. * untrack_pfn_vma is called while unmapping a pfnmap for a region.
  389. * untrack can be called for a specific region indicated by pfn and size or
  390. * can be for the entire vma (in which case pfn, size are zero).
  391. */
  392. static inline void untrack_pfn(struct vm_area_struct *vma,
  393. unsigned long pfn, unsigned long size)
  394. {
  395. }
  396. #else
  397. extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
  398. unsigned long pfn, unsigned long addr,
  399. unsigned long size);
  400. extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
  401. unsigned long pfn);
  402. extern int track_pfn_copy(struct vm_area_struct *vma);
  403. extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
  404. unsigned long size);
  405. #endif
  406. #ifdef __HAVE_COLOR_ZERO_PAGE
  407. static inline int is_zero_pfn(unsigned long pfn)
  408. {
  409. extern unsigned long zero_pfn;
  410. unsigned long offset_from_zero_pfn = pfn - zero_pfn;
  411. return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
  412. }
  413. #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
  414. #else
  415. static inline int is_zero_pfn(unsigned long pfn)
  416. {
  417. extern unsigned long zero_pfn;
  418. return pfn == zero_pfn;
  419. }
  420. static inline unsigned long my_zero_pfn(unsigned long addr)
  421. {
  422. extern unsigned long zero_pfn;
  423. return zero_pfn;
  424. }
  425. #endif
  426. #ifdef CONFIG_MMU
  427. #ifndef CONFIG_TRANSPARENT_HUGEPAGE
  428. static inline int pmd_trans_huge(pmd_t pmd)
  429. {
  430. return 0;
  431. }
  432. static inline int pmd_trans_splitting(pmd_t pmd)
  433. {
  434. return 0;
  435. }
  436. #ifndef __HAVE_ARCH_PMD_WRITE
  437. static inline int pmd_write(pmd_t pmd)
  438. {
  439. BUG();
  440. return 0;
  441. }
  442. #endif /* __HAVE_ARCH_PMD_WRITE */
  443. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  444. #ifndef pmd_read_atomic
  445. static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
  446. {
  447. /*
  448. * Depend on compiler for an atomic pmd read. NOTE: this is
  449. * only going to work, if the pmdval_t isn't larger than
  450. * an unsigned long.
  451. */
  452. return *pmdp;
  453. }
  454. #endif
  455. /*
  456. * This function is meant to be used by sites walking pagetables with
  457. * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
  458. * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
  459. * into a null pmd and the transhuge page fault can convert a null pmd
  460. * into an hugepmd or into a regular pmd (if the hugepage allocation
  461. * fails). While holding the mmap_sem in read mode the pmd becomes
  462. * stable and stops changing under us only if it's not null and not a
  463. * transhuge pmd. When those races occurs and this function makes a
  464. * difference vs the standard pmd_none_or_clear_bad, the result is
  465. * undefined so behaving like if the pmd was none is safe (because it
  466. * can return none anyway). The compiler level barrier() is critically
  467. * important to compute the two checks atomically on the same pmdval.
  468. *
  469. * For 32bit kernels with a 64bit large pmd_t this automatically takes
  470. * care of reading the pmd atomically to avoid SMP race conditions
  471. * against pmd_populate() when the mmap_sem is hold for reading by the
  472. * caller (a special atomic read not done by "gcc" as in the generic
  473. * version above, is also needed when THP is disabled because the page
  474. * fault can populate the pmd from under us).
  475. */
  476. static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
  477. {
  478. pmd_t pmdval = pmd_read_atomic(pmd);
  479. /*
  480. * The barrier will stabilize the pmdval in a register or on
  481. * the stack so that it will stop changing under the code.
  482. *
  483. * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
  484. * pmd_read_atomic is allowed to return a not atomic pmdval
  485. * (for example pointing to an hugepage that has never been
  486. * mapped in the pmd). The below checks will only care about
  487. * the low part of the pmd with 32bit PAE x86 anyway, with the
  488. * exception of pmd_none(). So the important thing is that if
  489. * the low part of the pmd is found null, the high part will
  490. * be also null or the pmd_none() check below would be
  491. * confused.
  492. */
  493. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  494. barrier();
  495. #endif
  496. if (pmd_none(pmdval))
  497. return 1;
  498. if (unlikely(pmd_bad(pmdval))) {
  499. if (!pmd_trans_huge(pmdval))
  500. pmd_clear_bad(pmd);
  501. return 1;
  502. }
  503. return 0;
  504. }
  505. /*
  506. * This is a noop if Transparent Hugepage Support is not built into
  507. * the kernel. Otherwise it is equivalent to
  508. * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
  509. * places that already verified the pmd is not none and they want to
  510. * walk ptes while holding the mmap sem in read mode (write mode don't
  511. * need this). If THP is not enabled, the pmd can't go away under the
  512. * code even if MADV_DONTNEED runs, but if THP is enabled we need to
  513. * run a pmd_trans_unstable before walking the ptes after
  514. * split_huge_page_pmd returns (because it may have run when the pmd
  515. * become null, but then a page fault can map in a THP and not a
  516. * regular page).
  517. */
  518. static inline int pmd_trans_unstable(pmd_t *pmd)
  519. {
  520. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  521. return pmd_none_or_trans_huge_or_clear_bad(pmd);
  522. #else
  523. return 0;
  524. #endif
  525. }
  526. #ifdef CONFIG_NUMA_BALANCING
  527. #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
  528. /*
  529. * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
  530. * same bit too). It's set only when _PAGE_PRESET is not set and it's
  531. * never set if _PAGE_PRESENT is set.
  532. *
  533. * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
  534. * fault triggers on those regions if pte/pmd_numa returns true
  535. * (because _PAGE_PRESENT is not set).
  536. */
  537. #ifndef pte_numa
  538. static inline int pte_numa(pte_t pte)
  539. {
  540. return (pte_flags(pte) &
  541. (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
  542. }
  543. #endif
  544. #ifndef pmd_numa
  545. static inline int pmd_numa(pmd_t pmd)
  546. {
  547. return (pmd_flags(pmd) &
  548. (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
  549. }
  550. #endif
  551. /*
  552. * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
  553. * because they're called by the NUMA hinting minor page fault. If we
  554. * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
  555. * would be forced to set it later while filling the TLB after we
  556. * return to userland. That would trigger a second write to memory
  557. * that we optimize away by setting _PAGE_ACCESSED here.
  558. */
  559. #ifndef pte_mknonnuma
  560. static inline pte_t pte_mknonnuma(pte_t pte)
  561. {
  562. pte = pte_clear_flags(pte, _PAGE_NUMA);
  563. return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
  564. }
  565. #endif
  566. #ifndef pmd_mknonnuma
  567. static inline pmd_t pmd_mknonnuma(pmd_t pmd)
  568. {
  569. pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
  570. return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
  571. }
  572. #endif
  573. #ifndef pte_mknuma
  574. static inline pte_t pte_mknuma(pte_t pte)
  575. {
  576. pte = pte_set_flags(pte, _PAGE_NUMA);
  577. return pte_clear_flags(pte, _PAGE_PRESENT);
  578. }
  579. #endif
  580. #ifndef pmd_mknuma
  581. static inline pmd_t pmd_mknuma(pmd_t pmd)
  582. {
  583. pmd = pmd_set_flags(pmd, _PAGE_NUMA);
  584. return pmd_clear_flags(pmd, _PAGE_PRESENT);
  585. }
  586. #endif
  587. #else
  588. extern int pte_numa(pte_t pte);
  589. extern int pmd_numa(pmd_t pmd);
  590. extern pte_t pte_mknonnuma(pte_t pte);
  591. extern pmd_t pmd_mknonnuma(pmd_t pmd);
  592. extern pte_t pte_mknuma(pte_t pte);
  593. extern pmd_t pmd_mknuma(pmd_t pmd);
  594. #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
  595. #else
  596. static inline int pmd_numa(pmd_t pmd)
  597. {
  598. return 0;
  599. }
  600. static inline int pte_numa(pte_t pte)
  601. {
  602. return 0;
  603. }
  604. static inline pte_t pte_mknonnuma(pte_t pte)
  605. {
  606. return pte;
  607. }
  608. static inline pmd_t pmd_mknonnuma(pmd_t pmd)
  609. {
  610. return pmd;
  611. }
  612. static inline pte_t pte_mknuma(pte_t pte)
  613. {
  614. return pte;
  615. }
  616. static inline pmd_t pmd_mknuma(pmd_t pmd)
  617. {
  618. return pmd;
  619. }
  620. #endif /* CONFIG_NUMA_BALANCING */
  621. #endif /* CONFIG_MMU */
  622. #endif /* !__ASSEMBLY__ */
  623. #endif /* _ASM_GENERIC_PGTABLE_H */