xfs_buf_item.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_buf_item.h"
  28. #include "xfs_trans_priv.h"
  29. #include "xfs_error.h"
  30. #include "xfs_trace.h"
  31. kmem_zone_t *xfs_buf_item_zone;
  32. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  33. {
  34. return container_of(lip, struct xfs_buf_log_item, bli_item);
  35. }
  36. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  37. /*
  38. * This returns the number of log iovecs needed to log the
  39. * given buf log item.
  40. *
  41. * It calculates this as 1 iovec for the buf log format structure
  42. * and 1 for each stretch of non-contiguous chunks to be logged.
  43. * Contiguous chunks are logged in a single iovec.
  44. *
  45. * If the XFS_BLI_STALE flag has been set, then log nothing.
  46. */
  47. STATIC uint
  48. xfs_buf_item_size_segment(
  49. struct xfs_buf_log_item *bip,
  50. struct xfs_buf_log_format *blfp)
  51. {
  52. struct xfs_buf *bp = bip->bli_buf;
  53. uint nvecs;
  54. int next_bit;
  55. int last_bit;
  56. last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  57. if (last_bit == -1)
  58. return 0;
  59. /*
  60. * initial count for a dirty buffer is 2 vectors - the format structure
  61. * and the first dirty region.
  62. */
  63. nvecs = 2;
  64. while (last_bit != -1) {
  65. /*
  66. * This takes the bit number to start looking from and
  67. * returns the next set bit from there. It returns -1
  68. * if there are no more bits set or the start bit is
  69. * beyond the end of the bitmap.
  70. */
  71. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  72. last_bit + 1);
  73. /*
  74. * If we run out of bits, leave the loop,
  75. * else if we find a new set of bits bump the number of vecs,
  76. * else keep scanning the current set of bits.
  77. */
  78. if (next_bit == -1) {
  79. break;
  80. } else if (next_bit != last_bit + 1) {
  81. last_bit = next_bit;
  82. nvecs++;
  83. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  84. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  85. XFS_BLF_CHUNK)) {
  86. last_bit = next_bit;
  87. nvecs++;
  88. } else {
  89. last_bit++;
  90. }
  91. }
  92. return nvecs;
  93. }
  94. /*
  95. * This returns the number of log iovecs needed to log the given buf log item.
  96. *
  97. * It calculates this as 1 iovec for the buf log format structure and 1 for each
  98. * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
  99. * in a single iovec.
  100. *
  101. * Discontiguous buffers need a format structure per region that that is being
  102. * logged. This makes the changes in the buffer appear to log recovery as though
  103. * they came from separate buffers, just like would occur if multiple buffers
  104. * were used instead of a single discontiguous buffer. This enables
  105. * discontiguous buffers to be in-memory constructs, completely transparent to
  106. * what ends up on disk.
  107. *
  108. * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
  109. * format structures.
  110. */
  111. STATIC uint
  112. xfs_buf_item_size(
  113. struct xfs_log_item *lip)
  114. {
  115. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  116. uint nvecs;
  117. int i;
  118. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  119. if (bip->bli_flags & XFS_BLI_STALE) {
  120. /*
  121. * The buffer is stale, so all we need to log
  122. * is the buf log format structure with the
  123. * cancel flag in it.
  124. */
  125. trace_xfs_buf_item_size_stale(bip);
  126. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  127. return bip->bli_format_count;
  128. }
  129. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  130. /*
  131. * the vector count is based on the number of buffer vectors we have
  132. * dirty bits in. This will only be greater than one when we have a
  133. * compound buffer with more than one segment dirty. Hence for compound
  134. * buffers we need to track which segment the dirty bits correspond to,
  135. * and when we move from one segment to the next increment the vector
  136. * count for the extra buf log format structure that will need to be
  137. * written.
  138. */
  139. nvecs = 0;
  140. for (i = 0; i < bip->bli_format_count; i++) {
  141. nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
  142. }
  143. trace_xfs_buf_item_size(bip);
  144. return nvecs;
  145. }
  146. static struct xfs_log_iovec *
  147. xfs_buf_item_format_segment(
  148. struct xfs_buf_log_item *bip,
  149. struct xfs_log_iovec *vecp,
  150. uint offset,
  151. struct xfs_buf_log_format *blfp)
  152. {
  153. struct xfs_buf *bp = bip->bli_buf;
  154. uint base_size;
  155. uint nvecs;
  156. int first_bit;
  157. int last_bit;
  158. int next_bit;
  159. uint nbits;
  160. uint buffer_offset;
  161. /* copy the flags across from the base format item */
  162. blfp->blf_flags = bip->__bli_format.blf_flags;
  163. /*
  164. * Base size is the actual size of the ondisk structure - it reflects
  165. * the actual size of the dirty bitmap rather than the size of the in
  166. * memory structure.
  167. */
  168. base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
  169. (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  170. nvecs = 0;
  171. first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  172. if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
  173. /*
  174. * If the map is not be dirty in the transaction, mark
  175. * the size as zero and do not advance the vector pointer.
  176. */
  177. goto out;
  178. }
  179. vecp->i_addr = blfp;
  180. vecp->i_len = base_size;
  181. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  182. vecp++;
  183. nvecs = 1;
  184. if (bip->bli_flags & XFS_BLI_STALE) {
  185. /*
  186. * The buffer is stale, so all we need to log
  187. * is the buf log format structure with the
  188. * cancel flag in it.
  189. */
  190. trace_xfs_buf_item_format_stale(bip);
  191. ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
  192. goto out;
  193. }
  194. /*
  195. * Fill in an iovec for each set of contiguous chunks.
  196. */
  197. last_bit = first_bit;
  198. nbits = 1;
  199. for (;;) {
  200. /*
  201. * This takes the bit number to start looking from and
  202. * returns the next set bit from there. It returns -1
  203. * if there are no more bits set or the start bit is
  204. * beyond the end of the bitmap.
  205. */
  206. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  207. (uint)last_bit + 1);
  208. /*
  209. * If we run out of bits fill in the last iovec and get
  210. * out of the loop.
  211. * Else if we start a new set of bits then fill in the
  212. * iovec for the series we were looking at and start
  213. * counting the bits in the new one.
  214. * Else we're still in the same set of bits so just
  215. * keep counting and scanning.
  216. */
  217. if (next_bit == -1) {
  218. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  219. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  220. vecp->i_len = nbits * XFS_BLF_CHUNK;
  221. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  222. nvecs++;
  223. break;
  224. } else if (next_bit != last_bit + 1) {
  225. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  226. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  227. vecp->i_len = nbits * XFS_BLF_CHUNK;
  228. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  229. nvecs++;
  230. vecp++;
  231. first_bit = next_bit;
  232. last_bit = next_bit;
  233. nbits = 1;
  234. } else if (xfs_buf_offset(bp, offset +
  235. (next_bit << XFS_BLF_SHIFT)) !=
  236. (xfs_buf_offset(bp, offset +
  237. (last_bit << XFS_BLF_SHIFT)) +
  238. XFS_BLF_CHUNK)) {
  239. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  240. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  241. vecp->i_len = nbits * XFS_BLF_CHUNK;
  242. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  243. /*
  244. * You would think we need to bump the nvecs here too, but we do not
  245. * this number is used by recovery, and it gets confused by the boundary
  246. * split here
  247. * nvecs++;
  248. */
  249. vecp++;
  250. first_bit = next_bit;
  251. last_bit = next_bit;
  252. nbits = 1;
  253. } else {
  254. last_bit++;
  255. nbits++;
  256. }
  257. }
  258. out:
  259. blfp->blf_size = nvecs;
  260. return vecp;
  261. }
  262. /*
  263. * This is called to fill in the vector of log iovecs for the
  264. * given log buf item. It fills the first entry with a buf log
  265. * format structure, and the rest point to contiguous chunks
  266. * within the buffer.
  267. */
  268. STATIC void
  269. xfs_buf_item_format(
  270. struct xfs_log_item *lip,
  271. struct xfs_log_iovec *vecp)
  272. {
  273. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  274. struct xfs_buf *bp = bip->bli_buf;
  275. uint offset = 0;
  276. int i;
  277. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  278. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  279. (bip->bli_flags & XFS_BLI_STALE));
  280. /*
  281. * If it is an inode buffer, transfer the in-memory state to the
  282. * format flags and clear the in-memory state. We do not transfer
  283. * this state if the inode buffer allocation has not yet been committed
  284. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  285. * correct replay of the inode allocation.
  286. */
  287. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  288. if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  289. xfs_log_item_in_current_chkpt(lip)))
  290. bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  291. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  292. }
  293. for (i = 0; i < bip->bli_format_count; i++) {
  294. vecp = xfs_buf_item_format_segment(bip, vecp, offset,
  295. &bip->bli_formats[i]);
  296. offset += bp->b_maps[i].bm_len;
  297. }
  298. /*
  299. * Check to make sure everything is consistent.
  300. */
  301. trace_xfs_buf_item_format(bip);
  302. }
  303. /*
  304. * This is called to pin the buffer associated with the buf log item in memory
  305. * so it cannot be written out.
  306. *
  307. * We also always take a reference to the buffer log item here so that the bli
  308. * is held while the item is pinned in memory. This means that we can
  309. * unconditionally drop the reference count a transaction holds when the
  310. * transaction is completed.
  311. */
  312. STATIC void
  313. xfs_buf_item_pin(
  314. struct xfs_log_item *lip)
  315. {
  316. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  317. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  318. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  319. (bip->bli_flags & XFS_BLI_STALE));
  320. trace_xfs_buf_item_pin(bip);
  321. atomic_inc(&bip->bli_refcount);
  322. atomic_inc(&bip->bli_buf->b_pin_count);
  323. }
  324. /*
  325. * This is called to unpin the buffer associated with the buf log
  326. * item which was previously pinned with a call to xfs_buf_item_pin().
  327. *
  328. * Also drop the reference to the buf item for the current transaction.
  329. * If the XFS_BLI_STALE flag is set and we are the last reference,
  330. * then free up the buf log item and unlock the buffer.
  331. *
  332. * If the remove flag is set we are called from uncommit in the
  333. * forced-shutdown path. If that is true and the reference count on
  334. * the log item is going to drop to zero we need to free the item's
  335. * descriptor in the transaction.
  336. */
  337. STATIC void
  338. xfs_buf_item_unpin(
  339. struct xfs_log_item *lip,
  340. int remove)
  341. {
  342. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  343. xfs_buf_t *bp = bip->bli_buf;
  344. struct xfs_ail *ailp = lip->li_ailp;
  345. int stale = bip->bli_flags & XFS_BLI_STALE;
  346. int freed;
  347. ASSERT(bp->b_fspriv == bip);
  348. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  349. trace_xfs_buf_item_unpin(bip);
  350. freed = atomic_dec_and_test(&bip->bli_refcount);
  351. if (atomic_dec_and_test(&bp->b_pin_count))
  352. wake_up_all(&bp->b_waiters);
  353. if (freed && stale) {
  354. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  355. ASSERT(xfs_buf_islocked(bp));
  356. ASSERT(XFS_BUF_ISSTALE(bp));
  357. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  358. trace_xfs_buf_item_unpin_stale(bip);
  359. if (remove) {
  360. /*
  361. * If we are in a transaction context, we have to
  362. * remove the log item from the transaction as we are
  363. * about to release our reference to the buffer. If we
  364. * don't, the unlock that occurs later in
  365. * xfs_trans_uncommit() will try to reference the
  366. * buffer which we no longer have a hold on.
  367. */
  368. if (lip->li_desc)
  369. xfs_trans_del_item(lip);
  370. /*
  371. * Since the transaction no longer refers to the buffer,
  372. * the buffer should no longer refer to the transaction.
  373. */
  374. bp->b_transp = NULL;
  375. }
  376. /*
  377. * If we get called here because of an IO error, we may
  378. * or may not have the item on the AIL. xfs_trans_ail_delete()
  379. * will take care of that situation.
  380. * xfs_trans_ail_delete() drops the AIL lock.
  381. */
  382. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  383. xfs_buf_do_callbacks(bp);
  384. bp->b_fspriv = NULL;
  385. bp->b_iodone = NULL;
  386. } else {
  387. spin_lock(&ailp->xa_lock);
  388. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
  389. xfs_buf_item_relse(bp);
  390. ASSERT(bp->b_fspriv == NULL);
  391. }
  392. xfs_buf_relse(bp);
  393. } else if (freed && remove) {
  394. /*
  395. * There are currently two references to the buffer - the active
  396. * LRU reference and the buf log item. What we are about to do
  397. * here - simulate a failed IO completion - requires 3
  398. * references.
  399. *
  400. * The LRU reference is removed by the xfs_buf_stale() call. The
  401. * buf item reference is removed by the xfs_buf_iodone()
  402. * callback that is run by xfs_buf_do_callbacks() during ioend
  403. * processing (via the bp->b_iodone callback), and then finally
  404. * the ioend processing will drop the IO reference if the buffer
  405. * is marked XBF_ASYNC.
  406. *
  407. * Hence we need to take an additional reference here so that IO
  408. * completion processing doesn't free the buffer prematurely.
  409. */
  410. xfs_buf_lock(bp);
  411. xfs_buf_hold(bp);
  412. bp->b_flags |= XBF_ASYNC;
  413. xfs_buf_ioerror(bp, EIO);
  414. XFS_BUF_UNDONE(bp);
  415. xfs_buf_stale(bp);
  416. xfs_buf_ioend(bp, 0);
  417. }
  418. }
  419. STATIC uint
  420. xfs_buf_item_push(
  421. struct xfs_log_item *lip,
  422. struct list_head *buffer_list)
  423. {
  424. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  425. struct xfs_buf *bp = bip->bli_buf;
  426. uint rval = XFS_ITEM_SUCCESS;
  427. if (xfs_buf_ispinned(bp))
  428. return XFS_ITEM_PINNED;
  429. if (!xfs_buf_trylock(bp)) {
  430. /*
  431. * If we have just raced with a buffer being pinned and it has
  432. * been marked stale, we could end up stalling until someone else
  433. * issues a log force to unpin the stale buffer. Check for the
  434. * race condition here so xfsaild recognizes the buffer is pinned
  435. * and queues a log force to move it along.
  436. */
  437. if (xfs_buf_ispinned(bp))
  438. return XFS_ITEM_PINNED;
  439. return XFS_ITEM_LOCKED;
  440. }
  441. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  442. trace_xfs_buf_item_push(bip);
  443. if (!xfs_buf_delwri_queue(bp, buffer_list))
  444. rval = XFS_ITEM_FLUSHING;
  445. xfs_buf_unlock(bp);
  446. return rval;
  447. }
  448. /*
  449. * Release the buffer associated with the buf log item. If there is no dirty
  450. * logged data associated with the buffer recorded in the buf log item, then
  451. * free the buf log item and remove the reference to it in the buffer.
  452. *
  453. * This call ignores the recursion count. It is only called when the buffer
  454. * should REALLY be unlocked, regardless of the recursion count.
  455. *
  456. * We unconditionally drop the transaction's reference to the log item. If the
  457. * item was logged, then another reference was taken when it was pinned, so we
  458. * can safely drop the transaction reference now. This also allows us to avoid
  459. * potential races with the unpin code freeing the bli by not referencing the
  460. * bli after we've dropped the reference count.
  461. *
  462. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  463. * if necessary but do not unlock the buffer. This is for support of
  464. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  465. * free the item.
  466. */
  467. STATIC void
  468. xfs_buf_item_unlock(
  469. struct xfs_log_item *lip)
  470. {
  471. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  472. struct xfs_buf *bp = bip->bli_buf;
  473. int aborted, clean, i;
  474. uint hold;
  475. /* Clear the buffer's association with this transaction. */
  476. bp->b_transp = NULL;
  477. /*
  478. * If this is a transaction abort, don't return early. Instead, allow
  479. * the brelse to happen. Normally it would be done for stale
  480. * (cancelled) buffers at unpin time, but we'll never go through the
  481. * pin/unpin cycle if we abort inside commit.
  482. */
  483. aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
  484. /*
  485. * Before possibly freeing the buf item, determine if we should
  486. * release the buffer at the end of this routine.
  487. */
  488. hold = bip->bli_flags & XFS_BLI_HOLD;
  489. /* Clear the per transaction state. */
  490. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
  491. /*
  492. * If the buf item is marked stale, then don't do anything. We'll
  493. * unlock the buffer and free the buf item when the buffer is unpinned
  494. * for the last time.
  495. */
  496. if (bip->bli_flags & XFS_BLI_STALE) {
  497. trace_xfs_buf_item_unlock_stale(bip);
  498. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  499. if (!aborted) {
  500. atomic_dec(&bip->bli_refcount);
  501. return;
  502. }
  503. }
  504. trace_xfs_buf_item_unlock(bip);
  505. /*
  506. * If the buf item isn't tracking any data, free it, otherwise drop the
  507. * reference we hold to it. If we are aborting the transaction, this may
  508. * be the only reference to the buf item, so we free it anyway
  509. * regardless of whether it is dirty or not. A dirty abort implies a
  510. * shutdown, anyway.
  511. */
  512. clean = 1;
  513. for (i = 0; i < bip->bli_format_count; i++) {
  514. if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
  515. bip->bli_formats[i].blf_map_size)) {
  516. clean = 0;
  517. break;
  518. }
  519. }
  520. if (clean)
  521. xfs_buf_item_relse(bp);
  522. else if (aborted) {
  523. if (atomic_dec_and_test(&bip->bli_refcount)) {
  524. ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
  525. xfs_buf_item_relse(bp);
  526. }
  527. } else
  528. atomic_dec(&bip->bli_refcount);
  529. if (!hold)
  530. xfs_buf_relse(bp);
  531. }
  532. /*
  533. * This is called to find out where the oldest active copy of the
  534. * buf log item in the on disk log resides now that the last log
  535. * write of it completed at the given lsn.
  536. * We always re-log all the dirty data in a buffer, so usually the
  537. * latest copy in the on disk log is the only one that matters. For
  538. * those cases we simply return the given lsn.
  539. *
  540. * The one exception to this is for buffers full of newly allocated
  541. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  542. * flag set, indicating that only the di_next_unlinked fields from the
  543. * inodes in the buffers will be replayed during recovery. If the
  544. * original newly allocated inode images have not yet been flushed
  545. * when the buffer is so relogged, then we need to make sure that we
  546. * keep the old images in the 'active' portion of the log. We do this
  547. * by returning the original lsn of that transaction here rather than
  548. * the current one.
  549. */
  550. STATIC xfs_lsn_t
  551. xfs_buf_item_committed(
  552. struct xfs_log_item *lip,
  553. xfs_lsn_t lsn)
  554. {
  555. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  556. trace_xfs_buf_item_committed(bip);
  557. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  558. return lip->li_lsn;
  559. return lsn;
  560. }
  561. STATIC void
  562. xfs_buf_item_committing(
  563. struct xfs_log_item *lip,
  564. xfs_lsn_t commit_lsn)
  565. {
  566. }
  567. /*
  568. * This is the ops vector shared by all buf log items.
  569. */
  570. static const struct xfs_item_ops xfs_buf_item_ops = {
  571. .iop_size = xfs_buf_item_size,
  572. .iop_format = xfs_buf_item_format,
  573. .iop_pin = xfs_buf_item_pin,
  574. .iop_unpin = xfs_buf_item_unpin,
  575. .iop_unlock = xfs_buf_item_unlock,
  576. .iop_committed = xfs_buf_item_committed,
  577. .iop_push = xfs_buf_item_push,
  578. .iop_committing = xfs_buf_item_committing
  579. };
  580. STATIC int
  581. xfs_buf_item_get_format(
  582. struct xfs_buf_log_item *bip,
  583. int count)
  584. {
  585. ASSERT(bip->bli_formats == NULL);
  586. bip->bli_format_count = count;
  587. if (count == 1) {
  588. bip->bli_formats = &bip->__bli_format;
  589. return 0;
  590. }
  591. bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
  592. KM_SLEEP);
  593. if (!bip->bli_formats)
  594. return ENOMEM;
  595. return 0;
  596. }
  597. STATIC void
  598. xfs_buf_item_free_format(
  599. struct xfs_buf_log_item *bip)
  600. {
  601. if (bip->bli_formats != &bip->__bli_format) {
  602. kmem_free(bip->bli_formats);
  603. bip->bli_formats = NULL;
  604. }
  605. }
  606. /*
  607. * Allocate a new buf log item to go with the given buffer.
  608. * Set the buffer's b_fsprivate field to point to the new
  609. * buf log item. If there are other item's attached to the
  610. * buffer (see xfs_buf_attach_iodone() below), then put the
  611. * buf log item at the front.
  612. */
  613. void
  614. xfs_buf_item_init(
  615. xfs_buf_t *bp,
  616. xfs_mount_t *mp)
  617. {
  618. xfs_log_item_t *lip = bp->b_fspriv;
  619. xfs_buf_log_item_t *bip;
  620. int chunks;
  621. int map_size;
  622. int error;
  623. int i;
  624. /*
  625. * Check to see if there is already a buf log item for
  626. * this buffer. If there is, it is guaranteed to be
  627. * the first. If we do already have one, there is
  628. * nothing to do here so return.
  629. */
  630. ASSERT(bp->b_target->bt_mount == mp);
  631. if (lip != NULL && lip->li_type == XFS_LI_BUF)
  632. return;
  633. bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
  634. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  635. bip->bli_buf = bp;
  636. xfs_buf_hold(bp);
  637. /*
  638. * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
  639. * can be divided into. Make sure not to truncate any pieces.
  640. * map_size is the size of the bitmap needed to describe the
  641. * chunks of the buffer.
  642. *
  643. * Discontiguous buffer support follows the layout of the underlying
  644. * buffer. This makes the implementation as simple as possible.
  645. */
  646. error = xfs_buf_item_get_format(bip, bp->b_map_count);
  647. ASSERT(error == 0);
  648. for (i = 0; i < bip->bli_format_count; i++) {
  649. chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
  650. XFS_BLF_CHUNK);
  651. map_size = DIV_ROUND_UP(chunks, NBWORD);
  652. bip->bli_formats[i].blf_type = XFS_LI_BUF;
  653. bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
  654. bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
  655. bip->bli_formats[i].blf_map_size = map_size;
  656. }
  657. #ifdef XFS_TRANS_DEBUG
  658. /*
  659. * Allocate the arrays for tracking what needs to be logged
  660. * and what our callers request to be logged. bli_orig
  661. * holds a copy of the original, clean buffer for comparison
  662. * against, and bli_logged keeps a 1 bit flag per byte in
  663. * the buffer to indicate which bytes the callers have asked
  664. * to have logged.
  665. */
  666. bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
  667. memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
  668. bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
  669. #endif
  670. /*
  671. * Put the buf item into the list of items attached to the
  672. * buffer at the front.
  673. */
  674. if (bp->b_fspriv)
  675. bip->bli_item.li_bio_list = bp->b_fspriv;
  676. bp->b_fspriv = bip;
  677. }
  678. /*
  679. * Mark bytes first through last inclusive as dirty in the buf
  680. * item's bitmap.
  681. */
  682. void
  683. xfs_buf_item_log_segment(
  684. struct xfs_buf_log_item *bip,
  685. uint first,
  686. uint last,
  687. uint *map)
  688. {
  689. uint first_bit;
  690. uint last_bit;
  691. uint bits_to_set;
  692. uint bits_set;
  693. uint word_num;
  694. uint *wordp;
  695. uint bit;
  696. uint end_bit;
  697. uint mask;
  698. /*
  699. * Convert byte offsets to bit numbers.
  700. */
  701. first_bit = first >> XFS_BLF_SHIFT;
  702. last_bit = last >> XFS_BLF_SHIFT;
  703. /*
  704. * Calculate the total number of bits to be set.
  705. */
  706. bits_to_set = last_bit - first_bit + 1;
  707. /*
  708. * Get a pointer to the first word in the bitmap
  709. * to set a bit in.
  710. */
  711. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  712. wordp = &map[word_num];
  713. /*
  714. * Calculate the starting bit in the first word.
  715. */
  716. bit = first_bit & (uint)(NBWORD - 1);
  717. /*
  718. * First set any bits in the first word of our range.
  719. * If it starts at bit 0 of the word, it will be
  720. * set below rather than here. That is what the variable
  721. * bit tells us. The variable bits_set tracks the number
  722. * of bits that have been set so far. End_bit is the number
  723. * of the last bit to be set in this word plus one.
  724. */
  725. if (bit) {
  726. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  727. mask = ((1 << (end_bit - bit)) - 1) << bit;
  728. *wordp |= mask;
  729. wordp++;
  730. bits_set = end_bit - bit;
  731. } else {
  732. bits_set = 0;
  733. }
  734. /*
  735. * Now set bits a whole word at a time that are between
  736. * first_bit and last_bit.
  737. */
  738. while ((bits_to_set - bits_set) >= NBWORD) {
  739. *wordp |= 0xffffffff;
  740. bits_set += NBWORD;
  741. wordp++;
  742. }
  743. /*
  744. * Finally, set any bits left to be set in one last partial word.
  745. */
  746. end_bit = bits_to_set - bits_set;
  747. if (end_bit) {
  748. mask = (1 << end_bit) - 1;
  749. *wordp |= mask;
  750. }
  751. }
  752. /*
  753. * Mark bytes first through last inclusive as dirty in the buf
  754. * item's bitmap.
  755. */
  756. void
  757. xfs_buf_item_log(
  758. xfs_buf_log_item_t *bip,
  759. uint first,
  760. uint last)
  761. {
  762. int i;
  763. uint start;
  764. uint end;
  765. struct xfs_buf *bp = bip->bli_buf;
  766. /*
  767. * Mark the item as having some dirty data for
  768. * quick reference in xfs_buf_item_dirty.
  769. */
  770. bip->bli_flags |= XFS_BLI_DIRTY;
  771. /*
  772. * walk each buffer segment and mark them dirty appropriately.
  773. */
  774. start = 0;
  775. for (i = 0; i < bip->bli_format_count; i++) {
  776. if (start > last)
  777. break;
  778. end = start + BBTOB(bp->b_maps[i].bm_len);
  779. if (first > end) {
  780. start += BBTOB(bp->b_maps[i].bm_len);
  781. continue;
  782. }
  783. if (first < start)
  784. first = start;
  785. if (end > last)
  786. end = last;
  787. xfs_buf_item_log_segment(bip, first, end,
  788. &bip->bli_formats[i].blf_data_map[0]);
  789. start += bp->b_maps[i].bm_len;
  790. }
  791. }
  792. /*
  793. * Return 1 if the buffer has some data that has been logged (at any
  794. * point, not just the current transaction) and 0 if not.
  795. */
  796. uint
  797. xfs_buf_item_dirty(
  798. xfs_buf_log_item_t *bip)
  799. {
  800. return (bip->bli_flags & XFS_BLI_DIRTY);
  801. }
  802. STATIC void
  803. xfs_buf_item_free(
  804. xfs_buf_log_item_t *bip)
  805. {
  806. #ifdef XFS_TRANS_DEBUG
  807. kmem_free(bip->bli_orig);
  808. kmem_free(bip->bli_logged);
  809. #endif /* XFS_TRANS_DEBUG */
  810. xfs_buf_item_free_format(bip);
  811. kmem_zone_free(xfs_buf_item_zone, bip);
  812. }
  813. /*
  814. * This is called when the buf log item is no longer needed. It should
  815. * free the buf log item associated with the given buffer and clear
  816. * the buffer's pointer to the buf log item. If there are no more
  817. * items in the list, clear the b_iodone field of the buffer (see
  818. * xfs_buf_attach_iodone() below).
  819. */
  820. void
  821. xfs_buf_item_relse(
  822. xfs_buf_t *bp)
  823. {
  824. xfs_buf_log_item_t *bip;
  825. trace_xfs_buf_item_relse(bp, _RET_IP_);
  826. bip = bp->b_fspriv;
  827. bp->b_fspriv = bip->bli_item.li_bio_list;
  828. if (bp->b_fspriv == NULL)
  829. bp->b_iodone = NULL;
  830. xfs_buf_rele(bp);
  831. xfs_buf_item_free(bip);
  832. }
  833. /*
  834. * Add the given log item with its callback to the list of callbacks
  835. * to be called when the buffer's I/O completes. If it is not set
  836. * already, set the buffer's b_iodone() routine to be
  837. * xfs_buf_iodone_callbacks() and link the log item into the list of
  838. * items rooted at b_fsprivate. Items are always added as the second
  839. * entry in the list if there is a first, because the buf item code
  840. * assumes that the buf log item is first.
  841. */
  842. void
  843. xfs_buf_attach_iodone(
  844. xfs_buf_t *bp,
  845. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  846. xfs_log_item_t *lip)
  847. {
  848. xfs_log_item_t *head_lip;
  849. ASSERT(xfs_buf_islocked(bp));
  850. lip->li_cb = cb;
  851. head_lip = bp->b_fspriv;
  852. if (head_lip) {
  853. lip->li_bio_list = head_lip->li_bio_list;
  854. head_lip->li_bio_list = lip;
  855. } else {
  856. bp->b_fspriv = lip;
  857. }
  858. ASSERT(bp->b_iodone == NULL ||
  859. bp->b_iodone == xfs_buf_iodone_callbacks);
  860. bp->b_iodone = xfs_buf_iodone_callbacks;
  861. }
  862. /*
  863. * We can have many callbacks on a buffer. Running the callbacks individually
  864. * can cause a lot of contention on the AIL lock, so we allow for a single
  865. * callback to be able to scan the remaining lip->li_bio_list for other items
  866. * of the same type and callback to be processed in the first call.
  867. *
  868. * As a result, the loop walking the callback list below will also modify the
  869. * list. it removes the first item from the list and then runs the callback.
  870. * The loop then restarts from the new head of the list. This allows the
  871. * callback to scan and modify the list attached to the buffer and we don't
  872. * have to care about maintaining a next item pointer.
  873. */
  874. STATIC void
  875. xfs_buf_do_callbacks(
  876. struct xfs_buf *bp)
  877. {
  878. struct xfs_log_item *lip;
  879. while ((lip = bp->b_fspriv) != NULL) {
  880. bp->b_fspriv = lip->li_bio_list;
  881. ASSERT(lip->li_cb != NULL);
  882. /*
  883. * Clear the next pointer so we don't have any
  884. * confusion if the item is added to another buf.
  885. * Don't touch the log item after calling its
  886. * callback, because it could have freed itself.
  887. */
  888. lip->li_bio_list = NULL;
  889. lip->li_cb(bp, lip);
  890. }
  891. }
  892. /*
  893. * This is the iodone() function for buffers which have had callbacks
  894. * attached to them by xfs_buf_attach_iodone(). It should remove each
  895. * log item from the buffer's list and call the callback of each in turn.
  896. * When done, the buffer's fsprivate field is set to NULL and the buffer
  897. * is unlocked with a call to iodone().
  898. */
  899. void
  900. xfs_buf_iodone_callbacks(
  901. struct xfs_buf *bp)
  902. {
  903. struct xfs_log_item *lip = bp->b_fspriv;
  904. struct xfs_mount *mp = lip->li_mountp;
  905. static ulong lasttime;
  906. static xfs_buftarg_t *lasttarg;
  907. if (likely(!xfs_buf_geterror(bp)))
  908. goto do_callbacks;
  909. /*
  910. * If we've already decided to shutdown the filesystem because of
  911. * I/O errors, there's no point in giving this a retry.
  912. */
  913. if (XFS_FORCED_SHUTDOWN(mp)) {
  914. xfs_buf_stale(bp);
  915. XFS_BUF_DONE(bp);
  916. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  917. goto do_callbacks;
  918. }
  919. if (bp->b_target != lasttarg ||
  920. time_after(jiffies, (lasttime + 5*HZ))) {
  921. lasttime = jiffies;
  922. xfs_buf_ioerror_alert(bp, __func__);
  923. }
  924. lasttarg = bp->b_target;
  925. /*
  926. * If the write was asynchronous then no one will be looking for the
  927. * error. Clear the error state and write the buffer out again.
  928. *
  929. * XXX: This helps against transient write errors, but we need to find
  930. * a way to shut the filesystem down if the writes keep failing.
  931. *
  932. * In practice we'll shut the filesystem down soon as non-transient
  933. * erorrs tend to affect the whole device and a failing log write
  934. * will make us give up. But we really ought to do better here.
  935. */
  936. if (XFS_BUF_ISASYNC(bp)) {
  937. ASSERT(bp->b_iodone != NULL);
  938. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  939. xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
  940. if (!XFS_BUF_ISSTALE(bp)) {
  941. bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
  942. xfs_buf_iorequest(bp);
  943. } else {
  944. xfs_buf_relse(bp);
  945. }
  946. return;
  947. }
  948. /*
  949. * If the write of the buffer was synchronous, we want to make
  950. * sure to return the error to the caller of xfs_bwrite().
  951. */
  952. xfs_buf_stale(bp);
  953. XFS_BUF_DONE(bp);
  954. trace_xfs_buf_error_relse(bp, _RET_IP_);
  955. do_callbacks:
  956. xfs_buf_do_callbacks(bp);
  957. bp->b_fspriv = NULL;
  958. bp->b_iodone = NULL;
  959. xfs_buf_ioend(bp, 0);
  960. }
  961. /*
  962. * This is the iodone() function for buffers which have been
  963. * logged. It is called when they are eventually flushed out.
  964. * It should remove the buf item from the AIL, and free the buf item.
  965. * It is called by xfs_buf_iodone_callbacks() above which will take
  966. * care of cleaning up the buffer itself.
  967. */
  968. void
  969. xfs_buf_iodone(
  970. struct xfs_buf *bp,
  971. struct xfs_log_item *lip)
  972. {
  973. struct xfs_ail *ailp = lip->li_ailp;
  974. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  975. xfs_buf_rele(bp);
  976. /*
  977. * If we are forcibly shutting down, this may well be
  978. * off the AIL already. That's because we simulate the
  979. * log-committed callbacks to unpin these buffers. Or we may never
  980. * have put this item on AIL because of the transaction was
  981. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  982. *
  983. * Either way, AIL is useless if we're forcing a shutdown.
  984. */
  985. spin_lock(&ailp->xa_lock);
  986. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
  987. xfs_buf_item_free(BUF_ITEM(lip));
  988. }