task_mmu.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <asm/elf.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/tlbflush.h>
  17. #include "internal.h"
  18. void task_mem(struct seq_file *m, struct mm_struct *mm)
  19. {
  20. unsigned long data, text, lib, swap;
  21. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  22. /*
  23. * Note: to minimize their overhead, mm maintains hiwater_vm and
  24. * hiwater_rss only when about to *lower* total_vm or rss. Any
  25. * collector of these hiwater stats must therefore get total_vm
  26. * and rss too, which will usually be the higher. Barriers? not
  27. * worth the effort, such snapshots can always be inconsistent.
  28. */
  29. hiwater_vm = total_vm = mm->total_vm;
  30. if (hiwater_vm < mm->hiwater_vm)
  31. hiwater_vm = mm->hiwater_vm;
  32. hiwater_rss = total_rss = get_mm_rss(mm);
  33. if (hiwater_rss < mm->hiwater_rss)
  34. hiwater_rss = mm->hiwater_rss;
  35. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  36. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  37. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  38. swap = get_mm_counter(mm, MM_SWAPENTS);
  39. seq_printf(m,
  40. "VmPeak:\t%8lu kB\n"
  41. "VmSize:\t%8lu kB\n"
  42. "VmLck:\t%8lu kB\n"
  43. "VmPin:\t%8lu kB\n"
  44. "VmHWM:\t%8lu kB\n"
  45. "VmRSS:\t%8lu kB\n"
  46. "VmData:\t%8lu kB\n"
  47. "VmStk:\t%8lu kB\n"
  48. "VmExe:\t%8lu kB\n"
  49. "VmLib:\t%8lu kB\n"
  50. "VmPTE:\t%8lu kB\n"
  51. "VmSwap:\t%8lu kB\n",
  52. hiwater_vm << (PAGE_SHIFT-10),
  53. total_vm << (PAGE_SHIFT-10),
  54. mm->locked_vm << (PAGE_SHIFT-10),
  55. mm->pinned_vm << (PAGE_SHIFT-10),
  56. hiwater_rss << (PAGE_SHIFT-10),
  57. total_rss << (PAGE_SHIFT-10),
  58. data << (PAGE_SHIFT-10),
  59. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  60. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  61. swap << (PAGE_SHIFT-10));
  62. }
  63. unsigned long task_vsize(struct mm_struct *mm)
  64. {
  65. return PAGE_SIZE * mm->total_vm;
  66. }
  67. unsigned long task_statm(struct mm_struct *mm,
  68. unsigned long *shared, unsigned long *text,
  69. unsigned long *data, unsigned long *resident)
  70. {
  71. *shared = get_mm_counter(mm, MM_FILEPAGES);
  72. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  73. >> PAGE_SHIFT;
  74. *data = mm->total_vm - mm->shared_vm;
  75. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  76. return mm->total_vm;
  77. }
  78. static void pad_len_spaces(struct seq_file *m, int len)
  79. {
  80. len = 25 + sizeof(void*) * 6 - len;
  81. if (len < 1)
  82. len = 1;
  83. seq_printf(m, "%*c", len, ' ');
  84. }
  85. #ifdef CONFIG_NUMA
  86. /*
  87. * These functions are for numa_maps but called in generic **maps seq_file
  88. * ->start(), ->stop() ops.
  89. *
  90. * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  91. * Each mempolicy object is controlled by reference counting. The problem here
  92. * is how to avoid accessing dead mempolicy object.
  93. *
  94. * Because we're holding mmap_sem while reading seq_file, it's safe to access
  95. * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  96. *
  97. * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
  98. * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
  99. * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
  100. * gurantee the task never exits under us. But taking task_lock() around
  101. * get_vma_plicy() causes lock order problem.
  102. *
  103. * To access task->mempolicy without lock, we hold a reference count of an
  104. * object pointed by task->mempolicy and remember it. This will guarantee
  105. * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
  106. */
  107. static void hold_task_mempolicy(struct proc_maps_private *priv)
  108. {
  109. struct task_struct *task = priv->task;
  110. task_lock(task);
  111. priv->task_mempolicy = task->mempolicy;
  112. mpol_get(priv->task_mempolicy);
  113. task_unlock(task);
  114. }
  115. static void release_task_mempolicy(struct proc_maps_private *priv)
  116. {
  117. mpol_put(priv->task_mempolicy);
  118. }
  119. #else
  120. static void hold_task_mempolicy(struct proc_maps_private *priv)
  121. {
  122. }
  123. static void release_task_mempolicy(struct proc_maps_private *priv)
  124. {
  125. }
  126. #endif
  127. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  128. {
  129. if (vma && vma != priv->tail_vma) {
  130. struct mm_struct *mm = vma->vm_mm;
  131. release_task_mempolicy(priv);
  132. up_read(&mm->mmap_sem);
  133. mmput(mm);
  134. }
  135. }
  136. static void *m_start(struct seq_file *m, loff_t *pos)
  137. {
  138. struct proc_maps_private *priv = m->private;
  139. unsigned long last_addr = m->version;
  140. struct mm_struct *mm;
  141. struct vm_area_struct *vma, *tail_vma = NULL;
  142. loff_t l = *pos;
  143. /* Clear the per syscall fields in priv */
  144. priv->task = NULL;
  145. priv->tail_vma = NULL;
  146. /*
  147. * We remember last_addr rather than next_addr to hit with
  148. * mmap_cache most of the time. We have zero last_addr at
  149. * the beginning and also after lseek. We will have -1 last_addr
  150. * after the end of the vmas.
  151. */
  152. if (last_addr == -1UL)
  153. return NULL;
  154. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  155. if (!priv->task)
  156. return ERR_PTR(-ESRCH);
  157. mm = mm_access(priv->task, PTRACE_MODE_READ);
  158. if (!mm || IS_ERR(mm))
  159. return mm;
  160. down_read(&mm->mmap_sem);
  161. tail_vma = get_gate_vma(priv->task->mm);
  162. priv->tail_vma = tail_vma;
  163. hold_task_mempolicy(priv);
  164. /* Start with last addr hint */
  165. vma = find_vma(mm, last_addr);
  166. if (last_addr && vma) {
  167. vma = vma->vm_next;
  168. goto out;
  169. }
  170. /*
  171. * Check the vma index is within the range and do
  172. * sequential scan until m_index.
  173. */
  174. vma = NULL;
  175. if ((unsigned long)l < mm->map_count) {
  176. vma = mm->mmap;
  177. while (l-- && vma)
  178. vma = vma->vm_next;
  179. goto out;
  180. }
  181. if (l != mm->map_count)
  182. tail_vma = NULL; /* After gate vma */
  183. out:
  184. if (vma)
  185. return vma;
  186. release_task_mempolicy(priv);
  187. /* End of vmas has been reached */
  188. m->version = (tail_vma != NULL)? 0: -1UL;
  189. up_read(&mm->mmap_sem);
  190. mmput(mm);
  191. return tail_vma;
  192. }
  193. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  194. {
  195. struct proc_maps_private *priv = m->private;
  196. struct vm_area_struct *vma = v;
  197. struct vm_area_struct *tail_vma = priv->tail_vma;
  198. (*pos)++;
  199. if (vma && (vma != tail_vma) && vma->vm_next)
  200. return vma->vm_next;
  201. vma_stop(priv, vma);
  202. return (vma != tail_vma)? tail_vma: NULL;
  203. }
  204. static void m_stop(struct seq_file *m, void *v)
  205. {
  206. struct proc_maps_private *priv = m->private;
  207. struct vm_area_struct *vma = v;
  208. if (!IS_ERR(vma))
  209. vma_stop(priv, vma);
  210. if (priv->task)
  211. put_task_struct(priv->task);
  212. }
  213. static int do_maps_open(struct inode *inode, struct file *file,
  214. const struct seq_operations *ops)
  215. {
  216. struct proc_maps_private *priv;
  217. int ret = -ENOMEM;
  218. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  219. if (priv) {
  220. priv->pid = proc_pid(inode);
  221. ret = seq_open(file, ops);
  222. if (!ret) {
  223. struct seq_file *m = file->private_data;
  224. m->private = priv;
  225. } else {
  226. kfree(priv);
  227. }
  228. }
  229. return ret;
  230. }
  231. static void
  232. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  233. {
  234. struct mm_struct *mm = vma->vm_mm;
  235. struct file *file = vma->vm_file;
  236. struct proc_maps_private *priv = m->private;
  237. struct task_struct *task = priv->task;
  238. vm_flags_t flags = vma->vm_flags;
  239. unsigned long ino = 0;
  240. unsigned long long pgoff = 0;
  241. unsigned long start, end;
  242. dev_t dev = 0;
  243. int len;
  244. const char *name = NULL;
  245. if (file) {
  246. struct inode *inode = file_inode(vma->vm_file);
  247. dev = inode->i_sb->s_dev;
  248. ino = inode->i_ino;
  249. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  250. }
  251. /* We don't show the stack guard page in /proc/maps */
  252. start = vma->vm_start;
  253. if (stack_guard_page_start(vma, start))
  254. start += PAGE_SIZE;
  255. end = vma->vm_end;
  256. if (stack_guard_page_end(vma, end))
  257. end -= PAGE_SIZE;
  258. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  259. start,
  260. end,
  261. flags & VM_READ ? 'r' : '-',
  262. flags & VM_WRITE ? 'w' : '-',
  263. flags & VM_EXEC ? 'x' : '-',
  264. flags & VM_MAYSHARE ? 's' : 'p',
  265. pgoff,
  266. MAJOR(dev), MINOR(dev), ino, &len);
  267. /*
  268. * Print the dentry name for named mappings, and a
  269. * special [heap] marker for the heap:
  270. */
  271. if (file) {
  272. pad_len_spaces(m, len);
  273. seq_path(m, &file->f_path, "\n");
  274. goto done;
  275. }
  276. name = arch_vma_name(vma);
  277. if (!name) {
  278. pid_t tid;
  279. if (!mm) {
  280. name = "[vdso]";
  281. goto done;
  282. }
  283. if (vma->vm_start <= mm->brk &&
  284. vma->vm_end >= mm->start_brk) {
  285. name = "[heap]";
  286. goto done;
  287. }
  288. tid = vm_is_stack(task, vma, is_pid);
  289. if (tid != 0) {
  290. /*
  291. * Thread stack in /proc/PID/task/TID/maps or
  292. * the main process stack.
  293. */
  294. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  295. vma->vm_end >= mm->start_stack)) {
  296. name = "[stack]";
  297. } else {
  298. /* Thread stack in /proc/PID/maps */
  299. pad_len_spaces(m, len);
  300. seq_printf(m, "[stack:%d]", tid);
  301. }
  302. }
  303. }
  304. done:
  305. if (name) {
  306. pad_len_spaces(m, len);
  307. seq_puts(m, name);
  308. }
  309. seq_putc(m, '\n');
  310. }
  311. static int show_map(struct seq_file *m, void *v, int is_pid)
  312. {
  313. struct vm_area_struct *vma = v;
  314. struct proc_maps_private *priv = m->private;
  315. struct task_struct *task = priv->task;
  316. show_map_vma(m, vma, is_pid);
  317. if (m->count < m->size) /* vma is copied successfully */
  318. m->version = (vma != get_gate_vma(task->mm))
  319. ? vma->vm_start : 0;
  320. return 0;
  321. }
  322. static int show_pid_map(struct seq_file *m, void *v)
  323. {
  324. return show_map(m, v, 1);
  325. }
  326. static int show_tid_map(struct seq_file *m, void *v)
  327. {
  328. return show_map(m, v, 0);
  329. }
  330. static const struct seq_operations proc_pid_maps_op = {
  331. .start = m_start,
  332. .next = m_next,
  333. .stop = m_stop,
  334. .show = show_pid_map
  335. };
  336. static const struct seq_operations proc_tid_maps_op = {
  337. .start = m_start,
  338. .next = m_next,
  339. .stop = m_stop,
  340. .show = show_tid_map
  341. };
  342. static int pid_maps_open(struct inode *inode, struct file *file)
  343. {
  344. return do_maps_open(inode, file, &proc_pid_maps_op);
  345. }
  346. static int tid_maps_open(struct inode *inode, struct file *file)
  347. {
  348. return do_maps_open(inode, file, &proc_tid_maps_op);
  349. }
  350. const struct file_operations proc_pid_maps_operations = {
  351. .open = pid_maps_open,
  352. .read = seq_read,
  353. .llseek = seq_lseek,
  354. .release = seq_release_private,
  355. };
  356. const struct file_operations proc_tid_maps_operations = {
  357. .open = tid_maps_open,
  358. .read = seq_read,
  359. .llseek = seq_lseek,
  360. .release = seq_release_private,
  361. };
  362. /*
  363. * Proportional Set Size(PSS): my share of RSS.
  364. *
  365. * PSS of a process is the count of pages it has in memory, where each
  366. * page is divided by the number of processes sharing it. So if a
  367. * process has 1000 pages all to itself, and 1000 shared with one other
  368. * process, its PSS will be 1500.
  369. *
  370. * To keep (accumulated) division errors low, we adopt a 64bit
  371. * fixed-point pss counter to minimize division errors. So (pss >>
  372. * PSS_SHIFT) would be the real byte count.
  373. *
  374. * A shift of 12 before division means (assuming 4K page size):
  375. * - 1M 3-user-pages add up to 8KB errors;
  376. * - supports mapcount up to 2^24, or 16M;
  377. * - supports PSS up to 2^52 bytes, or 4PB.
  378. */
  379. #define PSS_SHIFT 12
  380. #ifdef CONFIG_PROC_PAGE_MONITOR
  381. struct mem_size_stats {
  382. struct vm_area_struct *vma;
  383. unsigned long resident;
  384. unsigned long shared_clean;
  385. unsigned long shared_dirty;
  386. unsigned long private_clean;
  387. unsigned long private_dirty;
  388. unsigned long referenced;
  389. unsigned long anonymous;
  390. unsigned long anonymous_thp;
  391. unsigned long swap;
  392. unsigned long nonlinear;
  393. u64 pss;
  394. };
  395. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  396. unsigned long ptent_size, struct mm_walk *walk)
  397. {
  398. struct mem_size_stats *mss = walk->private;
  399. struct vm_area_struct *vma = mss->vma;
  400. pgoff_t pgoff = linear_page_index(vma, addr);
  401. struct page *page = NULL;
  402. int mapcount;
  403. if (pte_present(ptent)) {
  404. page = vm_normal_page(vma, addr, ptent);
  405. } else if (is_swap_pte(ptent)) {
  406. swp_entry_t swpent = pte_to_swp_entry(ptent);
  407. if (!non_swap_entry(swpent))
  408. mss->swap += ptent_size;
  409. else if (is_migration_entry(swpent))
  410. page = migration_entry_to_page(swpent);
  411. } else if (pte_file(ptent)) {
  412. if (pte_to_pgoff(ptent) != pgoff)
  413. mss->nonlinear += ptent_size;
  414. }
  415. if (!page)
  416. return;
  417. if (PageAnon(page))
  418. mss->anonymous += ptent_size;
  419. if (page->index != pgoff)
  420. mss->nonlinear += ptent_size;
  421. mss->resident += ptent_size;
  422. /* Accumulate the size in pages that have been accessed. */
  423. if (pte_young(ptent) || PageReferenced(page))
  424. mss->referenced += ptent_size;
  425. mapcount = page_mapcount(page);
  426. if (mapcount >= 2) {
  427. if (pte_dirty(ptent) || PageDirty(page))
  428. mss->shared_dirty += ptent_size;
  429. else
  430. mss->shared_clean += ptent_size;
  431. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  432. } else {
  433. if (pte_dirty(ptent) || PageDirty(page))
  434. mss->private_dirty += ptent_size;
  435. else
  436. mss->private_clean += ptent_size;
  437. mss->pss += (ptent_size << PSS_SHIFT);
  438. }
  439. }
  440. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  441. struct mm_walk *walk)
  442. {
  443. struct mem_size_stats *mss = walk->private;
  444. struct vm_area_struct *vma = mss->vma;
  445. pte_t *pte;
  446. spinlock_t *ptl;
  447. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  448. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  449. spin_unlock(&walk->mm->page_table_lock);
  450. mss->anonymous_thp += HPAGE_PMD_SIZE;
  451. return 0;
  452. }
  453. if (pmd_trans_unstable(pmd))
  454. return 0;
  455. /*
  456. * The mmap_sem held all the way back in m_start() is what
  457. * keeps khugepaged out of here and from collapsing things
  458. * in here.
  459. */
  460. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  461. for (; addr != end; pte++, addr += PAGE_SIZE)
  462. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  463. pte_unmap_unlock(pte - 1, ptl);
  464. cond_resched();
  465. return 0;
  466. }
  467. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  468. {
  469. /*
  470. * Don't forget to update Documentation/ on changes.
  471. */
  472. static const char mnemonics[BITS_PER_LONG][2] = {
  473. /*
  474. * In case if we meet a flag we don't know about.
  475. */
  476. [0 ... (BITS_PER_LONG-1)] = "??",
  477. [ilog2(VM_READ)] = "rd",
  478. [ilog2(VM_WRITE)] = "wr",
  479. [ilog2(VM_EXEC)] = "ex",
  480. [ilog2(VM_SHARED)] = "sh",
  481. [ilog2(VM_MAYREAD)] = "mr",
  482. [ilog2(VM_MAYWRITE)] = "mw",
  483. [ilog2(VM_MAYEXEC)] = "me",
  484. [ilog2(VM_MAYSHARE)] = "ms",
  485. [ilog2(VM_GROWSDOWN)] = "gd",
  486. [ilog2(VM_PFNMAP)] = "pf",
  487. [ilog2(VM_DENYWRITE)] = "dw",
  488. [ilog2(VM_LOCKED)] = "lo",
  489. [ilog2(VM_IO)] = "io",
  490. [ilog2(VM_SEQ_READ)] = "sr",
  491. [ilog2(VM_RAND_READ)] = "rr",
  492. [ilog2(VM_DONTCOPY)] = "dc",
  493. [ilog2(VM_DONTEXPAND)] = "de",
  494. [ilog2(VM_ACCOUNT)] = "ac",
  495. [ilog2(VM_NORESERVE)] = "nr",
  496. [ilog2(VM_HUGETLB)] = "ht",
  497. [ilog2(VM_NONLINEAR)] = "nl",
  498. [ilog2(VM_ARCH_1)] = "ar",
  499. [ilog2(VM_DONTDUMP)] = "dd",
  500. [ilog2(VM_MIXEDMAP)] = "mm",
  501. [ilog2(VM_HUGEPAGE)] = "hg",
  502. [ilog2(VM_NOHUGEPAGE)] = "nh",
  503. [ilog2(VM_MERGEABLE)] = "mg",
  504. };
  505. size_t i;
  506. seq_puts(m, "VmFlags: ");
  507. for (i = 0; i < BITS_PER_LONG; i++) {
  508. if (vma->vm_flags & (1UL << i)) {
  509. seq_printf(m, "%c%c ",
  510. mnemonics[i][0], mnemonics[i][1]);
  511. }
  512. }
  513. seq_putc(m, '\n');
  514. }
  515. static int show_smap(struct seq_file *m, void *v, int is_pid)
  516. {
  517. struct proc_maps_private *priv = m->private;
  518. struct task_struct *task = priv->task;
  519. struct vm_area_struct *vma = v;
  520. struct mem_size_stats mss;
  521. struct mm_walk smaps_walk = {
  522. .pmd_entry = smaps_pte_range,
  523. .mm = vma->vm_mm,
  524. .private = &mss,
  525. };
  526. memset(&mss, 0, sizeof mss);
  527. mss.vma = vma;
  528. /* mmap_sem is held in m_start */
  529. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  530. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  531. show_map_vma(m, vma, is_pid);
  532. seq_printf(m,
  533. "Size: %8lu kB\n"
  534. "Rss: %8lu kB\n"
  535. "Pss: %8lu kB\n"
  536. "Shared_Clean: %8lu kB\n"
  537. "Shared_Dirty: %8lu kB\n"
  538. "Private_Clean: %8lu kB\n"
  539. "Private_Dirty: %8lu kB\n"
  540. "Referenced: %8lu kB\n"
  541. "Anonymous: %8lu kB\n"
  542. "AnonHugePages: %8lu kB\n"
  543. "Swap: %8lu kB\n"
  544. "KernelPageSize: %8lu kB\n"
  545. "MMUPageSize: %8lu kB\n"
  546. "Locked: %8lu kB\n",
  547. (vma->vm_end - vma->vm_start) >> 10,
  548. mss.resident >> 10,
  549. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  550. mss.shared_clean >> 10,
  551. mss.shared_dirty >> 10,
  552. mss.private_clean >> 10,
  553. mss.private_dirty >> 10,
  554. mss.referenced >> 10,
  555. mss.anonymous >> 10,
  556. mss.anonymous_thp >> 10,
  557. mss.swap >> 10,
  558. vma_kernel_pagesize(vma) >> 10,
  559. vma_mmu_pagesize(vma) >> 10,
  560. (vma->vm_flags & VM_LOCKED) ?
  561. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  562. if (vma->vm_flags & VM_NONLINEAR)
  563. seq_printf(m, "Nonlinear: %8lu kB\n",
  564. mss.nonlinear >> 10);
  565. show_smap_vma_flags(m, vma);
  566. if (m->count < m->size) /* vma is copied successfully */
  567. m->version = (vma != get_gate_vma(task->mm))
  568. ? vma->vm_start : 0;
  569. return 0;
  570. }
  571. static int show_pid_smap(struct seq_file *m, void *v)
  572. {
  573. return show_smap(m, v, 1);
  574. }
  575. static int show_tid_smap(struct seq_file *m, void *v)
  576. {
  577. return show_smap(m, v, 0);
  578. }
  579. static const struct seq_operations proc_pid_smaps_op = {
  580. .start = m_start,
  581. .next = m_next,
  582. .stop = m_stop,
  583. .show = show_pid_smap
  584. };
  585. static const struct seq_operations proc_tid_smaps_op = {
  586. .start = m_start,
  587. .next = m_next,
  588. .stop = m_stop,
  589. .show = show_tid_smap
  590. };
  591. static int pid_smaps_open(struct inode *inode, struct file *file)
  592. {
  593. return do_maps_open(inode, file, &proc_pid_smaps_op);
  594. }
  595. static int tid_smaps_open(struct inode *inode, struct file *file)
  596. {
  597. return do_maps_open(inode, file, &proc_tid_smaps_op);
  598. }
  599. const struct file_operations proc_pid_smaps_operations = {
  600. .open = pid_smaps_open,
  601. .read = seq_read,
  602. .llseek = seq_lseek,
  603. .release = seq_release_private,
  604. };
  605. const struct file_operations proc_tid_smaps_operations = {
  606. .open = tid_smaps_open,
  607. .read = seq_read,
  608. .llseek = seq_lseek,
  609. .release = seq_release_private,
  610. };
  611. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  612. unsigned long end, struct mm_walk *walk)
  613. {
  614. struct vm_area_struct *vma = walk->private;
  615. pte_t *pte, ptent;
  616. spinlock_t *ptl;
  617. struct page *page;
  618. split_huge_page_pmd(vma, addr, pmd);
  619. if (pmd_trans_unstable(pmd))
  620. return 0;
  621. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  622. for (; addr != end; pte++, addr += PAGE_SIZE) {
  623. ptent = *pte;
  624. if (!pte_present(ptent))
  625. continue;
  626. page = vm_normal_page(vma, addr, ptent);
  627. if (!page)
  628. continue;
  629. /* Clear accessed and referenced bits. */
  630. ptep_test_and_clear_young(vma, addr, pte);
  631. ClearPageReferenced(page);
  632. }
  633. pte_unmap_unlock(pte - 1, ptl);
  634. cond_resched();
  635. return 0;
  636. }
  637. #define CLEAR_REFS_ALL 1
  638. #define CLEAR_REFS_ANON 2
  639. #define CLEAR_REFS_MAPPED 3
  640. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  641. size_t count, loff_t *ppos)
  642. {
  643. struct task_struct *task;
  644. char buffer[PROC_NUMBUF];
  645. struct mm_struct *mm;
  646. struct vm_area_struct *vma;
  647. int type;
  648. int rv;
  649. memset(buffer, 0, sizeof(buffer));
  650. if (count > sizeof(buffer) - 1)
  651. count = sizeof(buffer) - 1;
  652. if (copy_from_user(buffer, buf, count))
  653. return -EFAULT;
  654. rv = kstrtoint(strstrip(buffer), 10, &type);
  655. if (rv < 0)
  656. return rv;
  657. if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
  658. return -EINVAL;
  659. task = get_proc_task(file_inode(file));
  660. if (!task)
  661. return -ESRCH;
  662. mm = get_task_mm(task);
  663. if (mm) {
  664. struct mm_walk clear_refs_walk = {
  665. .pmd_entry = clear_refs_pte_range,
  666. .mm = mm,
  667. };
  668. down_read(&mm->mmap_sem);
  669. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  670. clear_refs_walk.private = vma;
  671. if (is_vm_hugetlb_page(vma))
  672. continue;
  673. /*
  674. * Writing 1 to /proc/pid/clear_refs affects all pages.
  675. *
  676. * Writing 2 to /proc/pid/clear_refs only affects
  677. * Anonymous pages.
  678. *
  679. * Writing 3 to /proc/pid/clear_refs only affects file
  680. * mapped pages.
  681. */
  682. if (type == CLEAR_REFS_ANON && vma->vm_file)
  683. continue;
  684. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  685. continue;
  686. walk_page_range(vma->vm_start, vma->vm_end,
  687. &clear_refs_walk);
  688. }
  689. flush_tlb_mm(mm);
  690. up_read(&mm->mmap_sem);
  691. mmput(mm);
  692. }
  693. put_task_struct(task);
  694. return count;
  695. }
  696. const struct file_operations proc_clear_refs_operations = {
  697. .write = clear_refs_write,
  698. .llseek = noop_llseek,
  699. };
  700. typedef struct {
  701. u64 pme;
  702. } pagemap_entry_t;
  703. struct pagemapread {
  704. int pos, len;
  705. pagemap_entry_t *buffer;
  706. };
  707. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  708. #define PAGEMAP_WALK_MASK (PMD_MASK)
  709. #define PM_ENTRY_BYTES sizeof(u64)
  710. #define PM_STATUS_BITS 3
  711. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  712. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  713. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  714. #define PM_PSHIFT_BITS 6
  715. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  716. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  717. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  718. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  719. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  720. #define PM_PRESENT PM_STATUS(4LL)
  721. #define PM_SWAP PM_STATUS(2LL)
  722. #define PM_FILE PM_STATUS(1LL)
  723. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  724. #define PM_END_OF_BUFFER 1
  725. static inline pagemap_entry_t make_pme(u64 val)
  726. {
  727. return (pagemap_entry_t) { .pme = val };
  728. }
  729. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  730. struct pagemapread *pm)
  731. {
  732. pm->buffer[pm->pos++] = *pme;
  733. if (pm->pos >= pm->len)
  734. return PM_END_OF_BUFFER;
  735. return 0;
  736. }
  737. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  738. struct mm_walk *walk)
  739. {
  740. struct pagemapread *pm = walk->private;
  741. unsigned long addr;
  742. int err = 0;
  743. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  744. for (addr = start; addr < end; addr += PAGE_SIZE) {
  745. err = add_to_pagemap(addr, &pme, pm);
  746. if (err)
  747. break;
  748. }
  749. return err;
  750. }
  751. static void pte_to_pagemap_entry(pagemap_entry_t *pme,
  752. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  753. {
  754. u64 frame, flags;
  755. struct page *page = NULL;
  756. if (pte_present(pte)) {
  757. frame = pte_pfn(pte);
  758. flags = PM_PRESENT;
  759. page = vm_normal_page(vma, addr, pte);
  760. } else if (is_swap_pte(pte)) {
  761. swp_entry_t entry = pte_to_swp_entry(pte);
  762. frame = swp_type(entry) |
  763. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  764. flags = PM_SWAP;
  765. if (is_migration_entry(entry))
  766. page = migration_entry_to_page(entry);
  767. } else {
  768. *pme = make_pme(PM_NOT_PRESENT);
  769. return;
  770. }
  771. if (page && !PageAnon(page))
  772. flags |= PM_FILE;
  773. *pme = make_pme(PM_PFRAME(frame) | PM_PSHIFT(PAGE_SHIFT) | flags);
  774. }
  775. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  776. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  777. pmd_t pmd, int offset)
  778. {
  779. /*
  780. * Currently pmd for thp is always present because thp can not be
  781. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  782. * This if-check is just to prepare for future implementation.
  783. */
  784. if (pmd_present(pmd))
  785. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  786. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  787. else
  788. *pme = make_pme(PM_NOT_PRESENT);
  789. }
  790. #else
  791. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  792. pmd_t pmd, int offset)
  793. {
  794. }
  795. #endif
  796. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  797. struct mm_walk *walk)
  798. {
  799. struct vm_area_struct *vma;
  800. struct pagemapread *pm = walk->private;
  801. pte_t *pte;
  802. int err = 0;
  803. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  804. /* find the first VMA at or above 'addr' */
  805. vma = find_vma(walk->mm, addr);
  806. if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
  807. for (; addr != end; addr += PAGE_SIZE) {
  808. unsigned long offset;
  809. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  810. PAGE_SHIFT;
  811. thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
  812. err = add_to_pagemap(addr, &pme, pm);
  813. if (err)
  814. break;
  815. }
  816. spin_unlock(&walk->mm->page_table_lock);
  817. return err;
  818. }
  819. if (pmd_trans_unstable(pmd))
  820. return 0;
  821. for (; addr != end; addr += PAGE_SIZE) {
  822. /* check to see if we've left 'vma' behind
  823. * and need a new, higher one */
  824. if (vma && (addr >= vma->vm_end)) {
  825. vma = find_vma(walk->mm, addr);
  826. pme = make_pme(PM_NOT_PRESENT);
  827. }
  828. /* check that 'vma' actually covers this address,
  829. * and that it isn't a huge page vma */
  830. if (vma && (vma->vm_start <= addr) &&
  831. !is_vm_hugetlb_page(vma)) {
  832. pte = pte_offset_map(pmd, addr);
  833. pte_to_pagemap_entry(&pme, vma, addr, *pte);
  834. /* unmap before userspace copy */
  835. pte_unmap(pte);
  836. }
  837. err = add_to_pagemap(addr, &pme, pm);
  838. if (err)
  839. return err;
  840. }
  841. cond_resched();
  842. return err;
  843. }
  844. #ifdef CONFIG_HUGETLB_PAGE
  845. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
  846. pte_t pte, int offset)
  847. {
  848. if (pte_present(pte))
  849. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
  850. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  851. else
  852. *pme = make_pme(PM_NOT_PRESENT);
  853. }
  854. /* This function walks within one hugetlb entry in the single call */
  855. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  856. unsigned long addr, unsigned long end,
  857. struct mm_walk *walk)
  858. {
  859. struct pagemapread *pm = walk->private;
  860. int err = 0;
  861. pagemap_entry_t pme;
  862. for (; addr != end; addr += PAGE_SIZE) {
  863. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  864. huge_pte_to_pagemap_entry(&pme, *pte, offset);
  865. err = add_to_pagemap(addr, &pme, pm);
  866. if (err)
  867. return err;
  868. }
  869. cond_resched();
  870. return err;
  871. }
  872. #endif /* HUGETLB_PAGE */
  873. /*
  874. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  875. *
  876. * For each page in the address space, this file contains one 64-bit entry
  877. * consisting of the following:
  878. *
  879. * Bits 0-54 page frame number (PFN) if present
  880. * Bits 0-4 swap type if swapped
  881. * Bits 5-54 swap offset if swapped
  882. * Bits 55-60 page shift (page size = 1<<page shift)
  883. * Bit 61 page is file-page or shared-anon
  884. * Bit 62 page swapped
  885. * Bit 63 page present
  886. *
  887. * If the page is not present but in swap, then the PFN contains an
  888. * encoding of the swap file number and the page's offset into the
  889. * swap. Unmapped pages return a null PFN. This allows determining
  890. * precisely which pages are mapped (or in swap) and comparing mapped
  891. * pages between processes.
  892. *
  893. * Efficient users of this interface will use /proc/pid/maps to
  894. * determine which areas of memory are actually mapped and llseek to
  895. * skip over unmapped regions.
  896. */
  897. static ssize_t pagemap_read(struct file *file, char __user *buf,
  898. size_t count, loff_t *ppos)
  899. {
  900. struct task_struct *task = get_proc_task(file_inode(file));
  901. struct mm_struct *mm;
  902. struct pagemapread pm;
  903. int ret = -ESRCH;
  904. struct mm_walk pagemap_walk = {};
  905. unsigned long src;
  906. unsigned long svpfn;
  907. unsigned long start_vaddr;
  908. unsigned long end_vaddr;
  909. int copied = 0;
  910. if (!task)
  911. goto out;
  912. ret = -EINVAL;
  913. /* file position must be aligned */
  914. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  915. goto out_task;
  916. ret = 0;
  917. if (!count)
  918. goto out_task;
  919. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  920. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  921. ret = -ENOMEM;
  922. if (!pm.buffer)
  923. goto out_task;
  924. mm = mm_access(task, PTRACE_MODE_READ);
  925. ret = PTR_ERR(mm);
  926. if (!mm || IS_ERR(mm))
  927. goto out_free;
  928. pagemap_walk.pmd_entry = pagemap_pte_range;
  929. pagemap_walk.pte_hole = pagemap_pte_hole;
  930. #ifdef CONFIG_HUGETLB_PAGE
  931. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  932. #endif
  933. pagemap_walk.mm = mm;
  934. pagemap_walk.private = &pm;
  935. src = *ppos;
  936. svpfn = src / PM_ENTRY_BYTES;
  937. start_vaddr = svpfn << PAGE_SHIFT;
  938. end_vaddr = TASK_SIZE_OF(task);
  939. /* watch out for wraparound */
  940. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  941. start_vaddr = end_vaddr;
  942. /*
  943. * The odds are that this will stop walking way
  944. * before end_vaddr, because the length of the
  945. * user buffer is tracked in "pm", and the walk
  946. * will stop when we hit the end of the buffer.
  947. */
  948. ret = 0;
  949. while (count && (start_vaddr < end_vaddr)) {
  950. int len;
  951. unsigned long end;
  952. pm.pos = 0;
  953. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  954. /* overflow ? */
  955. if (end < start_vaddr || end > end_vaddr)
  956. end = end_vaddr;
  957. down_read(&mm->mmap_sem);
  958. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  959. up_read(&mm->mmap_sem);
  960. start_vaddr = end;
  961. len = min(count, PM_ENTRY_BYTES * pm.pos);
  962. if (copy_to_user(buf, pm.buffer, len)) {
  963. ret = -EFAULT;
  964. goto out_mm;
  965. }
  966. copied += len;
  967. buf += len;
  968. count -= len;
  969. }
  970. *ppos += copied;
  971. if (!ret || ret == PM_END_OF_BUFFER)
  972. ret = copied;
  973. out_mm:
  974. mmput(mm);
  975. out_free:
  976. kfree(pm.buffer);
  977. out_task:
  978. put_task_struct(task);
  979. out:
  980. return ret;
  981. }
  982. const struct file_operations proc_pagemap_operations = {
  983. .llseek = mem_lseek, /* borrow this */
  984. .read = pagemap_read,
  985. };
  986. #endif /* CONFIG_PROC_PAGE_MONITOR */
  987. #ifdef CONFIG_NUMA
  988. struct numa_maps {
  989. struct vm_area_struct *vma;
  990. unsigned long pages;
  991. unsigned long anon;
  992. unsigned long active;
  993. unsigned long writeback;
  994. unsigned long mapcount_max;
  995. unsigned long dirty;
  996. unsigned long swapcache;
  997. unsigned long node[MAX_NUMNODES];
  998. };
  999. struct numa_maps_private {
  1000. struct proc_maps_private proc_maps;
  1001. struct numa_maps md;
  1002. };
  1003. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1004. unsigned long nr_pages)
  1005. {
  1006. int count = page_mapcount(page);
  1007. md->pages += nr_pages;
  1008. if (pte_dirty || PageDirty(page))
  1009. md->dirty += nr_pages;
  1010. if (PageSwapCache(page))
  1011. md->swapcache += nr_pages;
  1012. if (PageActive(page) || PageUnevictable(page))
  1013. md->active += nr_pages;
  1014. if (PageWriteback(page))
  1015. md->writeback += nr_pages;
  1016. if (PageAnon(page))
  1017. md->anon += nr_pages;
  1018. if (count > md->mapcount_max)
  1019. md->mapcount_max = count;
  1020. md->node[page_to_nid(page)] += nr_pages;
  1021. }
  1022. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1023. unsigned long addr)
  1024. {
  1025. struct page *page;
  1026. int nid;
  1027. if (!pte_present(pte))
  1028. return NULL;
  1029. page = vm_normal_page(vma, addr, pte);
  1030. if (!page)
  1031. return NULL;
  1032. if (PageReserved(page))
  1033. return NULL;
  1034. nid = page_to_nid(page);
  1035. if (!node_isset(nid, node_states[N_MEMORY]))
  1036. return NULL;
  1037. return page;
  1038. }
  1039. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1040. unsigned long end, struct mm_walk *walk)
  1041. {
  1042. struct numa_maps *md;
  1043. spinlock_t *ptl;
  1044. pte_t *orig_pte;
  1045. pte_t *pte;
  1046. md = walk->private;
  1047. if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
  1048. pte_t huge_pte = *(pte_t *)pmd;
  1049. struct page *page;
  1050. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1051. if (page)
  1052. gather_stats(page, md, pte_dirty(huge_pte),
  1053. HPAGE_PMD_SIZE/PAGE_SIZE);
  1054. spin_unlock(&walk->mm->page_table_lock);
  1055. return 0;
  1056. }
  1057. if (pmd_trans_unstable(pmd))
  1058. return 0;
  1059. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1060. do {
  1061. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1062. if (!page)
  1063. continue;
  1064. gather_stats(page, md, pte_dirty(*pte), 1);
  1065. } while (pte++, addr += PAGE_SIZE, addr != end);
  1066. pte_unmap_unlock(orig_pte, ptl);
  1067. return 0;
  1068. }
  1069. #ifdef CONFIG_HUGETLB_PAGE
  1070. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1071. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1072. {
  1073. struct numa_maps *md;
  1074. struct page *page;
  1075. if (pte_none(*pte))
  1076. return 0;
  1077. page = pte_page(*pte);
  1078. if (!page)
  1079. return 0;
  1080. md = walk->private;
  1081. gather_stats(page, md, pte_dirty(*pte), 1);
  1082. return 0;
  1083. }
  1084. #else
  1085. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1086. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1087. {
  1088. return 0;
  1089. }
  1090. #endif
  1091. /*
  1092. * Display pages allocated per node and memory policy via /proc.
  1093. */
  1094. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1095. {
  1096. struct numa_maps_private *numa_priv = m->private;
  1097. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1098. struct vm_area_struct *vma = v;
  1099. struct numa_maps *md = &numa_priv->md;
  1100. struct file *file = vma->vm_file;
  1101. struct task_struct *task = proc_priv->task;
  1102. struct mm_struct *mm = vma->vm_mm;
  1103. struct mm_walk walk = {};
  1104. struct mempolicy *pol;
  1105. int n;
  1106. char buffer[50];
  1107. if (!mm)
  1108. return 0;
  1109. /* Ensure we start with an empty set of numa_maps statistics. */
  1110. memset(md, 0, sizeof(*md));
  1111. md->vma = vma;
  1112. walk.hugetlb_entry = gather_hugetbl_stats;
  1113. walk.pmd_entry = gather_pte_stats;
  1114. walk.private = md;
  1115. walk.mm = mm;
  1116. pol = get_vma_policy(task, vma, vma->vm_start);
  1117. mpol_to_str(buffer, sizeof(buffer), pol);
  1118. mpol_cond_put(pol);
  1119. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1120. if (file) {
  1121. seq_printf(m, " file=");
  1122. seq_path(m, &file->f_path, "\n\t= ");
  1123. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1124. seq_printf(m, " heap");
  1125. } else {
  1126. pid_t tid = vm_is_stack(task, vma, is_pid);
  1127. if (tid != 0) {
  1128. /*
  1129. * Thread stack in /proc/PID/task/TID/maps or
  1130. * the main process stack.
  1131. */
  1132. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1133. vma->vm_end >= mm->start_stack))
  1134. seq_printf(m, " stack");
  1135. else
  1136. seq_printf(m, " stack:%d", tid);
  1137. }
  1138. }
  1139. if (is_vm_hugetlb_page(vma))
  1140. seq_printf(m, " huge");
  1141. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1142. if (!md->pages)
  1143. goto out;
  1144. if (md->anon)
  1145. seq_printf(m, " anon=%lu", md->anon);
  1146. if (md->dirty)
  1147. seq_printf(m, " dirty=%lu", md->dirty);
  1148. if (md->pages != md->anon && md->pages != md->dirty)
  1149. seq_printf(m, " mapped=%lu", md->pages);
  1150. if (md->mapcount_max > 1)
  1151. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1152. if (md->swapcache)
  1153. seq_printf(m, " swapcache=%lu", md->swapcache);
  1154. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1155. seq_printf(m, " active=%lu", md->active);
  1156. if (md->writeback)
  1157. seq_printf(m, " writeback=%lu", md->writeback);
  1158. for_each_node_state(n, N_MEMORY)
  1159. if (md->node[n])
  1160. seq_printf(m, " N%d=%lu", n, md->node[n]);
  1161. out:
  1162. seq_putc(m, '\n');
  1163. if (m->count < m->size)
  1164. m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
  1165. return 0;
  1166. }
  1167. static int show_pid_numa_map(struct seq_file *m, void *v)
  1168. {
  1169. return show_numa_map(m, v, 1);
  1170. }
  1171. static int show_tid_numa_map(struct seq_file *m, void *v)
  1172. {
  1173. return show_numa_map(m, v, 0);
  1174. }
  1175. static const struct seq_operations proc_pid_numa_maps_op = {
  1176. .start = m_start,
  1177. .next = m_next,
  1178. .stop = m_stop,
  1179. .show = show_pid_numa_map,
  1180. };
  1181. static const struct seq_operations proc_tid_numa_maps_op = {
  1182. .start = m_start,
  1183. .next = m_next,
  1184. .stop = m_stop,
  1185. .show = show_tid_numa_map,
  1186. };
  1187. static int numa_maps_open(struct inode *inode, struct file *file,
  1188. const struct seq_operations *ops)
  1189. {
  1190. struct numa_maps_private *priv;
  1191. int ret = -ENOMEM;
  1192. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  1193. if (priv) {
  1194. priv->proc_maps.pid = proc_pid(inode);
  1195. ret = seq_open(file, ops);
  1196. if (!ret) {
  1197. struct seq_file *m = file->private_data;
  1198. m->private = priv;
  1199. } else {
  1200. kfree(priv);
  1201. }
  1202. }
  1203. return ret;
  1204. }
  1205. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1206. {
  1207. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1208. }
  1209. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1210. {
  1211. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1212. }
  1213. const struct file_operations proc_pid_numa_maps_operations = {
  1214. .open = pid_numa_maps_open,
  1215. .read = seq_read,
  1216. .llseek = seq_lseek,
  1217. .release = seq_release_private,
  1218. };
  1219. const struct file_operations proc_tid_numa_maps_operations = {
  1220. .open = tid_numa_maps_open,
  1221. .read = seq_read,
  1222. .llseek = seq_lseek,
  1223. .release = seq_release_private,
  1224. };
  1225. #endif /* CONFIG_NUMA */