node.h 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. /*
  2. * fs/f2fs/node.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. /* start node id of a node block dedicated to the given node id */
  12. #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13. /* node block offset on the NAT area dedicated to the given start node id */
  14. #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
  15. /* # of pages to perform readahead before building free nids */
  16. #define FREE_NID_PAGES 4
  17. /* maximum # of free node ids to produce during build_free_nids */
  18. #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  19. /* maximum readahead size for node during getting data blocks */
  20. #define MAX_RA_NODE 128
  21. /* maximum cached nat entries to manage memory footprint */
  22. #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
  23. /* vector size for gang look-up from nat cache that consists of radix tree */
  24. #define NATVEC_SIZE 64
  25. /*
  26. * For node information
  27. */
  28. struct node_info {
  29. nid_t nid; /* node id */
  30. nid_t ino; /* inode number of the node's owner */
  31. block_t blk_addr; /* block address of the node */
  32. unsigned char version; /* version of the node */
  33. };
  34. struct nat_entry {
  35. struct list_head list; /* for clean or dirty nat list */
  36. bool checkpointed; /* whether it is checkpointed or not */
  37. struct node_info ni; /* in-memory node information */
  38. };
  39. #define nat_get_nid(nat) (nat->ni.nid)
  40. #define nat_set_nid(nat, n) (nat->ni.nid = n)
  41. #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
  42. #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
  43. #define nat_get_ino(nat) (nat->ni.ino)
  44. #define nat_set_ino(nat, i) (nat->ni.ino = i)
  45. #define nat_get_version(nat) (nat->ni.version)
  46. #define nat_set_version(nat, v) (nat->ni.version = v)
  47. #define __set_nat_cache_dirty(nm_i, ne) \
  48. list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
  49. #define __clear_nat_cache_dirty(nm_i, ne) \
  50. list_move_tail(&ne->list, &nm_i->nat_entries);
  51. #define inc_node_version(version) (++version)
  52. static inline void node_info_from_raw_nat(struct node_info *ni,
  53. struct f2fs_nat_entry *raw_ne)
  54. {
  55. ni->ino = le32_to_cpu(raw_ne->ino);
  56. ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
  57. ni->version = raw_ne->version;
  58. }
  59. /*
  60. * For free nid mangement
  61. */
  62. enum nid_state {
  63. NID_NEW, /* newly added to free nid list */
  64. NID_ALLOC /* it is allocated */
  65. };
  66. struct free_nid {
  67. struct list_head list; /* for free node id list */
  68. nid_t nid; /* node id */
  69. int state; /* in use or not: NID_NEW or NID_ALLOC */
  70. };
  71. static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  72. {
  73. struct f2fs_nm_info *nm_i = NM_I(sbi);
  74. struct free_nid *fnid;
  75. if (nm_i->fcnt <= 0)
  76. return -1;
  77. spin_lock(&nm_i->free_nid_list_lock);
  78. fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
  79. *nid = fnid->nid;
  80. spin_unlock(&nm_i->free_nid_list_lock);
  81. return 0;
  82. }
  83. /*
  84. * inline functions
  85. */
  86. static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
  87. {
  88. struct f2fs_nm_info *nm_i = NM_I(sbi);
  89. memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
  90. }
  91. static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
  92. {
  93. struct f2fs_nm_info *nm_i = NM_I(sbi);
  94. pgoff_t block_off;
  95. pgoff_t block_addr;
  96. int seg_off;
  97. block_off = NAT_BLOCK_OFFSET(start);
  98. seg_off = block_off >> sbi->log_blocks_per_seg;
  99. block_addr = (pgoff_t)(nm_i->nat_blkaddr +
  100. (seg_off << sbi->log_blocks_per_seg << 1) +
  101. (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
  102. if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
  103. block_addr += sbi->blocks_per_seg;
  104. return block_addr;
  105. }
  106. static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
  107. pgoff_t block_addr)
  108. {
  109. struct f2fs_nm_info *nm_i = NM_I(sbi);
  110. block_addr -= nm_i->nat_blkaddr;
  111. if ((block_addr >> sbi->log_blocks_per_seg) % 2)
  112. block_addr -= sbi->blocks_per_seg;
  113. else
  114. block_addr += sbi->blocks_per_seg;
  115. return block_addr + nm_i->nat_blkaddr;
  116. }
  117. static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
  118. {
  119. unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
  120. if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
  121. f2fs_clear_bit(block_off, nm_i->nat_bitmap);
  122. else
  123. f2fs_set_bit(block_off, nm_i->nat_bitmap);
  124. }
  125. static inline void fill_node_footer(struct page *page, nid_t nid,
  126. nid_t ino, unsigned int ofs, bool reset)
  127. {
  128. void *kaddr = page_address(page);
  129. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  130. if (reset)
  131. memset(rn, 0, sizeof(*rn));
  132. rn->footer.nid = cpu_to_le32(nid);
  133. rn->footer.ino = cpu_to_le32(ino);
  134. rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
  135. }
  136. static inline void copy_node_footer(struct page *dst, struct page *src)
  137. {
  138. void *src_addr = page_address(src);
  139. void *dst_addr = page_address(dst);
  140. struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
  141. struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
  142. memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
  143. }
  144. static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
  145. {
  146. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  147. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  148. void *kaddr = page_address(page);
  149. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  150. rn->footer.cp_ver = ckpt->checkpoint_ver;
  151. rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
  152. }
  153. static inline nid_t ino_of_node(struct page *node_page)
  154. {
  155. void *kaddr = page_address(node_page);
  156. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  157. return le32_to_cpu(rn->footer.ino);
  158. }
  159. static inline nid_t nid_of_node(struct page *node_page)
  160. {
  161. void *kaddr = page_address(node_page);
  162. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  163. return le32_to_cpu(rn->footer.nid);
  164. }
  165. static inline unsigned int ofs_of_node(struct page *node_page)
  166. {
  167. void *kaddr = page_address(node_page);
  168. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  169. unsigned flag = le32_to_cpu(rn->footer.flag);
  170. return flag >> OFFSET_BIT_SHIFT;
  171. }
  172. static inline unsigned long long cpver_of_node(struct page *node_page)
  173. {
  174. void *kaddr = page_address(node_page);
  175. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  176. return le64_to_cpu(rn->footer.cp_ver);
  177. }
  178. static inline block_t next_blkaddr_of_node(struct page *node_page)
  179. {
  180. void *kaddr = page_address(node_page);
  181. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  182. return le32_to_cpu(rn->footer.next_blkaddr);
  183. }
  184. /*
  185. * f2fs assigns the following node offsets described as (num).
  186. * N = NIDS_PER_BLOCK
  187. *
  188. * Inode block (0)
  189. * |- direct node (1)
  190. * |- direct node (2)
  191. * |- indirect node (3)
  192. * | `- direct node (4 => 4 + N - 1)
  193. * |- indirect node (4 + N)
  194. * | `- direct node (5 + N => 5 + 2N - 1)
  195. * `- double indirect node (5 + 2N)
  196. * `- indirect node (6 + 2N)
  197. * `- direct node (x(N + 1))
  198. */
  199. static inline bool IS_DNODE(struct page *node_page)
  200. {
  201. unsigned int ofs = ofs_of_node(node_page);
  202. if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
  203. ofs == 5 + 2 * NIDS_PER_BLOCK)
  204. return false;
  205. if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
  206. ofs -= 6 + 2 * NIDS_PER_BLOCK;
  207. if ((long int)ofs % (NIDS_PER_BLOCK + 1))
  208. return false;
  209. }
  210. return true;
  211. }
  212. static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
  213. {
  214. struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
  215. wait_on_page_writeback(p);
  216. if (i)
  217. rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
  218. else
  219. rn->in.nid[off] = cpu_to_le32(nid);
  220. set_page_dirty(p);
  221. }
  222. static inline nid_t get_nid(struct page *p, int off, bool i)
  223. {
  224. struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
  225. if (i)
  226. return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
  227. return le32_to_cpu(rn->in.nid[off]);
  228. }
  229. /*
  230. * Coldness identification:
  231. * - Mark cold files in f2fs_inode_info
  232. * - Mark cold node blocks in their node footer
  233. * - Mark cold data pages in page cache
  234. */
  235. static inline int is_cold_file(struct inode *inode)
  236. {
  237. return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
  238. }
  239. static inline int is_cold_data(struct page *page)
  240. {
  241. return PageChecked(page);
  242. }
  243. static inline void set_cold_data(struct page *page)
  244. {
  245. SetPageChecked(page);
  246. }
  247. static inline void clear_cold_data(struct page *page)
  248. {
  249. ClearPageChecked(page);
  250. }
  251. static inline int is_cold_node(struct page *page)
  252. {
  253. void *kaddr = page_address(page);
  254. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  255. unsigned int flag = le32_to_cpu(rn->footer.flag);
  256. return flag & (0x1 << COLD_BIT_SHIFT);
  257. }
  258. static inline unsigned char is_fsync_dnode(struct page *page)
  259. {
  260. void *kaddr = page_address(page);
  261. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  262. unsigned int flag = le32_to_cpu(rn->footer.flag);
  263. return flag & (0x1 << FSYNC_BIT_SHIFT);
  264. }
  265. static inline unsigned char is_dent_dnode(struct page *page)
  266. {
  267. void *kaddr = page_address(page);
  268. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  269. unsigned int flag = le32_to_cpu(rn->footer.flag);
  270. return flag & (0x1 << DENT_BIT_SHIFT);
  271. }
  272. static inline void set_cold_node(struct inode *inode, struct page *page)
  273. {
  274. struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
  275. unsigned int flag = le32_to_cpu(rn->footer.flag);
  276. if (S_ISDIR(inode->i_mode))
  277. flag &= ~(0x1 << COLD_BIT_SHIFT);
  278. else
  279. flag |= (0x1 << COLD_BIT_SHIFT);
  280. rn->footer.flag = cpu_to_le32(flag);
  281. }
  282. static inline void set_fsync_mark(struct page *page, int mark)
  283. {
  284. void *kaddr = page_address(page);
  285. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  286. unsigned int flag = le32_to_cpu(rn->footer.flag);
  287. if (mark)
  288. flag |= (0x1 << FSYNC_BIT_SHIFT);
  289. else
  290. flag &= ~(0x1 << FSYNC_BIT_SHIFT);
  291. rn->footer.flag = cpu_to_le32(flag);
  292. }
  293. static inline void set_dentry_mark(struct page *page, int mark)
  294. {
  295. void *kaddr = page_address(page);
  296. struct f2fs_node *rn = (struct f2fs_node *)kaddr;
  297. unsigned int flag = le32_to_cpu(rn->footer.flag);
  298. if (mark)
  299. flag |= (0x1 << DENT_BIT_SHIFT);
  300. else
  301. flag &= ~(0x1 << DENT_BIT_SHIFT);
  302. rn->footer.flag = cpu_to_le32(flag);
  303. }