inode.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. void f2fs_set_inode_flags(struct inode *inode)
  18. {
  19. unsigned int flags = F2FS_I(inode)->i_flags;
  20. inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
  21. S_NOATIME | S_DIRSYNC);
  22. if (flags & FS_SYNC_FL)
  23. inode->i_flags |= S_SYNC;
  24. if (flags & FS_APPEND_FL)
  25. inode->i_flags |= S_APPEND;
  26. if (flags & FS_IMMUTABLE_FL)
  27. inode->i_flags |= S_IMMUTABLE;
  28. if (flags & FS_NOATIME_FL)
  29. inode->i_flags |= S_NOATIME;
  30. if (flags & FS_DIRSYNC_FL)
  31. inode->i_flags |= S_DIRSYNC;
  32. }
  33. static int do_read_inode(struct inode *inode)
  34. {
  35. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  36. struct f2fs_inode_info *fi = F2FS_I(inode);
  37. struct page *node_page;
  38. struct f2fs_node *rn;
  39. struct f2fs_inode *ri;
  40. /* Check if ino is within scope */
  41. check_nid_range(sbi, inode->i_ino);
  42. node_page = get_node_page(sbi, inode->i_ino);
  43. if (IS_ERR(node_page))
  44. return PTR_ERR(node_page);
  45. rn = page_address(node_page);
  46. ri = &(rn->i);
  47. inode->i_mode = le16_to_cpu(ri->i_mode);
  48. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  49. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  50. set_nlink(inode, le32_to_cpu(ri->i_links));
  51. inode->i_size = le64_to_cpu(ri->i_size);
  52. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  53. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  54. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  55. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  56. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  57. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  58. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  59. inode->i_generation = le32_to_cpu(ri->i_generation);
  60. if (ri->i_addr[0])
  61. inode->i_rdev = old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  62. else
  63. inode->i_rdev = new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  64. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  65. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  66. fi->i_flags = le32_to_cpu(ri->i_flags);
  67. fi->flags = 0;
  68. fi->data_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver) - 1;
  69. fi->i_advise = ri->i_advise;
  70. fi->i_pino = le32_to_cpu(ri->i_pino);
  71. get_extent_info(&fi->ext, ri->i_ext);
  72. f2fs_put_page(node_page, 1);
  73. return 0;
  74. }
  75. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  76. {
  77. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  78. struct inode *inode;
  79. int ret;
  80. inode = iget_locked(sb, ino);
  81. if (!inode)
  82. return ERR_PTR(-ENOMEM);
  83. if (!(inode->i_state & I_NEW))
  84. return inode;
  85. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  86. goto make_now;
  87. ret = do_read_inode(inode);
  88. if (ret)
  89. goto bad_inode;
  90. if (!sbi->por_doing && inode->i_nlink == 0) {
  91. ret = -ENOENT;
  92. goto bad_inode;
  93. }
  94. make_now:
  95. if (ino == F2FS_NODE_INO(sbi)) {
  96. inode->i_mapping->a_ops = &f2fs_node_aops;
  97. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  98. } else if (ino == F2FS_META_INO(sbi)) {
  99. inode->i_mapping->a_ops = &f2fs_meta_aops;
  100. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  101. } else if (S_ISREG(inode->i_mode)) {
  102. inode->i_op = &f2fs_file_inode_operations;
  103. inode->i_fop = &f2fs_file_operations;
  104. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  105. } else if (S_ISDIR(inode->i_mode)) {
  106. inode->i_op = &f2fs_dir_inode_operations;
  107. inode->i_fop = &f2fs_dir_operations;
  108. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  109. mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE |
  110. __GFP_ZERO);
  111. } else if (S_ISLNK(inode->i_mode)) {
  112. inode->i_op = &f2fs_symlink_inode_operations;
  113. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  114. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  115. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  116. inode->i_op = &f2fs_special_inode_operations;
  117. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  118. } else {
  119. ret = -EIO;
  120. goto bad_inode;
  121. }
  122. unlock_new_inode(inode);
  123. return inode;
  124. bad_inode:
  125. iget_failed(inode);
  126. return ERR_PTR(ret);
  127. }
  128. void update_inode(struct inode *inode, struct page *node_page)
  129. {
  130. struct f2fs_node *rn;
  131. struct f2fs_inode *ri;
  132. wait_on_page_writeback(node_page);
  133. rn = page_address(node_page);
  134. ri = &(rn->i);
  135. ri->i_mode = cpu_to_le16(inode->i_mode);
  136. ri->i_advise = F2FS_I(inode)->i_advise;
  137. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  138. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  139. ri->i_links = cpu_to_le32(inode->i_nlink);
  140. ri->i_size = cpu_to_le64(i_size_read(inode));
  141. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  142. set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
  143. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  144. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  145. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  146. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  147. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  148. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  149. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  150. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  151. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  152. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  153. ri->i_generation = cpu_to_le32(inode->i_generation);
  154. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  155. if (old_valid_dev(inode->i_rdev)) {
  156. ri->i_addr[0] =
  157. cpu_to_le32(old_encode_dev(inode->i_rdev));
  158. ri->i_addr[1] = 0;
  159. } else {
  160. ri->i_addr[0] = 0;
  161. ri->i_addr[1] =
  162. cpu_to_le32(new_encode_dev(inode->i_rdev));
  163. ri->i_addr[2] = 0;
  164. }
  165. }
  166. set_cold_node(inode, node_page);
  167. set_page_dirty(node_page);
  168. }
  169. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  170. {
  171. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  172. struct page *node_page;
  173. bool need_lock = false;
  174. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  175. inode->i_ino == F2FS_META_INO(sbi))
  176. return 0;
  177. if (wbc)
  178. f2fs_balance_fs(sbi);
  179. node_page = get_node_page(sbi, inode->i_ino);
  180. if (IS_ERR(node_page))
  181. return PTR_ERR(node_page);
  182. if (!PageDirty(node_page)) {
  183. need_lock = true;
  184. f2fs_put_page(node_page, 1);
  185. mutex_lock(&sbi->write_inode);
  186. node_page = get_node_page(sbi, inode->i_ino);
  187. if (IS_ERR(node_page)) {
  188. mutex_unlock(&sbi->write_inode);
  189. return PTR_ERR(node_page);
  190. }
  191. }
  192. update_inode(inode, node_page);
  193. f2fs_put_page(node_page, 1);
  194. if (need_lock)
  195. mutex_unlock(&sbi->write_inode);
  196. return 0;
  197. }
  198. /*
  199. * Called at the last iput() if i_nlink is zero
  200. */
  201. void f2fs_evict_inode(struct inode *inode)
  202. {
  203. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  204. truncate_inode_pages(&inode->i_data, 0);
  205. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  206. inode->i_ino == F2FS_META_INO(sbi))
  207. goto no_delete;
  208. BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents));
  209. remove_dirty_dir_inode(inode);
  210. if (inode->i_nlink || is_bad_inode(inode))
  211. goto no_delete;
  212. sb_start_intwrite(inode->i_sb);
  213. set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
  214. i_size_write(inode, 0);
  215. if (F2FS_HAS_BLOCKS(inode))
  216. f2fs_truncate(inode);
  217. remove_inode_page(inode);
  218. sb_end_intwrite(inode->i_sb);
  219. no_delete:
  220. clear_inode(inode);
  221. }