extents_status.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992
  1. /*
  2. * fs/ext4/extents_status.c
  3. *
  4. * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  5. * Modified by
  6. * Allison Henderson <achender@linux.vnet.ibm.com>
  7. * Hugh Dickins <hughd@google.com>
  8. * Zheng Liu <wenqing.lz@taobao.com>
  9. *
  10. * Ext4 extents status tree core functions.
  11. */
  12. #include <linux/rbtree.h>
  13. #include "ext4.h"
  14. #include "extents_status.h"
  15. #include "ext4_extents.h"
  16. #include <trace/events/ext4.h>
  17. /*
  18. * According to previous discussion in Ext4 Developer Workshop, we
  19. * will introduce a new structure called io tree to track all extent
  20. * status in order to solve some problems that we have met
  21. * (e.g. Reservation space warning), and provide extent-level locking.
  22. * Delay extent tree is the first step to achieve this goal. It is
  23. * original built by Yongqiang Yang. At that time it is called delay
  24. * extent tree, whose goal is only track delayed extents in memory to
  25. * simplify the implementation of fiemap and bigalloc, and introduce
  26. * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
  27. * delay extent tree at the first commit. But for better understand
  28. * what it does, it has been rename to extent status tree.
  29. *
  30. * Step1:
  31. * Currently the first step has been done. All delayed extents are
  32. * tracked in the tree. It maintains the delayed extent when a delayed
  33. * allocation is issued, and the delayed extent is written out or
  34. * invalidated. Therefore the implementation of fiemap and bigalloc
  35. * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  36. *
  37. * The following comment describes the implemenmtation of extent
  38. * status tree and future works.
  39. *
  40. * Step2:
  41. * In this step all extent status are tracked by extent status tree.
  42. * Thus, we can first try to lookup a block mapping in this tree before
  43. * finding it in extent tree. Hence, single extent cache can be removed
  44. * because extent status tree can do a better job. Extents in status
  45. * tree are loaded on-demand. Therefore, the extent status tree may not
  46. * contain all of the extents in a file. Meanwhile we define a shrinker
  47. * to reclaim memory from extent status tree because fragmented extent
  48. * tree will make status tree cost too much memory. written/unwritten/-
  49. * hole extents in the tree will be reclaimed by this shrinker when we
  50. * are under high memory pressure. Delayed extents will not be
  51. * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  52. */
  53. /*
  54. * Extent status tree implementation for ext4.
  55. *
  56. *
  57. * ==========================================================================
  58. * Extent status tree tracks all extent status.
  59. *
  60. * 1. Why we need to implement extent status tree?
  61. *
  62. * Without extent status tree, ext4 identifies a delayed extent by looking
  63. * up page cache, this has several deficiencies - complicated, buggy,
  64. * and inefficient code.
  65. *
  66. * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  67. * block or a range of blocks are belonged to a delayed extent.
  68. *
  69. * Let us have a look at how they do without extent status tree.
  70. * -- FIEMAP
  71. * FIEMAP looks up page cache to identify delayed allocations from holes.
  72. *
  73. * -- SEEK_HOLE/DATA
  74. * SEEK_HOLE/DATA has the same problem as FIEMAP.
  75. *
  76. * -- bigalloc
  77. * bigalloc looks up page cache to figure out if a block is
  78. * already under delayed allocation or not to determine whether
  79. * quota reserving is needed for the cluster.
  80. *
  81. * -- writeout
  82. * Writeout looks up whole page cache to see if a buffer is
  83. * mapped, If there are not very many delayed buffers, then it is
  84. * time comsuming.
  85. *
  86. * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  87. * bigalloc and writeout can figure out if a block or a range of
  88. * blocks is under delayed allocation(belonged to a delayed extent) or
  89. * not by searching the extent tree.
  90. *
  91. *
  92. * ==========================================================================
  93. * 2. Ext4 extent status tree impelmentation
  94. *
  95. * -- extent
  96. * A extent is a range of blocks which are contiguous logically and
  97. * physically. Unlike extent in extent tree, this extent in ext4 is
  98. * a in-memory struct, there is no corresponding on-disk data. There
  99. * is no limit on length of extent, so an extent can contain as many
  100. * blocks as they are contiguous logically and physically.
  101. *
  102. * -- extent status tree
  103. * Every inode has an extent status tree and all allocation blocks
  104. * are added to the tree with different status. The extent in the
  105. * tree are ordered by logical block no.
  106. *
  107. * -- operations on a extent status tree
  108. * There are three important operations on a delayed extent tree: find
  109. * next extent, adding a extent(a range of blocks) and removing a extent.
  110. *
  111. * -- race on a extent status tree
  112. * Extent status tree is protected by inode->i_es_lock.
  113. *
  114. * -- memory consumption
  115. * Fragmented extent tree will make extent status tree cost too much
  116. * memory. Hence, we will reclaim written/unwritten/hole extents from
  117. * the tree under a heavy memory pressure.
  118. *
  119. *
  120. * ==========================================================================
  121. * 3. Performance analysis
  122. *
  123. * -- overhead
  124. * 1. There is a cache extent for write access, so if writes are
  125. * not very random, adding space operaions are in O(1) time.
  126. *
  127. * -- gain
  128. * 2. Code is much simpler, more readable, more maintainable and
  129. * more efficient.
  130. *
  131. *
  132. * ==========================================================================
  133. * 4. TODO list
  134. *
  135. * -- Refactor delayed space reservation
  136. *
  137. * -- Extent-level locking
  138. */
  139. static struct kmem_cache *ext4_es_cachep;
  140. static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
  141. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  142. ext4_lblk_t end);
  143. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  144. int nr_to_scan);
  145. int __init ext4_init_es(void)
  146. {
  147. ext4_es_cachep = kmem_cache_create("ext4_extent_status",
  148. sizeof(struct extent_status),
  149. 0, (SLAB_RECLAIM_ACCOUNT), NULL);
  150. if (ext4_es_cachep == NULL)
  151. return -ENOMEM;
  152. return 0;
  153. }
  154. void ext4_exit_es(void)
  155. {
  156. if (ext4_es_cachep)
  157. kmem_cache_destroy(ext4_es_cachep);
  158. }
  159. void ext4_es_init_tree(struct ext4_es_tree *tree)
  160. {
  161. tree->root = RB_ROOT;
  162. tree->cache_es = NULL;
  163. }
  164. #ifdef ES_DEBUG__
  165. static void ext4_es_print_tree(struct inode *inode)
  166. {
  167. struct ext4_es_tree *tree;
  168. struct rb_node *node;
  169. printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
  170. tree = &EXT4_I(inode)->i_es_tree;
  171. node = rb_first(&tree->root);
  172. while (node) {
  173. struct extent_status *es;
  174. es = rb_entry(node, struct extent_status, rb_node);
  175. printk(KERN_DEBUG " [%u/%u) %llu %llx",
  176. es->es_lblk, es->es_len,
  177. ext4_es_pblock(es), ext4_es_status(es));
  178. node = rb_next(node);
  179. }
  180. printk(KERN_DEBUG "\n");
  181. }
  182. #else
  183. #define ext4_es_print_tree(inode)
  184. #endif
  185. static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
  186. {
  187. BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
  188. return es->es_lblk + es->es_len - 1;
  189. }
  190. /*
  191. * search through the tree for an delayed extent with a given offset. If
  192. * it can't be found, try to find next extent.
  193. */
  194. static struct extent_status *__es_tree_search(struct rb_root *root,
  195. ext4_lblk_t lblk)
  196. {
  197. struct rb_node *node = root->rb_node;
  198. struct extent_status *es = NULL;
  199. while (node) {
  200. es = rb_entry(node, struct extent_status, rb_node);
  201. if (lblk < es->es_lblk)
  202. node = node->rb_left;
  203. else if (lblk > ext4_es_end(es))
  204. node = node->rb_right;
  205. else
  206. return es;
  207. }
  208. if (es && lblk < es->es_lblk)
  209. return es;
  210. if (es && lblk > ext4_es_end(es)) {
  211. node = rb_next(&es->rb_node);
  212. return node ? rb_entry(node, struct extent_status, rb_node) :
  213. NULL;
  214. }
  215. return NULL;
  216. }
  217. /*
  218. * ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk
  219. * if it exists, otherwise, the next extent after @es->lblk.
  220. *
  221. * @inode: the inode which owns delayed extents
  222. * @lblk: the offset where we start to search
  223. * @es: delayed extent that we found
  224. */
  225. void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
  226. struct extent_status *es)
  227. {
  228. struct ext4_es_tree *tree = NULL;
  229. struct extent_status *es1 = NULL;
  230. struct rb_node *node;
  231. BUG_ON(es == NULL);
  232. trace_ext4_es_find_delayed_extent_enter(inode, lblk);
  233. read_lock(&EXT4_I(inode)->i_es_lock);
  234. tree = &EXT4_I(inode)->i_es_tree;
  235. /* find extent in cache firstly */
  236. es->es_lblk = es->es_len = es->es_pblk = 0;
  237. if (tree->cache_es) {
  238. es1 = tree->cache_es;
  239. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  240. es_debug("%u cached by [%u/%u) %llu %llx\n",
  241. lblk, es1->es_lblk, es1->es_len,
  242. ext4_es_pblock(es1), ext4_es_status(es1));
  243. goto out;
  244. }
  245. }
  246. es1 = __es_tree_search(&tree->root, lblk);
  247. out:
  248. if (es1 && !ext4_es_is_delayed(es1)) {
  249. while ((node = rb_next(&es1->rb_node)) != NULL) {
  250. es1 = rb_entry(node, struct extent_status, rb_node);
  251. if (ext4_es_is_delayed(es1))
  252. break;
  253. }
  254. }
  255. if (es1 && ext4_es_is_delayed(es1)) {
  256. tree->cache_es = es1;
  257. es->es_lblk = es1->es_lblk;
  258. es->es_len = es1->es_len;
  259. es->es_pblk = es1->es_pblk;
  260. }
  261. read_unlock(&EXT4_I(inode)->i_es_lock);
  262. ext4_es_lru_add(inode);
  263. trace_ext4_es_find_delayed_extent_exit(inode, es);
  264. }
  265. static struct extent_status *
  266. ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
  267. ext4_fsblk_t pblk)
  268. {
  269. struct extent_status *es;
  270. es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
  271. if (es == NULL)
  272. return NULL;
  273. es->es_lblk = lblk;
  274. es->es_len = len;
  275. es->es_pblk = pblk;
  276. /*
  277. * We don't count delayed extent because we never try to reclaim them
  278. */
  279. if (!ext4_es_is_delayed(es)) {
  280. EXT4_I(inode)->i_es_lru_nr++;
  281. percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
  282. }
  283. return es;
  284. }
  285. static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
  286. {
  287. /* Decrease the lru counter when this es is not delayed */
  288. if (!ext4_es_is_delayed(es)) {
  289. BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
  290. EXT4_I(inode)->i_es_lru_nr--;
  291. percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
  292. }
  293. kmem_cache_free(ext4_es_cachep, es);
  294. }
  295. /*
  296. * Check whether or not two extents can be merged
  297. * Condition:
  298. * - logical block number is contiguous
  299. * - physical block number is contiguous
  300. * - status is equal
  301. */
  302. static int ext4_es_can_be_merged(struct extent_status *es1,
  303. struct extent_status *es2)
  304. {
  305. if (ext4_es_status(es1) != ext4_es_status(es2))
  306. return 0;
  307. if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
  308. return 0;
  309. if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
  310. return 0;
  311. if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
  312. (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
  313. return 1;
  314. if (ext4_es_is_hole(es1))
  315. return 1;
  316. /* we need to check delayed extent is without unwritten status */
  317. if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
  318. return 1;
  319. return 0;
  320. }
  321. static struct extent_status *
  322. ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
  323. {
  324. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  325. struct extent_status *es1;
  326. struct rb_node *node;
  327. node = rb_prev(&es->rb_node);
  328. if (!node)
  329. return es;
  330. es1 = rb_entry(node, struct extent_status, rb_node);
  331. if (ext4_es_can_be_merged(es1, es)) {
  332. es1->es_len += es->es_len;
  333. rb_erase(&es->rb_node, &tree->root);
  334. ext4_es_free_extent(inode, es);
  335. es = es1;
  336. }
  337. return es;
  338. }
  339. static struct extent_status *
  340. ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
  341. {
  342. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  343. struct extent_status *es1;
  344. struct rb_node *node;
  345. node = rb_next(&es->rb_node);
  346. if (!node)
  347. return es;
  348. es1 = rb_entry(node, struct extent_status, rb_node);
  349. if (ext4_es_can_be_merged(es, es1)) {
  350. es->es_len += es1->es_len;
  351. rb_erase(node, &tree->root);
  352. ext4_es_free_extent(inode, es1);
  353. }
  354. return es;
  355. }
  356. #ifdef ES_AGGRESSIVE_TEST
  357. static void ext4_es_insert_extent_ext_check(struct inode *inode,
  358. struct extent_status *es)
  359. {
  360. struct ext4_ext_path *path = NULL;
  361. struct ext4_extent *ex;
  362. ext4_lblk_t ee_block;
  363. ext4_fsblk_t ee_start;
  364. unsigned short ee_len;
  365. int depth, ee_status, es_status;
  366. path = ext4_ext_find_extent(inode, es->es_lblk, NULL);
  367. if (IS_ERR(path))
  368. return;
  369. depth = ext_depth(inode);
  370. ex = path[depth].p_ext;
  371. if (ex) {
  372. ee_block = le32_to_cpu(ex->ee_block);
  373. ee_start = ext4_ext_pblock(ex);
  374. ee_len = ext4_ext_get_actual_len(ex);
  375. ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
  376. es_status = ext4_es_is_unwritten(es) ? 1 : 0;
  377. /*
  378. * Make sure ex and es are not overlap when we try to insert
  379. * a delayed/hole extent.
  380. */
  381. if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
  382. if (in_range(es->es_lblk, ee_block, ee_len)) {
  383. pr_warn("ES insert assertation failed for "
  384. "inode: %lu we can find an extent "
  385. "at block [%d/%d/%llu/%c], but we "
  386. "want to add an delayed/hole extent "
  387. "[%d/%d/%llu/%llx]\n",
  388. inode->i_ino, ee_block, ee_len,
  389. ee_start, ee_status ? 'u' : 'w',
  390. es->es_lblk, es->es_len,
  391. ext4_es_pblock(es), ext4_es_status(es));
  392. }
  393. goto out;
  394. }
  395. /*
  396. * We don't check ee_block == es->es_lblk, etc. because es
  397. * might be a part of whole extent, vice versa.
  398. */
  399. if (es->es_lblk < ee_block ||
  400. ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
  401. pr_warn("ES insert assertation failed for inode: %lu "
  402. "ex_status [%d/%d/%llu/%c] != "
  403. "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
  404. ee_block, ee_len, ee_start,
  405. ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
  406. ext4_es_pblock(es), es_status ? 'u' : 'w');
  407. goto out;
  408. }
  409. if (ee_status ^ es_status) {
  410. pr_warn("ES insert assertation failed for inode: %lu "
  411. "ex_status [%d/%d/%llu/%c] != "
  412. "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
  413. ee_block, ee_len, ee_start,
  414. ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
  415. ext4_es_pblock(es), es_status ? 'u' : 'w');
  416. }
  417. } else {
  418. /*
  419. * We can't find an extent on disk. So we need to make sure
  420. * that we don't want to add an written/unwritten extent.
  421. */
  422. if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
  423. pr_warn("ES insert assertation failed for inode: %lu "
  424. "can't find an extent at block %d but we want "
  425. "to add an written/unwritten extent "
  426. "[%d/%d/%llu/%llx]\n", inode->i_ino,
  427. es->es_lblk, es->es_lblk, es->es_len,
  428. ext4_es_pblock(es), ext4_es_status(es));
  429. }
  430. }
  431. out:
  432. if (path) {
  433. ext4_ext_drop_refs(path);
  434. kfree(path);
  435. }
  436. }
  437. static void ext4_es_insert_extent_ind_check(struct inode *inode,
  438. struct extent_status *es)
  439. {
  440. struct ext4_map_blocks map;
  441. int retval;
  442. /*
  443. * Here we call ext4_ind_map_blocks to lookup a block mapping because
  444. * 'Indirect' structure is defined in indirect.c. So we couldn't
  445. * access direct/indirect tree from outside. It is too dirty to define
  446. * this function in indirect.c file.
  447. */
  448. map.m_lblk = es->es_lblk;
  449. map.m_len = es->es_len;
  450. retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
  451. if (retval > 0) {
  452. if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
  453. /*
  454. * We want to add a delayed/hole extent but this
  455. * block has been allocated.
  456. */
  457. pr_warn("ES insert assertation failed for inode: %lu "
  458. "We can find blocks but we want to add a "
  459. "delayed/hole extent [%d/%d/%llu/%llx]\n",
  460. inode->i_ino, es->es_lblk, es->es_len,
  461. ext4_es_pblock(es), ext4_es_status(es));
  462. return;
  463. } else if (ext4_es_is_written(es)) {
  464. if (retval != es->es_len) {
  465. pr_warn("ES insert assertation failed for "
  466. "inode: %lu retval %d != es_len %d\n",
  467. inode->i_ino, retval, es->es_len);
  468. return;
  469. }
  470. if (map.m_pblk != ext4_es_pblock(es)) {
  471. pr_warn("ES insert assertation failed for "
  472. "inode: %lu m_pblk %llu != "
  473. "es_pblk %llu\n",
  474. inode->i_ino, map.m_pblk,
  475. ext4_es_pblock(es));
  476. return;
  477. }
  478. } else {
  479. /*
  480. * We don't need to check unwritten extent because
  481. * indirect-based file doesn't have it.
  482. */
  483. BUG_ON(1);
  484. }
  485. } else if (retval == 0) {
  486. if (ext4_es_is_written(es)) {
  487. pr_warn("ES insert assertation failed for inode: %lu "
  488. "We can't find the block but we want to add "
  489. "an written extent [%d/%d/%llu/%llx]\n",
  490. inode->i_ino, es->es_lblk, es->es_len,
  491. ext4_es_pblock(es), ext4_es_status(es));
  492. return;
  493. }
  494. }
  495. }
  496. static inline void ext4_es_insert_extent_check(struct inode *inode,
  497. struct extent_status *es)
  498. {
  499. /*
  500. * We don't need to worry about the race condition because
  501. * caller takes i_data_sem locking.
  502. */
  503. BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
  504. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  505. ext4_es_insert_extent_ext_check(inode, es);
  506. else
  507. ext4_es_insert_extent_ind_check(inode, es);
  508. }
  509. #else
  510. static inline void ext4_es_insert_extent_check(struct inode *inode,
  511. struct extent_status *es)
  512. {
  513. }
  514. #endif
  515. static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
  516. {
  517. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  518. struct rb_node **p = &tree->root.rb_node;
  519. struct rb_node *parent = NULL;
  520. struct extent_status *es;
  521. while (*p) {
  522. parent = *p;
  523. es = rb_entry(parent, struct extent_status, rb_node);
  524. if (newes->es_lblk < es->es_lblk) {
  525. if (ext4_es_can_be_merged(newes, es)) {
  526. /*
  527. * Here we can modify es_lblk directly
  528. * because it isn't overlapped.
  529. */
  530. es->es_lblk = newes->es_lblk;
  531. es->es_len += newes->es_len;
  532. if (ext4_es_is_written(es) ||
  533. ext4_es_is_unwritten(es))
  534. ext4_es_store_pblock(es,
  535. newes->es_pblk);
  536. es = ext4_es_try_to_merge_left(inode, es);
  537. goto out;
  538. }
  539. p = &(*p)->rb_left;
  540. } else if (newes->es_lblk > ext4_es_end(es)) {
  541. if (ext4_es_can_be_merged(es, newes)) {
  542. es->es_len += newes->es_len;
  543. es = ext4_es_try_to_merge_right(inode, es);
  544. goto out;
  545. }
  546. p = &(*p)->rb_right;
  547. } else {
  548. BUG_ON(1);
  549. return -EINVAL;
  550. }
  551. }
  552. es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
  553. newes->es_pblk);
  554. if (!es)
  555. return -ENOMEM;
  556. rb_link_node(&es->rb_node, parent, p);
  557. rb_insert_color(&es->rb_node, &tree->root);
  558. out:
  559. tree->cache_es = es;
  560. return 0;
  561. }
  562. /*
  563. * ext4_es_insert_extent() adds a space to a extent status tree.
  564. *
  565. * ext4_es_insert_extent is called by ext4_da_write_begin and
  566. * ext4_es_remove_extent.
  567. *
  568. * Return 0 on success, error code on failure.
  569. */
  570. int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
  571. ext4_lblk_t len, ext4_fsblk_t pblk,
  572. unsigned long long status)
  573. {
  574. struct extent_status newes;
  575. ext4_lblk_t end = lblk + len - 1;
  576. int err = 0;
  577. es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
  578. lblk, len, pblk, status, inode->i_ino);
  579. if (!len)
  580. return 0;
  581. BUG_ON(end < lblk);
  582. newes.es_lblk = lblk;
  583. newes.es_len = len;
  584. ext4_es_store_pblock(&newes, pblk);
  585. ext4_es_store_status(&newes, status);
  586. trace_ext4_es_insert_extent(inode, &newes);
  587. ext4_es_insert_extent_check(inode, &newes);
  588. write_lock(&EXT4_I(inode)->i_es_lock);
  589. err = __es_remove_extent(inode, lblk, end);
  590. if (err != 0)
  591. goto error;
  592. err = __es_insert_extent(inode, &newes);
  593. error:
  594. write_unlock(&EXT4_I(inode)->i_es_lock);
  595. ext4_es_lru_add(inode);
  596. ext4_es_print_tree(inode);
  597. return err;
  598. }
  599. /*
  600. * ext4_es_lookup_extent() looks up an extent in extent status tree.
  601. *
  602. * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
  603. *
  604. * Return: 1 on found, 0 on not
  605. */
  606. int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
  607. struct extent_status *es)
  608. {
  609. struct ext4_es_tree *tree;
  610. struct extent_status *es1 = NULL;
  611. struct rb_node *node;
  612. int found = 0;
  613. trace_ext4_es_lookup_extent_enter(inode, lblk);
  614. es_debug("lookup extent in block %u\n", lblk);
  615. tree = &EXT4_I(inode)->i_es_tree;
  616. read_lock(&EXT4_I(inode)->i_es_lock);
  617. /* find extent in cache firstly */
  618. es->es_lblk = es->es_len = es->es_pblk = 0;
  619. if (tree->cache_es) {
  620. es1 = tree->cache_es;
  621. if (in_range(lblk, es1->es_lblk, es1->es_len)) {
  622. es_debug("%u cached by [%u/%u)\n",
  623. lblk, es1->es_lblk, es1->es_len);
  624. found = 1;
  625. goto out;
  626. }
  627. }
  628. node = tree->root.rb_node;
  629. while (node) {
  630. es1 = rb_entry(node, struct extent_status, rb_node);
  631. if (lblk < es1->es_lblk)
  632. node = node->rb_left;
  633. else if (lblk > ext4_es_end(es1))
  634. node = node->rb_right;
  635. else {
  636. found = 1;
  637. break;
  638. }
  639. }
  640. out:
  641. if (found) {
  642. BUG_ON(!es1);
  643. es->es_lblk = es1->es_lblk;
  644. es->es_len = es1->es_len;
  645. es->es_pblk = es1->es_pblk;
  646. }
  647. read_unlock(&EXT4_I(inode)->i_es_lock);
  648. ext4_es_lru_add(inode);
  649. trace_ext4_es_lookup_extent_exit(inode, es, found);
  650. return found;
  651. }
  652. static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  653. ext4_lblk_t end)
  654. {
  655. struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
  656. struct rb_node *node;
  657. struct extent_status *es;
  658. struct extent_status orig_es;
  659. ext4_lblk_t len1, len2;
  660. ext4_fsblk_t block;
  661. int err = 0;
  662. es = __es_tree_search(&tree->root, lblk);
  663. if (!es)
  664. goto out;
  665. if (es->es_lblk > end)
  666. goto out;
  667. /* Simply invalidate cache_es. */
  668. tree->cache_es = NULL;
  669. orig_es.es_lblk = es->es_lblk;
  670. orig_es.es_len = es->es_len;
  671. orig_es.es_pblk = es->es_pblk;
  672. len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
  673. len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
  674. if (len1 > 0)
  675. es->es_len = len1;
  676. if (len2 > 0) {
  677. if (len1 > 0) {
  678. struct extent_status newes;
  679. newes.es_lblk = end + 1;
  680. newes.es_len = len2;
  681. if (ext4_es_is_written(&orig_es) ||
  682. ext4_es_is_unwritten(&orig_es)) {
  683. block = ext4_es_pblock(&orig_es) +
  684. orig_es.es_len - len2;
  685. ext4_es_store_pblock(&newes, block);
  686. }
  687. ext4_es_store_status(&newes, ext4_es_status(&orig_es));
  688. err = __es_insert_extent(inode, &newes);
  689. if (err) {
  690. es->es_lblk = orig_es.es_lblk;
  691. es->es_len = orig_es.es_len;
  692. goto out;
  693. }
  694. } else {
  695. es->es_lblk = end + 1;
  696. es->es_len = len2;
  697. if (ext4_es_is_written(es) ||
  698. ext4_es_is_unwritten(es)) {
  699. block = orig_es.es_pblk + orig_es.es_len - len2;
  700. ext4_es_store_pblock(es, block);
  701. }
  702. }
  703. goto out;
  704. }
  705. if (len1 > 0) {
  706. node = rb_next(&es->rb_node);
  707. if (node)
  708. es = rb_entry(node, struct extent_status, rb_node);
  709. else
  710. es = NULL;
  711. }
  712. while (es && ext4_es_end(es) <= end) {
  713. node = rb_next(&es->rb_node);
  714. rb_erase(&es->rb_node, &tree->root);
  715. ext4_es_free_extent(inode, es);
  716. if (!node) {
  717. es = NULL;
  718. break;
  719. }
  720. es = rb_entry(node, struct extent_status, rb_node);
  721. }
  722. if (es && es->es_lblk < end + 1) {
  723. ext4_lblk_t orig_len = es->es_len;
  724. len1 = ext4_es_end(es) - end;
  725. es->es_lblk = end + 1;
  726. es->es_len = len1;
  727. if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
  728. block = es->es_pblk + orig_len - len1;
  729. ext4_es_store_pblock(es, block);
  730. }
  731. }
  732. out:
  733. return err;
  734. }
  735. /*
  736. * ext4_es_remove_extent() removes a space from a extent status tree.
  737. *
  738. * Return 0 on success, error code on failure.
  739. */
  740. int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
  741. ext4_lblk_t len)
  742. {
  743. ext4_lblk_t end;
  744. int err = 0;
  745. trace_ext4_es_remove_extent(inode, lblk, len);
  746. es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
  747. lblk, len, inode->i_ino);
  748. if (!len)
  749. return err;
  750. end = lblk + len - 1;
  751. BUG_ON(end < lblk);
  752. write_lock(&EXT4_I(inode)->i_es_lock);
  753. err = __es_remove_extent(inode, lblk, end);
  754. write_unlock(&EXT4_I(inode)->i_es_lock);
  755. ext4_es_print_tree(inode);
  756. return err;
  757. }
  758. int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex)
  759. {
  760. ext4_lblk_t ee_block;
  761. ext4_fsblk_t ee_pblock;
  762. unsigned int ee_len;
  763. ee_block = le32_to_cpu(ex->ee_block);
  764. ee_len = ext4_ext_get_actual_len(ex);
  765. ee_pblock = ext4_ext_pblock(ex);
  766. if (ee_len == 0)
  767. return 0;
  768. return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
  769. EXTENT_STATUS_WRITTEN);
  770. }
  771. static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
  772. {
  773. struct ext4_sb_info *sbi = container_of(shrink,
  774. struct ext4_sb_info, s_es_shrinker);
  775. struct ext4_inode_info *ei;
  776. struct list_head *cur, *tmp, scanned;
  777. int nr_to_scan = sc->nr_to_scan;
  778. int ret, nr_shrunk = 0;
  779. ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
  780. trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
  781. if (!nr_to_scan)
  782. return ret;
  783. INIT_LIST_HEAD(&scanned);
  784. spin_lock(&sbi->s_es_lru_lock);
  785. list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
  786. list_move_tail(cur, &scanned);
  787. ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
  788. read_lock(&ei->i_es_lock);
  789. if (ei->i_es_lru_nr == 0) {
  790. read_unlock(&ei->i_es_lock);
  791. continue;
  792. }
  793. read_unlock(&ei->i_es_lock);
  794. write_lock(&ei->i_es_lock);
  795. ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
  796. write_unlock(&ei->i_es_lock);
  797. nr_shrunk += ret;
  798. nr_to_scan -= ret;
  799. if (nr_to_scan == 0)
  800. break;
  801. }
  802. list_splice_tail(&scanned, &sbi->s_es_lru);
  803. spin_unlock(&sbi->s_es_lru_lock);
  804. ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
  805. trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
  806. return ret;
  807. }
  808. void ext4_es_register_shrinker(struct super_block *sb)
  809. {
  810. struct ext4_sb_info *sbi;
  811. sbi = EXT4_SB(sb);
  812. INIT_LIST_HEAD(&sbi->s_es_lru);
  813. spin_lock_init(&sbi->s_es_lru_lock);
  814. sbi->s_es_shrinker.shrink = ext4_es_shrink;
  815. sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
  816. register_shrinker(&sbi->s_es_shrinker);
  817. }
  818. void ext4_es_unregister_shrinker(struct super_block *sb)
  819. {
  820. unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker);
  821. }
  822. void ext4_es_lru_add(struct inode *inode)
  823. {
  824. struct ext4_inode_info *ei = EXT4_I(inode);
  825. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  826. spin_lock(&sbi->s_es_lru_lock);
  827. if (list_empty(&ei->i_es_lru))
  828. list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
  829. else
  830. list_move_tail(&ei->i_es_lru, &sbi->s_es_lru);
  831. spin_unlock(&sbi->s_es_lru_lock);
  832. }
  833. void ext4_es_lru_del(struct inode *inode)
  834. {
  835. struct ext4_inode_info *ei = EXT4_I(inode);
  836. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  837. spin_lock(&sbi->s_es_lru_lock);
  838. if (!list_empty(&ei->i_es_lru))
  839. list_del_init(&ei->i_es_lru);
  840. spin_unlock(&sbi->s_es_lru_lock);
  841. }
  842. static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
  843. int nr_to_scan)
  844. {
  845. struct inode *inode = &ei->vfs_inode;
  846. struct ext4_es_tree *tree = &ei->i_es_tree;
  847. struct rb_node *node;
  848. struct extent_status *es;
  849. int nr_shrunk = 0;
  850. if (ei->i_es_lru_nr == 0)
  851. return 0;
  852. node = rb_first(&tree->root);
  853. while (node != NULL) {
  854. es = rb_entry(node, struct extent_status, rb_node);
  855. node = rb_next(&es->rb_node);
  856. /*
  857. * We can't reclaim delayed extent from status tree because
  858. * fiemap, bigallic, and seek_data/hole need to use it.
  859. */
  860. if (!ext4_es_is_delayed(es)) {
  861. rb_erase(&es->rb_node, &tree->root);
  862. ext4_es_free_extent(inode, es);
  863. nr_shrunk++;
  864. if (--nr_to_scan == 0)
  865. break;
  866. }
  867. }
  868. tree->cache_es = NULL;
  869. return nr_shrunk;
  870. }