inode.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/highuid.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/writeback.h>
  27. #include <linux/mpage.h>
  28. #include <linux/namei.h>
  29. #include "ext3.h"
  30. #include "xattr.h"
  31. #include "acl.h"
  32. static int ext3_writepage_trans_blocks(struct inode *inode);
  33. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  34. /*
  35. * Test whether an inode is a fast symlink.
  36. */
  37. static int ext3_inode_is_fast_symlink(struct inode *inode)
  38. {
  39. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  40. (inode->i_sb->s_blocksize >> 9) : 0;
  41. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  42. }
  43. /*
  44. * The ext3 forget function must perform a revoke if we are freeing data
  45. * which has been journaled. Metadata (eg. indirect blocks) must be
  46. * revoked in all cases.
  47. *
  48. * "bh" may be NULL: a metadata block may have been freed from memory
  49. * but there may still be a record of it in the journal, and that record
  50. * still needs to be revoked.
  51. */
  52. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  53. struct buffer_head *bh, ext3_fsblk_t blocknr)
  54. {
  55. int err;
  56. might_sleep();
  57. trace_ext3_forget(inode, is_metadata, blocknr);
  58. BUFFER_TRACE(bh, "enter");
  59. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  60. "data mode %lx\n",
  61. bh, is_metadata, inode->i_mode,
  62. test_opt(inode->i_sb, DATA_FLAGS));
  63. /* Never use the revoke function if we are doing full data
  64. * journaling: there is no need to, and a V1 superblock won't
  65. * support it. Otherwise, only skip the revoke on un-journaled
  66. * data blocks. */
  67. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  68. (!is_metadata && !ext3_should_journal_data(inode))) {
  69. if (bh) {
  70. BUFFER_TRACE(bh, "call journal_forget");
  71. return ext3_journal_forget(handle, bh);
  72. }
  73. return 0;
  74. }
  75. /*
  76. * data!=journal && (is_metadata || should_journal_data(inode))
  77. */
  78. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  79. err = ext3_journal_revoke(handle, blocknr, bh);
  80. if (err)
  81. ext3_abort(inode->i_sb, __func__,
  82. "error %d when attempting revoke", err);
  83. BUFFER_TRACE(bh, "exit");
  84. return err;
  85. }
  86. /*
  87. * Work out how many blocks we need to proceed with the next chunk of a
  88. * truncate transaction.
  89. */
  90. static unsigned long blocks_for_truncate(struct inode *inode)
  91. {
  92. unsigned long needed;
  93. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  94. /* Give ourselves just enough room to cope with inodes in which
  95. * i_blocks is corrupt: we've seen disk corruptions in the past
  96. * which resulted in random data in an inode which looked enough
  97. * like a regular file for ext3 to try to delete it. Things
  98. * will go a bit crazy if that happens, but at least we should
  99. * try not to panic the whole kernel. */
  100. if (needed < 2)
  101. needed = 2;
  102. /* But we need to bound the transaction so we don't overflow the
  103. * journal. */
  104. if (needed > EXT3_MAX_TRANS_DATA)
  105. needed = EXT3_MAX_TRANS_DATA;
  106. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  107. }
  108. /*
  109. * Truncate transactions can be complex and absolutely huge. So we need to
  110. * be able to restart the transaction at a conventient checkpoint to make
  111. * sure we don't overflow the journal.
  112. *
  113. * start_transaction gets us a new handle for a truncate transaction,
  114. * and extend_transaction tries to extend the existing one a bit. If
  115. * extend fails, we need to propagate the failure up and restart the
  116. * transaction in the top-level truncate loop. --sct
  117. */
  118. static handle_t *start_transaction(struct inode *inode)
  119. {
  120. handle_t *result;
  121. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  122. if (!IS_ERR(result))
  123. return result;
  124. ext3_std_error(inode->i_sb, PTR_ERR(result));
  125. return result;
  126. }
  127. /*
  128. * Try to extend this transaction for the purposes of truncation.
  129. *
  130. * Returns 0 if we managed to create more room. If we can't create more
  131. * room, and the transaction must be restarted we return 1.
  132. */
  133. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  134. {
  135. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  136. return 0;
  137. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  138. return 0;
  139. return 1;
  140. }
  141. /*
  142. * Restart the transaction associated with *handle. This does a commit,
  143. * so before we call here everything must be consistently dirtied against
  144. * this transaction.
  145. */
  146. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  147. {
  148. int ret;
  149. jbd_debug(2, "restarting handle %p\n", handle);
  150. /*
  151. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  152. * At this moment, get_block can be called only for blocks inside
  153. * i_size since page cache has been already dropped and writes are
  154. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  155. */
  156. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  157. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  158. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  159. return ret;
  160. }
  161. /*
  162. * Called at inode eviction from icache
  163. */
  164. void ext3_evict_inode (struct inode *inode)
  165. {
  166. struct ext3_inode_info *ei = EXT3_I(inode);
  167. struct ext3_block_alloc_info *rsv;
  168. handle_t *handle;
  169. int want_delete = 0;
  170. trace_ext3_evict_inode(inode);
  171. if (!inode->i_nlink && !is_bad_inode(inode)) {
  172. dquot_initialize(inode);
  173. want_delete = 1;
  174. }
  175. /*
  176. * When journalling data dirty buffers are tracked only in the journal.
  177. * So although mm thinks everything is clean and ready for reaping the
  178. * inode might still have some pages to write in the running
  179. * transaction or waiting to be checkpointed. Thus calling
  180. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  181. * these buffers can cause data loss. Also even if we did not discard
  182. * these buffers, we would have no way to find them after the inode
  183. * is reaped and thus user could see stale data if he tries to read
  184. * them before the transaction is checkpointed. So be careful and
  185. * force everything to disk here... We use ei->i_datasync_tid to
  186. * store the newest transaction containing inode's data.
  187. *
  188. * Note that directories do not have this problem because they don't
  189. * use page cache.
  190. *
  191. * The s_journal check handles the case when ext3_get_journal() fails
  192. * and puts the journal inode.
  193. */
  194. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  195. EXT3_SB(inode->i_sb)->s_journal &&
  196. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
  197. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  198. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  199. log_start_commit(journal, commit_tid);
  200. log_wait_commit(journal, commit_tid);
  201. filemap_write_and_wait(&inode->i_data);
  202. }
  203. truncate_inode_pages(&inode->i_data, 0);
  204. ext3_discard_reservation(inode);
  205. rsv = ei->i_block_alloc_info;
  206. ei->i_block_alloc_info = NULL;
  207. if (unlikely(rsv))
  208. kfree(rsv);
  209. if (!want_delete)
  210. goto no_delete;
  211. handle = start_transaction(inode);
  212. if (IS_ERR(handle)) {
  213. /*
  214. * If we're going to skip the normal cleanup, we still need to
  215. * make sure that the in-core orphan linked list is properly
  216. * cleaned up.
  217. */
  218. ext3_orphan_del(NULL, inode);
  219. goto no_delete;
  220. }
  221. if (IS_SYNC(inode))
  222. handle->h_sync = 1;
  223. inode->i_size = 0;
  224. if (inode->i_blocks)
  225. ext3_truncate(inode);
  226. /*
  227. * Kill off the orphan record created when the inode lost the last
  228. * link. Note that ext3_orphan_del() has to be able to cope with the
  229. * deletion of a non-existent orphan - ext3_truncate() could
  230. * have removed the record.
  231. */
  232. ext3_orphan_del(handle, inode);
  233. ei->i_dtime = get_seconds();
  234. /*
  235. * One subtle ordering requirement: if anything has gone wrong
  236. * (transaction abort, IO errors, whatever), then we can still
  237. * do these next steps (the fs will already have been marked as
  238. * having errors), but we can't free the inode if the mark_dirty
  239. * fails.
  240. */
  241. if (ext3_mark_inode_dirty(handle, inode)) {
  242. /* If that failed, just dquot_drop() and be done with that */
  243. dquot_drop(inode);
  244. clear_inode(inode);
  245. } else {
  246. ext3_xattr_delete_inode(handle, inode);
  247. dquot_free_inode(inode);
  248. dquot_drop(inode);
  249. clear_inode(inode);
  250. ext3_free_inode(handle, inode);
  251. }
  252. ext3_journal_stop(handle);
  253. return;
  254. no_delete:
  255. clear_inode(inode);
  256. dquot_drop(inode);
  257. }
  258. typedef struct {
  259. __le32 *p;
  260. __le32 key;
  261. struct buffer_head *bh;
  262. } Indirect;
  263. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  264. {
  265. p->key = *(p->p = v);
  266. p->bh = bh;
  267. }
  268. static int verify_chain(Indirect *from, Indirect *to)
  269. {
  270. while (from <= to && from->key == *from->p)
  271. from++;
  272. return (from > to);
  273. }
  274. /**
  275. * ext3_block_to_path - parse the block number into array of offsets
  276. * @inode: inode in question (we are only interested in its superblock)
  277. * @i_block: block number to be parsed
  278. * @offsets: array to store the offsets in
  279. * @boundary: set this non-zero if the referred-to block is likely to be
  280. * followed (on disk) by an indirect block.
  281. *
  282. * To store the locations of file's data ext3 uses a data structure common
  283. * for UNIX filesystems - tree of pointers anchored in the inode, with
  284. * data blocks at leaves and indirect blocks in intermediate nodes.
  285. * This function translates the block number into path in that tree -
  286. * return value is the path length and @offsets[n] is the offset of
  287. * pointer to (n+1)th node in the nth one. If @block is out of range
  288. * (negative or too large) warning is printed and zero returned.
  289. *
  290. * Note: function doesn't find node addresses, so no IO is needed. All
  291. * we need to know is the capacity of indirect blocks (taken from the
  292. * inode->i_sb).
  293. */
  294. /*
  295. * Portability note: the last comparison (check that we fit into triple
  296. * indirect block) is spelled differently, because otherwise on an
  297. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  298. * if our filesystem had 8Kb blocks. We might use long long, but that would
  299. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  300. * i_block would have to be negative in the very beginning, so we would not
  301. * get there at all.
  302. */
  303. static int ext3_block_to_path(struct inode *inode,
  304. long i_block, int offsets[4], int *boundary)
  305. {
  306. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  307. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  308. const long direct_blocks = EXT3_NDIR_BLOCKS,
  309. indirect_blocks = ptrs,
  310. double_blocks = (1 << (ptrs_bits * 2));
  311. int n = 0;
  312. int final = 0;
  313. if (i_block < 0) {
  314. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  315. } else if (i_block < direct_blocks) {
  316. offsets[n++] = i_block;
  317. final = direct_blocks;
  318. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  319. offsets[n++] = EXT3_IND_BLOCK;
  320. offsets[n++] = i_block;
  321. final = ptrs;
  322. } else if ((i_block -= indirect_blocks) < double_blocks) {
  323. offsets[n++] = EXT3_DIND_BLOCK;
  324. offsets[n++] = i_block >> ptrs_bits;
  325. offsets[n++] = i_block & (ptrs - 1);
  326. final = ptrs;
  327. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  328. offsets[n++] = EXT3_TIND_BLOCK;
  329. offsets[n++] = i_block >> (ptrs_bits * 2);
  330. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  331. offsets[n++] = i_block & (ptrs - 1);
  332. final = ptrs;
  333. } else {
  334. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  335. }
  336. if (boundary)
  337. *boundary = final - 1 - (i_block & (ptrs - 1));
  338. return n;
  339. }
  340. /**
  341. * ext3_get_branch - read the chain of indirect blocks leading to data
  342. * @inode: inode in question
  343. * @depth: depth of the chain (1 - direct pointer, etc.)
  344. * @offsets: offsets of pointers in inode/indirect blocks
  345. * @chain: place to store the result
  346. * @err: here we store the error value
  347. *
  348. * Function fills the array of triples <key, p, bh> and returns %NULL
  349. * if everything went OK or the pointer to the last filled triple
  350. * (incomplete one) otherwise. Upon the return chain[i].key contains
  351. * the number of (i+1)-th block in the chain (as it is stored in memory,
  352. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  353. * number (it points into struct inode for i==0 and into the bh->b_data
  354. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  355. * block for i>0 and NULL for i==0. In other words, it holds the block
  356. * numbers of the chain, addresses they were taken from (and where we can
  357. * verify that chain did not change) and buffer_heads hosting these
  358. * numbers.
  359. *
  360. * Function stops when it stumbles upon zero pointer (absent block)
  361. * (pointer to last triple returned, *@err == 0)
  362. * or when it gets an IO error reading an indirect block
  363. * (ditto, *@err == -EIO)
  364. * or when it notices that chain had been changed while it was reading
  365. * (ditto, *@err == -EAGAIN)
  366. * or when it reads all @depth-1 indirect blocks successfully and finds
  367. * the whole chain, all way to the data (returns %NULL, *err == 0).
  368. */
  369. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  370. Indirect chain[4], int *err)
  371. {
  372. struct super_block *sb = inode->i_sb;
  373. Indirect *p = chain;
  374. struct buffer_head *bh;
  375. *err = 0;
  376. /* i_data is not going away, no lock needed */
  377. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  378. if (!p->key)
  379. goto no_block;
  380. while (--depth) {
  381. bh = sb_bread(sb, le32_to_cpu(p->key));
  382. if (!bh)
  383. goto failure;
  384. /* Reader: pointers */
  385. if (!verify_chain(chain, p))
  386. goto changed;
  387. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  388. /* Reader: end */
  389. if (!p->key)
  390. goto no_block;
  391. }
  392. return NULL;
  393. changed:
  394. brelse(bh);
  395. *err = -EAGAIN;
  396. goto no_block;
  397. failure:
  398. *err = -EIO;
  399. no_block:
  400. return p;
  401. }
  402. /**
  403. * ext3_find_near - find a place for allocation with sufficient locality
  404. * @inode: owner
  405. * @ind: descriptor of indirect block.
  406. *
  407. * This function returns the preferred place for block allocation.
  408. * It is used when heuristic for sequential allocation fails.
  409. * Rules are:
  410. * + if there is a block to the left of our position - allocate near it.
  411. * + if pointer will live in indirect block - allocate near that block.
  412. * + if pointer will live in inode - allocate in the same
  413. * cylinder group.
  414. *
  415. * In the latter case we colour the starting block by the callers PID to
  416. * prevent it from clashing with concurrent allocations for a different inode
  417. * in the same block group. The PID is used here so that functionally related
  418. * files will be close-by on-disk.
  419. *
  420. * Caller must make sure that @ind is valid and will stay that way.
  421. */
  422. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  423. {
  424. struct ext3_inode_info *ei = EXT3_I(inode);
  425. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  426. __le32 *p;
  427. ext3_fsblk_t bg_start;
  428. ext3_grpblk_t colour;
  429. /* Try to find previous block */
  430. for (p = ind->p - 1; p >= start; p--) {
  431. if (*p)
  432. return le32_to_cpu(*p);
  433. }
  434. /* No such thing, so let's try location of indirect block */
  435. if (ind->bh)
  436. return ind->bh->b_blocknr;
  437. /*
  438. * It is going to be referred to from the inode itself? OK, just put it
  439. * into the same cylinder group then.
  440. */
  441. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  442. colour = (current->pid % 16) *
  443. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  444. return bg_start + colour;
  445. }
  446. /**
  447. * ext3_find_goal - find a preferred place for allocation.
  448. * @inode: owner
  449. * @block: block we want
  450. * @partial: pointer to the last triple within a chain
  451. *
  452. * Normally this function find the preferred place for block allocation,
  453. * returns it.
  454. */
  455. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  456. Indirect *partial)
  457. {
  458. struct ext3_block_alloc_info *block_i;
  459. block_i = EXT3_I(inode)->i_block_alloc_info;
  460. /*
  461. * try the heuristic for sequential allocation,
  462. * failing that at least try to get decent locality.
  463. */
  464. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  465. && (block_i->last_alloc_physical_block != 0)) {
  466. return block_i->last_alloc_physical_block + 1;
  467. }
  468. return ext3_find_near(inode, partial);
  469. }
  470. /**
  471. * ext3_blks_to_allocate - Look up the block map and count the number
  472. * of direct blocks need to be allocated for the given branch.
  473. *
  474. * @branch: chain of indirect blocks
  475. * @k: number of blocks need for indirect blocks
  476. * @blks: number of data blocks to be mapped.
  477. * @blocks_to_boundary: the offset in the indirect block
  478. *
  479. * return the total number of blocks to be allocate, including the
  480. * direct and indirect blocks.
  481. */
  482. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  483. int blocks_to_boundary)
  484. {
  485. unsigned long count = 0;
  486. /*
  487. * Simple case, [t,d]Indirect block(s) has not allocated yet
  488. * then it's clear blocks on that path have not allocated
  489. */
  490. if (k > 0) {
  491. /* right now we don't handle cross boundary allocation */
  492. if (blks < blocks_to_boundary + 1)
  493. count += blks;
  494. else
  495. count += blocks_to_boundary + 1;
  496. return count;
  497. }
  498. count++;
  499. while (count < blks && count <= blocks_to_boundary &&
  500. le32_to_cpu(*(branch[0].p + count)) == 0) {
  501. count++;
  502. }
  503. return count;
  504. }
  505. /**
  506. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  507. * @handle: handle for this transaction
  508. * @inode: owner
  509. * @goal: preferred place for allocation
  510. * @indirect_blks: the number of blocks need to allocate for indirect
  511. * blocks
  512. * @blks: number of blocks need to allocated for direct blocks
  513. * @new_blocks: on return it will store the new block numbers for
  514. * the indirect blocks(if needed) and the first direct block,
  515. * @err: here we store the error value
  516. *
  517. * return the number of direct blocks allocated
  518. */
  519. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  520. ext3_fsblk_t goal, int indirect_blks, int blks,
  521. ext3_fsblk_t new_blocks[4], int *err)
  522. {
  523. int target, i;
  524. unsigned long count = 0;
  525. int index = 0;
  526. ext3_fsblk_t current_block = 0;
  527. int ret = 0;
  528. /*
  529. * Here we try to allocate the requested multiple blocks at once,
  530. * on a best-effort basis.
  531. * To build a branch, we should allocate blocks for
  532. * the indirect blocks(if not allocated yet), and at least
  533. * the first direct block of this branch. That's the
  534. * minimum number of blocks need to allocate(required)
  535. */
  536. target = blks + indirect_blks;
  537. while (1) {
  538. count = target;
  539. /* allocating blocks for indirect blocks and direct blocks */
  540. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  541. if (*err)
  542. goto failed_out;
  543. target -= count;
  544. /* allocate blocks for indirect blocks */
  545. while (index < indirect_blks && count) {
  546. new_blocks[index++] = current_block++;
  547. count--;
  548. }
  549. if (count > 0)
  550. break;
  551. }
  552. /* save the new block number for the first direct block */
  553. new_blocks[index] = current_block;
  554. /* total number of blocks allocated for direct blocks */
  555. ret = count;
  556. *err = 0;
  557. return ret;
  558. failed_out:
  559. for (i = 0; i <index; i++)
  560. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  561. return ret;
  562. }
  563. /**
  564. * ext3_alloc_branch - allocate and set up a chain of blocks.
  565. * @handle: handle for this transaction
  566. * @inode: owner
  567. * @indirect_blks: number of allocated indirect blocks
  568. * @blks: number of allocated direct blocks
  569. * @goal: preferred place for allocation
  570. * @offsets: offsets (in the blocks) to store the pointers to next.
  571. * @branch: place to store the chain in.
  572. *
  573. * This function allocates blocks, zeroes out all but the last one,
  574. * links them into chain and (if we are synchronous) writes them to disk.
  575. * In other words, it prepares a branch that can be spliced onto the
  576. * inode. It stores the information about that chain in the branch[], in
  577. * the same format as ext3_get_branch() would do. We are calling it after
  578. * we had read the existing part of chain and partial points to the last
  579. * triple of that (one with zero ->key). Upon the exit we have the same
  580. * picture as after the successful ext3_get_block(), except that in one
  581. * place chain is disconnected - *branch->p is still zero (we did not
  582. * set the last link), but branch->key contains the number that should
  583. * be placed into *branch->p to fill that gap.
  584. *
  585. * If allocation fails we free all blocks we've allocated (and forget
  586. * their buffer_heads) and return the error value the from failed
  587. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  588. * as described above and return 0.
  589. */
  590. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  591. int indirect_blks, int *blks, ext3_fsblk_t goal,
  592. int *offsets, Indirect *branch)
  593. {
  594. int blocksize = inode->i_sb->s_blocksize;
  595. int i, n = 0;
  596. int err = 0;
  597. struct buffer_head *bh;
  598. int num;
  599. ext3_fsblk_t new_blocks[4];
  600. ext3_fsblk_t current_block;
  601. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  602. *blks, new_blocks, &err);
  603. if (err)
  604. return err;
  605. branch[0].key = cpu_to_le32(new_blocks[0]);
  606. /*
  607. * metadata blocks and data blocks are allocated.
  608. */
  609. for (n = 1; n <= indirect_blks; n++) {
  610. /*
  611. * Get buffer_head for parent block, zero it out
  612. * and set the pointer to new one, then send
  613. * parent to disk.
  614. */
  615. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  616. if (unlikely(!bh)) {
  617. err = -ENOMEM;
  618. goto failed;
  619. }
  620. branch[n].bh = bh;
  621. lock_buffer(bh);
  622. BUFFER_TRACE(bh, "call get_create_access");
  623. err = ext3_journal_get_create_access(handle, bh);
  624. if (err) {
  625. unlock_buffer(bh);
  626. brelse(bh);
  627. goto failed;
  628. }
  629. memset(bh->b_data, 0, blocksize);
  630. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  631. branch[n].key = cpu_to_le32(new_blocks[n]);
  632. *branch[n].p = branch[n].key;
  633. if ( n == indirect_blks) {
  634. current_block = new_blocks[n];
  635. /*
  636. * End of chain, update the last new metablock of
  637. * the chain to point to the new allocated
  638. * data blocks numbers
  639. */
  640. for (i=1; i < num; i++)
  641. *(branch[n].p + i) = cpu_to_le32(++current_block);
  642. }
  643. BUFFER_TRACE(bh, "marking uptodate");
  644. set_buffer_uptodate(bh);
  645. unlock_buffer(bh);
  646. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  647. err = ext3_journal_dirty_metadata(handle, bh);
  648. if (err)
  649. goto failed;
  650. }
  651. *blks = num;
  652. return err;
  653. failed:
  654. /* Allocation failed, free what we already allocated */
  655. for (i = 1; i <= n ; i++) {
  656. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  657. ext3_journal_forget(handle, branch[i].bh);
  658. }
  659. for (i = 0; i < indirect_blks; i++)
  660. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  661. ext3_free_blocks(handle, inode, new_blocks[i], num);
  662. return err;
  663. }
  664. /**
  665. * ext3_splice_branch - splice the allocated branch onto inode.
  666. * @handle: handle for this transaction
  667. * @inode: owner
  668. * @block: (logical) number of block we are adding
  669. * @where: location of missing link
  670. * @num: number of indirect blocks we are adding
  671. * @blks: number of direct blocks we are adding
  672. *
  673. * This function fills the missing link and does all housekeeping needed in
  674. * inode (->i_blocks, etc.). In case of success we end up with the full
  675. * chain to new block and return 0.
  676. */
  677. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  678. long block, Indirect *where, int num, int blks)
  679. {
  680. int i;
  681. int err = 0;
  682. struct ext3_block_alloc_info *block_i;
  683. ext3_fsblk_t current_block;
  684. struct ext3_inode_info *ei = EXT3_I(inode);
  685. struct timespec now;
  686. block_i = ei->i_block_alloc_info;
  687. /*
  688. * If we're splicing into a [td]indirect block (as opposed to the
  689. * inode) then we need to get write access to the [td]indirect block
  690. * before the splice.
  691. */
  692. if (where->bh) {
  693. BUFFER_TRACE(where->bh, "get_write_access");
  694. err = ext3_journal_get_write_access(handle, where->bh);
  695. if (err)
  696. goto err_out;
  697. }
  698. /* That's it */
  699. *where->p = where->key;
  700. /*
  701. * Update the host buffer_head or inode to point to more just allocated
  702. * direct blocks blocks
  703. */
  704. if (num == 0 && blks > 1) {
  705. current_block = le32_to_cpu(where->key) + 1;
  706. for (i = 1; i < blks; i++)
  707. *(where->p + i ) = cpu_to_le32(current_block++);
  708. }
  709. /*
  710. * update the most recently allocated logical & physical block
  711. * in i_block_alloc_info, to assist find the proper goal block for next
  712. * allocation
  713. */
  714. if (block_i) {
  715. block_i->last_alloc_logical_block = block + blks - 1;
  716. block_i->last_alloc_physical_block =
  717. le32_to_cpu(where[num].key) + blks - 1;
  718. }
  719. /* We are done with atomic stuff, now do the rest of housekeeping */
  720. now = CURRENT_TIME_SEC;
  721. if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
  722. inode->i_ctime = now;
  723. ext3_mark_inode_dirty(handle, inode);
  724. }
  725. /* ext3_mark_inode_dirty already updated i_sync_tid */
  726. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  727. /* had we spliced it onto indirect block? */
  728. if (where->bh) {
  729. /*
  730. * If we spliced it onto an indirect block, we haven't
  731. * altered the inode. Note however that if it is being spliced
  732. * onto an indirect block at the very end of the file (the
  733. * file is growing) then we *will* alter the inode to reflect
  734. * the new i_size. But that is not done here - it is done in
  735. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  736. */
  737. jbd_debug(5, "splicing indirect only\n");
  738. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  739. err = ext3_journal_dirty_metadata(handle, where->bh);
  740. if (err)
  741. goto err_out;
  742. } else {
  743. /*
  744. * OK, we spliced it into the inode itself on a direct block.
  745. * Inode was dirtied above.
  746. */
  747. jbd_debug(5, "splicing direct\n");
  748. }
  749. return err;
  750. err_out:
  751. for (i = 1; i <= num; i++) {
  752. BUFFER_TRACE(where[i].bh, "call journal_forget");
  753. ext3_journal_forget(handle, where[i].bh);
  754. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  755. }
  756. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  757. return err;
  758. }
  759. /*
  760. * Allocation strategy is simple: if we have to allocate something, we will
  761. * have to go the whole way to leaf. So let's do it before attaching anything
  762. * to tree, set linkage between the newborn blocks, write them if sync is
  763. * required, recheck the path, free and repeat if check fails, otherwise
  764. * set the last missing link (that will protect us from any truncate-generated
  765. * removals - all blocks on the path are immune now) and possibly force the
  766. * write on the parent block.
  767. * That has a nice additional property: no special recovery from the failed
  768. * allocations is needed - we simply release blocks and do not touch anything
  769. * reachable from inode.
  770. *
  771. * `handle' can be NULL if create == 0.
  772. *
  773. * The BKL may not be held on entry here. Be sure to take it early.
  774. * return > 0, # of blocks mapped or allocated.
  775. * return = 0, if plain lookup failed.
  776. * return < 0, error case.
  777. */
  778. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  779. sector_t iblock, unsigned long maxblocks,
  780. struct buffer_head *bh_result,
  781. int create)
  782. {
  783. int err = -EIO;
  784. int offsets[4];
  785. Indirect chain[4];
  786. Indirect *partial;
  787. ext3_fsblk_t goal;
  788. int indirect_blks;
  789. int blocks_to_boundary = 0;
  790. int depth;
  791. struct ext3_inode_info *ei = EXT3_I(inode);
  792. int count = 0;
  793. ext3_fsblk_t first_block = 0;
  794. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  795. J_ASSERT(handle != NULL || create == 0);
  796. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  797. if (depth == 0)
  798. goto out;
  799. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  800. /* Simplest case - block found, no allocation needed */
  801. if (!partial) {
  802. first_block = le32_to_cpu(chain[depth - 1].key);
  803. clear_buffer_new(bh_result);
  804. count++;
  805. /*map more blocks*/
  806. while (count < maxblocks && count <= blocks_to_boundary) {
  807. ext3_fsblk_t blk;
  808. if (!verify_chain(chain, chain + depth - 1)) {
  809. /*
  810. * Indirect block might be removed by
  811. * truncate while we were reading it.
  812. * Handling of that case: forget what we've
  813. * got now. Flag the err as EAGAIN, so it
  814. * will reread.
  815. */
  816. err = -EAGAIN;
  817. count = 0;
  818. break;
  819. }
  820. blk = le32_to_cpu(*(chain[depth-1].p + count));
  821. if (blk == first_block + count)
  822. count++;
  823. else
  824. break;
  825. }
  826. if (err != -EAGAIN)
  827. goto got_it;
  828. }
  829. /* Next simple case - plain lookup or failed read of indirect block */
  830. if (!create || err == -EIO)
  831. goto cleanup;
  832. /*
  833. * Block out ext3_truncate while we alter the tree
  834. */
  835. mutex_lock(&ei->truncate_mutex);
  836. /*
  837. * If the indirect block is missing while we are reading
  838. * the chain(ext3_get_branch() returns -EAGAIN err), or
  839. * if the chain has been changed after we grab the semaphore,
  840. * (either because another process truncated this branch, or
  841. * another get_block allocated this branch) re-grab the chain to see if
  842. * the request block has been allocated or not.
  843. *
  844. * Since we already block the truncate/other get_block
  845. * at this point, we will have the current copy of the chain when we
  846. * splice the branch into the tree.
  847. */
  848. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  849. while (partial > chain) {
  850. brelse(partial->bh);
  851. partial--;
  852. }
  853. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  854. if (!partial) {
  855. count++;
  856. mutex_unlock(&ei->truncate_mutex);
  857. if (err)
  858. goto cleanup;
  859. clear_buffer_new(bh_result);
  860. goto got_it;
  861. }
  862. }
  863. /*
  864. * Okay, we need to do block allocation. Lazily initialize the block
  865. * allocation info here if necessary
  866. */
  867. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  868. ext3_init_block_alloc_info(inode);
  869. goal = ext3_find_goal(inode, iblock, partial);
  870. /* the number of blocks need to allocate for [d,t]indirect blocks */
  871. indirect_blks = (chain + depth) - partial - 1;
  872. /*
  873. * Next look up the indirect map to count the totoal number of
  874. * direct blocks to allocate for this branch.
  875. */
  876. count = ext3_blks_to_allocate(partial, indirect_blks,
  877. maxblocks, blocks_to_boundary);
  878. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  879. offsets + (partial - chain), partial);
  880. /*
  881. * The ext3_splice_branch call will free and forget any buffers
  882. * on the new chain if there is a failure, but that risks using
  883. * up transaction credits, especially for bitmaps where the
  884. * credits cannot be returned. Can we handle this somehow? We
  885. * may need to return -EAGAIN upwards in the worst case. --sct
  886. */
  887. if (!err)
  888. err = ext3_splice_branch(handle, inode, iblock,
  889. partial, indirect_blks, count);
  890. mutex_unlock(&ei->truncate_mutex);
  891. if (err)
  892. goto cleanup;
  893. set_buffer_new(bh_result);
  894. got_it:
  895. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  896. if (count > blocks_to_boundary)
  897. set_buffer_boundary(bh_result);
  898. err = count;
  899. /* Clean up and exit */
  900. partial = chain + depth - 1; /* the whole chain */
  901. cleanup:
  902. while (partial > chain) {
  903. BUFFER_TRACE(partial->bh, "call brelse");
  904. brelse(partial->bh);
  905. partial--;
  906. }
  907. BUFFER_TRACE(bh_result, "returned");
  908. out:
  909. trace_ext3_get_blocks_exit(inode, iblock,
  910. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  911. count, err);
  912. return err;
  913. }
  914. /* Maximum number of blocks we map for direct IO at once. */
  915. #define DIO_MAX_BLOCKS 4096
  916. /*
  917. * Number of credits we need for writing DIO_MAX_BLOCKS:
  918. * We need sb + group descriptor + bitmap + inode -> 4
  919. * For B blocks with A block pointers per block we need:
  920. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  921. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  922. */
  923. #define DIO_CREDITS 25
  924. static int ext3_get_block(struct inode *inode, sector_t iblock,
  925. struct buffer_head *bh_result, int create)
  926. {
  927. handle_t *handle = ext3_journal_current_handle();
  928. int ret = 0, started = 0;
  929. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  930. if (create && !handle) { /* Direct IO write... */
  931. if (max_blocks > DIO_MAX_BLOCKS)
  932. max_blocks = DIO_MAX_BLOCKS;
  933. handle = ext3_journal_start(inode, DIO_CREDITS +
  934. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  935. if (IS_ERR(handle)) {
  936. ret = PTR_ERR(handle);
  937. goto out;
  938. }
  939. started = 1;
  940. }
  941. ret = ext3_get_blocks_handle(handle, inode, iblock,
  942. max_blocks, bh_result, create);
  943. if (ret > 0) {
  944. bh_result->b_size = (ret << inode->i_blkbits);
  945. ret = 0;
  946. }
  947. if (started)
  948. ext3_journal_stop(handle);
  949. out:
  950. return ret;
  951. }
  952. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  953. u64 start, u64 len)
  954. {
  955. return generic_block_fiemap(inode, fieinfo, start, len,
  956. ext3_get_block);
  957. }
  958. /*
  959. * `handle' can be NULL if create is zero
  960. */
  961. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  962. long block, int create, int *errp)
  963. {
  964. struct buffer_head dummy;
  965. int fatal = 0, err;
  966. J_ASSERT(handle != NULL || create == 0);
  967. dummy.b_state = 0;
  968. dummy.b_blocknr = -1000;
  969. buffer_trace_init(&dummy.b_history);
  970. err = ext3_get_blocks_handle(handle, inode, block, 1,
  971. &dummy, create);
  972. /*
  973. * ext3_get_blocks_handle() returns number of blocks
  974. * mapped. 0 in case of a HOLE.
  975. */
  976. if (err > 0) {
  977. WARN_ON(err > 1);
  978. err = 0;
  979. }
  980. *errp = err;
  981. if (!err && buffer_mapped(&dummy)) {
  982. struct buffer_head *bh;
  983. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  984. if (unlikely(!bh)) {
  985. *errp = -ENOMEM;
  986. goto err;
  987. }
  988. if (buffer_new(&dummy)) {
  989. J_ASSERT(create != 0);
  990. J_ASSERT(handle != NULL);
  991. /*
  992. * Now that we do not always journal data, we should
  993. * keep in mind whether this should always journal the
  994. * new buffer as metadata. For now, regular file
  995. * writes use ext3_get_block instead, so it's not a
  996. * problem.
  997. */
  998. lock_buffer(bh);
  999. BUFFER_TRACE(bh, "call get_create_access");
  1000. fatal = ext3_journal_get_create_access(handle, bh);
  1001. if (!fatal && !buffer_uptodate(bh)) {
  1002. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1003. set_buffer_uptodate(bh);
  1004. }
  1005. unlock_buffer(bh);
  1006. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1007. err = ext3_journal_dirty_metadata(handle, bh);
  1008. if (!fatal)
  1009. fatal = err;
  1010. } else {
  1011. BUFFER_TRACE(bh, "not a new buffer");
  1012. }
  1013. if (fatal) {
  1014. *errp = fatal;
  1015. brelse(bh);
  1016. bh = NULL;
  1017. }
  1018. return bh;
  1019. }
  1020. err:
  1021. return NULL;
  1022. }
  1023. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1024. int block, int create, int *err)
  1025. {
  1026. struct buffer_head * bh;
  1027. bh = ext3_getblk(handle, inode, block, create, err);
  1028. if (!bh)
  1029. return bh;
  1030. if (bh_uptodate_or_lock(bh))
  1031. return bh;
  1032. get_bh(bh);
  1033. bh->b_end_io = end_buffer_read_sync;
  1034. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  1035. wait_on_buffer(bh);
  1036. if (buffer_uptodate(bh))
  1037. return bh;
  1038. put_bh(bh);
  1039. *err = -EIO;
  1040. return NULL;
  1041. }
  1042. static int walk_page_buffers( handle_t *handle,
  1043. struct buffer_head *head,
  1044. unsigned from,
  1045. unsigned to,
  1046. int *partial,
  1047. int (*fn)( handle_t *handle,
  1048. struct buffer_head *bh))
  1049. {
  1050. struct buffer_head *bh;
  1051. unsigned block_start, block_end;
  1052. unsigned blocksize = head->b_size;
  1053. int err, ret = 0;
  1054. struct buffer_head *next;
  1055. for ( bh = head, block_start = 0;
  1056. ret == 0 && (bh != head || !block_start);
  1057. block_start = block_end, bh = next)
  1058. {
  1059. next = bh->b_this_page;
  1060. block_end = block_start + blocksize;
  1061. if (block_end <= from || block_start >= to) {
  1062. if (partial && !buffer_uptodate(bh))
  1063. *partial = 1;
  1064. continue;
  1065. }
  1066. err = (*fn)(handle, bh);
  1067. if (!ret)
  1068. ret = err;
  1069. }
  1070. return ret;
  1071. }
  1072. /*
  1073. * To preserve ordering, it is essential that the hole instantiation and
  1074. * the data write be encapsulated in a single transaction. We cannot
  1075. * close off a transaction and start a new one between the ext3_get_block()
  1076. * and the commit_write(). So doing the journal_start at the start of
  1077. * prepare_write() is the right place.
  1078. *
  1079. * Also, this function can nest inside ext3_writepage() ->
  1080. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1081. * has generated enough buffer credits to do the whole page. So we won't
  1082. * block on the journal in that case, which is good, because the caller may
  1083. * be PF_MEMALLOC.
  1084. *
  1085. * By accident, ext3 can be reentered when a transaction is open via
  1086. * quota file writes. If we were to commit the transaction while thus
  1087. * reentered, there can be a deadlock - we would be holding a quota
  1088. * lock, and the commit would never complete if another thread had a
  1089. * transaction open and was blocking on the quota lock - a ranking
  1090. * violation.
  1091. *
  1092. * So what we do is to rely on the fact that journal_stop/journal_start
  1093. * will _not_ run commit under these circumstances because handle->h_ref
  1094. * is elevated. We'll still have enough credits for the tiny quotafile
  1095. * write.
  1096. */
  1097. static int do_journal_get_write_access(handle_t *handle,
  1098. struct buffer_head *bh)
  1099. {
  1100. int dirty = buffer_dirty(bh);
  1101. int ret;
  1102. if (!buffer_mapped(bh) || buffer_freed(bh))
  1103. return 0;
  1104. /*
  1105. * __block_prepare_write() could have dirtied some buffers. Clean
  1106. * the dirty bit as jbd2_journal_get_write_access() could complain
  1107. * otherwise about fs integrity issues. Setting of the dirty bit
  1108. * by __block_prepare_write() isn't a real problem here as we clear
  1109. * the bit before releasing a page lock and thus writeback cannot
  1110. * ever write the buffer.
  1111. */
  1112. if (dirty)
  1113. clear_buffer_dirty(bh);
  1114. ret = ext3_journal_get_write_access(handle, bh);
  1115. if (!ret && dirty)
  1116. ret = ext3_journal_dirty_metadata(handle, bh);
  1117. return ret;
  1118. }
  1119. /*
  1120. * Truncate blocks that were not used by write. We have to truncate the
  1121. * pagecache as well so that corresponding buffers get properly unmapped.
  1122. */
  1123. static void ext3_truncate_failed_write(struct inode *inode)
  1124. {
  1125. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1126. ext3_truncate(inode);
  1127. }
  1128. /*
  1129. * Truncate blocks that were not used by direct IO write. We have to zero out
  1130. * the last file block as well because direct IO might have written to it.
  1131. */
  1132. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1133. {
  1134. ext3_block_truncate_page(inode, inode->i_size);
  1135. ext3_truncate(inode);
  1136. }
  1137. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1138. loff_t pos, unsigned len, unsigned flags,
  1139. struct page **pagep, void **fsdata)
  1140. {
  1141. struct inode *inode = mapping->host;
  1142. int ret;
  1143. handle_t *handle;
  1144. int retries = 0;
  1145. struct page *page;
  1146. pgoff_t index;
  1147. unsigned from, to;
  1148. /* Reserve one block more for addition to orphan list in case
  1149. * we allocate blocks but write fails for some reason */
  1150. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1151. trace_ext3_write_begin(inode, pos, len, flags);
  1152. index = pos >> PAGE_CACHE_SHIFT;
  1153. from = pos & (PAGE_CACHE_SIZE - 1);
  1154. to = from + len;
  1155. retry:
  1156. page = grab_cache_page_write_begin(mapping, index, flags);
  1157. if (!page)
  1158. return -ENOMEM;
  1159. *pagep = page;
  1160. handle = ext3_journal_start(inode, needed_blocks);
  1161. if (IS_ERR(handle)) {
  1162. unlock_page(page);
  1163. page_cache_release(page);
  1164. ret = PTR_ERR(handle);
  1165. goto out;
  1166. }
  1167. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1168. if (ret)
  1169. goto write_begin_failed;
  1170. if (ext3_should_journal_data(inode)) {
  1171. ret = walk_page_buffers(handle, page_buffers(page),
  1172. from, to, NULL, do_journal_get_write_access);
  1173. }
  1174. write_begin_failed:
  1175. if (ret) {
  1176. /*
  1177. * block_write_begin may have instantiated a few blocks
  1178. * outside i_size. Trim these off again. Don't need
  1179. * i_size_read because we hold i_mutex.
  1180. *
  1181. * Add inode to orphan list in case we crash before truncate
  1182. * finishes. Do this only if ext3_can_truncate() agrees so
  1183. * that orphan processing code is happy.
  1184. */
  1185. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1186. ext3_orphan_add(handle, inode);
  1187. ext3_journal_stop(handle);
  1188. unlock_page(page);
  1189. page_cache_release(page);
  1190. if (pos + len > inode->i_size)
  1191. ext3_truncate_failed_write(inode);
  1192. }
  1193. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1194. goto retry;
  1195. out:
  1196. return ret;
  1197. }
  1198. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1199. {
  1200. int err = journal_dirty_data(handle, bh);
  1201. if (err)
  1202. ext3_journal_abort_handle(__func__, __func__,
  1203. bh, handle, err);
  1204. return err;
  1205. }
  1206. /* For ordered writepage and write_end functions */
  1207. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1208. {
  1209. /*
  1210. * Write could have mapped the buffer but it didn't copy the data in
  1211. * yet. So avoid filing such buffer into a transaction.
  1212. */
  1213. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1214. return ext3_journal_dirty_data(handle, bh);
  1215. return 0;
  1216. }
  1217. /* For write_end() in data=journal mode */
  1218. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1219. {
  1220. if (!buffer_mapped(bh) || buffer_freed(bh))
  1221. return 0;
  1222. set_buffer_uptodate(bh);
  1223. return ext3_journal_dirty_metadata(handle, bh);
  1224. }
  1225. /*
  1226. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1227. * for the whole page but later we failed to copy the data in. Update inode
  1228. * size according to what we managed to copy. The rest is going to be
  1229. * truncated in write_end function.
  1230. */
  1231. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1232. {
  1233. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1234. if (pos + copied > inode->i_size)
  1235. i_size_write(inode, pos + copied);
  1236. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1237. EXT3_I(inode)->i_disksize = pos + copied;
  1238. mark_inode_dirty(inode);
  1239. }
  1240. }
  1241. /*
  1242. * We need to pick up the new inode size which generic_commit_write gave us
  1243. * `file' can be NULL - eg, when called from page_symlink().
  1244. *
  1245. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1246. * buffers are managed internally.
  1247. */
  1248. static int ext3_ordered_write_end(struct file *file,
  1249. struct address_space *mapping,
  1250. loff_t pos, unsigned len, unsigned copied,
  1251. struct page *page, void *fsdata)
  1252. {
  1253. handle_t *handle = ext3_journal_current_handle();
  1254. struct inode *inode = file->f_mapping->host;
  1255. unsigned from, to;
  1256. int ret = 0, ret2;
  1257. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1258. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1259. from = pos & (PAGE_CACHE_SIZE - 1);
  1260. to = from + copied;
  1261. ret = walk_page_buffers(handle, page_buffers(page),
  1262. from, to, NULL, journal_dirty_data_fn);
  1263. if (ret == 0)
  1264. update_file_sizes(inode, pos, copied);
  1265. /*
  1266. * There may be allocated blocks outside of i_size because
  1267. * we failed to copy some data. Prepare for truncate.
  1268. */
  1269. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1270. ext3_orphan_add(handle, inode);
  1271. ret2 = ext3_journal_stop(handle);
  1272. if (!ret)
  1273. ret = ret2;
  1274. unlock_page(page);
  1275. page_cache_release(page);
  1276. if (pos + len > inode->i_size)
  1277. ext3_truncate_failed_write(inode);
  1278. return ret ? ret : copied;
  1279. }
  1280. static int ext3_writeback_write_end(struct file *file,
  1281. struct address_space *mapping,
  1282. loff_t pos, unsigned len, unsigned copied,
  1283. struct page *page, void *fsdata)
  1284. {
  1285. handle_t *handle = ext3_journal_current_handle();
  1286. struct inode *inode = file->f_mapping->host;
  1287. int ret;
  1288. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1289. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1290. update_file_sizes(inode, pos, copied);
  1291. /*
  1292. * There may be allocated blocks outside of i_size because
  1293. * we failed to copy some data. Prepare for truncate.
  1294. */
  1295. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1296. ext3_orphan_add(handle, inode);
  1297. ret = ext3_journal_stop(handle);
  1298. unlock_page(page);
  1299. page_cache_release(page);
  1300. if (pos + len > inode->i_size)
  1301. ext3_truncate_failed_write(inode);
  1302. return ret ? ret : copied;
  1303. }
  1304. static int ext3_journalled_write_end(struct file *file,
  1305. struct address_space *mapping,
  1306. loff_t pos, unsigned len, unsigned copied,
  1307. struct page *page, void *fsdata)
  1308. {
  1309. handle_t *handle = ext3_journal_current_handle();
  1310. struct inode *inode = mapping->host;
  1311. struct ext3_inode_info *ei = EXT3_I(inode);
  1312. int ret = 0, ret2;
  1313. int partial = 0;
  1314. unsigned from, to;
  1315. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1316. from = pos & (PAGE_CACHE_SIZE - 1);
  1317. to = from + len;
  1318. if (copied < len) {
  1319. if (!PageUptodate(page))
  1320. copied = 0;
  1321. page_zero_new_buffers(page, from + copied, to);
  1322. to = from + copied;
  1323. }
  1324. ret = walk_page_buffers(handle, page_buffers(page), from,
  1325. to, &partial, write_end_fn);
  1326. if (!partial)
  1327. SetPageUptodate(page);
  1328. if (pos + copied > inode->i_size)
  1329. i_size_write(inode, pos + copied);
  1330. /*
  1331. * There may be allocated blocks outside of i_size because
  1332. * we failed to copy some data. Prepare for truncate.
  1333. */
  1334. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1335. ext3_orphan_add(handle, inode);
  1336. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1337. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1338. if (inode->i_size > ei->i_disksize) {
  1339. ei->i_disksize = inode->i_size;
  1340. ret2 = ext3_mark_inode_dirty(handle, inode);
  1341. if (!ret)
  1342. ret = ret2;
  1343. }
  1344. ret2 = ext3_journal_stop(handle);
  1345. if (!ret)
  1346. ret = ret2;
  1347. unlock_page(page);
  1348. page_cache_release(page);
  1349. if (pos + len > inode->i_size)
  1350. ext3_truncate_failed_write(inode);
  1351. return ret ? ret : copied;
  1352. }
  1353. /*
  1354. * bmap() is special. It gets used by applications such as lilo and by
  1355. * the swapper to find the on-disk block of a specific piece of data.
  1356. *
  1357. * Naturally, this is dangerous if the block concerned is still in the
  1358. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1359. * filesystem and enables swap, then they may get a nasty shock when the
  1360. * data getting swapped to that swapfile suddenly gets overwritten by
  1361. * the original zero's written out previously to the journal and
  1362. * awaiting writeback in the kernel's buffer cache.
  1363. *
  1364. * So, if we see any bmap calls here on a modified, data-journaled file,
  1365. * take extra steps to flush any blocks which might be in the cache.
  1366. */
  1367. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1368. {
  1369. struct inode *inode = mapping->host;
  1370. journal_t *journal;
  1371. int err;
  1372. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1373. /*
  1374. * This is a REALLY heavyweight approach, but the use of
  1375. * bmap on dirty files is expected to be extremely rare:
  1376. * only if we run lilo or swapon on a freshly made file
  1377. * do we expect this to happen.
  1378. *
  1379. * (bmap requires CAP_SYS_RAWIO so this does not
  1380. * represent an unprivileged user DOS attack --- we'd be
  1381. * in trouble if mortal users could trigger this path at
  1382. * will.)
  1383. *
  1384. * NB. EXT3_STATE_JDATA is not set on files other than
  1385. * regular files. If somebody wants to bmap a directory
  1386. * or symlink and gets confused because the buffer
  1387. * hasn't yet been flushed to disk, they deserve
  1388. * everything they get.
  1389. */
  1390. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1391. journal = EXT3_JOURNAL(inode);
  1392. journal_lock_updates(journal);
  1393. err = journal_flush(journal);
  1394. journal_unlock_updates(journal);
  1395. if (err)
  1396. return 0;
  1397. }
  1398. return generic_block_bmap(mapping,block,ext3_get_block);
  1399. }
  1400. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1401. {
  1402. get_bh(bh);
  1403. return 0;
  1404. }
  1405. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1406. {
  1407. put_bh(bh);
  1408. return 0;
  1409. }
  1410. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1411. {
  1412. return !buffer_mapped(bh);
  1413. }
  1414. /*
  1415. * Note that we always start a transaction even if we're not journalling
  1416. * data. This is to preserve ordering: any hole instantiation within
  1417. * __block_write_full_page -> ext3_get_block() should be journalled
  1418. * along with the data so we don't crash and then get metadata which
  1419. * refers to old data.
  1420. *
  1421. * In all journalling modes block_write_full_page() will start the I/O.
  1422. *
  1423. * Problem:
  1424. *
  1425. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1426. * ext3_writepage()
  1427. *
  1428. * Similar for:
  1429. *
  1430. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1431. *
  1432. * Same applies to ext3_get_block(). We will deadlock on various things like
  1433. * lock_journal and i_truncate_mutex.
  1434. *
  1435. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1436. * allocations fail.
  1437. *
  1438. * 16May01: If we're reentered then journal_current_handle() will be
  1439. * non-zero. We simply *return*.
  1440. *
  1441. * 1 July 2001: @@@ FIXME:
  1442. * In journalled data mode, a data buffer may be metadata against the
  1443. * current transaction. But the same file is part of a shared mapping
  1444. * and someone does a writepage() on it.
  1445. *
  1446. * We will move the buffer onto the async_data list, but *after* it has
  1447. * been dirtied. So there's a small window where we have dirty data on
  1448. * BJ_Metadata.
  1449. *
  1450. * Note that this only applies to the last partial page in the file. The
  1451. * bit which block_write_full_page() uses prepare/commit for. (That's
  1452. * broken code anyway: it's wrong for msync()).
  1453. *
  1454. * It's a rare case: affects the final partial page, for journalled data
  1455. * where the file is subject to bith write() and writepage() in the same
  1456. * transction. To fix it we'll need a custom block_write_full_page().
  1457. * We'll probably need that anyway for journalling writepage() output.
  1458. *
  1459. * We don't honour synchronous mounts for writepage(). That would be
  1460. * disastrous. Any write() or metadata operation will sync the fs for
  1461. * us.
  1462. *
  1463. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1464. * we don't need to open a transaction here.
  1465. */
  1466. static int ext3_ordered_writepage(struct page *page,
  1467. struct writeback_control *wbc)
  1468. {
  1469. struct inode *inode = page->mapping->host;
  1470. struct buffer_head *page_bufs;
  1471. handle_t *handle = NULL;
  1472. int ret = 0;
  1473. int err;
  1474. J_ASSERT(PageLocked(page));
  1475. /*
  1476. * We don't want to warn for emergency remount. The condition is
  1477. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1478. * avoid slow-downs.
  1479. */
  1480. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1481. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1482. /*
  1483. * We give up here if we're reentered, because it might be for a
  1484. * different filesystem.
  1485. */
  1486. if (ext3_journal_current_handle())
  1487. goto out_fail;
  1488. trace_ext3_ordered_writepage(page);
  1489. if (!page_has_buffers(page)) {
  1490. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1491. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1492. page_bufs = page_buffers(page);
  1493. } else {
  1494. page_bufs = page_buffers(page);
  1495. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1496. NULL, buffer_unmapped)) {
  1497. /* Provide NULL get_block() to catch bugs if buffers
  1498. * weren't really mapped */
  1499. return block_write_full_page(page, NULL, wbc);
  1500. }
  1501. }
  1502. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1503. if (IS_ERR(handle)) {
  1504. ret = PTR_ERR(handle);
  1505. goto out_fail;
  1506. }
  1507. walk_page_buffers(handle, page_bufs, 0,
  1508. PAGE_CACHE_SIZE, NULL, bget_one);
  1509. ret = block_write_full_page(page, ext3_get_block, wbc);
  1510. /*
  1511. * The page can become unlocked at any point now, and
  1512. * truncate can then come in and change things. So we
  1513. * can't touch *page from now on. But *page_bufs is
  1514. * safe due to elevated refcount.
  1515. */
  1516. /*
  1517. * And attach them to the current transaction. But only if
  1518. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1519. * and generally junk.
  1520. */
  1521. if (ret == 0) {
  1522. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1523. NULL, journal_dirty_data_fn);
  1524. if (!ret)
  1525. ret = err;
  1526. }
  1527. walk_page_buffers(handle, page_bufs, 0,
  1528. PAGE_CACHE_SIZE, NULL, bput_one);
  1529. err = ext3_journal_stop(handle);
  1530. if (!ret)
  1531. ret = err;
  1532. return ret;
  1533. out_fail:
  1534. redirty_page_for_writepage(wbc, page);
  1535. unlock_page(page);
  1536. return ret;
  1537. }
  1538. static int ext3_writeback_writepage(struct page *page,
  1539. struct writeback_control *wbc)
  1540. {
  1541. struct inode *inode = page->mapping->host;
  1542. handle_t *handle = NULL;
  1543. int ret = 0;
  1544. int err;
  1545. J_ASSERT(PageLocked(page));
  1546. /*
  1547. * We don't want to warn for emergency remount. The condition is
  1548. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1549. * avoid slow-downs.
  1550. */
  1551. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1552. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1553. if (ext3_journal_current_handle())
  1554. goto out_fail;
  1555. trace_ext3_writeback_writepage(page);
  1556. if (page_has_buffers(page)) {
  1557. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1558. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1559. /* Provide NULL get_block() to catch bugs if buffers
  1560. * weren't really mapped */
  1561. return block_write_full_page(page, NULL, wbc);
  1562. }
  1563. }
  1564. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1565. if (IS_ERR(handle)) {
  1566. ret = PTR_ERR(handle);
  1567. goto out_fail;
  1568. }
  1569. ret = block_write_full_page(page, ext3_get_block, wbc);
  1570. err = ext3_journal_stop(handle);
  1571. if (!ret)
  1572. ret = err;
  1573. return ret;
  1574. out_fail:
  1575. redirty_page_for_writepage(wbc, page);
  1576. unlock_page(page);
  1577. return ret;
  1578. }
  1579. static int ext3_journalled_writepage(struct page *page,
  1580. struct writeback_control *wbc)
  1581. {
  1582. struct inode *inode = page->mapping->host;
  1583. handle_t *handle = NULL;
  1584. int ret = 0;
  1585. int err;
  1586. J_ASSERT(PageLocked(page));
  1587. /*
  1588. * We don't want to warn for emergency remount. The condition is
  1589. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1590. * avoid slow-downs.
  1591. */
  1592. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1593. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1594. if (ext3_journal_current_handle())
  1595. goto no_write;
  1596. trace_ext3_journalled_writepage(page);
  1597. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1598. if (IS_ERR(handle)) {
  1599. ret = PTR_ERR(handle);
  1600. goto no_write;
  1601. }
  1602. if (!page_has_buffers(page) || PageChecked(page)) {
  1603. /*
  1604. * It's mmapped pagecache. Add buffers and journal it. There
  1605. * doesn't seem much point in redirtying the page here.
  1606. */
  1607. ClearPageChecked(page);
  1608. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1609. ext3_get_block);
  1610. if (ret != 0) {
  1611. ext3_journal_stop(handle);
  1612. goto out_unlock;
  1613. }
  1614. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1615. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1616. err = walk_page_buffers(handle, page_buffers(page), 0,
  1617. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1618. if (ret == 0)
  1619. ret = err;
  1620. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1621. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1622. handle->h_transaction->t_tid);
  1623. unlock_page(page);
  1624. } else {
  1625. /*
  1626. * It may be a page full of checkpoint-mode buffers. We don't
  1627. * really know unless we go poke around in the buffer_heads.
  1628. * But block_write_full_page will do the right thing.
  1629. */
  1630. ret = block_write_full_page(page, ext3_get_block, wbc);
  1631. }
  1632. err = ext3_journal_stop(handle);
  1633. if (!ret)
  1634. ret = err;
  1635. out:
  1636. return ret;
  1637. no_write:
  1638. redirty_page_for_writepage(wbc, page);
  1639. out_unlock:
  1640. unlock_page(page);
  1641. goto out;
  1642. }
  1643. static int ext3_readpage(struct file *file, struct page *page)
  1644. {
  1645. trace_ext3_readpage(page);
  1646. return mpage_readpage(page, ext3_get_block);
  1647. }
  1648. static int
  1649. ext3_readpages(struct file *file, struct address_space *mapping,
  1650. struct list_head *pages, unsigned nr_pages)
  1651. {
  1652. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1653. }
  1654. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1655. {
  1656. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1657. trace_ext3_invalidatepage(page, offset);
  1658. /*
  1659. * If it's a full truncate we just forget about the pending dirtying
  1660. */
  1661. if (offset == 0)
  1662. ClearPageChecked(page);
  1663. journal_invalidatepage(journal, page, offset);
  1664. }
  1665. static int ext3_releasepage(struct page *page, gfp_t wait)
  1666. {
  1667. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1668. trace_ext3_releasepage(page);
  1669. WARN_ON(PageChecked(page));
  1670. if (!page_has_buffers(page))
  1671. return 0;
  1672. return journal_try_to_free_buffers(journal, page, wait);
  1673. }
  1674. /*
  1675. * If the O_DIRECT write will extend the file then add this inode to the
  1676. * orphan list. So recovery will truncate it back to the original size
  1677. * if the machine crashes during the write.
  1678. *
  1679. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1680. * crashes then stale disk data _may_ be exposed inside the file. But current
  1681. * VFS code falls back into buffered path in that case so we are safe.
  1682. */
  1683. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1684. const struct iovec *iov, loff_t offset,
  1685. unsigned long nr_segs)
  1686. {
  1687. struct file *file = iocb->ki_filp;
  1688. struct inode *inode = file->f_mapping->host;
  1689. struct ext3_inode_info *ei = EXT3_I(inode);
  1690. handle_t *handle;
  1691. ssize_t ret;
  1692. int orphan = 0;
  1693. size_t count = iov_length(iov, nr_segs);
  1694. int retries = 0;
  1695. trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  1696. if (rw == WRITE) {
  1697. loff_t final_size = offset + count;
  1698. if (final_size > inode->i_size) {
  1699. /* Credits for sb + inode write */
  1700. handle = ext3_journal_start(inode, 2);
  1701. if (IS_ERR(handle)) {
  1702. ret = PTR_ERR(handle);
  1703. goto out;
  1704. }
  1705. ret = ext3_orphan_add(handle, inode);
  1706. if (ret) {
  1707. ext3_journal_stop(handle);
  1708. goto out;
  1709. }
  1710. orphan = 1;
  1711. ei->i_disksize = inode->i_size;
  1712. ext3_journal_stop(handle);
  1713. }
  1714. }
  1715. retry:
  1716. ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  1717. ext3_get_block);
  1718. /*
  1719. * In case of error extending write may have instantiated a few
  1720. * blocks outside i_size. Trim these off again.
  1721. */
  1722. if (unlikely((rw & WRITE) && ret < 0)) {
  1723. loff_t isize = i_size_read(inode);
  1724. loff_t end = offset + iov_length(iov, nr_segs);
  1725. if (end > isize)
  1726. ext3_truncate_failed_direct_write(inode);
  1727. }
  1728. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1729. goto retry;
  1730. if (orphan) {
  1731. int err;
  1732. /* Credits for sb + inode write */
  1733. handle = ext3_journal_start(inode, 2);
  1734. if (IS_ERR(handle)) {
  1735. /* This is really bad luck. We've written the data
  1736. * but cannot extend i_size. Truncate allocated blocks
  1737. * and pretend the write failed... */
  1738. ext3_truncate_failed_direct_write(inode);
  1739. ret = PTR_ERR(handle);
  1740. goto out;
  1741. }
  1742. if (inode->i_nlink)
  1743. ext3_orphan_del(handle, inode);
  1744. if (ret > 0) {
  1745. loff_t end = offset + ret;
  1746. if (end > inode->i_size) {
  1747. ei->i_disksize = end;
  1748. i_size_write(inode, end);
  1749. /*
  1750. * We're going to return a positive `ret'
  1751. * here due to non-zero-length I/O, so there's
  1752. * no way of reporting error returns from
  1753. * ext3_mark_inode_dirty() to userspace. So
  1754. * ignore it.
  1755. */
  1756. ext3_mark_inode_dirty(handle, inode);
  1757. }
  1758. }
  1759. err = ext3_journal_stop(handle);
  1760. if (ret == 0)
  1761. ret = err;
  1762. }
  1763. out:
  1764. trace_ext3_direct_IO_exit(inode, offset,
  1765. iov_length(iov, nr_segs), rw, ret);
  1766. return ret;
  1767. }
  1768. /*
  1769. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1770. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1771. * much here because ->set_page_dirty is called under VFS locks. The page is
  1772. * not necessarily locked.
  1773. *
  1774. * We cannot just dirty the page and leave attached buffers clean, because the
  1775. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1776. * or jbddirty because all the journalling code will explode.
  1777. *
  1778. * So what we do is to mark the page "pending dirty" and next time writepage
  1779. * is called, propagate that into the buffers appropriately.
  1780. */
  1781. static int ext3_journalled_set_page_dirty(struct page *page)
  1782. {
  1783. SetPageChecked(page);
  1784. return __set_page_dirty_nobuffers(page);
  1785. }
  1786. static const struct address_space_operations ext3_ordered_aops = {
  1787. .readpage = ext3_readpage,
  1788. .readpages = ext3_readpages,
  1789. .writepage = ext3_ordered_writepage,
  1790. .write_begin = ext3_write_begin,
  1791. .write_end = ext3_ordered_write_end,
  1792. .bmap = ext3_bmap,
  1793. .invalidatepage = ext3_invalidatepage,
  1794. .releasepage = ext3_releasepage,
  1795. .direct_IO = ext3_direct_IO,
  1796. .migratepage = buffer_migrate_page,
  1797. .is_partially_uptodate = block_is_partially_uptodate,
  1798. .error_remove_page = generic_error_remove_page,
  1799. };
  1800. static const struct address_space_operations ext3_writeback_aops = {
  1801. .readpage = ext3_readpage,
  1802. .readpages = ext3_readpages,
  1803. .writepage = ext3_writeback_writepage,
  1804. .write_begin = ext3_write_begin,
  1805. .write_end = ext3_writeback_write_end,
  1806. .bmap = ext3_bmap,
  1807. .invalidatepage = ext3_invalidatepage,
  1808. .releasepage = ext3_releasepage,
  1809. .direct_IO = ext3_direct_IO,
  1810. .migratepage = buffer_migrate_page,
  1811. .is_partially_uptodate = block_is_partially_uptodate,
  1812. .error_remove_page = generic_error_remove_page,
  1813. };
  1814. static const struct address_space_operations ext3_journalled_aops = {
  1815. .readpage = ext3_readpage,
  1816. .readpages = ext3_readpages,
  1817. .writepage = ext3_journalled_writepage,
  1818. .write_begin = ext3_write_begin,
  1819. .write_end = ext3_journalled_write_end,
  1820. .set_page_dirty = ext3_journalled_set_page_dirty,
  1821. .bmap = ext3_bmap,
  1822. .invalidatepage = ext3_invalidatepage,
  1823. .releasepage = ext3_releasepage,
  1824. .is_partially_uptodate = block_is_partially_uptodate,
  1825. .error_remove_page = generic_error_remove_page,
  1826. };
  1827. void ext3_set_aops(struct inode *inode)
  1828. {
  1829. if (ext3_should_order_data(inode))
  1830. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1831. else if (ext3_should_writeback_data(inode))
  1832. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1833. else
  1834. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1835. }
  1836. /*
  1837. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1838. * up to the end of the block which corresponds to `from'.
  1839. * This required during truncate. We need to physically zero the tail end
  1840. * of that block so it doesn't yield old data if the file is later grown.
  1841. */
  1842. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1843. {
  1844. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1845. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1846. unsigned blocksize, iblock, length, pos;
  1847. struct page *page;
  1848. handle_t *handle = NULL;
  1849. struct buffer_head *bh;
  1850. int err = 0;
  1851. /* Truncated on block boundary - nothing to do */
  1852. blocksize = inode->i_sb->s_blocksize;
  1853. if ((from & (blocksize - 1)) == 0)
  1854. return 0;
  1855. page = grab_cache_page(inode->i_mapping, index);
  1856. if (!page)
  1857. return -ENOMEM;
  1858. length = blocksize - (offset & (blocksize - 1));
  1859. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1860. if (!page_has_buffers(page))
  1861. create_empty_buffers(page, blocksize, 0);
  1862. /* Find the buffer that contains "offset" */
  1863. bh = page_buffers(page);
  1864. pos = blocksize;
  1865. while (offset >= pos) {
  1866. bh = bh->b_this_page;
  1867. iblock++;
  1868. pos += blocksize;
  1869. }
  1870. err = 0;
  1871. if (buffer_freed(bh)) {
  1872. BUFFER_TRACE(bh, "freed: skip");
  1873. goto unlock;
  1874. }
  1875. if (!buffer_mapped(bh)) {
  1876. BUFFER_TRACE(bh, "unmapped");
  1877. ext3_get_block(inode, iblock, bh, 0);
  1878. /* unmapped? It's a hole - nothing to do */
  1879. if (!buffer_mapped(bh)) {
  1880. BUFFER_TRACE(bh, "still unmapped");
  1881. goto unlock;
  1882. }
  1883. }
  1884. /* Ok, it's mapped. Make sure it's up-to-date */
  1885. if (PageUptodate(page))
  1886. set_buffer_uptodate(bh);
  1887. if (!bh_uptodate_or_lock(bh)) {
  1888. err = bh_submit_read(bh);
  1889. /* Uhhuh. Read error. Complain and punt. */
  1890. if (err)
  1891. goto unlock;
  1892. }
  1893. /* data=writeback mode doesn't need transaction to zero-out data */
  1894. if (!ext3_should_writeback_data(inode)) {
  1895. /* We journal at most one block */
  1896. handle = ext3_journal_start(inode, 1);
  1897. if (IS_ERR(handle)) {
  1898. clear_highpage(page);
  1899. flush_dcache_page(page);
  1900. err = PTR_ERR(handle);
  1901. goto unlock;
  1902. }
  1903. }
  1904. if (ext3_should_journal_data(inode)) {
  1905. BUFFER_TRACE(bh, "get write access");
  1906. err = ext3_journal_get_write_access(handle, bh);
  1907. if (err)
  1908. goto stop;
  1909. }
  1910. zero_user(page, offset, length);
  1911. BUFFER_TRACE(bh, "zeroed end of block");
  1912. err = 0;
  1913. if (ext3_should_journal_data(inode)) {
  1914. err = ext3_journal_dirty_metadata(handle, bh);
  1915. } else {
  1916. if (ext3_should_order_data(inode))
  1917. err = ext3_journal_dirty_data(handle, bh);
  1918. mark_buffer_dirty(bh);
  1919. }
  1920. stop:
  1921. if (handle)
  1922. ext3_journal_stop(handle);
  1923. unlock:
  1924. unlock_page(page);
  1925. page_cache_release(page);
  1926. return err;
  1927. }
  1928. /*
  1929. * Probably it should be a library function... search for first non-zero word
  1930. * or memcmp with zero_page, whatever is better for particular architecture.
  1931. * Linus?
  1932. */
  1933. static inline int all_zeroes(__le32 *p, __le32 *q)
  1934. {
  1935. while (p < q)
  1936. if (*p++)
  1937. return 0;
  1938. return 1;
  1939. }
  1940. /**
  1941. * ext3_find_shared - find the indirect blocks for partial truncation.
  1942. * @inode: inode in question
  1943. * @depth: depth of the affected branch
  1944. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1945. * @chain: place to store the pointers to partial indirect blocks
  1946. * @top: place to the (detached) top of branch
  1947. *
  1948. * This is a helper function used by ext3_truncate().
  1949. *
  1950. * When we do truncate() we may have to clean the ends of several
  1951. * indirect blocks but leave the blocks themselves alive. Block is
  1952. * partially truncated if some data below the new i_size is referred
  1953. * from it (and it is on the path to the first completely truncated
  1954. * data block, indeed). We have to free the top of that path along
  1955. * with everything to the right of the path. Since no allocation
  1956. * past the truncation point is possible until ext3_truncate()
  1957. * finishes, we may safely do the latter, but top of branch may
  1958. * require special attention - pageout below the truncation point
  1959. * might try to populate it.
  1960. *
  1961. * We atomically detach the top of branch from the tree, store the
  1962. * block number of its root in *@top, pointers to buffer_heads of
  1963. * partially truncated blocks - in @chain[].bh and pointers to
  1964. * their last elements that should not be removed - in
  1965. * @chain[].p. Return value is the pointer to last filled element
  1966. * of @chain.
  1967. *
  1968. * The work left to caller to do the actual freeing of subtrees:
  1969. * a) free the subtree starting from *@top
  1970. * b) free the subtrees whose roots are stored in
  1971. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1972. * c) free the subtrees growing from the inode past the @chain[0].
  1973. * (no partially truncated stuff there). */
  1974. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1975. int offsets[4], Indirect chain[4], __le32 *top)
  1976. {
  1977. Indirect *partial, *p;
  1978. int k, err;
  1979. *top = 0;
  1980. /* Make k index the deepest non-null offset + 1 */
  1981. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1982. ;
  1983. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1984. /* Writer: pointers */
  1985. if (!partial)
  1986. partial = chain + k-1;
  1987. /*
  1988. * If the branch acquired continuation since we've looked at it -
  1989. * fine, it should all survive and (new) top doesn't belong to us.
  1990. */
  1991. if (!partial->key && *partial->p)
  1992. /* Writer: end */
  1993. goto no_top;
  1994. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1995. ;
  1996. /*
  1997. * OK, we've found the last block that must survive. The rest of our
  1998. * branch should be detached before unlocking. However, if that rest
  1999. * of branch is all ours and does not grow immediately from the inode
  2000. * it's easier to cheat and just decrement partial->p.
  2001. */
  2002. if (p == chain + k - 1 && p > chain) {
  2003. p->p--;
  2004. } else {
  2005. *top = *p->p;
  2006. /* Nope, don't do this in ext3. Must leave the tree intact */
  2007. #if 0
  2008. *p->p = 0;
  2009. #endif
  2010. }
  2011. /* Writer: end */
  2012. while(partial > p) {
  2013. brelse(partial->bh);
  2014. partial--;
  2015. }
  2016. no_top:
  2017. return partial;
  2018. }
  2019. /*
  2020. * Zero a number of block pointers in either an inode or an indirect block.
  2021. * If we restart the transaction we must again get write access to the
  2022. * indirect block for further modification.
  2023. *
  2024. * We release `count' blocks on disk, but (last - first) may be greater
  2025. * than `count' because there can be holes in there.
  2026. */
  2027. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  2028. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  2029. unsigned long count, __le32 *first, __le32 *last)
  2030. {
  2031. __le32 *p;
  2032. if (try_to_extend_transaction(handle, inode)) {
  2033. if (bh) {
  2034. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2035. if (ext3_journal_dirty_metadata(handle, bh))
  2036. return;
  2037. }
  2038. ext3_mark_inode_dirty(handle, inode);
  2039. truncate_restart_transaction(handle, inode);
  2040. if (bh) {
  2041. BUFFER_TRACE(bh, "retaking write access");
  2042. if (ext3_journal_get_write_access(handle, bh))
  2043. return;
  2044. }
  2045. }
  2046. /*
  2047. * Any buffers which are on the journal will be in memory. We find
  2048. * them on the hash table so journal_revoke() will run journal_forget()
  2049. * on them. We've already detached each block from the file, so
  2050. * bforget() in journal_forget() should be safe.
  2051. *
  2052. * AKPM: turn on bforget in journal_forget()!!!
  2053. */
  2054. for (p = first; p < last; p++) {
  2055. u32 nr = le32_to_cpu(*p);
  2056. if (nr) {
  2057. struct buffer_head *bh;
  2058. *p = 0;
  2059. bh = sb_find_get_block(inode->i_sb, nr);
  2060. ext3_forget(handle, 0, inode, bh, nr);
  2061. }
  2062. }
  2063. ext3_free_blocks(handle, inode, block_to_free, count);
  2064. }
  2065. /**
  2066. * ext3_free_data - free a list of data blocks
  2067. * @handle: handle for this transaction
  2068. * @inode: inode we are dealing with
  2069. * @this_bh: indirect buffer_head which contains *@first and *@last
  2070. * @first: array of block numbers
  2071. * @last: points immediately past the end of array
  2072. *
  2073. * We are freeing all blocks referred from that array (numbers are stored as
  2074. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2075. *
  2076. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2077. * blocks are contiguous then releasing them at one time will only affect one
  2078. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2079. * actually use a lot of journal space.
  2080. *
  2081. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2082. * block pointers.
  2083. */
  2084. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2085. struct buffer_head *this_bh,
  2086. __le32 *first, __le32 *last)
  2087. {
  2088. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2089. unsigned long count = 0; /* Number of blocks in the run */
  2090. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2091. corresponding to
  2092. block_to_free */
  2093. ext3_fsblk_t nr; /* Current block # */
  2094. __le32 *p; /* Pointer into inode/ind
  2095. for current block */
  2096. int err;
  2097. if (this_bh) { /* For indirect block */
  2098. BUFFER_TRACE(this_bh, "get_write_access");
  2099. err = ext3_journal_get_write_access(handle, this_bh);
  2100. /* Important: if we can't update the indirect pointers
  2101. * to the blocks, we can't free them. */
  2102. if (err)
  2103. return;
  2104. }
  2105. for (p = first; p < last; p++) {
  2106. nr = le32_to_cpu(*p);
  2107. if (nr) {
  2108. /* accumulate blocks to free if they're contiguous */
  2109. if (count == 0) {
  2110. block_to_free = nr;
  2111. block_to_free_p = p;
  2112. count = 1;
  2113. } else if (nr == block_to_free + count) {
  2114. count++;
  2115. } else {
  2116. ext3_clear_blocks(handle, inode, this_bh,
  2117. block_to_free,
  2118. count, block_to_free_p, p);
  2119. block_to_free = nr;
  2120. block_to_free_p = p;
  2121. count = 1;
  2122. }
  2123. }
  2124. }
  2125. if (count > 0)
  2126. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2127. count, block_to_free_p, p);
  2128. if (this_bh) {
  2129. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2130. /*
  2131. * The buffer head should have an attached journal head at this
  2132. * point. However, if the data is corrupted and an indirect
  2133. * block pointed to itself, it would have been detached when
  2134. * the block was cleared. Check for this instead of OOPSing.
  2135. */
  2136. if (bh2jh(this_bh))
  2137. ext3_journal_dirty_metadata(handle, this_bh);
  2138. else
  2139. ext3_error(inode->i_sb, "ext3_free_data",
  2140. "circular indirect block detected, "
  2141. "inode=%lu, block=%llu",
  2142. inode->i_ino,
  2143. (unsigned long long)this_bh->b_blocknr);
  2144. }
  2145. }
  2146. /**
  2147. * ext3_free_branches - free an array of branches
  2148. * @handle: JBD handle for this transaction
  2149. * @inode: inode we are dealing with
  2150. * @parent_bh: the buffer_head which contains *@first and *@last
  2151. * @first: array of block numbers
  2152. * @last: pointer immediately past the end of array
  2153. * @depth: depth of the branches to free
  2154. *
  2155. * We are freeing all blocks referred from these branches (numbers are
  2156. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2157. * appropriately.
  2158. */
  2159. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2160. struct buffer_head *parent_bh,
  2161. __le32 *first, __le32 *last, int depth)
  2162. {
  2163. ext3_fsblk_t nr;
  2164. __le32 *p;
  2165. if (is_handle_aborted(handle))
  2166. return;
  2167. if (depth--) {
  2168. struct buffer_head *bh;
  2169. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2170. p = last;
  2171. while (--p >= first) {
  2172. nr = le32_to_cpu(*p);
  2173. if (!nr)
  2174. continue; /* A hole */
  2175. /* Go read the buffer for the next level down */
  2176. bh = sb_bread(inode->i_sb, nr);
  2177. /*
  2178. * A read failure? Report error and clear slot
  2179. * (should be rare).
  2180. */
  2181. if (!bh) {
  2182. ext3_error(inode->i_sb, "ext3_free_branches",
  2183. "Read failure, inode=%lu, block="E3FSBLK,
  2184. inode->i_ino, nr);
  2185. continue;
  2186. }
  2187. /* This zaps the entire block. Bottom up. */
  2188. BUFFER_TRACE(bh, "free child branches");
  2189. ext3_free_branches(handle, inode, bh,
  2190. (__le32*)bh->b_data,
  2191. (__le32*)bh->b_data + addr_per_block,
  2192. depth);
  2193. /*
  2194. * Everything below this this pointer has been
  2195. * released. Now let this top-of-subtree go.
  2196. *
  2197. * We want the freeing of this indirect block to be
  2198. * atomic in the journal with the updating of the
  2199. * bitmap block which owns it. So make some room in
  2200. * the journal.
  2201. *
  2202. * We zero the parent pointer *after* freeing its
  2203. * pointee in the bitmaps, so if extend_transaction()
  2204. * for some reason fails to put the bitmap changes and
  2205. * the release into the same transaction, recovery
  2206. * will merely complain about releasing a free block,
  2207. * rather than leaking blocks.
  2208. */
  2209. if (is_handle_aborted(handle))
  2210. return;
  2211. if (try_to_extend_transaction(handle, inode)) {
  2212. ext3_mark_inode_dirty(handle, inode);
  2213. truncate_restart_transaction(handle, inode);
  2214. }
  2215. /*
  2216. * We've probably journalled the indirect block several
  2217. * times during the truncate. But it's no longer
  2218. * needed and we now drop it from the transaction via
  2219. * journal_revoke().
  2220. *
  2221. * That's easy if it's exclusively part of this
  2222. * transaction. But if it's part of the committing
  2223. * transaction then journal_forget() will simply
  2224. * brelse() it. That means that if the underlying
  2225. * block is reallocated in ext3_get_block(),
  2226. * unmap_underlying_metadata() will find this block
  2227. * and will try to get rid of it. damn, damn. Thus
  2228. * we don't allow a block to be reallocated until
  2229. * a transaction freeing it has fully committed.
  2230. *
  2231. * We also have to make sure journal replay after a
  2232. * crash does not overwrite non-journaled data blocks
  2233. * with old metadata when the block got reallocated for
  2234. * data. Thus we have to store a revoke record for a
  2235. * block in the same transaction in which we free the
  2236. * block.
  2237. */
  2238. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2239. ext3_free_blocks(handle, inode, nr, 1);
  2240. if (parent_bh) {
  2241. /*
  2242. * The block which we have just freed is
  2243. * pointed to by an indirect block: journal it
  2244. */
  2245. BUFFER_TRACE(parent_bh, "get_write_access");
  2246. if (!ext3_journal_get_write_access(handle,
  2247. parent_bh)){
  2248. *p = 0;
  2249. BUFFER_TRACE(parent_bh,
  2250. "call ext3_journal_dirty_metadata");
  2251. ext3_journal_dirty_metadata(handle,
  2252. parent_bh);
  2253. }
  2254. }
  2255. }
  2256. } else {
  2257. /* We have reached the bottom of the tree. */
  2258. BUFFER_TRACE(parent_bh, "free data blocks");
  2259. ext3_free_data(handle, inode, parent_bh, first, last);
  2260. }
  2261. }
  2262. int ext3_can_truncate(struct inode *inode)
  2263. {
  2264. if (S_ISREG(inode->i_mode))
  2265. return 1;
  2266. if (S_ISDIR(inode->i_mode))
  2267. return 1;
  2268. if (S_ISLNK(inode->i_mode))
  2269. return !ext3_inode_is_fast_symlink(inode);
  2270. return 0;
  2271. }
  2272. /*
  2273. * ext3_truncate()
  2274. *
  2275. * We block out ext3_get_block() block instantiations across the entire
  2276. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2277. * simultaneously on behalf of the same inode.
  2278. *
  2279. * As we work through the truncate and commit bits of it to the journal there
  2280. * is one core, guiding principle: the file's tree must always be consistent on
  2281. * disk. We must be able to restart the truncate after a crash.
  2282. *
  2283. * The file's tree may be transiently inconsistent in memory (although it
  2284. * probably isn't), but whenever we close off and commit a journal transaction,
  2285. * the contents of (the filesystem + the journal) must be consistent and
  2286. * restartable. It's pretty simple, really: bottom up, right to left (although
  2287. * left-to-right works OK too).
  2288. *
  2289. * Note that at recovery time, journal replay occurs *before* the restart of
  2290. * truncate against the orphan inode list.
  2291. *
  2292. * The committed inode has the new, desired i_size (which is the same as
  2293. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2294. * that this inode's truncate did not complete and it will again call
  2295. * ext3_truncate() to have another go. So there will be instantiated blocks
  2296. * to the right of the truncation point in a crashed ext3 filesystem. But
  2297. * that's fine - as long as they are linked from the inode, the post-crash
  2298. * ext3_truncate() run will find them and release them.
  2299. */
  2300. void ext3_truncate(struct inode *inode)
  2301. {
  2302. handle_t *handle;
  2303. struct ext3_inode_info *ei = EXT3_I(inode);
  2304. __le32 *i_data = ei->i_data;
  2305. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2306. int offsets[4];
  2307. Indirect chain[4];
  2308. Indirect *partial;
  2309. __le32 nr = 0;
  2310. int n;
  2311. long last_block;
  2312. unsigned blocksize = inode->i_sb->s_blocksize;
  2313. trace_ext3_truncate_enter(inode);
  2314. if (!ext3_can_truncate(inode))
  2315. goto out_notrans;
  2316. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2317. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2318. handle = start_transaction(inode);
  2319. if (IS_ERR(handle))
  2320. goto out_notrans;
  2321. last_block = (inode->i_size + blocksize-1)
  2322. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2323. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2324. if (n == 0)
  2325. goto out_stop; /* error */
  2326. /*
  2327. * OK. This truncate is going to happen. We add the inode to the
  2328. * orphan list, so that if this truncate spans multiple transactions,
  2329. * and we crash, we will resume the truncate when the filesystem
  2330. * recovers. It also marks the inode dirty, to catch the new size.
  2331. *
  2332. * Implication: the file must always be in a sane, consistent
  2333. * truncatable state while each transaction commits.
  2334. */
  2335. if (ext3_orphan_add(handle, inode))
  2336. goto out_stop;
  2337. /*
  2338. * The orphan list entry will now protect us from any crash which
  2339. * occurs before the truncate completes, so it is now safe to propagate
  2340. * the new, shorter inode size (held for now in i_size) into the
  2341. * on-disk inode. We do this via i_disksize, which is the value which
  2342. * ext3 *really* writes onto the disk inode.
  2343. */
  2344. ei->i_disksize = inode->i_size;
  2345. /*
  2346. * From here we block out all ext3_get_block() callers who want to
  2347. * modify the block allocation tree.
  2348. */
  2349. mutex_lock(&ei->truncate_mutex);
  2350. if (n == 1) { /* direct blocks */
  2351. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2352. i_data + EXT3_NDIR_BLOCKS);
  2353. goto do_indirects;
  2354. }
  2355. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2356. /* Kill the top of shared branch (not detached) */
  2357. if (nr) {
  2358. if (partial == chain) {
  2359. /* Shared branch grows from the inode */
  2360. ext3_free_branches(handle, inode, NULL,
  2361. &nr, &nr+1, (chain+n-1) - partial);
  2362. *partial->p = 0;
  2363. /*
  2364. * We mark the inode dirty prior to restart,
  2365. * and prior to stop. No need for it here.
  2366. */
  2367. } else {
  2368. /* Shared branch grows from an indirect block */
  2369. ext3_free_branches(handle, inode, partial->bh,
  2370. partial->p,
  2371. partial->p+1, (chain+n-1) - partial);
  2372. }
  2373. }
  2374. /* Clear the ends of indirect blocks on the shared branch */
  2375. while (partial > chain) {
  2376. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2377. (__le32*)partial->bh->b_data+addr_per_block,
  2378. (chain+n-1) - partial);
  2379. BUFFER_TRACE(partial->bh, "call brelse");
  2380. brelse (partial->bh);
  2381. partial--;
  2382. }
  2383. do_indirects:
  2384. /* Kill the remaining (whole) subtrees */
  2385. switch (offsets[0]) {
  2386. default:
  2387. nr = i_data[EXT3_IND_BLOCK];
  2388. if (nr) {
  2389. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2390. i_data[EXT3_IND_BLOCK] = 0;
  2391. }
  2392. case EXT3_IND_BLOCK:
  2393. nr = i_data[EXT3_DIND_BLOCK];
  2394. if (nr) {
  2395. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2396. i_data[EXT3_DIND_BLOCK] = 0;
  2397. }
  2398. case EXT3_DIND_BLOCK:
  2399. nr = i_data[EXT3_TIND_BLOCK];
  2400. if (nr) {
  2401. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2402. i_data[EXT3_TIND_BLOCK] = 0;
  2403. }
  2404. case EXT3_TIND_BLOCK:
  2405. ;
  2406. }
  2407. ext3_discard_reservation(inode);
  2408. mutex_unlock(&ei->truncate_mutex);
  2409. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2410. ext3_mark_inode_dirty(handle, inode);
  2411. /*
  2412. * In a multi-transaction truncate, we only make the final transaction
  2413. * synchronous
  2414. */
  2415. if (IS_SYNC(inode))
  2416. handle->h_sync = 1;
  2417. out_stop:
  2418. /*
  2419. * If this was a simple ftruncate(), and the file will remain alive
  2420. * then we need to clear up the orphan record which we created above.
  2421. * However, if this was a real unlink then we were called by
  2422. * ext3_evict_inode(), and we allow that function to clean up the
  2423. * orphan info for us.
  2424. */
  2425. if (inode->i_nlink)
  2426. ext3_orphan_del(handle, inode);
  2427. ext3_journal_stop(handle);
  2428. trace_ext3_truncate_exit(inode);
  2429. return;
  2430. out_notrans:
  2431. /*
  2432. * Delete the inode from orphan list so that it doesn't stay there
  2433. * forever and trigger assertion on umount.
  2434. */
  2435. if (inode->i_nlink)
  2436. ext3_orphan_del(NULL, inode);
  2437. trace_ext3_truncate_exit(inode);
  2438. }
  2439. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2440. unsigned long ino, struct ext3_iloc *iloc)
  2441. {
  2442. unsigned long block_group;
  2443. unsigned long offset;
  2444. ext3_fsblk_t block;
  2445. struct ext3_group_desc *gdp;
  2446. if (!ext3_valid_inum(sb, ino)) {
  2447. /*
  2448. * This error is already checked for in namei.c unless we are
  2449. * looking at an NFS filehandle, in which case no error
  2450. * report is needed
  2451. */
  2452. return 0;
  2453. }
  2454. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2455. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2456. if (!gdp)
  2457. return 0;
  2458. /*
  2459. * Figure out the offset within the block group inode table
  2460. */
  2461. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2462. EXT3_INODE_SIZE(sb);
  2463. block = le32_to_cpu(gdp->bg_inode_table) +
  2464. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2465. iloc->block_group = block_group;
  2466. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2467. return block;
  2468. }
  2469. /*
  2470. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2471. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2472. * data in memory that is needed to recreate the on-disk version of this
  2473. * inode.
  2474. */
  2475. static int __ext3_get_inode_loc(struct inode *inode,
  2476. struct ext3_iloc *iloc, int in_mem)
  2477. {
  2478. ext3_fsblk_t block;
  2479. struct buffer_head *bh;
  2480. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2481. if (!block)
  2482. return -EIO;
  2483. bh = sb_getblk(inode->i_sb, block);
  2484. if (unlikely(!bh)) {
  2485. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2486. "unable to read inode block - "
  2487. "inode=%lu, block="E3FSBLK,
  2488. inode->i_ino, block);
  2489. return -ENOMEM;
  2490. }
  2491. if (!buffer_uptodate(bh)) {
  2492. lock_buffer(bh);
  2493. /*
  2494. * If the buffer has the write error flag, we have failed
  2495. * to write out another inode in the same block. In this
  2496. * case, we don't have to read the block because we may
  2497. * read the old inode data successfully.
  2498. */
  2499. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2500. set_buffer_uptodate(bh);
  2501. if (buffer_uptodate(bh)) {
  2502. /* someone brought it uptodate while we waited */
  2503. unlock_buffer(bh);
  2504. goto has_buffer;
  2505. }
  2506. /*
  2507. * If we have all information of the inode in memory and this
  2508. * is the only valid inode in the block, we need not read the
  2509. * block.
  2510. */
  2511. if (in_mem) {
  2512. struct buffer_head *bitmap_bh;
  2513. struct ext3_group_desc *desc;
  2514. int inodes_per_buffer;
  2515. int inode_offset, i;
  2516. int block_group;
  2517. int start;
  2518. block_group = (inode->i_ino - 1) /
  2519. EXT3_INODES_PER_GROUP(inode->i_sb);
  2520. inodes_per_buffer = bh->b_size /
  2521. EXT3_INODE_SIZE(inode->i_sb);
  2522. inode_offset = ((inode->i_ino - 1) %
  2523. EXT3_INODES_PER_GROUP(inode->i_sb));
  2524. start = inode_offset & ~(inodes_per_buffer - 1);
  2525. /* Is the inode bitmap in cache? */
  2526. desc = ext3_get_group_desc(inode->i_sb,
  2527. block_group, NULL);
  2528. if (!desc)
  2529. goto make_io;
  2530. bitmap_bh = sb_getblk(inode->i_sb,
  2531. le32_to_cpu(desc->bg_inode_bitmap));
  2532. if (unlikely(!bitmap_bh))
  2533. goto make_io;
  2534. /*
  2535. * If the inode bitmap isn't in cache then the
  2536. * optimisation may end up performing two reads instead
  2537. * of one, so skip it.
  2538. */
  2539. if (!buffer_uptodate(bitmap_bh)) {
  2540. brelse(bitmap_bh);
  2541. goto make_io;
  2542. }
  2543. for (i = start; i < start + inodes_per_buffer; i++) {
  2544. if (i == inode_offset)
  2545. continue;
  2546. if (ext3_test_bit(i, bitmap_bh->b_data))
  2547. break;
  2548. }
  2549. brelse(bitmap_bh);
  2550. if (i == start + inodes_per_buffer) {
  2551. /* all other inodes are free, so skip I/O */
  2552. memset(bh->b_data, 0, bh->b_size);
  2553. set_buffer_uptodate(bh);
  2554. unlock_buffer(bh);
  2555. goto has_buffer;
  2556. }
  2557. }
  2558. make_io:
  2559. /*
  2560. * There are other valid inodes in the buffer, this inode
  2561. * has in-inode xattrs, or we don't have this inode in memory.
  2562. * Read the block from disk.
  2563. */
  2564. trace_ext3_load_inode(inode);
  2565. get_bh(bh);
  2566. bh->b_end_io = end_buffer_read_sync;
  2567. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2568. wait_on_buffer(bh);
  2569. if (!buffer_uptodate(bh)) {
  2570. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2571. "unable to read inode block - "
  2572. "inode=%lu, block="E3FSBLK,
  2573. inode->i_ino, block);
  2574. brelse(bh);
  2575. return -EIO;
  2576. }
  2577. }
  2578. has_buffer:
  2579. iloc->bh = bh;
  2580. return 0;
  2581. }
  2582. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2583. {
  2584. /* We have all inode data except xattrs in memory here. */
  2585. return __ext3_get_inode_loc(inode, iloc,
  2586. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2587. }
  2588. void ext3_set_inode_flags(struct inode *inode)
  2589. {
  2590. unsigned int flags = EXT3_I(inode)->i_flags;
  2591. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2592. if (flags & EXT3_SYNC_FL)
  2593. inode->i_flags |= S_SYNC;
  2594. if (flags & EXT3_APPEND_FL)
  2595. inode->i_flags |= S_APPEND;
  2596. if (flags & EXT3_IMMUTABLE_FL)
  2597. inode->i_flags |= S_IMMUTABLE;
  2598. if (flags & EXT3_NOATIME_FL)
  2599. inode->i_flags |= S_NOATIME;
  2600. if (flags & EXT3_DIRSYNC_FL)
  2601. inode->i_flags |= S_DIRSYNC;
  2602. }
  2603. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2604. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2605. {
  2606. unsigned int flags = ei->vfs_inode.i_flags;
  2607. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2608. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2609. if (flags & S_SYNC)
  2610. ei->i_flags |= EXT3_SYNC_FL;
  2611. if (flags & S_APPEND)
  2612. ei->i_flags |= EXT3_APPEND_FL;
  2613. if (flags & S_IMMUTABLE)
  2614. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2615. if (flags & S_NOATIME)
  2616. ei->i_flags |= EXT3_NOATIME_FL;
  2617. if (flags & S_DIRSYNC)
  2618. ei->i_flags |= EXT3_DIRSYNC_FL;
  2619. }
  2620. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2621. {
  2622. struct ext3_iloc iloc;
  2623. struct ext3_inode *raw_inode;
  2624. struct ext3_inode_info *ei;
  2625. struct buffer_head *bh;
  2626. struct inode *inode;
  2627. journal_t *journal = EXT3_SB(sb)->s_journal;
  2628. transaction_t *transaction;
  2629. long ret;
  2630. int block;
  2631. uid_t i_uid;
  2632. gid_t i_gid;
  2633. inode = iget_locked(sb, ino);
  2634. if (!inode)
  2635. return ERR_PTR(-ENOMEM);
  2636. if (!(inode->i_state & I_NEW))
  2637. return inode;
  2638. ei = EXT3_I(inode);
  2639. ei->i_block_alloc_info = NULL;
  2640. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2641. if (ret < 0)
  2642. goto bad_inode;
  2643. bh = iloc.bh;
  2644. raw_inode = ext3_raw_inode(&iloc);
  2645. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2646. i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2647. i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2648. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2649. i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2650. i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2651. }
  2652. i_uid_write(inode, i_uid);
  2653. i_gid_write(inode, i_gid);
  2654. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  2655. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2656. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2657. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2658. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2659. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2660. ei->i_state_flags = 0;
  2661. ei->i_dir_start_lookup = 0;
  2662. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2663. /* We now have enough fields to check if the inode was active or not.
  2664. * This is needed because nfsd might try to access dead inodes
  2665. * the test is that same one that e2fsck uses
  2666. * NeilBrown 1999oct15
  2667. */
  2668. if (inode->i_nlink == 0) {
  2669. if (inode->i_mode == 0 ||
  2670. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2671. /* this inode is deleted */
  2672. brelse (bh);
  2673. ret = -ESTALE;
  2674. goto bad_inode;
  2675. }
  2676. /* The only unlinked inodes we let through here have
  2677. * valid i_mode and are being read by the orphan
  2678. * recovery code: that's fine, we're about to complete
  2679. * the process of deleting those. */
  2680. }
  2681. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2682. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2683. #ifdef EXT3_FRAGMENTS
  2684. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2685. ei->i_frag_no = raw_inode->i_frag;
  2686. ei->i_frag_size = raw_inode->i_fsize;
  2687. #endif
  2688. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2689. if (!S_ISREG(inode->i_mode)) {
  2690. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2691. } else {
  2692. inode->i_size |=
  2693. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2694. }
  2695. ei->i_disksize = inode->i_size;
  2696. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2697. ei->i_block_group = iloc.block_group;
  2698. /*
  2699. * NOTE! The in-memory inode i_data array is in little-endian order
  2700. * even on big-endian machines: we do NOT byteswap the block numbers!
  2701. */
  2702. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2703. ei->i_data[block] = raw_inode->i_block[block];
  2704. INIT_LIST_HEAD(&ei->i_orphan);
  2705. /*
  2706. * Set transaction id's of transactions that have to be committed
  2707. * to finish f[data]sync. We set them to currently running transaction
  2708. * as we cannot be sure that the inode or some of its metadata isn't
  2709. * part of the transaction - the inode could have been reclaimed and
  2710. * now it is reread from disk.
  2711. */
  2712. if (journal) {
  2713. tid_t tid;
  2714. spin_lock(&journal->j_state_lock);
  2715. if (journal->j_running_transaction)
  2716. transaction = journal->j_running_transaction;
  2717. else
  2718. transaction = journal->j_committing_transaction;
  2719. if (transaction)
  2720. tid = transaction->t_tid;
  2721. else
  2722. tid = journal->j_commit_sequence;
  2723. spin_unlock(&journal->j_state_lock);
  2724. atomic_set(&ei->i_sync_tid, tid);
  2725. atomic_set(&ei->i_datasync_tid, tid);
  2726. }
  2727. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2728. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2729. /*
  2730. * When mke2fs creates big inodes it does not zero out
  2731. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2732. * so ignore those first few inodes.
  2733. */
  2734. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2735. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2736. EXT3_INODE_SIZE(inode->i_sb)) {
  2737. brelse (bh);
  2738. ret = -EIO;
  2739. goto bad_inode;
  2740. }
  2741. if (ei->i_extra_isize == 0) {
  2742. /* The extra space is currently unused. Use it. */
  2743. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2744. EXT3_GOOD_OLD_INODE_SIZE;
  2745. } else {
  2746. __le32 *magic = (void *)raw_inode +
  2747. EXT3_GOOD_OLD_INODE_SIZE +
  2748. ei->i_extra_isize;
  2749. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2750. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2751. }
  2752. } else
  2753. ei->i_extra_isize = 0;
  2754. if (S_ISREG(inode->i_mode)) {
  2755. inode->i_op = &ext3_file_inode_operations;
  2756. inode->i_fop = &ext3_file_operations;
  2757. ext3_set_aops(inode);
  2758. } else if (S_ISDIR(inode->i_mode)) {
  2759. inode->i_op = &ext3_dir_inode_operations;
  2760. inode->i_fop = &ext3_dir_operations;
  2761. } else if (S_ISLNK(inode->i_mode)) {
  2762. if (ext3_inode_is_fast_symlink(inode)) {
  2763. inode->i_op = &ext3_fast_symlink_inode_operations;
  2764. nd_terminate_link(ei->i_data, inode->i_size,
  2765. sizeof(ei->i_data) - 1);
  2766. } else {
  2767. inode->i_op = &ext3_symlink_inode_operations;
  2768. ext3_set_aops(inode);
  2769. }
  2770. } else {
  2771. inode->i_op = &ext3_special_inode_operations;
  2772. if (raw_inode->i_block[0])
  2773. init_special_inode(inode, inode->i_mode,
  2774. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2775. else
  2776. init_special_inode(inode, inode->i_mode,
  2777. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2778. }
  2779. brelse (iloc.bh);
  2780. ext3_set_inode_flags(inode);
  2781. unlock_new_inode(inode);
  2782. return inode;
  2783. bad_inode:
  2784. iget_failed(inode);
  2785. return ERR_PTR(ret);
  2786. }
  2787. /*
  2788. * Post the struct inode info into an on-disk inode location in the
  2789. * buffer-cache. This gobbles the caller's reference to the
  2790. * buffer_head in the inode location struct.
  2791. *
  2792. * The caller must have write access to iloc->bh.
  2793. */
  2794. static int ext3_do_update_inode(handle_t *handle,
  2795. struct inode *inode,
  2796. struct ext3_iloc *iloc)
  2797. {
  2798. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2799. struct ext3_inode_info *ei = EXT3_I(inode);
  2800. struct buffer_head *bh = iloc->bh;
  2801. int err = 0, rc, block;
  2802. int need_datasync = 0;
  2803. __le32 disksize;
  2804. uid_t i_uid;
  2805. gid_t i_gid;
  2806. again:
  2807. /* we can't allow multiple procs in here at once, its a bit racey */
  2808. lock_buffer(bh);
  2809. /* For fields not not tracking in the in-memory inode,
  2810. * initialise them to zero for new inodes. */
  2811. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2812. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2813. ext3_get_inode_flags(ei);
  2814. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2815. i_uid = i_uid_read(inode);
  2816. i_gid = i_gid_read(inode);
  2817. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2818. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
  2819. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
  2820. /*
  2821. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2822. * re-used with the upper 16 bits of the uid/gid intact
  2823. */
  2824. if(!ei->i_dtime) {
  2825. raw_inode->i_uid_high =
  2826. cpu_to_le16(high_16_bits(i_uid));
  2827. raw_inode->i_gid_high =
  2828. cpu_to_le16(high_16_bits(i_gid));
  2829. } else {
  2830. raw_inode->i_uid_high = 0;
  2831. raw_inode->i_gid_high = 0;
  2832. }
  2833. } else {
  2834. raw_inode->i_uid_low =
  2835. cpu_to_le16(fs_high2lowuid(i_uid));
  2836. raw_inode->i_gid_low =
  2837. cpu_to_le16(fs_high2lowgid(i_gid));
  2838. raw_inode->i_uid_high = 0;
  2839. raw_inode->i_gid_high = 0;
  2840. }
  2841. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2842. disksize = cpu_to_le32(ei->i_disksize);
  2843. if (disksize != raw_inode->i_size) {
  2844. need_datasync = 1;
  2845. raw_inode->i_size = disksize;
  2846. }
  2847. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2848. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2849. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2850. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2851. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2852. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2853. #ifdef EXT3_FRAGMENTS
  2854. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2855. raw_inode->i_frag = ei->i_frag_no;
  2856. raw_inode->i_fsize = ei->i_frag_size;
  2857. #endif
  2858. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2859. if (!S_ISREG(inode->i_mode)) {
  2860. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2861. } else {
  2862. disksize = cpu_to_le32(ei->i_disksize >> 32);
  2863. if (disksize != raw_inode->i_size_high) {
  2864. raw_inode->i_size_high = disksize;
  2865. need_datasync = 1;
  2866. }
  2867. if (ei->i_disksize > 0x7fffffffULL) {
  2868. struct super_block *sb = inode->i_sb;
  2869. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2870. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2871. EXT3_SB(sb)->s_es->s_rev_level ==
  2872. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2873. /* If this is the first large file
  2874. * created, add a flag to the superblock.
  2875. */
  2876. unlock_buffer(bh);
  2877. err = ext3_journal_get_write_access(handle,
  2878. EXT3_SB(sb)->s_sbh);
  2879. if (err)
  2880. goto out_brelse;
  2881. ext3_update_dynamic_rev(sb);
  2882. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2883. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2884. handle->h_sync = 1;
  2885. err = ext3_journal_dirty_metadata(handle,
  2886. EXT3_SB(sb)->s_sbh);
  2887. /* get our lock and start over */
  2888. goto again;
  2889. }
  2890. }
  2891. }
  2892. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2893. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2894. if (old_valid_dev(inode->i_rdev)) {
  2895. raw_inode->i_block[0] =
  2896. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2897. raw_inode->i_block[1] = 0;
  2898. } else {
  2899. raw_inode->i_block[0] = 0;
  2900. raw_inode->i_block[1] =
  2901. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2902. raw_inode->i_block[2] = 0;
  2903. }
  2904. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2905. raw_inode->i_block[block] = ei->i_data[block];
  2906. if (ei->i_extra_isize)
  2907. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2908. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2909. unlock_buffer(bh);
  2910. rc = ext3_journal_dirty_metadata(handle, bh);
  2911. if (!err)
  2912. err = rc;
  2913. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2914. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2915. if (need_datasync)
  2916. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  2917. out_brelse:
  2918. brelse (bh);
  2919. ext3_std_error(inode->i_sb, err);
  2920. return err;
  2921. }
  2922. /*
  2923. * ext3_write_inode()
  2924. *
  2925. * We are called from a few places:
  2926. *
  2927. * - Within generic_file_write() for O_SYNC files.
  2928. * Here, there will be no transaction running. We wait for any running
  2929. * transaction to commit.
  2930. *
  2931. * - Within sys_sync(), kupdate and such.
  2932. * We wait on commit, if tol to.
  2933. *
  2934. * - Within prune_icache() (PF_MEMALLOC == true)
  2935. * Here we simply return. We can't afford to block kswapd on the
  2936. * journal commit.
  2937. *
  2938. * In all cases it is actually safe for us to return without doing anything,
  2939. * because the inode has been copied into a raw inode buffer in
  2940. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2941. * knfsd.
  2942. *
  2943. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2944. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2945. * which we are interested.
  2946. *
  2947. * It would be a bug for them to not do this. The code:
  2948. *
  2949. * mark_inode_dirty(inode)
  2950. * stuff();
  2951. * inode->i_size = expr;
  2952. *
  2953. * is in error because a kswapd-driven write_inode() could occur while
  2954. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2955. * will no longer be on the superblock's dirty inode list.
  2956. */
  2957. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2958. {
  2959. if (current->flags & PF_MEMALLOC)
  2960. return 0;
  2961. if (ext3_journal_current_handle()) {
  2962. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2963. dump_stack();
  2964. return -EIO;
  2965. }
  2966. if (wbc->sync_mode != WB_SYNC_ALL)
  2967. return 0;
  2968. return ext3_force_commit(inode->i_sb);
  2969. }
  2970. /*
  2971. * ext3_setattr()
  2972. *
  2973. * Called from notify_change.
  2974. *
  2975. * We want to trap VFS attempts to truncate the file as soon as
  2976. * possible. In particular, we want to make sure that when the VFS
  2977. * shrinks i_size, we put the inode on the orphan list and modify
  2978. * i_disksize immediately, so that during the subsequent flushing of
  2979. * dirty pages and freeing of disk blocks, we can guarantee that any
  2980. * commit will leave the blocks being flushed in an unused state on
  2981. * disk. (On recovery, the inode will get truncated and the blocks will
  2982. * be freed, so we have a strong guarantee that no future commit will
  2983. * leave these blocks visible to the user.)
  2984. *
  2985. * Called with inode->sem down.
  2986. */
  2987. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2988. {
  2989. struct inode *inode = dentry->d_inode;
  2990. int error, rc = 0;
  2991. const unsigned int ia_valid = attr->ia_valid;
  2992. error = inode_change_ok(inode, attr);
  2993. if (error)
  2994. return error;
  2995. if (is_quota_modification(inode, attr))
  2996. dquot_initialize(inode);
  2997. if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
  2998. (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
  2999. handle_t *handle;
  3000. /* (user+group)*(old+new) structure, inode write (sb,
  3001. * inode block, ? - but truncate inode update has it) */
  3002. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  3003. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  3004. if (IS_ERR(handle)) {
  3005. error = PTR_ERR(handle);
  3006. goto err_out;
  3007. }
  3008. error = dquot_transfer(inode, attr);
  3009. if (error) {
  3010. ext3_journal_stop(handle);
  3011. return error;
  3012. }
  3013. /* Update corresponding info in inode so that everything is in
  3014. * one transaction */
  3015. if (attr->ia_valid & ATTR_UID)
  3016. inode->i_uid = attr->ia_uid;
  3017. if (attr->ia_valid & ATTR_GID)
  3018. inode->i_gid = attr->ia_gid;
  3019. error = ext3_mark_inode_dirty(handle, inode);
  3020. ext3_journal_stop(handle);
  3021. }
  3022. if (attr->ia_valid & ATTR_SIZE)
  3023. inode_dio_wait(inode);
  3024. if (S_ISREG(inode->i_mode) &&
  3025. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  3026. handle_t *handle;
  3027. handle = ext3_journal_start(inode, 3);
  3028. if (IS_ERR(handle)) {
  3029. error = PTR_ERR(handle);
  3030. goto err_out;
  3031. }
  3032. error = ext3_orphan_add(handle, inode);
  3033. if (error) {
  3034. ext3_journal_stop(handle);
  3035. goto err_out;
  3036. }
  3037. EXT3_I(inode)->i_disksize = attr->ia_size;
  3038. error = ext3_mark_inode_dirty(handle, inode);
  3039. ext3_journal_stop(handle);
  3040. if (error) {
  3041. /* Some hard fs error must have happened. Bail out. */
  3042. ext3_orphan_del(NULL, inode);
  3043. goto err_out;
  3044. }
  3045. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3046. if (rc) {
  3047. /* Cleanup orphan list and exit */
  3048. handle = ext3_journal_start(inode, 3);
  3049. if (IS_ERR(handle)) {
  3050. ext3_orphan_del(NULL, inode);
  3051. goto err_out;
  3052. }
  3053. ext3_orphan_del(handle, inode);
  3054. ext3_journal_stop(handle);
  3055. goto err_out;
  3056. }
  3057. }
  3058. if ((attr->ia_valid & ATTR_SIZE) &&
  3059. attr->ia_size != i_size_read(inode)) {
  3060. truncate_setsize(inode, attr->ia_size);
  3061. ext3_truncate(inode);
  3062. }
  3063. setattr_copy(inode, attr);
  3064. mark_inode_dirty(inode);
  3065. if (ia_valid & ATTR_MODE)
  3066. rc = ext3_acl_chmod(inode);
  3067. err_out:
  3068. ext3_std_error(inode->i_sb, error);
  3069. if (!error)
  3070. error = rc;
  3071. return error;
  3072. }
  3073. /*
  3074. * How many blocks doth make a writepage()?
  3075. *
  3076. * With N blocks per page, it may be:
  3077. * N data blocks
  3078. * 2 indirect block
  3079. * 2 dindirect
  3080. * 1 tindirect
  3081. * N+5 bitmap blocks (from the above)
  3082. * N+5 group descriptor summary blocks
  3083. * 1 inode block
  3084. * 1 superblock.
  3085. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3086. *
  3087. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3088. *
  3089. * With ordered or writeback data it's the same, less the N data blocks.
  3090. *
  3091. * If the inode's direct blocks can hold an integral number of pages then a
  3092. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3093. * and dindirect block, and the "5" above becomes "3".
  3094. *
  3095. * This still overestimates under most circumstances. If we were to pass the
  3096. * start and end offsets in here as well we could do block_to_path() on each
  3097. * block and work out the exact number of indirects which are touched. Pah.
  3098. */
  3099. static int ext3_writepage_trans_blocks(struct inode *inode)
  3100. {
  3101. int bpp = ext3_journal_blocks_per_page(inode);
  3102. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3103. int ret;
  3104. if (ext3_should_journal_data(inode))
  3105. ret = 3 * (bpp + indirects) + 2;
  3106. else
  3107. ret = 2 * (bpp + indirects) + indirects + 2;
  3108. #ifdef CONFIG_QUOTA
  3109. /* We know that structure was already allocated during dquot_initialize so
  3110. * we will be updating only the data blocks + inodes */
  3111. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3112. #endif
  3113. return ret;
  3114. }
  3115. /*
  3116. * The caller must have previously called ext3_reserve_inode_write().
  3117. * Give this, we know that the caller already has write access to iloc->bh.
  3118. */
  3119. int ext3_mark_iloc_dirty(handle_t *handle,
  3120. struct inode *inode, struct ext3_iloc *iloc)
  3121. {
  3122. int err = 0;
  3123. /* the do_update_inode consumes one bh->b_count */
  3124. get_bh(iloc->bh);
  3125. /* ext3_do_update_inode() does journal_dirty_metadata */
  3126. err = ext3_do_update_inode(handle, inode, iloc);
  3127. put_bh(iloc->bh);
  3128. return err;
  3129. }
  3130. /*
  3131. * On success, We end up with an outstanding reference count against
  3132. * iloc->bh. This _must_ be cleaned up later.
  3133. */
  3134. int
  3135. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3136. struct ext3_iloc *iloc)
  3137. {
  3138. int err = 0;
  3139. if (handle) {
  3140. err = ext3_get_inode_loc(inode, iloc);
  3141. if (!err) {
  3142. BUFFER_TRACE(iloc->bh, "get_write_access");
  3143. err = ext3_journal_get_write_access(handle, iloc->bh);
  3144. if (err) {
  3145. brelse(iloc->bh);
  3146. iloc->bh = NULL;
  3147. }
  3148. }
  3149. }
  3150. ext3_std_error(inode->i_sb, err);
  3151. return err;
  3152. }
  3153. /*
  3154. * What we do here is to mark the in-core inode as clean with respect to inode
  3155. * dirtiness (it may still be data-dirty).
  3156. * This means that the in-core inode may be reaped by prune_icache
  3157. * without having to perform any I/O. This is a very good thing,
  3158. * because *any* task may call prune_icache - even ones which
  3159. * have a transaction open against a different journal.
  3160. *
  3161. * Is this cheating? Not really. Sure, we haven't written the
  3162. * inode out, but prune_icache isn't a user-visible syncing function.
  3163. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3164. * we start and wait on commits.
  3165. */
  3166. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3167. {
  3168. struct ext3_iloc iloc;
  3169. int err;
  3170. might_sleep();
  3171. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3172. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3173. if (!err)
  3174. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3175. return err;
  3176. }
  3177. /*
  3178. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3179. *
  3180. * We're really interested in the case where a file is being extended.
  3181. * i_size has been changed by generic_commit_write() and we thus need
  3182. * to include the updated inode in the current transaction.
  3183. *
  3184. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3185. * are allocated to the file.
  3186. *
  3187. * If the inode is marked synchronous, we don't honour that here - doing
  3188. * so would cause a commit on atime updates, which we don't bother doing.
  3189. * We handle synchronous inodes at the highest possible level.
  3190. */
  3191. void ext3_dirty_inode(struct inode *inode, int flags)
  3192. {
  3193. handle_t *current_handle = ext3_journal_current_handle();
  3194. handle_t *handle;
  3195. handle = ext3_journal_start(inode, 2);
  3196. if (IS_ERR(handle))
  3197. goto out;
  3198. if (current_handle &&
  3199. current_handle->h_transaction != handle->h_transaction) {
  3200. /* This task has a transaction open against a different fs */
  3201. printk(KERN_EMERG "%s: transactions do not match!\n",
  3202. __func__);
  3203. } else {
  3204. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3205. current_handle);
  3206. ext3_mark_inode_dirty(handle, inode);
  3207. }
  3208. ext3_journal_stop(handle);
  3209. out:
  3210. return;
  3211. }
  3212. #if 0
  3213. /*
  3214. * Bind an inode's backing buffer_head into this transaction, to prevent
  3215. * it from being flushed to disk early. Unlike
  3216. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3217. * returns no iloc structure, so the caller needs to repeat the iloc
  3218. * lookup to mark the inode dirty later.
  3219. */
  3220. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3221. {
  3222. struct ext3_iloc iloc;
  3223. int err = 0;
  3224. if (handle) {
  3225. err = ext3_get_inode_loc(inode, &iloc);
  3226. if (!err) {
  3227. BUFFER_TRACE(iloc.bh, "get_write_access");
  3228. err = journal_get_write_access(handle, iloc.bh);
  3229. if (!err)
  3230. err = ext3_journal_dirty_metadata(handle,
  3231. iloc.bh);
  3232. brelse(iloc.bh);
  3233. }
  3234. }
  3235. ext3_std_error(inode->i_sb, err);
  3236. return err;
  3237. }
  3238. #endif
  3239. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3240. {
  3241. journal_t *journal;
  3242. handle_t *handle;
  3243. int err;
  3244. /*
  3245. * We have to be very careful here: changing a data block's
  3246. * journaling status dynamically is dangerous. If we write a
  3247. * data block to the journal, change the status and then delete
  3248. * that block, we risk forgetting to revoke the old log record
  3249. * from the journal and so a subsequent replay can corrupt data.
  3250. * So, first we make sure that the journal is empty and that
  3251. * nobody is changing anything.
  3252. */
  3253. journal = EXT3_JOURNAL(inode);
  3254. if (is_journal_aborted(journal))
  3255. return -EROFS;
  3256. journal_lock_updates(journal);
  3257. journal_flush(journal);
  3258. /*
  3259. * OK, there are no updates running now, and all cached data is
  3260. * synced to disk. We are now in a completely consistent state
  3261. * which doesn't have anything in the journal, and we know that
  3262. * no filesystem updates are running, so it is safe to modify
  3263. * the inode's in-core data-journaling state flag now.
  3264. */
  3265. if (val)
  3266. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3267. else
  3268. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3269. ext3_set_aops(inode);
  3270. journal_unlock_updates(journal);
  3271. /* Finally we can mark the inode as dirty. */
  3272. handle = ext3_journal_start(inode, 1);
  3273. if (IS_ERR(handle))
  3274. return PTR_ERR(handle);
  3275. err = ext3_mark_inode_dirty(handle, inode);
  3276. handle->h_sync = 1;
  3277. ext3_journal_stop(handle);
  3278. ext3_std_error(inode->i_sb, err);
  3279. return err;
  3280. }