enlighten.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/cpu.h>
  14. #include <linux/kernel.h>
  15. #include <linux/init.h>
  16. #include <linux/smp.h>
  17. #include <linux/preempt.h>
  18. #include <linux/hardirq.h>
  19. #include <linux/percpu.h>
  20. #include <linux/delay.h>
  21. #include <linux/start_kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/kprobes.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/module.h>
  26. #include <linux/mm.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/highmem.h>
  29. #include <linux/console.h>
  30. #include <linux/pci.h>
  31. #include <linux/gfp.h>
  32. #include <linux/memblock.h>
  33. #include <linux/edd.h>
  34. #include <xen/xen.h>
  35. #include <xen/events.h>
  36. #include <xen/interface/xen.h>
  37. #include <xen/interface/version.h>
  38. #include <xen/interface/physdev.h>
  39. #include <xen/interface/vcpu.h>
  40. #include <xen/interface/memory.h>
  41. #include <xen/interface/xen-mca.h>
  42. #include <xen/features.h>
  43. #include <xen/page.h>
  44. #include <xen/hvm.h>
  45. #include <xen/hvc-console.h>
  46. #include <xen/acpi.h>
  47. #include <asm/paravirt.h>
  48. #include <asm/apic.h>
  49. #include <asm/page.h>
  50. #include <asm/xen/pci.h>
  51. #include <asm/xen/hypercall.h>
  52. #include <asm/xen/hypervisor.h>
  53. #include <asm/fixmap.h>
  54. #include <asm/processor.h>
  55. #include <asm/proto.h>
  56. #include <asm/msr-index.h>
  57. #include <asm/traps.h>
  58. #include <asm/setup.h>
  59. #include <asm/desc.h>
  60. #include <asm/pgalloc.h>
  61. #include <asm/pgtable.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/reboot.h>
  64. #include <asm/stackprotector.h>
  65. #include <asm/hypervisor.h>
  66. #include <asm/mwait.h>
  67. #include <asm/pci_x86.h>
  68. #include <asm/pat.h>
  69. #ifdef CONFIG_ACPI
  70. #include <linux/acpi.h>
  71. #include <asm/acpi.h>
  72. #include <acpi/pdc_intel.h>
  73. #include <acpi/processor.h>
  74. #include <xen/interface/platform.h>
  75. #endif
  76. #include "xen-ops.h"
  77. #include "mmu.h"
  78. #include "smp.h"
  79. #include "multicalls.h"
  80. EXPORT_SYMBOL_GPL(hypercall_page);
  81. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  82. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  83. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  84. EXPORT_SYMBOL_GPL(xen_domain_type);
  85. unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
  86. EXPORT_SYMBOL(machine_to_phys_mapping);
  87. unsigned long machine_to_phys_nr;
  88. EXPORT_SYMBOL(machine_to_phys_nr);
  89. struct start_info *xen_start_info;
  90. EXPORT_SYMBOL_GPL(xen_start_info);
  91. struct shared_info xen_dummy_shared_info;
  92. void *xen_initial_gdt;
  93. RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
  94. __read_mostly int xen_have_vector_callback;
  95. EXPORT_SYMBOL_GPL(xen_have_vector_callback);
  96. /*
  97. * Point at some empty memory to start with. We map the real shared_info
  98. * page as soon as fixmap is up and running.
  99. */
  100. struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
  101. /*
  102. * Flag to determine whether vcpu info placement is available on all
  103. * VCPUs. We assume it is to start with, and then set it to zero on
  104. * the first failure. This is because it can succeed on some VCPUs
  105. * and not others, since it can involve hypervisor memory allocation,
  106. * or because the guest failed to guarantee all the appropriate
  107. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  108. *
  109. * Note that any particular CPU may be using a placed vcpu structure,
  110. * but we can only optimise if the all are.
  111. *
  112. * 0: not available, 1: available
  113. */
  114. static int have_vcpu_info_placement = 1;
  115. struct tls_descs {
  116. struct desc_struct desc[3];
  117. };
  118. /*
  119. * Updating the 3 TLS descriptors in the GDT on every task switch is
  120. * surprisingly expensive so we avoid updating them if they haven't
  121. * changed. Since Xen writes different descriptors than the one
  122. * passed in the update_descriptor hypercall we keep shadow copies to
  123. * compare against.
  124. */
  125. static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
  126. static void clamp_max_cpus(void)
  127. {
  128. #ifdef CONFIG_SMP
  129. if (setup_max_cpus > MAX_VIRT_CPUS)
  130. setup_max_cpus = MAX_VIRT_CPUS;
  131. #endif
  132. }
  133. static void xen_vcpu_setup(int cpu)
  134. {
  135. struct vcpu_register_vcpu_info info;
  136. int err;
  137. struct vcpu_info *vcpup;
  138. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  139. if (cpu < MAX_VIRT_CPUS)
  140. per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  141. if (!have_vcpu_info_placement) {
  142. if (cpu >= MAX_VIRT_CPUS)
  143. clamp_max_cpus();
  144. return;
  145. }
  146. vcpup = &per_cpu(xen_vcpu_info, cpu);
  147. info.mfn = arbitrary_virt_to_mfn(vcpup);
  148. info.offset = offset_in_page(vcpup);
  149. /* Check to see if the hypervisor will put the vcpu_info
  150. structure where we want it, which allows direct access via
  151. a percpu-variable. */
  152. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  153. if (err) {
  154. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  155. have_vcpu_info_placement = 0;
  156. clamp_max_cpus();
  157. } else {
  158. /* This cpu is using the registered vcpu info, even if
  159. later ones fail to. */
  160. per_cpu(xen_vcpu, cpu) = vcpup;
  161. }
  162. }
  163. /*
  164. * On restore, set the vcpu placement up again.
  165. * If it fails, then we're in a bad state, since
  166. * we can't back out from using it...
  167. */
  168. void xen_vcpu_restore(void)
  169. {
  170. int cpu;
  171. for_each_possible_cpu(cpu) {
  172. bool other_cpu = (cpu != smp_processor_id());
  173. bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
  174. if (other_cpu && is_up &&
  175. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  176. BUG();
  177. xen_setup_runstate_info(cpu);
  178. if (have_vcpu_info_placement)
  179. xen_vcpu_setup(cpu);
  180. if (other_cpu && is_up &&
  181. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  182. BUG();
  183. }
  184. }
  185. static void __init xen_banner(void)
  186. {
  187. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  188. struct xen_extraversion extra;
  189. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  190. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  191. pv_info.name);
  192. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  193. version >> 16, version & 0xffff, extra.extraversion,
  194. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  195. }
  196. /* Check if running on Xen version (major, minor) or later */
  197. bool
  198. xen_running_on_version_or_later(unsigned int major, unsigned int minor)
  199. {
  200. unsigned int version;
  201. if (!xen_domain())
  202. return false;
  203. version = HYPERVISOR_xen_version(XENVER_version, NULL);
  204. if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
  205. ((version >> 16) > major))
  206. return true;
  207. return false;
  208. }
  209. #define CPUID_THERM_POWER_LEAF 6
  210. #define APERFMPERF_PRESENT 0
  211. static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
  212. static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
  213. static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
  214. static __read_mostly unsigned int cpuid_leaf5_ecx_val;
  215. static __read_mostly unsigned int cpuid_leaf5_edx_val;
  216. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  217. unsigned int *cx, unsigned int *dx)
  218. {
  219. unsigned maskebx = ~0;
  220. unsigned maskecx = ~0;
  221. unsigned maskedx = ~0;
  222. unsigned setecx = 0;
  223. /*
  224. * Mask out inconvenient features, to try and disable as many
  225. * unsupported kernel subsystems as possible.
  226. */
  227. switch (*ax) {
  228. case 1:
  229. maskecx = cpuid_leaf1_ecx_mask;
  230. setecx = cpuid_leaf1_ecx_set_mask;
  231. maskedx = cpuid_leaf1_edx_mask;
  232. break;
  233. case CPUID_MWAIT_LEAF:
  234. /* Synthesize the values.. */
  235. *ax = 0;
  236. *bx = 0;
  237. *cx = cpuid_leaf5_ecx_val;
  238. *dx = cpuid_leaf5_edx_val;
  239. return;
  240. case CPUID_THERM_POWER_LEAF:
  241. /* Disabling APERFMPERF for kernel usage */
  242. maskecx = ~(1 << APERFMPERF_PRESENT);
  243. break;
  244. case 0xb:
  245. /* Suppress extended topology stuff */
  246. maskebx = 0;
  247. break;
  248. }
  249. asm(XEN_EMULATE_PREFIX "cpuid"
  250. : "=a" (*ax),
  251. "=b" (*bx),
  252. "=c" (*cx),
  253. "=d" (*dx)
  254. : "0" (*ax), "2" (*cx));
  255. *bx &= maskebx;
  256. *cx &= maskecx;
  257. *cx |= setecx;
  258. *dx &= maskedx;
  259. }
  260. static bool __init xen_check_mwait(void)
  261. {
  262. #ifdef CONFIG_ACPI
  263. struct xen_platform_op op = {
  264. .cmd = XENPF_set_processor_pminfo,
  265. .u.set_pminfo.id = -1,
  266. .u.set_pminfo.type = XEN_PM_PDC,
  267. };
  268. uint32_t buf[3];
  269. unsigned int ax, bx, cx, dx;
  270. unsigned int mwait_mask;
  271. /* We need to determine whether it is OK to expose the MWAIT
  272. * capability to the kernel to harvest deeper than C3 states from ACPI
  273. * _CST using the processor_harvest_xen.c module. For this to work, we
  274. * need to gather the MWAIT_LEAF values (which the cstate.c code
  275. * checks against). The hypervisor won't expose the MWAIT flag because
  276. * it would break backwards compatibility; so we will find out directly
  277. * from the hardware and hypercall.
  278. */
  279. if (!xen_initial_domain())
  280. return false;
  281. /*
  282. * When running under platform earlier than Xen4.2, do not expose
  283. * mwait, to avoid the risk of loading native acpi pad driver
  284. */
  285. if (!xen_running_on_version_or_later(4, 2))
  286. return false;
  287. ax = 1;
  288. cx = 0;
  289. native_cpuid(&ax, &bx, &cx, &dx);
  290. mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
  291. (1 << (X86_FEATURE_MWAIT % 32));
  292. if ((cx & mwait_mask) != mwait_mask)
  293. return false;
  294. /* We need to emulate the MWAIT_LEAF and for that we need both
  295. * ecx and edx. The hypercall provides only partial information.
  296. */
  297. ax = CPUID_MWAIT_LEAF;
  298. bx = 0;
  299. cx = 0;
  300. dx = 0;
  301. native_cpuid(&ax, &bx, &cx, &dx);
  302. /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
  303. * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
  304. */
  305. buf[0] = ACPI_PDC_REVISION_ID;
  306. buf[1] = 1;
  307. buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
  308. set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
  309. if ((HYPERVISOR_dom0_op(&op) == 0) &&
  310. (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
  311. cpuid_leaf5_ecx_val = cx;
  312. cpuid_leaf5_edx_val = dx;
  313. }
  314. return true;
  315. #else
  316. return false;
  317. #endif
  318. }
  319. static void __init xen_init_cpuid_mask(void)
  320. {
  321. unsigned int ax, bx, cx, dx;
  322. unsigned int xsave_mask;
  323. cpuid_leaf1_edx_mask =
  324. ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
  325. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  326. if (!xen_initial_domain())
  327. cpuid_leaf1_edx_mask &=
  328. ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
  329. (1 << X86_FEATURE_ACPI)); /* disable ACPI */
  330. ax = 1;
  331. cx = 0;
  332. xen_cpuid(&ax, &bx, &cx, &dx);
  333. xsave_mask =
  334. (1 << (X86_FEATURE_XSAVE % 32)) |
  335. (1 << (X86_FEATURE_OSXSAVE % 32));
  336. /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
  337. if ((cx & xsave_mask) != xsave_mask)
  338. cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
  339. if (xen_check_mwait())
  340. cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
  341. }
  342. static void xen_set_debugreg(int reg, unsigned long val)
  343. {
  344. HYPERVISOR_set_debugreg(reg, val);
  345. }
  346. static unsigned long xen_get_debugreg(int reg)
  347. {
  348. return HYPERVISOR_get_debugreg(reg);
  349. }
  350. static void xen_end_context_switch(struct task_struct *next)
  351. {
  352. xen_mc_flush();
  353. paravirt_end_context_switch(next);
  354. }
  355. static unsigned long xen_store_tr(void)
  356. {
  357. return 0;
  358. }
  359. /*
  360. * Set the page permissions for a particular virtual address. If the
  361. * address is a vmalloc mapping (or other non-linear mapping), then
  362. * find the linear mapping of the page and also set its protections to
  363. * match.
  364. */
  365. static void set_aliased_prot(void *v, pgprot_t prot)
  366. {
  367. int level;
  368. pte_t *ptep;
  369. pte_t pte;
  370. unsigned long pfn;
  371. struct page *page;
  372. ptep = lookup_address((unsigned long)v, &level);
  373. BUG_ON(ptep == NULL);
  374. pfn = pte_pfn(*ptep);
  375. page = pfn_to_page(pfn);
  376. pte = pfn_pte(pfn, prot);
  377. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  378. BUG();
  379. if (!PageHighMem(page)) {
  380. void *av = __va(PFN_PHYS(pfn));
  381. if (av != v)
  382. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  383. BUG();
  384. } else
  385. kmap_flush_unused();
  386. }
  387. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  388. {
  389. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  390. int i;
  391. for(i = 0; i < entries; i += entries_per_page)
  392. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  393. }
  394. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  395. {
  396. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  397. int i;
  398. for(i = 0; i < entries; i += entries_per_page)
  399. set_aliased_prot(ldt + i, PAGE_KERNEL);
  400. }
  401. static void xen_set_ldt(const void *addr, unsigned entries)
  402. {
  403. struct mmuext_op *op;
  404. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  405. trace_xen_cpu_set_ldt(addr, entries);
  406. op = mcs.args;
  407. op->cmd = MMUEXT_SET_LDT;
  408. op->arg1.linear_addr = (unsigned long)addr;
  409. op->arg2.nr_ents = entries;
  410. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  411. xen_mc_issue(PARAVIRT_LAZY_CPU);
  412. }
  413. static void xen_load_gdt(const struct desc_ptr *dtr)
  414. {
  415. unsigned long va = dtr->address;
  416. unsigned int size = dtr->size + 1;
  417. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  418. unsigned long frames[pages];
  419. int f;
  420. /*
  421. * A GDT can be up to 64k in size, which corresponds to 8192
  422. * 8-byte entries, or 16 4k pages..
  423. */
  424. BUG_ON(size > 65536);
  425. BUG_ON(va & ~PAGE_MASK);
  426. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  427. int level;
  428. pte_t *ptep;
  429. unsigned long pfn, mfn;
  430. void *virt;
  431. /*
  432. * The GDT is per-cpu and is in the percpu data area.
  433. * That can be virtually mapped, so we need to do a
  434. * page-walk to get the underlying MFN for the
  435. * hypercall. The page can also be in the kernel's
  436. * linear range, so we need to RO that mapping too.
  437. */
  438. ptep = lookup_address(va, &level);
  439. BUG_ON(ptep == NULL);
  440. pfn = pte_pfn(*ptep);
  441. mfn = pfn_to_mfn(pfn);
  442. virt = __va(PFN_PHYS(pfn));
  443. frames[f] = mfn;
  444. make_lowmem_page_readonly((void *)va);
  445. make_lowmem_page_readonly(virt);
  446. }
  447. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  448. BUG();
  449. }
  450. /*
  451. * load_gdt for early boot, when the gdt is only mapped once
  452. */
  453. static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
  454. {
  455. unsigned long va = dtr->address;
  456. unsigned int size = dtr->size + 1;
  457. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  458. unsigned long frames[pages];
  459. int f;
  460. /*
  461. * A GDT can be up to 64k in size, which corresponds to 8192
  462. * 8-byte entries, or 16 4k pages..
  463. */
  464. BUG_ON(size > 65536);
  465. BUG_ON(va & ~PAGE_MASK);
  466. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  467. pte_t pte;
  468. unsigned long pfn, mfn;
  469. pfn = virt_to_pfn(va);
  470. mfn = pfn_to_mfn(pfn);
  471. pte = pfn_pte(pfn, PAGE_KERNEL_RO);
  472. if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
  473. BUG();
  474. frames[f] = mfn;
  475. }
  476. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  477. BUG();
  478. }
  479. static inline bool desc_equal(const struct desc_struct *d1,
  480. const struct desc_struct *d2)
  481. {
  482. return d1->a == d2->a && d1->b == d2->b;
  483. }
  484. static void load_TLS_descriptor(struct thread_struct *t,
  485. unsigned int cpu, unsigned int i)
  486. {
  487. struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
  488. struct desc_struct *gdt;
  489. xmaddr_t maddr;
  490. struct multicall_space mc;
  491. if (desc_equal(shadow, &t->tls_array[i]))
  492. return;
  493. *shadow = t->tls_array[i];
  494. gdt = get_cpu_gdt_table(cpu);
  495. maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  496. mc = __xen_mc_entry(0);
  497. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  498. }
  499. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  500. {
  501. /*
  502. * XXX sleazy hack: If we're being called in a lazy-cpu zone
  503. * and lazy gs handling is enabled, it means we're in a
  504. * context switch, and %gs has just been saved. This means we
  505. * can zero it out to prevent faults on exit from the
  506. * hypervisor if the next process has no %gs. Either way, it
  507. * has been saved, and the new value will get loaded properly.
  508. * This will go away as soon as Xen has been modified to not
  509. * save/restore %gs for normal hypercalls.
  510. *
  511. * On x86_64, this hack is not used for %gs, because gs points
  512. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  513. * must not zero %gs on x86_64
  514. *
  515. * For x86_64, we need to zero %fs, otherwise we may get an
  516. * exception between the new %fs descriptor being loaded and
  517. * %fs being effectively cleared at __switch_to().
  518. */
  519. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  520. #ifdef CONFIG_X86_32
  521. lazy_load_gs(0);
  522. #else
  523. loadsegment(fs, 0);
  524. #endif
  525. }
  526. xen_mc_batch();
  527. load_TLS_descriptor(t, cpu, 0);
  528. load_TLS_descriptor(t, cpu, 1);
  529. load_TLS_descriptor(t, cpu, 2);
  530. xen_mc_issue(PARAVIRT_LAZY_CPU);
  531. }
  532. #ifdef CONFIG_X86_64
  533. static void xen_load_gs_index(unsigned int idx)
  534. {
  535. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  536. BUG();
  537. }
  538. #endif
  539. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  540. const void *ptr)
  541. {
  542. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  543. u64 entry = *(u64 *)ptr;
  544. trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
  545. preempt_disable();
  546. xen_mc_flush();
  547. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  548. BUG();
  549. preempt_enable();
  550. }
  551. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  552. struct trap_info *info)
  553. {
  554. unsigned long addr;
  555. if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
  556. return 0;
  557. info->vector = vector;
  558. addr = gate_offset(*val);
  559. #ifdef CONFIG_X86_64
  560. /*
  561. * Look for known traps using IST, and substitute them
  562. * appropriately. The debugger ones are the only ones we care
  563. * about. Xen will handle faults like double_fault,
  564. * so we should never see them. Warn if
  565. * there's an unexpected IST-using fault handler.
  566. */
  567. if (addr == (unsigned long)debug)
  568. addr = (unsigned long)xen_debug;
  569. else if (addr == (unsigned long)int3)
  570. addr = (unsigned long)xen_int3;
  571. else if (addr == (unsigned long)stack_segment)
  572. addr = (unsigned long)xen_stack_segment;
  573. else if (addr == (unsigned long)double_fault ||
  574. addr == (unsigned long)nmi) {
  575. /* Don't need to handle these */
  576. return 0;
  577. #ifdef CONFIG_X86_MCE
  578. } else if (addr == (unsigned long)machine_check) {
  579. /*
  580. * when xen hypervisor inject vMCE to guest,
  581. * use native mce handler to handle it
  582. */
  583. ;
  584. #endif
  585. } else {
  586. /* Some other trap using IST? */
  587. if (WARN_ON(val->ist != 0))
  588. return 0;
  589. }
  590. #endif /* CONFIG_X86_64 */
  591. info->address = addr;
  592. info->cs = gate_segment(*val);
  593. info->flags = val->dpl;
  594. /* interrupt gates clear IF */
  595. if (val->type == GATE_INTERRUPT)
  596. info->flags |= 1 << 2;
  597. return 1;
  598. }
  599. /* Locations of each CPU's IDT */
  600. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  601. /* Set an IDT entry. If the entry is part of the current IDT, then
  602. also update Xen. */
  603. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  604. {
  605. unsigned long p = (unsigned long)&dt[entrynum];
  606. unsigned long start, end;
  607. trace_xen_cpu_write_idt_entry(dt, entrynum, g);
  608. preempt_disable();
  609. start = __this_cpu_read(idt_desc.address);
  610. end = start + __this_cpu_read(idt_desc.size) + 1;
  611. xen_mc_flush();
  612. native_write_idt_entry(dt, entrynum, g);
  613. if (p >= start && (p + 8) <= end) {
  614. struct trap_info info[2];
  615. info[1].address = 0;
  616. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  617. if (HYPERVISOR_set_trap_table(info))
  618. BUG();
  619. }
  620. preempt_enable();
  621. }
  622. static void xen_convert_trap_info(const struct desc_ptr *desc,
  623. struct trap_info *traps)
  624. {
  625. unsigned in, out, count;
  626. count = (desc->size+1) / sizeof(gate_desc);
  627. BUG_ON(count > 256);
  628. for (in = out = 0; in < count; in++) {
  629. gate_desc *entry = (gate_desc*)(desc->address) + in;
  630. if (cvt_gate_to_trap(in, entry, &traps[out]))
  631. out++;
  632. }
  633. traps[out].address = 0;
  634. }
  635. void xen_copy_trap_info(struct trap_info *traps)
  636. {
  637. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  638. xen_convert_trap_info(desc, traps);
  639. }
  640. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  641. hold a spinlock to protect the static traps[] array (static because
  642. it avoids allocation, and saves stack space). */
  643. static void xen_load_idt(const struct desc_ptr *desc)
  644. {
  645. static DEFINE_SPINLOCK(lock);
  646. static struct trap_info traps[257];
  647. trace_xen_cpu_load_idt(desc);
  648. spin_lock(&lock);
  649. __get_cpu_var(idt_desc) = *desc;
  650. xen_convert_trap_info(desc, traps);
  651. xen_mc_flush();
  652. if (HYPERVISOR_set_trap_table(traps))
  653. BUG();
  654. spin_unlock(&lock);
  655. }
  656. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  657. they're handled differently. */
  658. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  659. const void *desc, int type)
  660. {
  661. trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
  662. preempt_disable();
  663. switch (type) {
  664. case DESC_LDT:
  665. case DESC_TSS:
  666. /* ignore */
  667. break;
  668. default: {
  669. xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
  670. xen_mc_flush();
  671. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  672. BUG();
  673. }
  674. }
  675. preempt_enable();
  676. }
  677. /*
  678. * Version of write_gdt_entry for use at early boot-time needed to
  679. * update an entry as simply as possible.
  680. */
  681. static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
  682. const void *desc, int type)
  683. {
  684. trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
  685. switch (type) {
  686. case DESC_LDT:
  687. case DESC_TSS:
  688. /* ignore */
  689. break;
  690. default: {
  691. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  692. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  693. dt[entry] = *(struct desc_struct *)desc;
  694. }
  695. }
  696. }
  697. static void xen_load_sp0(struct tss_struct *tss,
  698. struct thread_struct *thread)
  699. {
  700. struct multicall_space mcs;
  701. mcs = xen_mc_entry(0);
  702. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  703. xen_mc_issue(PARAVIRT_LAZY_CPU);
  704. }
  705. static void xen_set_iopl_mask(unsigned mask)
  706. {
  707. struct physdev_set_iopl set_iopl;
  708. /* Force the change at ring 0. */
  709. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  710. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  711. }
  712. static void xen_io_delay(void)
  713. {
  714. }
  715. #ifdef CONFIG_X86_LOCAL_APIC
  716. static unsigned long xen_set_apic_id(unsigned int x)
  717. {
  718. WARN_ON(1);
  719. return x;
  720. }
  721. static unsigned int xen_get_apic_id(unsigned long x)
  722. {
  723. return ((x)>>24) & 0xFFu;
  724. }
  725. static u32 xen_apic_read(u32 reg)
  726. {
  727. struct xen_platform_op op = {
  728. .cmd = XENPF_get_cpuinfo,
  729. .interface_version = XENPF_INTERFACE_VERSION,
  730. .u.pcpu_info.xen_cpuid = 0,
  731. };
  732. int ret = 0;
  733. /* Shouldn't need this as APIC is turned off for PV, and we only
  734. * get called on the bootup processor. But just in case. */
  735. if (!xen_initial_domain() || smp_processor_id())
  736. return 0;
  737. if (reg == APIC_LVR)
  738. return 0x10;
  739. if (reg != APIC_ID)
  740. return 0;
  741. ret = HYPERVISOR_dom0_op(&op);
  742. if (ret)
  743. return 0;
  744. return op.u.pcpu_info.apic_id << 24;
  745. }
  746. static void xen_apic_write(u32 reg, u32 val)
  747. {
  748. /* Warn to see if there's any stray references */
  749. WARN_ON(1);
  750. }
  751. static u64 xen_apic_icr_read(void)
  752. {
  753. return 0;
  754. }
  755. static void xen_apic_icr_write(u32 low, u32 id)
  756. {
  757. /* Warn to see if there's any stray references */
  758. WARN_ON(1);
  759. }
  760. static void xen_apic_wait_icr_idle(void)
  761. {
  762. return;
  763. }
  764. static u32 xen_safe_apic_wait_icr_idle(void)
  765. {
  766. return 0;
  767. }
  768. static void set_xen_basic_apic_ops(void)
  769. {
  770. apic->read = xen_apic_read;
  771. apic->write = xen_apic_write;
  772. apic->icr_read = xen_apic_icr_read;
  773. apic->icr_write = xen_apic_icr_write;
  774. apic->wait_icr_idle = xen_apic_wait_icr_idle;
  775. apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
  776. apic->set_apic_id = xen_set_apic_id;
  777. apic->get_apic_id = xen_get_apic_id;
  778. #ifdef CONFIG_SMP
  779. apic->send_IPI_allbutself = xen_send_IPI_allbutself;
  780. apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
  781. apic->send_IPI_mask = xen_send_IPI_mask;
  782. apic->send_IPI_all = xen_send_IPI_all;
  783. apic->send_IPI_self = xen_send_IPI_self;
  784. #endif
  785. }
  786. #endif
  787. static void xen_clts(void)
  788. {
  789. struct multicall_space mcs;
  790. mcs = xen_mc_entry(0);
  791. MULTI_fpu_taskswitch(mcs.mc, 0);
  792. xen_mc_issue(PARAVIRT_LAZY_CPU);
  793. }
  794. static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
  795. static unsigned long xen_read_cr0(void)
  796. {
  797. unsigned long cr0 = this_cpu_read(xen_cr0_value);
  798. if (unlikely(cr0 == 0)) {
  799. cr0 = native_read_cr0();
  800. this_cpu_write(xen_cr0_value, cr0);
  801. }
  802. return cr0;
  803. }
  804. static void xen_write_cr0(unsigned long cr0)
  805. {
  806. struct multicall_space mcs;
  807. this_cpu_write(xen_cr0_value, cr0);
  808. /* Only pay attention to cr0.TS; everything else is
  809. ignored. */
  810. mcs = xen_mc_entry(0);
  811. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  812. xen_mc_issue(PARAVIRT_LAZY_CPU);
  813. }
  814. static void xen_write_cr4(unsigned long cr4)
  815. {
  816. cr4 &= ~X86_CR4_PGE;
  817. cr4 &= ~X86_CR4_PSE;
  818. native_write_cr4(cr4);
  819. }
  820. #ifdef CONFIG_X86_64
  821. static inline unsigned long xen_read_cr8(void)
  822. {
  823. return 0;
  824. }
  825. static inline void xen_write_cr8(unsigned long val)
  826. {
  827. BUG_ON(val);
  828. }
  829. #endif
  830. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  831. {
  832. int ret;
  833. ret = 0;
  834. switch (msr) {
  835. #ifdef CONFIG_X86_64
  836. unsigned which;
  837. u64 base;
  838. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  839. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  840. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  841. set:
  842. base = ((u64)high << 32) | low;
  843. if (HYPERVISOR_set_segment_base(which, base) != 0)
  844. ret = -EIO;
  845. break;
  846. #endif
  847. case MSR_STAR:
  848. case MSR_CSTAR:
  849. case MSR_LSTAR:
  850. case MSR_SYSCALL_MASK:
  851. case MSR_IA32_SYSENTER_CS:
  852. case MSR_IA32_SYSENTER_ESP:
  853. case MSR_IA32_SYSENTER_EIP:
  854. /* Fast syscall setup is all done in hypercalls, so
  855. these are all ignored. Stub them out here to stop
  856. Xen console noise. */
  857. break;
  858. case MSR_IA32_CR_PAT:
  859. if (smp_processor_id() == 0)
  860. xen_set_pat(((u64)high << 32) | low);
  861. break;
  862. default:
  863. ret = native_write_msr_safe(msr, low, high);
  864. }
  865. return ret;
  866. }
  867. void xen_setup_shared_info(void)
  868. {
  869. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  870. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  871. xen_start_info->shared_info);
  872. HYPERVISOR_shared_info =
  873. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  874. } else
  875. HYPERVISOR_shared_info =
  876. (struct shared_info *)__va(xen_start_info->shared_info);
  877. #ifndef CONFIG_SMP
  878. /* In UP this is as good a place as any to set up shared info */
  879. xen_setup_vcpu_info_placement();
  880. #endif
  881. xen_setup_mfn_list_list();
  882. }
  883. /* This is called once we have the cpu_possible_mask */
  884. void xen_setup_vcpu_info_placement(void)
  885. {
  886. int cpu;
  887. for_each_possible_cpu(cpu)
  888. xen_vcpu_setup(cpu);
  889. /* xen_vcpu_setup managed to place the vcpu_info within the
  890. percpu area for all cpus, so make use of it */
  891. if (have_vcpu_info_placement) {
  892. pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
  893. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
  894. pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
  895. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
  896. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  897. }
  898. }
  899. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  900. unsigned long addr, unsigned len)
  901. {
  902. char *start, *end, *reloc;
  903. unsigned ret;
  904. start = end = reloc = NULL;
  905. #define SITE(op, x) \
  906. case PARAVIRT_PATCH(op.x): \
  907. if (have_vcpu_info_placement) { \
  908. start = (char *)xen_##x##_direct; \
  909. end = xen_##x##_direct_end; \
  910. reloc = xen_##x##_direct_reloc; \
  911. } \
  912. goto patch_site
  913. switch (type) {
  914. SITE(pv_irq_ops, irq_enable);
  915. SITE(pv_irq_ops, irq_disable);
  916. SITE(pv_irq_ops, save_fl);
  917. SITE(pv_irq_ops, restore_fl);
  918. #undef SITE
  919. patch_site:
  920. if (start == NULL || (end-start) > len)
  921. goto default_patch;
  922. ret = paravirt_patch_insns(insnbuf, len, start, end);
  923. /* Note: because reloc is assigned from something that
  924. appears to be an array, gcc assumes it's non-null,
  925. but doesn't know its relationship with start and
  926. end. */
  927. if (reloc > start && reloc < end) {
  928. int reloc_off = reloc - start;
  929. long *relocp = (long *)(insnbuf + reloc_off);
  930. long delta = start - (char *)addr;
  931. *relocp += delta;
  932. }
  933. break;
  934. default_patch:
  935. default:
  936. ret = paravirt_patch_default(type, clobbers, insnbuf,
  937. addr, len);
  938. break;
  939. }
  940. return ret;
  941. }
  942. static const struct pv_info xen_info __initconst = {
  943. .paravirt_enabled = 1,
  944. .shared_kernel_pmd = 0,
  945. #ifdef CONFIG_X86_64
  946. .extra_user_64bit_cs = FLAT_USER_CS64,
  947. #endif
  948. .name = "Xen",
  949. };
  950. static const struct pv_init_ops xen_init_ops __initconst = {
  951. .patch = xen_patch,
  952. };
  953. static const struct pv_cpu_ops xen_cpu_ops __initconst = {
  954. .cpuid = xen_cpuid,
  955. .set_debugreg = xen_set_debugreg,
  956. .get_debugreg = xen_get_debugreg,
  957. .clts = xen_clts,
  958. .read_cr0 = xen_read_cr0,
  959. .write_cr0 = xen_write_cr0,
  960. .read_cr4 = native_read_cr4,
  961. .read_cr4_safe = native_read_cr4_safe,
  962. .write_cr4 = xen_write_cr4,
  963. #ifdef CONFIG_X86_64
  964. .read_cr8 = xen_read_cr8,
  965. .write_cr8 = xen_write_cr8,
  966. #endif
  967. .wbinvd = native_wbinvd,
  968. .read_msr = native_read_msr_safe,
  969. .write_msr = xen_write_msr_safe,
  970. .read_tsc = native_read_tsc,
  971. .read_pmc = native_read_pmc,
  972. .read_tscp = native_read_tscp,
  973. .iret = xen_iret,
  974. .irq_enable_sysexit = xen_sysexit,
  975. #ifdef CONFIG_X86_64
  976. .usergs_sysret32 = xen_sysret32,
  977. .usergs_sysret64 = xen_sysret64,
  978. #endif
  979. .load_tr_desc = paravirt_nop,
  980. .set_ldt = xen_set_ldt,
  981. .load_gdt = xen_load_gdt,
  982. .load_idt = xen_load_idt,
  983. .load_tls = xen_load_tls,
  984. #ifdef CONFIG_X86_64
  985. .load_gs_index = xen_load_gs_index,
  986. #endif
  987. .alloc_ldt = xen_alloc_ldt,
  988. .free_ldt = xen_free_ldt,
  989. .store_idt = native_store_idt,
  990. .store_tr = xen_store_tr,
  991. .write_ldt_entry = xen_write_ldt_entry,
  992. .write_gdt_entry = xen_write_gdt_entry,
  993. .write_idt_entry = xen_write_idt_entry,
  994. .load_sp0 = xen_load_sp0,
  995. .set_iopl_mask = xen_set_iopl_mask,
  996. .io_delay = xen_io_delay,
  997. /* Xen takes care of %gs when switching to usermode for us */
  998. .swapgs = paravirt_nop,
  999. .start_context_switch = paravirt_start_context_switch,
  1000. .end_context_switch = xen_end_context_switch,
  1001. };
  1002. static const struct pv_apic_ops xen_apic_ops __initconst = {
  1003. #ifdef CONFIG_X86_LOCAL_APIC
  1004. .startup_ipi_hook = paravirt_nop,
  1005. #endif
  1006. };
  1007. static void xen_reboot(int reason)
  1008. {
  1009. struct sched_shutdown r = { .reason = reason };
  1010. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  1011. BUG();
  1012. }
  1013. static void xen_restart(char *msg)
  1014. {
  1015. xen_reboot(SHUTDOWN_reboot);
  1016. }
  1017. static void xen_emergency_restart(void)
  1018. {
  1019. xen_reboot(SHUTDOWN_reboot);
  1020. }
  1021. static void xen_machine_halt(void)
  1022. {
  1023. xen_reboot(SHUTDOWN_poweroff);
  1024. }
  1025. static void xen_machine_power_off(void)
  1026. {
  1027. if (pm_power_off)
  1028. pm_power_off();
  1029. xen_reboot(SHUTDOWN_poweroff);
  1030. }
  1031. static void xen_crash_shutdown(struct pt_regs *regs)
  1032. {
  1033. xen_reboot(SHUTDOWN_crash);
  1034. }
  1035. static int
  1036. xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
  1037. {
  1038. xen_reboot(SHUTDOWN_crash);
  1039. return NOTIFY_DONE;
  1040. }
  1041. static struct notifier_block xen_panic_block = {
  1042. .notifier_call= xen_panic_event,
  1043. };
  1044. int xen_panic_handler_init(void)
  1045. {
  1046. atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
  1047. return 0;
  1048. }
  1049. static const struct machine_ops xen_machine_ops __initconst = {
  1050. .restart = xen_restart,
  1051. .halt = xen_machine_halt,
  1052. .power_off = xen_machine_power_off,
  1053. .shutdown = xen_machine_halt,
  1054. .crash_shutdown = xen_crash_shutdown,
  1055. .emergency_restart = xen_emergency_restart,
  1056. };
  1057. static void __init xen_boot_params_init_edd(void)
  1058. {
  1059. #if IS_ENABLED(CONFIG_EDD)
  1060. struct xen_platform_op op;
  1061. struct edd_info *edd_info;
  1062. u32 *mbr_signature;
  1063. unsigned nr;
  1064. int ret;
  1065. edd_info = boot_params.eddbuf;
  1066. mbr_signature = boot_params.edd_mbr_sig_buffer;
  1067. op.cmd = XENPF_firmware_info;
  1068. op.u.firmware_info.type = XEN_FW_DISK_INFO;
  1069. for (nr = 0; nr < EDDMAXNR; nr++) {
  1070. struct edd_info *info = edd_info + nr;
  1071. op.u.firmware_info.index = nr;
  1072. info->params.length = sizeof(info->params);
  1073. set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
  1074. &info->params);
  1075. ret = HYPERVISOR_dom0_op(&op);
  1076. if (ret)
  1077. break;
  1078. #define C(x) info->x = op.u.firmware_info.u.disk_info.x
  1079. C(device);
  1080. C(version);
  1081. C(interface_support);
  1082. C(legacy_max_cylinder);
  1083. C(legacy_max_head);
  1084. C(legacy_sectors_per_track);
  1085. #undef C
  1086. }
  1087. boot_params.eddbuf_entries = nr;
  1088. op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
  1089. for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
  1090. op.u.firmware_info.index = nr;
  1091. ret = HYPERVISOR_dom0_op(&op);
  1092. if (ret)
  1093. break;
  1094. mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
  1095. }
  1096. boot_params.edd_mbr_sig_buf_entries = nr;
  1097. #endif
  1098. }
  1099. /*
  1100. * Set up the GDT and segment registers for -fstack-protector. Until
  1101. * we do this, we have to be careful not to call any stack-protected
  1102. * function, which is most of the kernel.
  1103. */
  1104. static void __init xen_setup_stackprotector(void)
  1105. {
  1106. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
  1107. pv_cpu_ops.load_gdt = xen_load_gdt_boot;
  1108. setup_stack_canary_segment(0);
  1109. switch_to_new_gdt(0);
  1110. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
  1111. pv_cpu_ops.load_gdt = xen_load_gdt;
  1112. }
  1113. /* First C function to be called on Xen boot */
  1114. asmlinkage void __init xen_start_kernel(void)
  1115. {
  1116. struct physdev_set_iopl set_iopl;
  1117. int rc;
  1118. if (!xen_start_info)
  1119. return;
  1120. xen_domain_type = XEN_PV_DOMAIN;
  1121. xen_setup_machphys_mapping();
  1122. /* Install Xen paravirt ops */
  1123. pv_info = xen_info;
  1124. pv_init_ops = xen_init_ops;
  1125. pv_cpu_ops = xen_cpu_ops;
  1126. pv_apic_ops = xen_apic_ops;
  1127. x86_init.resources.memory_setup = xen_memory_setup;
  1128. x86_init.oem.arch_setup = xen_arch_setup;
  1129. x86_init.oem.banner = xen_banner;
  1130. xen_init_time_ops();
  1131. /*
  1132. * Set up some pagetable state before starting to set any ptes.
  1133. */
  1134. xen_init_mmu_ops();
  1135. /* Prevent unwanted bits from being set in PTEs. */
  1136. __supported_pte_mask &= ~_PAGE_GLOBAL;
  1137. #if 0
  1138. if (!xen_initial_domain())
  1139. #endif
  1140. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  1141. __supported_pte_mask |= _PAGE_IOMAP;
  1142. /*
  1143. * Prevent page tables from being allocated in highmem, even
  1144. * if CONFIG_HIGHPTE is enabled.
  1145. */
  1146. __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
  1147. /* Work out if we support NX */
  1148. x86_configure_nx();
  1149. xen_setup_features();
  1150. /* Get mfn list */
  1151. if (!xen_feature(XENFEAT_auto_translated_physmap))
  1152. xen_build_dynamic_phys_to_machine();
  1153. /*
  1154. * Set up kernel GDT and segment registers, mainly so that
  1155. * -fstack-protector code can be executed.
  1156. */
  1157. xen_setup_stackprotector();
  1158. xen_init_irq_ops();
  1159. xen_init_cpuid_mask();
  1160. #ifdef CONFIG_X86_LOCAL_APIC
  1161. /*
  1162. * set up the basic apic ops.
  1163. */
  1164. set_xen_basic_apic_ops();
  1165. #endif
  1166. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  1167. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  1168. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  1169. }
  1170. machine_ops = xen_machine_ops;
  1171. /*
  1172. * The only reliable way to retain the initial address of the
  1173. * percpu gdt_page is to remember it here, so we can go and
  1174. * mark it RW later, when the initial percpu area is freed.
  1175. */
  1176. xen_initial_gdt = &per_cpu(gdt_page, 0);
  1177. xen_smp_init();
  1178. #ifdef CONFIG_ACPI_NUMA
  1179. /*
  1180. * The pages we from Xen are not related to machine pages, so
  1181. * any NUMA information the kernel tries to get from ACPI will
  1182. * be meaningless. Prevent it from trying.
  1183. */
  1184. acpi_numa = -1;
  1185. #endif
  1186. #ifdef CONFIG_X86_PAT
  1187. /*
  1188. * For right now disable the PAT. We should remove this once
  1189. * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
  1190. * (xen/pat: Disable PAT support for now) is reverted.
  1191. */
  1192. pat_enabled = 0;
  1193. #endif
  1194. /* Don't do the full vcpu_info placement stuff until we have a
  1195. possible map and a non-dummy shared_info. */
  1196. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  1197. local_irq_disable();
  1198. early_boot_irqs_disabled = true;
  1199. xen_raw_console_write("mapping kernel into physical memory\n");
  1200. xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
  1201. /* Allocate and initialize top and mid mfn levels for p2m structure */
  1202. xen_build_mfn_list_list();
  1203. /* keep using Xen gdt for now; no urgent need to change it */
  1204. #ifdef CONFIG_X86_32
  1205. pv_info.kernel_rpl = 1;
  1206. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  1207. pv_info.kernel_rpl = 0;
  1208. #else
  1209. pv_info.kernel_rpl = 0;
  1210. #endif
  1211. /* set the limit of our address space */
  1212. xen_reserve_top();
  1213. /* We used to do this in xen_arch_setup, but that is too late on AMD
  1214. * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
  1215. * which pokes 0xcf8 port.
  1216. */
  1217. set_iopl.iopl = 1;
  1218. rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  1219. if (rc != 0)
  1220. xen_raw_printk("physdev_op failed %d\n", rc);
  1221. #ifdef CONFIG_X86_32
  1222. /* set up basic CPUID stuff */
  1223. cpu_detect(&new_cpu_data);
  1224. new_cpu_data.hard_math = 1;
  1225. new_cpu_data.wp_works_ok = 1;
  1226. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1227. #endif
  1228. /* Poke various useful things into boot_params */
  1229. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  1230. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  1231. ? __pa(xen_start_info->mod_start) : 0;
  1232. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  1233. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  1234. if (!xen_initial_domain()) {
  1235. add_preferred_console("xenboot", 0, NULL);
  1236. add_preferred_console("tty", 0, NULL);
  1237. add_preferred_console("hvc", 0, NULL);
  1238. if (pci_xen)
  1239. x86_init.pci.arch_init = pci_xen_init;
  1240. } else {
  1241. const struct dom0_vga_console_info *info =
  1242. (void *)((char *)xen_start_info +
  1243. xen_start_info->console.dom0.info_off);
  1244. struct xen_platform_op op = {
  1245. .cmd = XENPF_firmware_info,
  1246. .interface_version = XENPF_INTERFACE_VERSION,
  1247. .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
  1248. };
  1249. xen_init_vga(info, xen_start_info->console.dom0.info_size);
  1250. xen_start_info->console.domU.mfn = 0;
  1251. xen_start_info->console.domU.evtchn = 0;
  1252. if (HYPERVISOR_dom0_op(&op) == 0)
  1253. boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
  1254. xen_init_apic();
  1255. /* Make sure ACS will be enabled */
  1256. pci_request_acs();
  1257. xen_acpi_sleep_register();
  1258. /* Avoid searching for BIOS MP tables */
  1259. x86_init.mpparse.find_smp_config = x86_init_noop;
  1260. x86_init.mpparse.get_smp_config = x86_init_uint_noop;
  1261. xen_boot_params_init_edd();
  1262. }
  1263. #ifdef CONFIG_PCI
  1264. /* PCI BIOS service won't work from a PV guest. */
  1265. pci_probe &= ~PCI_PROBE_BIOS;
  1266. #endif
  1267. xen_raw_console_write("about to get started...\n");
  1268. xen_setup_runstate_info(0);
  1269. /* Start the world */
  1270. #ifdef CONFIG_X86_32
  1271. i386_start_kernel();
  1272. #else
  1273. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  1274. #endif
  1275. }
  1276. void __ref xen_hvm_init_shared_info(void)
  1277. {
  1278. int cpu;
  1279. struct xen_add_to_physmap xatp;
  1280. static struct shared_info *shared_info_page = 0;
  1281. if (!shared_info_page)
  1282. shared_info_page = (struct shared_info *)
  1283. extend_brk(PAGE_SIZE, PAGE_SIZE);
  1284. xatp.domid = DOMID_SELF;
  1285. xatp.idx = 0;
  1286. xatp.space = XENMAPSPACE_shared_info;
  1287. xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
  1288. if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
  1289. BUG();
  1290. HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
  1291. /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
  1292. * page, we use it in the event channel upcall and in some pvclock
  1293. * related functions. We don't need the vcpu_info placement
  1294. * optimizations because we don't use any pv_mmu or pv_irq op on
  1295. * HVM.
  1296. * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
  1297. * online but xen_hvm_init_shared_info is run at resume time too and
  1298. * in that case multiple vcpus might be online. */
  1299. for_each_online_cpu(cpu) {
  1300. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  1301. }
  1302. }
  1303. #ifdef CONFIG_XEN_PVHVM
  1304. static void __init init_hvm_pv_info(void)
  1305. {
  1306. int major, minor;
  1307. uint32_t eax, ebx, ecx, edx, pages, msr, base;
  1308. u64 pfn;
  1309. base = xen_cpuid_base();
  1310. cpuid(base + 1, &eax, &ebx, &ecx, &edx);
  1311. major = eax >> 16;
  1312. minor = eax & 0xffff;
  1313. printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
  1314. cpuid(base + 2, &pages, &msr, &ecx, &edx);
  1315. pfn = __pa(hypercall_page);
  1316. wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
  1317. xen_setup_features();
  1318. pv_info.name = "Xen HVM";
  1319. xen_domain_type = XEN_HVM_DOMAIN;
  1320. }
  1321. static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
  1322. unsigned long action, void *hcpu)
  1323. {
  1324. int cpu = (long)hcpu;
  1325. switch (action) {
  1326. case CPU_UP_PREPARE:
  1327. xen_vcpu_setup(cpu);
  1328. if (xen_have_vector_callback) {
  1329. xen_init_lock_cpu(cpu);
  1330. if (xen_feature(XENFEAT_hvm_safe_pvclock))
  1331. xen_setup_timer(cpu);
  1332. }
  1333. break;
  1334. default:
  1335. break;
  1336. }
  1337. return NOTIFY_OK;
  1338. }
  1339. static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
  1340. .notifier_call = xen_hvm_cpu_notify,
  1341. };
  1342. static void __init xen_hvm_guest_init(void)
  1343. {
  1344. init_hvm_pv_info();
  1345. xen_hvm_init_shared_info();
  1346. if (xen_feature(XENFEAT_hvm_callback_vector))
  1347. xen_have_vector_callback = 1;
  1348. xen_hvm_smp_init();
  1349. register_cpu_notifier(&xen_hvm_cpu_notifier);
  1350. xen_unplug_emulated_devices();
  1351. x86_init.irqs.intr_init = xen_init_IRQ;
  1352. xen_hvm_init_time_ops();
  1353. xen_hvm_init_mmu_ops();
  1354. }
  1355. static bool __init xen_hvm_platform(void)
  1356. {
  1357. if (xen_pv_domain())
  1358. return false;
  1359. if (!xen_cpuid_base())
  1360. return false;
  1361. return true;
  1362. }
  1363. bool xen_hvm_need_lapic(void)
  1364. {
  1365. if (xen_pv_domain())
  1366. return false;
  1367. if (!xen_hvm_domain())
  1368. return false;
  1369. if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
  1370. return false;
  1371. return true;
  1372. }
  1373. EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
  1374. const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
  1375. .name = "Xen HVM",
  1376. .detect = xen_hvm_platform,
  1377. .init_platform = xen_hvm_guest_init,
  1378. .x2apic_available = xen_x2apic_para_available,
  1379. };
  1380. EXPORT_SYMBOL(x86_hyper_xen_hvm);
  1381. #endif