bpf_jit_comp.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /* bpf_jit_comp.c : BPF JIT compiler
  2. *
  3. * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; version 2
  8. * of the License.
  9. */
  10. #include <linux/moduleloader.h>
  11. #include <asm/cacheflush.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/filter.h>
  14. #include <linux/if_vlan.h>
  15. /*
  16. * Conventions :
  17. * EAX : BPF A accumulator
  18. * EBX : BPF X accumulator
  19. * RDI : pointer to skb (first argument given to JIT function)
  20. * RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
  21. * ECX,EDX,ESI : scratch registers
  22. * r9d : skb->len - skb->data_len (headlen)
  23. * r8 : skb->data
  24. * -8(RBP) : saved RBX value
  25. * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
  26. */
  27. int bpf_jit_enable __read_mostly;
  28. /*
  29. * assembly code in arch/x86/net/bpf_jit.S
  30. */
  31. extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
  32. extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
  33. extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
  34. extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
  35. extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
  36. static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  37. {
  38. if (len == 1)
  39. *ptr = bytes;
  40. else if (len == 2)
  41. *(u16 *)ptr = bytes;
  42. else {
  43. *(u32 *)ptr = bytes;
  44. barrier();
  45. }
  46. return ptr + len;
  47. }
  48. #define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
  49. #define EMIT1(b1) EMIT(b1, 1)
  50. #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
  51. #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  52. #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  53. #define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0)
  54. #define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
  55. #define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
  56. static inline bool is_imm8(int value)
  57. {
  58. return value <= 127 && value >= -128;
  59. }
  60. static inline bool is_near(int offset)
  61. {
  62. return offset <= 127 && offset >= -128;
  63. }
  64. #define EMIT_JMP(offset) \
  65. do { \
  66. if (offset) { \
  67. if (is_near(offset)) \
  68. EMIT2(0xeb, offset); /* jmp .+off8 */ \
  69. else \
  70. EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \
  71. } \
  72. } while (0)
  73. /* list of x86 cond jumps opcodes (. + s8)
  74. * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  75. */
  76. #define X86_JB 0x72
  77. #define X86_JAE 0x73
  78. #define X86_JE 0x74
  79. #define X86_JNE 0x75
  80. #define X86_JBE 0x76
  81. #define X86_JA 0x77
  82. #define EMIT_COND_JMP(op, offset) \
  83. do { \
  84. if (is_near(offset)) \
  85. EMIT2(op, offset); /* jxx .+off8 */ \
  86. else { \
  87. EMIT2(0x0f, op + 0x10); \
  88. EMIT(offset, 4); /* jxx .+off32 */ \
  89. } \
  90. } while (0)
  91. #define COND_SEL(CODE, TOP, FOP) \
  92. case CODE: \
  93. t_op = TOP; \
  94. f_op = FOP; \
  95. goto cond_branch
  96. #define SEEN_DATAREF 1 /* might call external helpers */
  97. #define SEEN_XREG 2 /* ebx is used */
  98. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  99. static inline void bpf_flush_icache(void *start, void *end)
  100. {
  101. mm_segment_t old_fs = get_fs();
  102. set_fs(KERNEL_DS);
  103. smp_wmb();
  104. flush_icache_range((unsigned long)start, (unsigned long)end);
  105. set_fs(old_fs);
  106. }
  107. #define CHOOSE_LOAD_FUNC(K, func) \
  108. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  109. /* Helper to find the offset of pkt_type in sk_buff
  110. * We want to make sure its still a 3bit field starting at a byte boundary.
  111. */
  112. #define PKT_TYPE_MAX 7
  113. static int pkt_type_offset(void)
  114. {
  115. struct sk_buff skb_probe = {
  116. .pkt_type = ~0,
  117. };
  118. char *ct = (char *)&skb_probe;
  119. unsigned int off;
  120. for (off = 0; off < sizeof(struct sk_buff); off++) {
  121. if (ct[off] == PKT_TYPE_MAX)
  122. return off;
  123. }
  124. pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
  125. return -1;
  126. }
  127. void bpf_jit_compile(struct sk_filter *fp)
  128. {
  129. u8 temp[64];
  130. u8 *prog;
  131. unsigned int proglen, oldproglen = 0;
  132. int ilen, i;
  133. int t_offset, f_offset;
  134. u8 t_op, f_op, seen = 0, pass;
  135. u8 *image = NULL;
  136. u8 *func;
  137. int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
  138. unsigned int cleanup_addr; /* epilogue code offset */
  139. unsigned int *addrs;
  140. const struct sock_filter *filter = fp->insns;
  141. int flen = fp->len;
  142. if (!bpf_jit_enable)
  143. return;
  144. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  145. if (addrs == NULL)
  146. return;
  147. /* Before first pass, make a rough estimation of addrs[]
  148. * each bpf instruction is translated to less than 64 bytes
  149. */
  150. for (proglen = 0, i = 0; i < flen; i++) {
  151. proglen += 64;
  152. addrs[i] = proglen;
  153. }
  154. cleanup_addr = proglen; /* epilogue address */
  155. for (pass = 0; pass < 10; pass++) {
  156. u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
  157. /* no prologue/epilogue for trivial filters (RET something) */
  158. proglen = 0;
  159. prog = temp;
  160. if (seen_or_pass0) {
  161. EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
  162. EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */
  163. /* note : must save %rbx in case bpf_error is hit */
  164. if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
  165. EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
  166. if (seen_or_pass0 & SEEN_XREG)
  167. CLEAR_X(); /* make sure we dont leek kernel memory */
  168. /*
  169. * If this filter needs to access skb data,
  170. * loads r9 and r8 with :
  171. * r9 = skb->len - skb->data_len
  172. * r8 = skb->data
  173. */
  174. if (seen_or_pass0 & SEEN_DATAREF) {
  175. if (offsetof(struct sk_buff, len) <= 127)
  176. /* mov off8(%rdi),%r9d */
  177. EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
  178. else {
  179. /* mov off32(%rdi),%r9d */
  180. EMIT3(0x44, 0x8b, 0x8f);
  181. EMIT(offsetof(struct sk_buff, len), 4);
  182. }
  183. if (is_imm8(offsetof(struct sk_buff, data_len)))
  184. /* sub off8(%rdi),%r9d */
  185. EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
  186. else {
  187. EMIT3(0x44, 0x2b, 0x8f);
  188. EMIT(offsetof(struct sk_buff, data_len), 4);
  189. }
  190. if (is_imm8(offsetof(struct sk_buff, data)))
  191. /* mov off8(%rdi),%r8 */
  192. EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
  193. else {
  194. /* mov off32(%rdi),%r8 */
  195. EMIT3(0x4c, 0x8b, 0x87);
  196. EMIT(offsetof(struct sk_buff, data), 4);
  197. }
  198. }
  199. }
  200. switch (filter[0].code) {
  201. case BPF_S_RET_K:
  202. case BPF_S_LD_W_LEN:
  203. case BPF_S_ANC_PROTOCOL:
  204. case BPF_S_ANC_IFINDEX:
  205. case BPF_S_ANC_MARK:
  206. case BPF_S_ANC_RXHASH:
  207. case BPF_S_ANC_CPU:
  208. case BPF_S_ANC_VLAN_TAG:
  209. case BPF_S_ANC_VLAN_TAG_PRESENT:
  210. case BPF_S_ANC_QUEUE:
  211. case BPF_S_ANC_PKTTYPE:
  212. case BPF_S_LD_W_ABS:
  213. case BPF_S_LD_H_ABS:
  214. case BPF_S_LD_B_ABS:
  215. /* first instruction sets A register (or is RET 'constant') */
  216. break;
  217. default:
  218. /* make sure we dont leak kernel information to user */
  219. CLEAR_A(); /* A = 0 */
  220. }
  221. for (i = 0; i < flen; i++) {
  222. unsigned int K = filter[i].k;
  223. switch (filter[i].code) {
  224. case BPF_S_ALU_ADD_X: /* A += X; */
  225. seen |= SEEN_XREG;
  226. EMIT2(0x01, 0xd8); /* add %ebx,%eax */
  227. break;
  228. case BPF_S_ALU_ADD_K: /* A += K; */
  229. if (!K)
  230. break;
  231. if (is_imm8(K))
  232. EMIT3(0x83, 0xc0, K); /* add imm8,%eax */
  233. else
  234. EMIT1_off32(0x05, K); /* add imm32,%eax */
  235. break;
  236. case BPF_S_ALU_SUB_X: /* A -= X; */
  237. seen |= SEEN_XREG;
  238. EMIT2(0x29, 0xd8); /* sub %ebx,%eax */
  239. break;
  240. case BPF_S_ALU_SUB_K: /* A -= K */
  241. if (!K)
  242. break;
  243. if (is_imm8(K))
  244. EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
  245. else
  246. EMIT1_off32(0x2d, K); /* sub imm32,%eax */
  247. break;
  248. case BPF_S_ALU_MUL_X: /* A *= X; */
  249. seen |= SEEN_XREG;
  250. EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */
  251. break;
  252. case BPF_S_ALU_MUL_K: /* A *= K */
  253. if (is_imm8(K))
  254. EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
  255. else {
  256. EMIT2(0x69, 0xc0); /* imul imm32,%eax */
  257. EMIT(K, 4);
  258. }
  259. break;
  260. case BPF_S_ALU_DIV_X: /* A /= X; */
  261. seen |= SEEN_XREG;
  262. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  263. if (pc_ret0 > 0) {
  264. /* addrs[pc_ret0 - 1] is start address of target
  265. * (addrs[i] - 4) is the address following this jmp
  266. * ("xor %edx,%edx; div %ebx" being 4 bytes long)
  267. */
  268. EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
  269. (addrs[i] - 4));
  270. } else {
  271. EMIT_COND_JMP(X86_JNE, 2 + 5);
  272. CLEAR_A();
  273. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
  274. }
  275. EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
  276. break;
  277. case BPF_S_ALU_MOD_X: /* A %= X; */
  278. seen |= SEEN_XREG;
  279. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  280. if (pc_ret0 > 0) {
  281. /* addrs[pc_ret0 - 1] is start address of target
  282. * (addrs[i] - 6) is the address following this jmp
  283. * ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
  284. */
  285. EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
  286. (addrs[i] - 6));
  287. } else {
  288. EMIT_COND_JMP(X86_JNE, 2 + 5);
  289. CLEAR_A();
  290. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
  291. }
  292. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  293. EMIT2(0xf7, 0xf3); /* div %ebx */
  294. EMIT2(0x89, 0xd0); /* mov %edx,%eax */
  295. break;
  296. case BPF_S_ALU_MOD_K: /* A %= K; */
  297. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  298. EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
  299. EMIT2(0xf7, 0xf1); /* div %ecx */
  300. EMIT2(0x89, 0xd0); /* mov %edx,%eax */
  301. break;
  302. case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
  303. EMIT3(0x48, 0x69, 0xc0); /* imul imm32,%rax,%rax */
  304. EMIT(K, 4);
  305. EMIT4(0x48, 0xc1, 0xe8, 0x20); /* shr $0x20,%rax */
  306. break;
  307. case BPF_S_ALU_AND_X:
  308. seen |= SEEN_XREG;
  309. EMIT2(0x21, 0xd8); /* and %ebx,%eax */
  310. break;
  311. case BPF_S_ALU_AND_K:
  312. if (K >= 0xFFFFFF00) {
  313. EMIT2(0x24, K & 0xFF); /* and imm8,%al */
  314. } else if (K >= 0xFFFF0000) {
  315. EMIT2(0x66, 0x25); /* and imm16,%ax */
  316. EMIT(K, 2);
  317. } else {
  318. EMIT1_off32(0x25, K); /* and imm32,%eax */
  319. }
  320. break;
  321. case BPF_S_ALU_OR_X:
  322. seen |= SEEN_XREG;
  323. EMIT2(0x09, 0xd8); /* or %ebx,%eax */
  324. break;
  325. case BPF_S_ALU_OR_K:
  326. if (is_imm8(K))
  327. EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
  328. else
  329. EMIT1_off32(0x0d, K); /* or imm32,%eax */
  330. break;
  331. case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
  332. case BPF_S_ALU_XOR_X:
  333. seen |= SEEN_XREG;
  334. EMIT2(0x31, 0xd8); /* xor %ebx,%eax */
  335. break;
  336. case BPF_S_ALU_XOR_K: /* A ^= K; */
  337. if (K == 0)
  338. break;
  339. if (is_imm8(K))
  340. EMIT3(0x83, 0xf0, K); /* xor imm8,%eax */
  341. else
  342. EMIT1_off32(0x35, K); /* xor imm32,%eax */
  343. break;
  344. case BPF_S_ALU_LSH_X: /* A <<= X; */
  345. seen |= SEEN_XREG;
  346. EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */
  347. break;
  348. case BPF_S_ALU_LSH_K:
  349. if (K == 0)
  350. break;
  351. else if (K == 1)
  352. EMIT2(0xd1, 0xe0); /* shl %eax */
  353. else
  354. EMIT3(0xc1, 0xe0, K);
  355. break;
  356. case BPF_S_ALU_RSH_X: /* A >>= X; */
  357. seen |= SEEN_XREG;
  358. EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */
  359. break;
  360. case BPF_S_ALU_RSH_K: /* A >>= K; */
  361. if (K == 0)
  362. break;
  363. else if (K == 1)
  364. EMIT2(0xd1, 0xe8); /* shr %eax */
  365. else
  366. EMIT3(0xc1, 0xe8, K);
  367. break;
  368. case BPF_S_ALU_NEG:
  369. EMIT2(0xf7, 0xd8); /* neg %eax */
  370. break;
  371. case BPF_S_RET_K:
  372. if (!K) {
  373. if (pc_ret0 == -1)
  374. pc_ret0 = i;
  375. CLEAR_A();
  376. } else {
  377. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  378. }
  379. /* fallinto */
  380. case BPF_S_RET_A:
  381. if (seen_or_pass0) {
  382. if (i != flen - 1) {
  383. EMIT_JMP(cleanup_addr - addrs[i]);
  384. break;
  385. }
  386. if (seen_or_pass0 & SEEN_XREG)
  387. EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */
  388. EMIT1(0xc9); /* leaveq */
  389. }
  390. EMIT1(0xc3); /* ret */
  391. break;
  392. case BPF_S_MISC_TAX: /* X = A */
  393. seen |= SEEN_XREG;
  394. EMIT2(0x89, 0xc3); /* mov %eax,%ebx */
  395. break;
  396. case BPF_S_MISC_TXA: /* A = X */
  397. seen |= SEEN_XREG;
  398. EMIT2(0x89, 0xd8); /* mov %ebx,%eax */
  399. break;
  400. case BPF_S_LD_IMM: /* A = K */
  401. if (!K)
  402. CLEAR_A();
  403. else
  404. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  405. break;
  406. case BPF_S_LDX_IMM: /* X = K */
  407. seen |= SEEN_XREG;
  408. if (!K)
  409. CLEAR_X();
  410. else
  411. EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
  412. break;
  413. case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
  414. seen |= SEEN_MEM;
  415. EMIT3(0x8b, 0x45, 0xf0 - K*4);
  416. break;
  417. case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
  418. seen |= SEEN_XREG | SEEN_MEM;
  419. EMIT3(0x8b, 0x5d, 0xf0 - K*4);
  420. break;
  421. case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
  422. seen |= SEEN_MEM;
  423. EMIT3(0x89, 0x45, 0xf0 - K*4);
  424. break;
  425. case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
  426. seen |= SEEN_XREG | SEEN_MEM;
  427. EMIT3(0x89, 0x5d, 0xf0 - K*4);
  428. break;
  429. case BPF_S_LD_W_LEN: /* A = skb->len; */
  430. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
  431. if (is_imm8(offsetof(struct sk_buff, len)))
  432. /* mov off8(%rdi),%eax */
  433. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
  434. else {
  435. EMIT2(0x8b, 0x87);
  436. EMIT(offsetof(struct sk_buff, len), 4);
  437. }
  438. break;
  439. case BPF_S_LDX_W_LEN: /* X = skb->len; */
  440. seen |= SEEN_XREG;
  441. if (is_imm8(offsetof(struct sk_buff, len)))
  442. /* mov off8(%rdi),%ebx */
  443. EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
  444. else {
  445. EMIT2(0x8b, 0x9f);
  446. EMIT(offsetof(struct sk_buff, len), 4);
  447. }
  448. break;
  449. case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
  450. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
  451. if (is_imm8(offsetof(struct sk_buff, protocol))) {
  452. /* movzwl off8(%rdi),%eax */
  453. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
  454. } else {
  455. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  456. EMIT(offsetof(struct sk_buff, protocol), 4);
  457. }
  458. EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */
  459. break;
  460. case BPF_S_ANC_IFINDEX:
  461. if (is_imm8(offsetof(struct sk_buff, dev))) {
  462. /* movq off8(%rdi),%rax */
  463. EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
  464. } else {
  465. EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
  466. EMIT(offsetof(struct sk_buff, dev), 4);
  467. }
  468. EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */
  469. EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
  470. BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
  471. EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */
  472. EMIT(offsetof(struct net_device, ifindex), 4);
  473. break;
  474. case BPF_S_ANC_MARK:
  475. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
  476. if (is_imm8(offsetof(struct sk_buff, mark))) {
  477. /* mov off8(%rdi),%eax */
  478. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
  479. } else {
  480. EMIT2(0x8b, 0x87);
  481. EMIT(offsetof(struct sk_buff, mark), 4);
  482. }
  483. break;
  484. case BPF_S_ANC_RXHASH:
  485. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
  486. if (is_imm8(offsetof(struct sk_buff, rxhash))) {
  487. /* mov off8(%rdi),%eax */
  488. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
  489. } else {
  490. EMIT2(0x8b, 0x87);
  491. EMIT(offsetof(struct sk_buff, rxhash), 4);
  492. }
  493. break;
  494. case BPF_S_ANC_QUEUE:
  495. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
  496. if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
  497. /* movzwl off8(%rdi),%eax */
  498. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
  499. } else {
  500. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  501. EMIT(offsetof(struct sk_buff, queue_mapping), 4);
  502. }
  503. break;
  504. case BPF_S_ANC_CPU:
  505. #ifdef CONFIG_SMP
  506. EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
  507. EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
  508. #else
  509. CLEAR_A();
  510. #endif
  511. break;
  512. case BPF_S_ANC_VLAN_TAG:
  513. case BPF_S_ANC_VLAN_TAG_PRESENT:
  514. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
  515. if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
  516. /* movzwl off8(%rdi),%eax */
  517. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
  518. } else {
  519. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  520. EMIT(offsetof(struct sk_buff, vlan_tci), 4);
  521. }
  522. BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
  523. if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
  524. EMIT3(0x80, 0xe4, 0xef); /* and $0xef,%ah */
  525. } else {
  526. EMIT3(0xc1, 0xe8, 0x0c); /* shr $0xc,%eax */
  527. EMIT3(0x83, 0xe0, 0x01); /* and $0x1,%eax */
  528. }
  529. break;
  530. case BPF_S_ANC_PKTTYPE:
  531. {
  532. int off = pkt_type_offset();
  533. if (off < 0)
  534. goto out;
  535. if (is_imm8(off)) {
  536. /* movzbl off8(%rdi),%eax */
  537. EMIT4(0x0f, 0xb6, 0x47, off);
  538. } else {
  539. /* movbl off32(%rdi),%eax */
  540. EMIT3(0x0f, 0xb6, 0x87);
  541. EMIT(off, 4);
  542. }
  543. EMIT3(0x83, 0xe0, PKT_TYPE_MAX); /* and $0x7,%eax */
  544. break;
  545. }
  546. case BPF_S_LD_W_ABS:
  547. func = CHOOSE_LOAD_FUNC(K, sk_load_word);
  548. common_load: seen |= SEEN_DATAREF;
  549. t_offset = func - (image + addrs[i]);
  550. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  551. EMIT1_off32(0xe8, t_offset); /* call */
  552. break;
  553. case BPF_S_LD_H_ABS:
  554. func = CHOOSE_LOAD_FUNC(K, sk_load_half);
  555. goto common_load;
  556. case BPF_S_LD_B_ABS:
  557. func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
  558. goto common_load;
  559. case BPF_S_LDX_B_MSH:
  560. func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
  561. seen |= SEEN_DATAREF | SEEN_XREG;
  562. t_offset = func - (image + addrs[i]);
  563. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  564. EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
  565. break;
  566. case BPF_S_LD_W_IND:
  567. func = sk_load_word;
  568. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  569. t_offset = func - (image + addrs[i]);
  570. if (K) {
  571. if (is_imm8(K)) {
  572. EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
  573. } else {
  574. EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
  575. EMIT(K, 4);
  576. }
  577. } else {
  578. EMIT2(0x89,0xde); /* mov %ebx,%esi */
  579. }
  580. EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */
  581. break;
  582. case BPF_S_LD_H_IND:
  583. func = sk_load_half;
  584. goto common_load_ind;
  585. case BPF_S_LD_B_IND:
  586. func = sk_load_byte;
  587. goto common_load_ind;
  588. case BPF_S_JMP_JA:
  589. t_offset = addrs[i + K] - addrs[i];
  590. EMIT_JMP(t_offset);
  591. break;
  592. COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
  593. COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
  594. COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
  595. COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
  596. COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
  597. COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
  598. COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
  599. COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
  600. cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i];
  601. t_offset = addrs[i + filter[i].jt] - addrs[i];
  602. /* same targets, can avoid doing the test :) */
  603. if (filter[i].jt == filter[i].jf) {
  604. EMIT_JMP(t_offset);
  605. break;
  606. }
  607. switch (filter[i].code) {
  608. case BPF_S_JMP_JGT_X:
  609. case BPF_S_JMP_JGE_X:
  610. case BPF_S_JMP_JEQ_X:
  611. seen |= SEEN_XREG;
  612. EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
  613. break;
  614. case BPF_S_JMP_JSET_X:
  615. seen |= SEEN_XREG;
  616. EMIT2(0x85, 0xd8); /* test %ebx,%eax */
  617. break;
  618. case BPF_S_JMP_JEQ_K:
  619. if (K == 0) {
  620. EMIT2(0x85, 0xc0); /* test %eax,%eax */
  621. break;
  622. }
  623. case BPF_S_JMP_JGT_K:
  624. case BPF_S_JMP_JGE_K:
  625. if (K <= 127)
  626. EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
  627. else
  628. EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
  629. break;
  630. case BPF_S_JMP_JSET_K:
  631. if (K <= 0xFF)
  632. EMIT2(0xa8, K); /* test imm8,%al */
  633. else if (!(K & 0xFFFF00FF))
  634. EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
  635. else if (K <= 0xFFFF) {
  636. EMIT2(0x66, 0xa9); /* test imm16,%ax */
  637. EMIT(K, 2);
  638. } else {
  639. EMIT1_off32(0xa9, K); /* test imm32,%eax */
  640. }
  641. break;
  642. }
  643. if (filter[i].jt != 0) {
  644. if (filter[i].jf && f_offset)
  645. t_offset += is_near(f_offset) ? 2 : 5;
  646. EMIT_COND_JMP(t_op, t_offset);
  647. if (filter[i].jf)
  648. EMIT_JMP(f_offset);
  649. break;
  650. }
  651. EMIT_COND_JMP(f_op, f_offset);
  652. break;
  653. default:
  654. /* hmm, too complex filter, give up with jit compiler */
  655. goto out;
  656. }
  657. ilen = prog - temp;
  658. if (image) {
  659. if (unlikely(proglen + ilen > oldproglen)) {
  660. pr_err("bpb_jit_compile fatal error\n");
  661. kfree(addrs);
  662. module_free(NULL, image);
  663. return;
  664. }
  665. memcpy(image + proglen, temp, ilen);
  666. }
  667. proglen += ilen;
  668. addrs[i] = proglen;
  669. prog = temp;
  670. }
  671. /* last bpf instruction is always a RET :
  672. * use it to give the cleanup instruction(s) addr
  673. */
  674. cleanup_addr = proglen - 1; /* ret */
  675. if (seen_or_pass0)
  676. cleanup_addr -= 1; /* leaveq */
  677. if (seen_or_pass0 & SEEN_XREG)
  678. cleanup_addr -= 4; /* mov -8(%rbp),%rbx */
  679. if (image) {
  680. if (proglen != oldproglen)
  681. pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
  682. break;
  683. }
  684. if (proglen == oldproglen) {
  685. image = module_alloc(max_t(unsigned int,
  686. proglen,
  687. sizeof(struct work_struct)));
  688. if (!image)
  689. goto out;
  690. }
  691. oldproglen = proglen;
  692. }
  693. if (bpf_jit_enable > 1)
  694. pr_err("flen=%d proglen=%u pass=%d image=%p\n",
  695. flen, proglen, pass, image);
  696. if (image) {
  697. if (bpf_jit_enable > 1)
  698. print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
  699. 16, 1, image, proglen, false);
  700. bpf_flush_icache(image, image + proglen);
  701. fp->bpf_func = (void *)image;
  702. }
  703. out:
  704. kfree(addrs);
  705. return;
  706. }
  707. static void jit_free_defer(struct work_struct *arg)
  708. {
  709. module_free(NULL, arg);
  710. }
  711. /* run from softirq, we must use a work_struct to call
  712. * module_free() from process context
  713. */
  714. void bpf_jit_free(struct sk_filter *fp)
  715. {
  716. if (fp->bpf_func != sk_run_filter) {
  717. struct work_struct *work = (struct work_struct *)fp->bpf_func;
  718. INIT_WORK(work, jit_free_defer);
  719. schedule_work(work);
  720. }
  721. }