pgtable.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. #include <linux/mm.h>
  2. #include <linux/gfp.h>
  3. #include <asm/pgalloc.h>
  4. #include <asm/pgtable.h>
  5. #include <asm/tlb.h>
  6. #include <asm/fixmap.h>
  7. #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
  8. #ifdef CONFIG_HIGHPTE
  9. #define PGALLOC_USER_GFP __GFP_HIGHMEM
  10. #else
  11. #define PGALLOC_USER_GFP 0
  12. #endif
  13. gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
  14. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  15. {
  16. return (pte_t *)__get_free_page(PGALLOC_GFP);
  17. }
  18. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  19. {
  20. struct page *pte;
  21. pte = alloc_pages(__userpte_alloc_gfp, 0);
  22. if (pte)
  23. pgtable_page_ctor(pte);
  24. return pte;
  25. }
  26. static int __init setup_userpte(char *arg)
  27. {
  28. if (!arg)
  29. return -EINVAL;
  30. /*
  31. * "userpte=nohigh" disables allocation of user pagetables in
  32. * high memory.
  33. */
  34. if (strcmp(arg, "nohigh") == 0)
  35. __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
  36. else
  37. return -EINVAL;
  38. return 0;
  39. }
  40. early_param("userpte", setup_userpte);
  41. void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  42. {
  43. pgtable_page_dtor(pte);
  44. paravirt_release_pte(page_to_pfn(pte));
  45. tlb_remove_page(tlb, pte);
  46. }
  47. #if PAGETABLE_LEVELS > 2
  48. void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  49. {
  50. paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
  51. /*
  52. * NOTE! For PAE, any changes to the top page-directory-pointer-table
  53. * entries need a full cr3 reload to flush.
  54. */
  55. #ifdef CONFIG_X86_PAE
  56. tlb->need_flush_all = 1;
  57. #endif
  58. tlb_remove_page(tlb, virt_to_page(pmd));
  59. }
  60. #if PAGETABLE_LEVELS > 3
  61. void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  62. {
  63. paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
  64. tlb_remove_page(tlb, virt_to_page(pud));
  65. }
  66. #endif /* PAGETABLE_LEVELS > 3 */
  67. #endif /* PAGETABLE_LEVELS > 2 */
  68. static inline void pgd_list_add(pgd_t *pgd)
  69. {
  70. struct page *page = virt_to_page(pgd);
  71. list_add(&page->lru, &pgd_list);
  72. }
  73. static inline void pgd_list_del(pgd_t *pgd)
  74. {
  75. struct page *page = virt_to_page(pgd);
  76. list_del(&page->lru);
  77. }
  78. #define UNSHARED_PTRS_PER_PGD \
  79. (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
  80. static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
  81. {
  82. BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
  83. virt_to_page(pgd)->index = (pgoff_t)mm;
  84. }
  85. struct mm_struct *pgd_page_get_mm(struct page *page)
  86. {
  87. return (struct mm_struct *)page->index;
  88. }
  89. static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
  90. {
  91. /* If the pgd points to a shared pagetable level (either the
  92. ptes in non-PAE, or shared PMD in PAE), then just copy the
  93. references from swapper_pg_dir. */
  94. if (PAGETABLE_LEVELS == 2 ||
  95. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
  96. PAGETABLE_LEVELS == 4) {
  97. clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
  98. swapper_pg_dir + KERNEL_PGD_BOUNDARY,
  99. KERNEL_PGD_PTRS);
  100. }
  101. /* list required to sync kernel mapping updates */
  102. if (!SHARED_KERNEL_PMD) {
  103. pgd_set_mm(pgd, mm);
  104. pgd_list_add(pgd);
  105. }
  106. }
  107. static void pgd_dtor(pgd_t *pgd)
  108. {
  109. if (SHARED_KERNEL_PMD)
  110. return;
  111. spin_lock(&pgd_lock);
  112. pgd_list_del(pgd);
  113. spin_unlock(&pgd_lock);
  114. }
  115. /*
  116. * List of all pgd's needed for non-PAE so it can invalidate entries
  117. * in both cached and uncached pgd's; not needed for PAE since the
  118. * kernel pmd is shared. If PAE were not to share the pmd a similar
  119. * tactic would be needed. This is essentially codepath-based locking
  120. * against pageattr.c; it is the unique case in which a valid change
  121. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  122. * vmalloc faults work because attached pagetables are never freed.
  123. * -- nyc
  124. */
  125. #ifdef CONFIG_X86_PAE
  126. /*
  127. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  128. * updating the top-level pagetable entries to guarantee the
  129. * processor notices the update. Since this is expensive, and
  130. * all 4 top-level entries are used almost immediately in a
  131. * new process's life, we just pre-populate them here.
  132. *
  133. * Also, if we're in a paravirt environment where the kernel pmd is
  134. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  135. * and initialize the kernel pmds here.
  136. */
  137. #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
  138. void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
  139. {
  140. paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
  141. /* Note: almost everything apart from _PAGE_PRESENT is
  142. reserved at the pmd (PDPT) level. */
  143. set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
  144. /*
  145. * According to Intel App note "TLBs, Paging-Structure Caches,
  146. * and Their Invalidation", April 2007, document 317080-001,
  147. * section 8.1: in PAE mode we explicitly have to flush the
  148. * TLB via cr3 if the top-level pgd is changed...
  149. */
  150. flush_tlb_mm(mm);
  151. }
  152. #else /* !CONFIG_X86_PAE */
  153. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  154. #define PREALLOCATED_PMDS 0
  155. #endif /* CONFIG_X86_PAE */
  156. static void free_pmds(pmd_t *pmds[])
  157. {
  158. int i;
  159. for(i = 0; i < PREALLOCATED_PMDS; i++)
  160. if (pmds[i])
  161. free_page((unsigned long)pmds[i]);
  162. }
  163. static int preallocate_pmds(pmd_t *pmds[])
  164. {
  165. int i;
  166. bool failed = false;
  167. for(i = 0; i < PREALLOCATED_PMDS; i++) {
  168. pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
  169. if (pmd == NULL)
  170. failed = true;
  171. pmds[i] = pmd;
  172. }
  173. if (failed) {
  174. free_pmds(pmds);
  175. return -ENOMEM;
  176. }
  177. return 0;
  178. }
  179. /*
  180. * Mop up any pmd pages which may still be attached to the pgd.
  181. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  182. * preallocate which never got a corresponding vma will need to be
  183. * freed manually.
  184. */
  185. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  186. {
  187. int i;
  188. for(i = 0; i < PREALLOCATED_PMDS; i++) {
  189. pgd_t pgd = pgdp[i];
  190. if (pgd_val(pgd) != 0) {
  191. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  192. pgdp[i] = native_make_pgd(0);
  193. paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
  194. pmd_free(mm, pmd);
  195. }
  196. }
  197. }
  198. static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
  199. {
  200. pud_t *pud;
  201. unsigned long addr;
  202. int i;
  203. if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
  204. return;
  205. pud = pud_offset(pgd, 0);
  206. for (addr = i = 0; i < PREALLOCATED_PMDS;
  207. i++, pud++, addr += PUD_SIZE) {
  208. pmd_t *pmd = pmds[i];
  209. if (i >= KERNEL_PGD_BOUNDARY)
  210. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  211. sizeof(pmd_t) * PTRS_PER_PMD);
  212. pud_populate(mm, pud, pmd);
  213. }
  214. }
  215. pgd_t *pgd_alloc(struct mm_struct *mm)
  216. {
  217. pgd_t *pgd;
  218. pmd_t *pmds[PREALLOCATED_PMDS];
  219. pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
  220. if (pgd == NULL)
  221. goto out;
  222. mm->pgd = pgd;
  223. if (preallocate_pmds(pmds) != 0)
  224. goto out_free_pgd;
  225. if (paravirt_pgd_alloc(mm) != 0)
  226. goto out_free_pmds;
  227. /*
  228. * Make sure that pre-populating the pmds is atomic with
  229. * respect to anything walking the pgd_list, so that they
  230. * never see a partially populated pgd.
  231. */
  232. spin_lock(&pgd_lock);
  233. pgd_ctor(mm, pgd);
  234. pgd_prepopulate_pmd(mm, pgd, pmds);
  235. spin_unlock(&pgd_lock);
  236. return pgd;
  237. out_free_pmds:
  238. free_pmds(pmds);
  239. out_free_pgd:
  240. free_page((unsigned long)pgd);
  241. out:
  242. return NULL;
  243. }
  244. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  245. {
  246. pgd_mop_up_pmds(mm, pgd);
  247. pgd_dtor(pgd);
  248. paravirt_pgd_free(mm, pgd);
  249. free_page((unsigned long)pgd);
  250. }
  251. /*
  252. * Used to set accessed or dirty bits in the page table entries
  253. * on other architectures. On x86, the accessed and dirty bits
  254. * are tracked by hardware. However, do_wp_page calls this function
  255. * to also make the pte writeable at the same time the dirty bit is
  256. * set. In that case we do actually need to write the PTE.
  257. */
  258. int ptep_set_access_flags(struct vm_area_struct *vma,
  259. unsigned long address, pte_t *ptep,
  260. pte_t entry, int dirty)
  261. {
  262. int changed = !pte_same(*ptep, entry);
  263. if (changed && dirty) {
  264. *ptep = entry;
  265. pte_update_defer(vma->vm_mm, address, ptep);
  266. }
  267. return changed;
  268. }
  269. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  270. int pmdp_set_access_flags(struct vm_area_struct *vma,
  271. unsigned long address, pmd_t *pmdp,
  272. pmd_t entry, int dirty)
  273. {
  274. int changed = !pmd_same(*pmdp, entry);
  275. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  276. if (changed && dirty) {
  277. *pmdp = entry;
  278. pmd_update_defer(vma->vm_mm, address, pmdp);
  279. /*
  280. * We had a write-protection fault here and changed the pmd
  281. * to to more permissive. No need to flush the TLB for that,
  282. * #PF is architecturally guaranteed to do that and in the
  283. * worst-case we'll generate a spurious fault.
  284. */
  285. }
  286. return changed;
  287. }
  288. #endif
  289. int ptep_test_and_clear_young(struct vm_area_struct *vma,
  290. unsigned long addr, pte_t *ptep)
  291. {
  292. int ret = 0;
  293. if (pte_young(*ptep))
  294. ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
  295. (unsigned long *) &ptep->pte);
  296. if (ret)
  297. pte_update(vma->vm_mm, addr, ptep);
  298. return ret;
  299. }
  300. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  301. int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  302. unsigned long addr, pmd_t *pmdp)
  303. {
  304. int ret = 0;
  305. if (pmd_young(*pmdp))
  306. ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
  307. (unsigned long *)pmdp);
  308. if (ret)
  309. pmd_update(vma->vm_mm, addr, pmdp);
  310. return ret;
  311. }
  312. #endif
  313. int ptep_clear_flush_young(struct vm_area_struct *vma,
  314. unsigned long address, pte_t *ptep)
  315. {
  316. int young;
  317. young = ptep_test_and_clear_young(vma, address, ptep);
  318. if (young)
  319. flush_tlb_page(vma, address);
  320. return young;
  321. }
  322. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  323. int pmdp_clear_flush_young(struct vm_area_struct *vma,
  324. unsigned long address, pmd_t *pmdp)
  325. {
  326. int young;
  327. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  328. young = pmdp_test_and_clear_young(vma, address, pmdp);
  329. if (young)
  330. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  331. return young;
  332. }
  333. void pmdp_splitting_flush(struct vm_area_struct *vma,
  334. unsigned long address, pmd_t *pmdp)
  335. {
  336. int set;
  337. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  338. set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
  339. (unsigned long *)pmdp);
  340. if (set) {
  341. pmd_update(vma->vm_mm, address, pmdp);
  342. /* need tlb flush only to serialize against gup-fast */
  343. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  344. }
  345. }
  346. #endif
  347. /**
  348. * reserve_top_address - reserves a hole in the top of kernel address space
  349. * @reserve - size of hole to reserve
  350. *
  351. * Can be used to relocate the fixmap area and poke a hole in the top
  352. * of kernel address space to make room for a hypervisor.
  353. */
  354. void __init reserve_top_address(unsigned long reserve)
  355. {
  356. #ifdef CONFIG_X86_32
  357. BUG_ON(fixmaps_set > 0);
  358. printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
  359. (int)-reserve);
  360. __FIXADDR_TOP = -reserve - PAGE_SIZE;
  361. #endif
  362. }
  363. int fixmaps_set;
  364. void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
  365. {
  366. unsigned long address = __fix_to_virt(idx);
  367. if (idx >= __end_of_fixed_addresses) {
  368. BUG();
  369. return;
  370. }
  371. set_pte_vaddr(address, pte);
  372. fixmaps_set++;
  373. }
  374. void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
  375. pgprot_t flags)
  376. {
  377. __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
  378. }