init_64.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <asm/processor.h>
  35. #include <asm/bios_ebda.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/dma.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/e820.h>
  42. #include <asm/apic.h>
  43. #include <asm/tlb.h>
  44. #include <asm/mmu_context.h>
  45. #include <asm/proto.h>
  46. #include <asm/smp.h>
  47. #include <asm/sections.h>
  48. #include <asm/kdebug.h>
  49. #include <asm/numa.h>
  50. #include <asm/cacheflush.h>
  51. #include <asm/init.h>
  52. #include <asm/uv/uv.h>
  53. #include <asm/setup.h>
  54. #include "mm_internal.h"
  55. static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
  56. unsigned long addr, unsigned long end)
  57. {
  58. addr &= PMD_MASK;
  59. for (; addr < end; addr += PMD_SIZE) {
  60. pmd_t *pmd = pmd_page + pmd_index(addr);
  61. if (!pmd_present(*pmd))
  62. set_pmd(pmd, __pmd(addr | pmd_flag));
  63. }
  64. }
  65. static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
  66. unsigned long addr, unsigned long end)
  67. {
  68. unsigned long next;
  69. for (; addr < end; addr = next) {
  70. pud_t *pud = pud_page + pud_index(addr);
  71. pmd_t *pmd;
  72. next = (addr & PUD_MASK) + PUD_SIZE;
  73. if (next > end)
  74. next = end;
  75. if (pud_present(*pud)) {
  76. pmd = pmd_offset(pud, 0);
  77. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  78. continue;
  79. }
  80. pmd = (pmd_t *)info->alloc_pgt_page(info->context);
  81. if (!pmd)
  82. return -ENOMEM;
  83. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  84. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  85. }
  86. return 0;
  87. }
  88. int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
  89. unsigned long addr, unsigned long end)
  90. {
  91. unsigned long next;
  92. int result;
  93. int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
  94. for (; addr < end; addr = next) {
  95. pgd_t *pgd = pgd_page + pgd_index(addr) + off;
  96. pud_t *pud;
  97. next = (addr & PGDIR_MASK) + PGDIR_SIZE;
  98. if (next > end)
  99. next = end;
  100. if (pgd_present(*pgd)) {
  101. pud = pud_offset(pgd, 0);
  102. result = ident_pud_init(info, pud, addr, next);
  103. if (result)
  104. return result;
  105. continue;
  106. }
  107. pud = (pud_t *)info->alloc_pgt_page(info->context);
  108. if (!pud)
  109. return -ENOMEM;
  110. result = ident_pud_init(info, pud, addr, next);
  111. if (result)
  112. return result;
  113. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  114. }
  115. return 0;
  116. }
  117. static int __init parse_direct_gbpages_off(char *arg)
  118. {
  119. direct_gbpages = 0;
  120. return 0;
  121. }
  122. early_param("nogbpages", parse_direct_gbpages_off);
  123. static int __init parse_direct_gbpages_on(char *arg)
  124. {
  125. direct_gbpages = 1;
  126. return 0;
  127. }
  128. early_param("gbpages", parse_direct_gbpages_on);
  129. /*
  130. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  131. * physical space so we can cache the place of the first one and move
  132. * around without checking the pgd every time.
  133. */
  134. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  135. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  136. int force_personality32;
  137. /*
  138. * noexec32=on|off
  139. * Control non executable heap for 32bit processes.
  140. * To control the stack too use noexec=off
  141. *
  142. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  143. * off PROT_READ implies PROT_EXEC
  144. */
  145. static int __init nonx32_setup(char *str)
  146. {
  147. if (!strcmp(str, "on"))
  148. force_personality32 &= ~READ_IMPLIES_EXEC;
  149. else if (!strcmp(str, "off"))
  150. force_personality32 |= READ_IMPLIES_EXEC;
  151. return 1;
  152. }
  153. __setup("noexec32=", nonx32_setup);
  154. /*
  155. * When memory was added/removed make sure all the processes MM have
  156. * suitable PGD entries in the local PGD level page.
  157. */
  158. void sync_global_pgds(unsigned long start, unsigned long end)
  159. {
  160. unsigned long address;
  161. for (address = start; address <= end; address += PGDIR_SIZE) {
  162. const pgd_t *pgd_ref = pgd_offset_k(address);
  163. struct page *page;
  164. if (pgd_none(*pgd_ref))
  165. continue;
  166. spin_lock(&pgd_lock);
  167. list_for_each_entry(page, &pgd_list, lru) {
  168. pgd_t *pgd;
  169. spinlock_t *pgt_lock;
  170. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  171. /* the pgt_lock only for Xen */
  172. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  173. spin_lock(pgt_lock);
  174. if (pgd_none(*pgd))
  175. set_pgd(pgd, *pgd_ref);
  176. else
  177. BUG_ON(pgd_page_vaddr(*pgd)
  178. != pgd_page_vaddr(*pgd_ref));
  179. spin_unlock(pgt_lock);
  180. }
  181. spin_unlock(&pgd_lock);
  182. }
  183. }
  184. /*
  185. * NOTE: This function is marked __ref because it calls __init function
  186. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  187. */
  188. static __ref void *spp_getpage(void)
  189. {
  190. void *ptr;
  191. if (after_bootmem)
  192. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  193. else
  194. ptr = alloc_bootmem_pages(PAGE_SIZE);
  195. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  196. panic("set_pte_phys: cannot allocate page data %s\n",
  197. after_bootmem ? "after bootmem" : "");
  198. }
  199. pr_debug("spp_getpage %p\n", ptr);
  200. return ptr;
  201. }
  202. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  203. {
  204. if (pgd_none(*pgd)) {
  205. pud_t *pud = (pud_t *)spp_getpage();
  206. pgd_populate(&init_mm, pgd, pud);
  207. if (pud != pud_offset(pgd, 0))
  208. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  209. pud, pud_offset(pgd, 0));
  210. }
  211. return pud_offset(pgd, vaddr);
  212. }
  213. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  214. {
  215. if (pud_none(*pud)) {
  216. pmd_t *pmd = (pmd_t *) spp_getpage();
  217. pud_populate(&init_mm, pud, pmd);
  218. if (pmd != pmd_offset(pud, 0))
  219. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  220. pmd, pmd_offset(pud, 0));
  221. }
  222. return pmd_offset(pud, vaddr);
  223. }
  224. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  225. {
  226. if (pmd_none(*pmd)) {
  227. pte_t *pte = (pte_t *) spp_getpage();
  228. pmd_populate_kernel(&init_mm, pmd, pte);
  229. if (pte != pte_offset_kernel(pmd, 0))
  230. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  231. }
  232. return pte_offset_kernel(pmd, vaddr);
  233. }
  234. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  235. {
  236. pud_t *pud;
  237. pmd_t *pmd;
  238. pte_t *pte;
  239. pud = pud_page + pud_index(vaddr);
  240. pmd = fill_pmd(pud, vaddr);
  241. pte = fill_pte(pmd, vaddr);
  242. set_pte(pte, new_pte);
  243. /*
  244. * It's enough to flush this one mapping.
  245. * (PGE mappings get flushed as well)
  246. */
  247. __flush_tlb_one(vaddr);
  248. }
  249. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  250. {
  251. pgd_t *pgd;
  252. pud_t *pud_page;
  253. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  254. pgd = pgd_offset_k(vaddr);
  255. if (pgd_none(*pgd)) {
  256. printk(KERN_ERR
  257. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  258. return;
  259. }
  260. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  261. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  262. }
  263. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  264. {
  265. pgd_t *pgd;
  266. pud_t *pud;
  267. pgd = pgd_offset_k(vaddr);
  268. pud = fill_pud(pgd, vaddr);
  269. return fill_pmd(pud, vaddr);
  270. }
  271. pte_t * __init populate_extra_pte(unsigned long vaddr)
  272. {
  273. pmd_t *pmd;
  274. pmd = populate_extra_pmd(vaddr);
  275. return fill_pte(pmd, vaddr);
  276. }
  277. /*
  278. * Create large page table mappings for a range of physical addresses.
  279. */
  280. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  281. pgprot_t prot)
  282. {
  283. pgd_t *pgd;
  284. pud_t *pud;
  285. pmd_t *pmd;
  286. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  287. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  288. pgd = pgd_offset_k((unsigned long)__va(phys));
  289. if (pgd_none(*pgd)) {
  290. pud = (pud_t *) spp_getpage();
  291. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  292. _PAGE_USER));
  293. }
  294. pud = pud_offset(pgd, (unsigned long)__va(phys));
  295. if (pud_none(*pud)) {
  296. pmd = (pmd_t *) spp_getpage();
  297. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  298. _PAGE_USER));
  299. }
  300. pmd = pmd_offset(pud, phys);
  301. BUG_ON(!pmd_none(*pmd));
  302. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  303. }
  304. }
  305. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  306. {
  307. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  308. }
  309. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  310. {
  311. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  312. }
  313. /*
  314. * The head.S code sets up the kernel high mapping:
  315. *
  316. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  317. *
  318. * phys_addr holds the negative offset to the kernel, which is added
  319. * to the compile time generated pmds. This results in invalid pmds up
  320. * to the point where we hit the physaddr 0 mapping.
  321. *
  322. * We limit the mappings to the region from _text to _brk_end. _brk_end
  323. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  324. * well, as they are located before _text:
  325. */
  326. void __init cleanup_highmap(void)
  327. {
  328. unsigned long vaddr = __START_KERNEL_map;
  329. unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
  330. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  331. pmd_t *pmd = level2_kernel_pgt;
  332. /*
  333. * Native path, max_pfn_mapped is not set yet.
  334. * Xen has valid max_pfn_mapped set in
  335. * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
  336. */
  337. if (max_pfn_mapped)
  338. vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  339. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  340. if (pmd_none(*pmd))
  341. continue;
  342. if (vaddr < (unsigned long) _text || vaddr > end)
  343. set_pmd(pmd, __pmd(0));
  344. }
  345. }
  346. static unsigned long __meminit
  347. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  348. pgprot_t prot)
  349. {
  350. unsigned long pages = 0, next;
  351. unsigned long last_map_addr = end;
  352. int i;
  353. pte_t *pte = pte_page + pte_index(addr);
  354. for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
  355. next = (addr & PAGE_MASK) + PAGE_SIZE;
  356. if (addr >= end) {
  357. if (!after_bootmem &&
  358. !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
  359. !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
  360. set_pte(pte, __pte(0));
  361. continue;
  362. }
  363. /*
  364. * We will re-use the existing mapping.
  365. * Xen for example has some special requirements, like mapping
  366. * pagetable pages as RO. So assume someone who pre-setup
  367. * these mappings are more intelligent.
  368. */
  369. if (pte_val(*pte)) {
  370. if (!after_bootmem)
  371. pages++;
  372. continue;
  373. }
  374. if (0)
  375. printk(" pte=%p addr=%lx pte=%016lx\n",
  376. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  377. pages++;
  378. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  379. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  380. }
  381. update_page_count(PG_LEVEL_4K, pages);
  382. return last_map_addr;
  383. }
  384. static unsigned long __meminit
  385. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  386. unsigned long page_size_mask, pgprot_t prot)
  387. {
  388. unsigned long pages = 0, next;
  389. unsigned long last_map_addr = end;
  390. int i = pmd_index(address);
  391. for (; i < PTRS_PER_PMD; i++, address = next) {
  392. pmd_t *pmd = pmd_page + pmd_index(address);
  393. pte_t *pte;
  394. pgprot_t new_prot = prot;
  395. next = (address & PMD_MASK) + PMD_SIZE;
  396. if (address >= end) {
  397. if (!after_bootmem &&
  398. !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
  399. !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
  400. set_pmd(pmd, __pmd(0));
  401. continue;
  402. }
  403. if (pmd_val(*pmd)) {
  404. if (!pmd_large(*pmd)) {
  405. spin_lock(&init_mm.page_table_lock);
  406. pte = (pte_t *)pmd_page_vaddr(*pmd);
  407. last_map_addr = phys_pte_init(pte, address,
  408. end, prot);
  409. spin_unlock(&init_mm.page_table_lock);
  410. continue;
  411. }
  412. /*
  413. * If we are ok with PG_LEVEL_2M mapping, then we will
  414. * use the existing mapping,
  415. *
  416. * Otherwise, we will split the large page mapping but
  417. * use the same existing protection bits except for
  418. * large page, so that we don't violate Intel's TLB
  419. * Application note (317080) which says, while changing
  420. * the page sizes, new and old translations should
  421. * not differ with respect to page frame and
  422. * attributes.
  423. */
  424. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  425. if (!after_bootmem)
  426. pages++;
  427. last_map_addr = next;
  428. continue;
  429. }
  430. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  431. }
  432. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  433. pages++;
  434. spin_lock(&init_mm.page_table_lock);
  435. set_pte((pte_t *)pmd,
  436. pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
  437. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  438. spin_unlock(&init_mm.page_table_lock);
  439. last_map_addr = next;
  440. continue;
  441. }
  442. pte = alloc_low_page();
  443. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  444. spin_lock(&init_mm.page_table_lock);
  445. pmd_populate_kernel(&init_mm, pmd, pte);
  446. spin_unlock(&init_mm.page_table_lock);
  447. }
  448. update_page_count(PG_LEVEL_2M, pages);
  449. return last_map_addr;
  450. }
  451. static unsigned long __meminit
  452. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  453. unsigned long page_size_mask)
  454. {
  455. unsigned long pages = 0, next;
  456. unsigned long last_map_addr = end;
  457. int i = pud_index(addr);
  458. for (; i < PTRS_PER_PUD; i++, addr = next) {
  459. pud_t *pud = pud_page + pud_index(addr);
  460. pmd_t *pmd;
  461. pgprot_t prot = PAGE_KERNEL;
  462. next = (addr & PUD_MASK) + PUD_SIZE;
  463. if (addr >= end) {
  464. if (!after_bootmem &&
  465. !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
  466. !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
  467. set_pud(pud, __pud(0));
  468. continue;
  469. }
  470. if (pud_val(*pud)) {
  471. if (!pud_large(*pud)) {
  472. pmd = pmd_offset(pud, 0);
  473. last_map_addr = phys_pmd_init(pmd, addr, end,
  474. page_size_mask, prot);
  475. __flush_tlb_all();
  476. continue;
  477. }
  478. /*
  479. * If we are ok with PG_LEVEL_1G mapping, then we will
  480. * use the existing mapping.
  481. *
  482. * Otherwise, we will split the gbpage mapping but use
  483. * the same existing protection bits except for large
  484. * page, so that we don't violate Intel's TLB
  485. * Application note (317080) which says, while changing
  486. * the page sizes, new and old translations should
  487. * not differ with respect to page frame and
  488. * attributes.
  489. */
  490. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  491. if (!after_bootmem)
  492. pages++;
  493. last_map_addr = next;
  494. continue;
  495. }
  496. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  497. }
  498. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  499. pages++;
  500. spin_lock(&init_mm.page_table_lock);
  501. set_pte((pte_t *)pud,
  502. pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
  503. PAGE_KERNEL_LARGE));
  504. spin_unlock(&init_mm.page_table_lock);
  505. last_map_addr = next;
  506. continue;
  507. }
  508. pmd = alloc_low_page();
  509. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  510. prot);
  511. spin_lock(&init_mm.page_table_lock);
  512. pud_populate(&init_mm, pud, pmd);
  513. spin_unlock(&init_mm.page_table_lock);
  514. }
  515. __flush_tlb_all();
  516. update_page_count(PG_LEVEL_1G, pages);
  517. return last_map_addr;
  518. }
  519. unsigned long __meminit
  520. kernel_physical_mapping_init(unsigned long start,
  521. unsigned long end,
  522. unsigned long page_size_mask)
  523. {
  524. bool pgd_changed = false;
  525. unsigned long next, last_map_addr = end;
  526. unsigned long addr;
  527. start = (unsigned long)__va(start);
  528. end = (unsigned long)__va(end);
  529. addr = start;
  530. for (; start < end; start = next) {
  531. pgd_t *pgd = pgd_offset_k(start);
  532. pud_t *pud;
  533. next = (start & PGDIR_MASK) + PGDIR_SIZE;
  534. if (pgd_val(*pgd)) {
  535. pud = (pud_t *)pgd_page_vaddr(*pgd);
  536. last_map_addr = phys_pud_init(pud, __pa(start),
  537. __pa(end), page_size_mask);
  538. continue;
  539. }
  540. pud = alloc_low_page();
  541. last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
  542. page_size_mask);
  543. spin_lock(&init_mm.page_table_lock);
  544. pgd_populate(&init_mm, pgd, pud);
  545. spin_unlock(&init_mm.page_table_lock);
  546. pgd_changed = true;
  547. }
  548. if (pgd_changed)
  549. sync_global_pgds(addr, end - 1);
  550. __flush_tlb_all();
  551. return last_map_addr;
  552. }
  553. #ifndef CONFIG_NUMA
  554. void __init initmem_init(void)
  555. {
  556. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
  557. }
  558. #endif
  559. void __init paging_init(void)
  560. {
  561. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  562. sparse_init();
  563. /*
  564. * clear the default setting with node 0
  565. * note: don't use nodes_clear here, that is really clearing when
  566. * numa support is not compiled in, and later node_set_state
  567. * will not set it back.
  568. */
  569. node_clear_state(0, N_MEMORY);
  570. if (N_MEMORY != N_NORMAL_MEMORY)
  571. node_clear_state(0, N_NORMAL_MEMORY);
  572. zone_sizes_init();
  573. }
  574. /*
  575. * Memory hotplug specific functions
  576. */
  577. #ifdef CONFIG_MEMORY_HOTPLUG
  578. /*
  579. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  580. * updating.
  581. */
  582. static void update_end_of_memory_vars(u64 start, u64 size)
  583. {
  584. unsigned long end_pfn = PFN_UP(start + size);
  585. if (end_pfn > max_pfn) {
  586. max_pfn = end_pfn;
  587. max_low_pfn = end_pfn;
  588. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  589. }
  590. }
  591. /*
  592. * Memory is added always to NORMAL zone. This means you will never get
  593. * additional DMA/DMA32 memory.
  594. */
  595. int arch_add_memory(int nid, u64 start, u64 size)
  596. {
  597. struct pglist_data *pgdat = NODE_DATA(nid);
  598. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  599. unsigned long start_pfn = start >> PAGE_SHIFT;
  600. unsigned long nr_pages = size >> PAGE_SHIFT;
  601. int ret;
  602. init_memory_mapping(start, start + size);
  603. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  604. WARN_ON_ONCE(ret);
  605. /* update max_pfn, max_low_pfn and high_memory */
  606. update_end_of_memory_vars(start, size);
  607. return ret;
  608. }
  609. EXPORT_SYMBOL_GPL(arch_add_memory);
  610. #define PAGE_INUSE 0xFD
  611. static void __meminit free_pagetable(struct page *page, int order)
  612. {
  613. struct zone *zone;
  614. bool bootmem = false;
  615. unsigned long magic;
  616. unsigned int nr_pages = 1 << order;
  617. /* bootmem page has reserved flag */
  618. if (PageReserved(page)) {
  619. __ClearPageReserved(page);
  620. bootmem = true;
  621. magic = (unsigned long)page->lru.next;
  622. if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
  623. while (nr_pages--)
  624. put_page_bootmem(page++);
  625. } else
  626. __free_pages_bootmem(page, order);
  627. } else
  628. free_pages((unsigned long)page_address(page), order);
  629. /*
  630. * SECTION_INFO pages and MIX_SECTION_INFO pages
  631. * are all allocated by bootmem.
  632. */
  633. if (bootmem) {
  634. zone = page_zone(page);
  635. zone_span_writelock(zone);
  636. zone->present_pages += nr_pages;
  637. zone_span_writeunlock(zone);
  638. totalram_pages += nr_pages;
  639. }
  640. }
  641. static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
  642. {
  643. pte_t *pte;
  644. int i;
  645. for (i = 0; i < PTRS_PER_PTE; i++) {
  646. pte = pte_start + i;
  647. if (pte_val(*pte))
  648. return;
  649. }
  650. /* free a pte talbe */
  651. free_pagetable(pmd_page(*pmd), 0);
  652. spin_lock(&init_mm.page_table_lock);
  653. pmd_clear(pmd);
  654. spin_unlock(&init_mm.page_table_lock);
  655. }
  656. static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
  657. {
  658. pmd_t *pmd;
  659. int i;
  660. for (i = 0; i < PTRS_PER_PMD; i++) {
  661. pmd = pmd_start + i;
  662. if (pmd_val(*pmd))
  663. return;
  664. }
  665. /* free a pmd talbe */
  666. free_pagetable(pud_page(*pud), 0);
  667. spin_lock(&init_mm.page_table_lock);
  668. pud_clear(pud);
  669. spin_unlock(&init_mm.page_table_lock);
  670. }
  671. /* Return true if pgd is changed, otherwise return false. */
  672. static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
  673. {
  674. pud_t *pud;
  675. int i;
  676. for (i = 0; i < PTRS_PER_PUD; i++) {
  677. pud = pud_start + i;
  678. if (pud_val(*pud))
  679. return false;
  680. }
  681. /* free a pud table */
  682. free_pagetable(pgd_page(*pgd), 0);
  683. spin_lock(&init_mm.page_table_lock);
  684. pgd_clear(pgd);
  685. spin_unlock(&init_mm.page_table_lock);
  686. return true;
  687. }
  688. static void __meminit
  689. remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
  690. bool direct)
  691. {
  692. unsigned long next, pages = 0;
  693. pte_t *pte;
  694. void *page_addr;
  695. phys_addr_t phys_addr;
  696. pte = pte_start + pte_index(addr);
  697. for (; addr < end; addr = next, pte++) {
  698. next = (addr + PAGE_SIZE) & PAGE_MASK;
  699. if (next > end)
  700. next = end;
  701. if (!pte_present(*pte))
  702. continue;
  703. /*
  704. * We mapped [0,1G) memory as identity mapping when
  705. * initializing, in arch/x86/kernel/head_64.S. These
  706. * pagetables cannot be removed.
  707. */
  708. phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
  709. if (phys_addr < (phys_addr_t)0x40000000)
  710. return;
  711. if (IS_ALIGNED(addr, PAGE_SIZE) &&
  712. IS_ALIGNED(next, PAGE_SIZE)) {
  713. /*
  714. * Do not free direct mapping pages since they were
  715. * freed when offlining, or simplely not in use.
  716. */
  717. if (!direct)
  718. free_pagetable(pte_page(*pte), 0);
  719. spin_lock(&init_mm.page_table_lock);
  720. pte_clear(&init_mm, addr, pte);
  721. spin_unlock(&init_mm.page_table_lock);
  722. /* For non-direct mapping, pages means nothing. */
  723. pages++;
  724. } else {
  725. /*
  726. * If we are here, we are freeing vmemmap pages since
  727. * direct mapped memory ranges to be freed are aligned.
  728. *
  729. * If we are not removing the whole page, it means
  730. * other page structs in this page are being used and
  731. * we canot remove them. So fill the unused page_structs
  732. * with 0xFD, and remove the page when it is wholly
  733. * filled with 0xFD.
  734. */
  735. memset((void *)addr, PAGE_INUSE, next - addr);
  736. page_addr = page_address(pte_page(*pte));
  737. if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
  738. free_pagetable(pte_page(*pte), 0);
  739. spin_lock(&init_mm.page_table_lock);
  740. pte_clear(&init_mm, addr, pte);
  741. spin_unlock(&init_mm.page_table_lock);
  742. }
  743. }
  744. }
  745. /* Call free_pte_table() in remove_pmd_table(). */
  746. flush_tlb_all();
  747. if (direct)
  748. update_page_count(PG_LEVEL_4K, -pages);
  749. }
  750. static void __meminit
  751. remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
  752. bool direct)
  753. {
  754. unsigned long next, pages = 0;
  755. pte_t *pte_base;
  756. pmd_t *pmd;
  757. void *page_addr;
  758. pmd = pmd_start + pmd_index(addr);
  759. for (; addr < end; addr = next, pmd++) {
  760. next = pmd_addr_end(addr, end);
  761. if (!pmd_present(*pmd))
  762. continue;
  763. if (pmd_large(*pmd)) {
  764. if (IS_ALIGNED(addr, PMD_SIZE) &&
  765. IS_ALIGNED(next, PMD_SIZE)) {
  766. if (!direct)
  767. free_pagetable(pmd_page(*pmd),
  768. get_order(PMD_SIZE));
  769. spin_lock(&init_mm.page_table_lock);
  770. pmd_clear(pmd);
  771. spin_unlock(&init_mm.page_table_lock);
  772. pages++;
  773. } else {
  774. /* If here, we are freeing vmemmap pages. */
  775. memset((void *)addr, PAGE_INUSE, next - addr);
  776. page_addr = page_address(pmd_page(*pmd));
  777. if (!memchr_inv(page_addr, PAGE_INUSE,
  778. PMD_SIZE)) {
  779. free_pagetable(pmd_page(*pmd),
  780. get_order(PMD_SIZE));
  781. spin_lock(&init_mm.page_table_lock);
  782. pmd_clear(pmd);
  783. spin_unlock(&init_mm.page_table_lock);
  784. }
  785. }
  786. continue;
  787. }
  788. pte_base = (pte_t *)pmd_page_vaddr(*pmd);
  789. remove_pte_table(pte_base, addr, next, direct);
  790. free_pte_table(pte_base, pmd);
  791. }
  792. /* Call free_pmd_table() in remove_pud_table(). */
  793. if (direct)
  794. update_page_count(PG_LEVEL_2M, -pages);
  795. }
  796. static void __meminit
  797. remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
  798. bool direct)
  799. {
  800. unsigned long next, pages = 0;
  801. pmd_t *pmd_base;
  802. pud_t *pud;
  803. void *page_addr;
  804. pud = pud_start + pud_index(addr);
  805. for (; addr < end; addr = next, pud++) {
  806. next = pud_addr_end(addr, end);
  807. if (!pud_present(*pud))
  808. continue;
  809. if (pud_large(*pud)) {
  810. if (IS_ALIGNED(addr, PUD_SIZE) &&
  811. IS_ALIGNED(next, PUD_SIZE)) {
  812. if (!direct)
  813. free_pagetable(pud_page(*pud),
  814. get_order(PUD_SIZE));
  815. spin_lock(&init_mm.page_table_lock);
  816. pud_clear(pud);
  817. spin_unlock(&init_mm.page_table_lock);
  818. pages++;
  819. } else {
  820. /* If here, we are freeing vmemmap pages. */
  821. memset((void *)addr, PAGE_INUSE, next - addr);
  822. page_addr = page_address(pud_page(*pud));
  823. if (!memchr_inv(page_addr, PAGE_INUSE,
  824. PUD_SIZE)) {
  825. free_pagetable(pud_page(*pud),
  826. get_order(PUD_SIZE));
  827. spin_lock(&init_mm.page_table_lock);
  828. pud_clear(pud);
  829. spin_unlock(&init_mm.page_table_lock);
  830. }
  831. }
  832. continue;
  833. }
  834. pmd_base = (pmd_t *)pud_page_vaddr(*pud);
  835. remove_pmd_table(pmd_base, addr, next, direct);
  836. free_pmd_table(pmd_base, pud);
  837. }
  838. if (direct)
  839. update_page_count(PG_LEVEL_1G, -pages);
  840. }
  841. /* start and end are both virtual address. */
  842. static void __meminit
  843. remove_pagetable(unsigned long start, unsigned long end, bool direct)
  844. {
  845. unsigned long next;
  846. pgd_t *pgd;
  847. pud_t *pud;
  848. bool pgd_changed = false;
  849. for (; start < end; start = next) {
  850. next = pgd_addr_end(start, end);
  851. pgd = pgd_offset_k(start);
  852. if (!pgd_present(*pgd))
  853. continue;
  854. pud = (pud_t *)pgd_page_vaddr(*pgd);
  855. remove_pud_table(pud, start, next, direct);
  856. if (free_pud_table(pud, pgd))
  857. pgd_changed = true;
  858. }
  859. if (pgd_changed)
  860. sync_global_pgds(start, end - 1);
  861. flush_tlb_all();
  862. }
  863. void __ref vmemmap_free(unsigned long start, unsigned long end)
  864. {
  865. remove_pagetable(start, end, false);
  866. }
  867. #ifdef CONFIG_MEMORY_HOTREMOVE
  868. static void __meminit
  869. kernel_physical_mapping_remove(unsigned long start, unsigned long end)
  870. {
  871. start = (unsigned long)__va(start);
  872. end = (unsigned long)__va(end);
  873. remove_pagetable(start, end, true);
  874. }
  875. int __ref arch_remove_memory(u64 start, u64 size)
  876. {
  877. unsigned long start_pfn = start >> PAGE_SHIFT;
  878. unsigned long nr_pages = size >> PAGE_SHIFT;
  879. struct zone *zone;
  880. int ret;
  881. zone = page_zone(pfn_to_page(start_pfn));
  882. kernel_physical_mapping_remove(start, start + size);
  883. ret = __remove_pages(zone, start_pfn, nr_pages);
  884. WARN_ON_ONCE(ret);
  885. return ret;
  886. }
  887. #endif
  888. #endif /* CONFIG_MEMORY_HOTPLUG */
  889. static struct kcore_list kcore_vsyscall;
  890. static void __init register_page_bootmem_info(void)
  891. {
  892. #ifdef CONFIG_NUMA
  893. int i;
  894. for_each_online_node(i)
  895. register_page_bootmem_info_node(NODE_DATA(i));
  896. #endif
  897. }
  898. void __init mem_init(void)
  899. {
  900. long codesize, reservedpages, datasize, initsize;
  901. unsigned long absent_pages;
  902. pci_iommu_alloc();
  903. /* clear_bss() already clear the empty_zero_page */
  904. register_page_bootmem_info();
  905. /* this will put all memory onto the freelists */
  906. totalram_pages = free_all_bootmem();
  907. absent_pages = absent_pages_in_range(0, max_pfn);
  908. reservedpages = max_pfn - totalram_pages - absent_pages;
  909. after_bootmem = 1;
  910. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  911. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  912. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  913. /* Register memory areas for /proc/kcore */
  914. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  915. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  916. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  917. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  918. nr_free_pages() << (PAGE_SHIFT-10),
  919. max_pfn << (PAGE_SHIFT-10),
  920. codesize >> 10,
  921. absent_pages << (PAGE_SHIFT-10),
  922. reservedpages << (PAGE_SHIFT-10),
  923. datasize >> 10,
  924. initsize >> 10);
  925. }
  926. #ifdef CONFIG_DEBUG_RODATA
  927. const int rodata_test_data = 0xC3;
  928. EXPORT_SYMBOL_GPL(rodata_test_data);
  929. int kernel_set_to_readonly;
  930. void set_kernel_text_rw(void)
  931. {
  932. unsigned long start = PFN_ALIGN(_text);
  933. unsigned long end = PFN_ALIGN(__stop___ex_table);
  934. if (!kernel_set_to_readonly)
  935. return;
  936. pr_debug("Set kernel text: %lx - %lx for read write\n",
  937. start, end);
  938. /*
  939. * Make the kernel identity mapping for text RW. Kernel text
  940. * mapping will always be RO. Refer to the comment in
  941. * static_protections() in pageattr.c
  942. */
  943. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  944. }
  945. void set_kernel_text_ro(void)
  946. {
  947. unsigned long start = PFN_ALIGN(_text);
  948. unsigned long end = PFN_ALIGN(__stop___ex_table);
  949. if (!kernel_set_to_readonly)
  950. return;
  951. pr_debug("Set kernel text: %lx - %lx for read only\n",
  952. start, end);
  953. /*
  954. * Set the kernel identity mapping for text RO.
  955. */
  956. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  957. }
  958. void mark_rodata_ro(void)
  959. {
  960. unsigned long start = PFN_ALIGN(_text);
  961. unsigned long rodata_start = PFN_ALIGN(__start_rodata);
  962. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  963. unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
  964. unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
  965. unsigned long all_end = PFN_ALIGN(&_end);
  966. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  967. (end - start) >> 10);
  968. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  969. kernel_set_to_readonly = 1;
  970. /*
  971. * The rodata/data/bss/brk section (but not the kernel text!)
  972. * should also be not-executable.
  973. */
  974. set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
  975. rodata_test();
  976. #ifdef CONFIG_CPA_DEBUG
  977. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  978. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  979. printk(KERN_INFO "Testing CPA: again\n");
  980. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  981. #endif
  982. free_init_pages("unused kernel memory",
  983. (unsigned long) __va(__pa_symbol(text_end)),
  984. (unsigned long) __va(__pa_symbol(rodata_start)));
  985. free_init_pages("unused kernel memory",
  986. (unsigned long) __va(__pa_symbol(rodata_end)),
  987. (unsigned long) __va(__pa_symbol(_sdata)));
  988. }
  989. #endif
  990. int kern_addr_valid(unsigned long addr)
  991. {
  992. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  993. pgd_t *pgd;
  994. pud_t *pud;
  995. pmd_t *pmd;
  996. pte_t *pte;
  997. if (above != 0 && above != -1UL)
  998. return 0;
  999. pgd = pgd_offset_k(addr);
  1000. if (pgd_none(*pgd))
  1001. return 0;
  1002. pud = pud_offset(pgd, addr);
  1003. if (pud_none(*pud))
  1004. return 0;
  1005. if (pud_large(*pud))
  1006. return pfn_valid(pud_pfn(*pud));
  1007. pmd = pmd_offset(pud, addr);
  1008. if (pmd_none(*pmd))
  1009. return 0;
  1010. if (pmd_large(*pmd))
  1011. return pfn_valid(pmd_pfn(*pmd));
  1012. pte = pte_offset_kernel(pmd, addr);
  1013. if (pte_none(*pte))
  1014. return 0;
  1015. return pfn_valid(pte_pfn(*pte));
  1016. }
  1017. /*
  1018. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  1019. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  1020. * not need special handling anymore:
  1021. */
  1022. static struct vm_area_struct gate_vma = {
  1023. .vm_start = VSYSCALL_START,
  1024. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  1025. .vm_page_prot = PAGE_READONLY_EXEC,
  1026. .vm_flags = VM_READ | VM_EXEC
  1027. };
  1028. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1029. {
  1030. #ifdef CONFIG_IA32_EMULATION
  1031. if (!mm || mm->context.ia32_compat)
  1032. return NULL;
  1033. #endif
  1034. return &gate_vma;
  1035. }
  1036. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1037. {
  1038. struct vm_area_struct *vma = get_gate_vma(mm);
  1039. if (!vma)
  1040. return 0;
  1041. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  1042. }
  1043. /*
  1044. * Use this when you have no reliable mm, typically from interrupt
  1045. * context. It is less reliable than using a task's mm and may give
  1046. * false positives.
  1047. */
  1048. int in_gate_area_no_mm(unsigned long addr)
  1049. {
  1050. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  1051. }
  1052. const char *arch_vma_name(struct vm_area_struct *vma)
  1053. {
  1054. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  1055. return "[vdso]";
  1056. if (vma == &gate_vma)
  1057. return "[vsyscall]";
  1058. return NULL;
  1059. }
  1060. #ifdef CONFIG_X86_UV
  1061. unsigned long memory_block_size_bytes(void)
  1062. {
  1063. if (is_uv_system()) {
  1064. printk(KERN_INFO "UV: memory block size 2GB\n");
  1065. return 2UL * 1024 * 1024 * 1024;
  1066. }
  1067. return MIN_MEMORY_BLOCK_SIZE;
  1068. }
  1069. #endif
  1070. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1071. /*
  1072. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  1073. */
  1074. static long __meminitdata addr_start, addr_end;
  1075. static void __meminitdata *p_start, *p_end;
  1076. static int __meminitdata node_start;
  1077. static int __meminit vmemmap_populate_hugepages(unsigned long start,
  1078. unsigned long end, int node)
  1079. {
  1080. unsigned long addr;
  1081. unsigned long next;
  1082. pgd_t *pgd;
  1083. pud_t *pud;
  1084. pmd_t *pmd;
  1085. for (addr = start; addr < end; addr = next) {
  1086. next = pmd_addr_end(addr, end);
  1087. pgd = vmemmap_pgd_populate(addr, node);
  1088. if (!pgd)
  1089. return -ENOMEM;
  1090. pud = vmemmap_pud_populate(pgd, addr, node);
  1091. if (!pud)
  1092. return -ENOMEM;
  1093. pmd = pmd_offset(pud, addr);
  1094. if (pmd_none(*pmd)) {
  1095. void *p;
  1096. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  1097. if (p) {
  1098. pte_t entry;
  1099. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  1100. PAGE_KERNEL_LARGE);
  1101. set_pmd(pmd, __pmd(pte_val(entry)));
  1102. /* check to see if we have contiguous blocks */
  1103. if (p_end != p || node_start != node) {
  1104. if (p_start)
  1105. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1106. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1107. addr_start = addr;
  1108. node_start = node;
  1109. p_start = p;
  1110. }
  1111. addr_end = addr + PMD_SIZE;
  1112. p_end = p + PMD_SIZE;
  1113. continue;
  1114. }
  1115. } else if (pmd_large(*pmd)) {
  1116. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1117. continue;
  1118. }
  1119. pr_warn_once("vmemmap: falling back to regular page backing\n");
  1120. if (vmemmap_populate_basepages(addr, next, node))
  1121. return -ENOMEM;
  1122. }
  1123. return 0;
  1124. }
  1125. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  1126. {
  1127. int err;
  1128. if (cpu_has_pse)
  1129. err = vmemmap_populate_hugepages(start, end, node);
  1130. else
  1131. err = vmemmap_populate_basepages(start, end, node);
  1132. if (!err)
  1133. sync_global_pgds(start, end - 1);
  1134. return err;
  1135. }
  1136. #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
  1137. void register_page_bootmem_memmap(unsigned long section_nr,
  1138. struct page *start_page, unsigned long size)
  1139. {
  1140. unsigned long addr = (unsigned long)start_page;
  1141. unsigned long end = (unsigned long)(start_page + size);
  1142. unsigned long next;
  1143. pgd_t *pgd;
  1144. pud_t *pud;
  1145. pmd_t *pmd;
  1146. unsigned int nr_pages;
  1147. struct page *page;
  1148. for (; addr < end; addr = next) {
  1149. pte_t *pte = NULL;
  1150. pgd = pgd_offset_k(addr);
  1151. if (pgd_none(*pgd)) {
  1152. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1153. continue;
  1154. }
  1155. get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
  1156. pud = pud_offset(pgd, addr);
  1157. if (pud_none(*pud)) {
  1158. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1159. continue;
  1160. }
  1161. get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
  1162. if (!cpu_has_pse) {
  1163. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1164. pmd = pmd_offset(pud, addr);
  1165. if (pmd_none(*pmd))
  1166. continue;
  1167. get_page_bootmem(section_nr, pmd_page(*pmd),
  1168. MIX_SECTION_INFO);
  1169. pte = pte_offset_kernel(pmd, addr);
  1170. if (pte_none(*pte))
  1171. continue;
  1172. get_page_bootmem(section_nr, pte_page(*pte),
  1173. SECTION_INFO);
  1174. } else {
  1175. next = pmd_addr_end(addr, end);
  1176. pmd = pmd_offset(pud, addr);
  1177. if (pmd_none(*pmd))
  1178. continue;
  1179. nr_pages = 1 << (get_order(PMD_SIZE));
  1180. page = pmd_page(*pmd);
  1181. while (nr_pages--)
  1182. get_page_bootmem(section_nr, page++,
  1183. SECTION_INFO);
  1184. }
  1185. }
  1186. }
  1187. #endif
  1188. void __meminit vmemmap_populate_print_last(void)
  1189. {
  1190. if (p_start) {
  1191. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1192. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1193. p_start = NULL;
  1194. p_end = NULL;
  1195. node_start = 0;
  1196. }
  1197. }
  1198. #endif