process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/sched.h>
  15. #include <linux/preempt.h>
  16. #include <linux/module.h>
  17. #include <linux/fs.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/tick.h>
  21. #include <linux/init.h>
  22. #include <linux/mm.h>
  23. #include <linux/compat.h>
  24. #include <linux/hardirq.h>
  25. #include <linux/syscalls.h>
  26. #include <linux/kernel.h>
  27. #include <linux/tracehook.h>
  28. #include <linux/signal.h>
  29. #include <asm/stack.h>
  30. #include <asm/switch_to.h>
  31. #include <asm/homecache.h>
  32. #include <asm/syscalls.h>
  33. #include <asm/traps.h>
  34. #include <asm/setup.h>
  35. #ifdef CONFIG_HARDWALL
  36. #include <asm/hardwall.h>
  37. #endif
  38. #include <arch/chip.h>
  39. #include <arch/abi.h>
  40. #include <arch/sim_def.h>
  41. /*
  42. * Use the (x86) "idle=poll" option to prefer low latency when leaving the
  43. * idle loop over low power while in the idle loop, e.g. if we have
  44. * one thread per core and we want to get threads out of futex waits fast.
  45. */
  46. static int __init idle_setup(char *str)
  47. {
  48. if (!str)
  49. return -EINVAL;
  50. if (!strcmp(str, "poll")) {
  51. pr_info("using polling idle threads.\n");
  52. cpu_idle_poll_ctrl(true);
  53. return 0;
  54. } else if (!strcmp(str, "halt")) {
  55. return 0;
  56. }
  57. return -1;
  58. }
  59. early_param("idle", idle_setup);
  60. void arch_cpu_idle(void)
  61. {
  62. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  63. _cpu_idle();
  64. }
  65. /*
  66. * Release a thread_info structure
  67. */
  68. void arch_release_thread_info(struct thread_info *info)
  69. {
  70. struct single_step_state *step_state = info->step_state;
  71. #ifdef CONFIG_HARDWALL
  72. /*
  73. * We free a thread_info from the context of the task that has
  74. * been scheduled next, so the original task is already dead.
  75. * Calling deactivate here just frees up the data structures.
  76. * If the task we're freeing held the last reference to a
  77. * hardwall fd, it would have been released prior to this point
  78. * anyway via exit_files(), and the hardwall_task.info pointers
  79. * would be NULL by now.
  80. */
  81. hardwall_deactivate_all(info->task);
  82. #endif
  83. if (step_state) {
  84. /*
  85. * FIXME: we don't munmap step_state->buffer
  86. * because the mm_struct for this process (info->task->mm)
  87. * has already been zeroed in exit_mm(). Keeping a
  88. * reference to it here seems like a bad move, so this
  89. * means we can't munmap() the buffer, and therefore if we
  90. * ptrace multiple threads in a process, we will slowly
  91. * leak user memory. (Note that as soon as the last
  92. * thread in a process dies, we will reclaim all user
  93. * memory including single-step buffers in the usual way.)
  94. * We should either assign a kernel VA to this buffer
  95. * somehow, or we should associate the buffer(s) with the
  96. * mm itself so we can clean them up that way.
  97. */
  98. kfree(step_state);
  99. }
  100. }
  101. static void save_arch_state(struct thread_struct *t);
  102. int copy_thread(unsigned long clone_flags, unsigned long sp,
  103. unsigned long arg, struct task_struct *p)
  104. {
  105. struct pt_regs *childregs = task_pt_regs(p);
  106. unsigned long ksp;
  107. unsigned long *callee_regs;
  108. /*
  109. * Set up the stack and stack pointer appropriately for the
  110. * new child to find itself woken up in __switch_to().
  111. * The callee-saved registers must be on the stack to be read;
  112. * the new task will then jump to assembly support to handle
  113. * calling schedule_tail(), etc., and (for userspace tasks)
  114. * returning to the context set up in the pt_regs.
  115. */
  116. ksp = (unsigned long) childregs;
  117. ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
  118. ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
  119. ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
  120. callee_regs = (unsigned long *)ksp;
  121. ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
  122. ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
  123. p->thread.ksp = ksp;
  124. /* Record the pid of the task that created this one. */
  125. p->thread.creator_pid = current->pid;
  126. if (unlikely(p->flags & PF_KTHREAD)) {
  127. /* kernel thread */
  128. memset(childregs, 0, sizeof(struct pt_regs));
  129. memset(&callee_regs[2], 0,
  130. (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
  131. callee_regs[0] = sp; /* r30 = function */
  132. callee_regs[1] = arg; /* r31 = arg */
  133. childregs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
  134. p->thread.pc = (unsigned long) ret_from_kernel_thread;
  135. return 0;
  136. }
  137. /*
  138. * Start new thread in ret_from_fork so it schedules properly
  139. * and then return from interrupt like the parent.
  140. */
  141. p->thread.pc = (unsigned long) ret_from_fork;
  142. /*
  143. * Do not clone step state from the parent; each thread
  144. * must make its own lazily.
  145. */
  146. task_thread_info(p)->step_state = NULL;
  147. /*
  148. * Copy the registers onto the kernel stack so the
  149. * return-from-interrupt code will reload it into registers.
  150. */
  151. *childregs = *current_pt_regs();
  152. childregs->regs[0] = 0; /* return value is zero */
  153. if (sp)
  154. childregs->sp = sp; /* override with new user stack pointer */
  155. memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
  156. CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
  157. /* Save user stack top pointer so we can ID the stack vm area later. */
  158. p->thread.usp0 = childregs->sp;
  159. /*
  160. * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
  161. * which is passed in as arg #5 to sys_clone().
  162. */
  163. if (clone_flags & CLONE_SETTLS)
  164. childregs->tp = childregs->regs[4];
  165. #if CHIP_HAS_TILE_DMA()
  166. /*
  167. * No DMA in the new thread. We model this on the fact that
  168. * fork() clears the pending signals, alarms, and aio for the child.
  169. */
  170. memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
  171. memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
  172. #endif
  173. #if CHIP_HAS_SN_PROC()
  174. /* Likewise, the new thread is not running static processor code. */
  175. p->thread.sn_proc_running = 0;
  176. memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
  177. #endif
  178. #if CHIP_HAS_PROC_STATUS_SPR()
  179. /* New thread has its miscellaneous processor state bits clear. */
  180. p->thread.proc_status = 0;
  181. #endif
  182. #ifdef CONFIG_HARDWALL
  183. /* New thread does not own any networks. */
  184. memset(&p->thread.hardwall[0], 0,
  185. sizeof(struct hardwall_task) * HARDWALL_TYPES);
  186. #endif
  187. /*
  188. * Start the new thread with the current architecture state
  189. * (user interrupt masks, etc.).
  190. */
  191. save_arch_state(&p->thread);
  192. return 0;
  193. }
  194. /*
  195. * Return "current" if it looks plausible, or else a pointer to a dummy.
  196. * This can be helpful if we are just trying to emit a clean panic.
  197. */
  198. struct task_struct *validate_current(void)
  199. {
  200. static struct task_struct corrupt = { .comm = "<corrupt>" };
  201. struct task_struct *tsk = current;
  202. if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
  203. (high_memory && (void *)tsk > high_memory) ||
  204. ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
  205. pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
  206. tsk = &corrupt;
  207. }
  208. return tsk;
  209. }
  210. /* Take and return the pointer to the previous task, for schedule_tail(). */
  211. struct task_struct *sim_notify_fork(struct task_struct *prev)
  212. {
  213. struct task_struct *tsk = current;
  214. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
  215. (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
  216. __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
  217. (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
  218. return prev;
  219. }
  220. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  221. {
  222. struct pt_regs *ptregs = task_pt_regs(tsk);
  223. elf_core_copy_regs(regs, ptregs);
  224. return 1;
  225. }
  226. #if CHIP_HAS_TILE_DMA()
  227. /* Allow user processes to access the DMA SPRs */
  228. void grant_dma_mpls(void)
  229. {
  230. #if CONFIG_KERNEL_PL == 2
  231. __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
  232. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
  233. #else
  234. __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
  235. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
  236. #endif
  237. }
  238. /* Forbid user processes from accessing the DMA SPRs */
  239. void restrict_dma_mpls(void)
  240. {
  241. #if CONFIG_KERNEL_PL == 2
  242. __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
  243. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
  244. #else
  245. __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
  246. __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
  247. #endif
  248. }
  249. /* Pause the DMA engine, then save off its state registers. */
  250. static void save_tile_dma_state(struct tile_dma_state *dma)
  251. {
  252. unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
  253. unsigned long post_suspend_state;
  254. /* If we're running, suspend the engine. */
  255. if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
  256. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
  257. /*
  258. * Wait for the engine to idle, then save regs. Note that we
  259. * want to record the "running" bit from before suspension,
  260. * and the "done" bit from after, so that we can properly
  261. * distinguish a case where the user suspended the engine from
  262. * the case where the kernel suspended as part of the context
  263. * swap.
  264. */
  265. do {
  266. post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
  267. } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
  268. dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
  269. dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
  270. dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
  271. dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
  272. dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
  273. dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
  274. dma->byte = __insn_mfspr(SPR_DMA_BYTE);
  275. dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
  276. (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
  277. }
  278. /* Restart a DMA that was running before we were context-switched out. */
  279. static void restore_tile_dma_state(struct thread_struct *t)
  280. {
  281. const struct tile_dma_state *dma = &t->tile_dma_state;
  282. /*
  283. * The only way to restore the done bit is to run a zero
  284. * length transaction.
  285. */
  286. if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
  287. !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
  288. __insn_mtspr(SPR_DMA_BYTE, 0);
  289. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  290. while (__insn_mfspr(SPR_DMA_USER_STATUS) &
  291. SPR_DMA_STATUS__BUSY_MASK)
  292. ;
  293. }
  294. __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
  295. __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
  296. __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
  297. __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
  298. __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
  299. __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
  300. __insn_mtspr(SPR_DMA_BYTE, dma->byte);
  301. /*
  302. * Restart the engine if we were running and not done.
  303. * Clear a pending async DMA fault that we were waiting on return
  304. * to user space to execute, since we expect the DMA engine
  305. * to regenerate those faults for us now. Note that we don't
  306. * try to clear the TIF_ASYNC_TLB flag, since it's relatively
  307. * harmless if set, and it covers both DMA and the SN processor.
  308. */
  309. if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
  310. t->dma_async_tlb.fault_num = 0;
  311. __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
  312. }
  313. }
  314. #endif
  315. static void save_arch_state(struct thread_struct *t)
  316. {
  317. #if CHIP_HAS_SPLIT_INTR_MASK()
  318. t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
  319. ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
  320. #else
  321. t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
  322. #endif
  323. t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
  324. t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
  325. t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
  326. t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
  327. t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
  328. t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
  329. t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
  330. #if CHIP_HAS_PROC_STATUS_SPR()
  331. t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
  332. #endif
  333. #if !CHIP_HAS_FIXED_INTVEC_BASE()
  334. t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
  335. #endif
  336. #if CHIP_HAS_TILE_RTF_HWM()
  337. t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
  338. #endif
  339. #if CHIP_HAS_DSTREAM_PF()
  340. t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
  341. #endif
  342. }
  343. static void restore_arch_state(const struct thread_struct *t)
  344. {
  345. #if CHIP_HAS_SPLIT_INTR_MASK()
  346. __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
  347. __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
  348. #else
  349. __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
  350. #endif
  351. __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
  352. __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
  353. __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
  354. __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
  355. __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
  356. __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
  357. __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
  358. #if CHIP_HAS_PROC_STATUS_SPR()
  359. __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
  360. #endif
  361. #if !CHIP_HAS_FIXED_INTVEC_BASE()
  362. __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
  363. #endif
  364. #if CHIP_HAS_TILE_RTF_HWM()
  365. __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
  366. #endif
  367. #if CHIP_HAS_DSTREAM_PF()
  368. __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
  369. #endif
  370. }
  371. void _prepare_arch_switch(struct task_struct *next)
  372. {
  373. #if CHIP_HAS_SN_PROC()
  374. int snctl;
  375. #endif
  376. #if CHIP_HAS_TILE_DMA()
  377. struct tile_dma_state *dma = &current->thread.tile_dma_state;
  378. if (dma->enabled)
  379. save_tile_dma_state(dma);
  380. #endif
  381. #if CHIP_HAS_SN_PROC()
  382. /*
  383. * Suspend the static network processor if it was running.
  384. * We do not suspend the fabric itself, just like we don't
  385. * try to suspend the UDN.
  386. */
  387. snctl = __insn_mfspr(SPR_SNCTL);
  388. current->thread.sn_proc_running =
  389. (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
  390. if (current->thread.sn_proc_running)
  391. __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
  392. #endif
  393. }
  394. struct task_struct *__sched _switch_to(struct task_struct *prev,
  395. struct task_struct *next)
  396. {
  397. /* DMA state is already saved; save off other arch state. */
  398. save_arch_state(&prev->thread);
  399. #if CHIP_HAS_TILE_DMA()
  400. /*
  401. * Restore DMA in new task if desired.
  402. * Note that it is only safe to restart here since interrupts
  403. * are disabled, so we can't take any DMATLB miss or access
  404. * interrupts before we have finished switching stacks.
  405. */
  406. if (next->thread.tile_dma_state.enabled) {
  407. restore_tile_dma_state(&next->thread);
  408. grant_dma_mpls();
  409. } else {
  410. restrict_dma_mpls();
  411. }
  412. #endif
  413. /* Restore other arch state. */
  414. restore_arch_state(&next->thread);
  415. #if CHIP_HAS_SN_PROC()
  416. /*
  417. * Restart static network processor in the new process
  418. * if it was running before.
  419. */
  420. if (next->thread.sn_proc_running) {
  421. int snctl = __insn_mfspr(SPR_SNCTL);
  422. __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
  423. }
  424. #endif
  425. #ifdef CONFIG_HARDWALL
  426. /* Enable or disable access to the network registers appropriately. */
  427. hardwall_switch_tasks(prev, next);
  428. #endif
  429. /*
  430. * Switch kernel SP, PC, and callee-saved registers.
  431. * In the context of the new task, return the old task pointer
  432. * (i.e. the task that actually called __switch_to).
  433. * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
  434. */
  435. return __switch_to(prev, next, next_current_ksp0(next));
  436. }
  437. /*
  438. * This routine is called on return from interrupt if any of the
  439. * TIF_WORK_MASK flags are set in thread_info->flags. It is
  440. * entered with interrupts disabled so we don't miss an event
  441. * that modified the thread_info flags. If any flag is set, we
  442. * handle it and return, and the calling assembly code will
  443. * re-disable interrupts, reload the thread flags, and call back
  444. * if more flags need to be handled.
  445. *
  446. * We return whether we need to check the thread_info flags again
  447. * or not. Note that we don't clear TIF_SINGLESTEP here, so it's
  448. * important that it be tested last, and then claim that we don't
  449. * need to recheck the flags.
  450. */
  451. int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
  452. {
  453. /* If we enter in kernel mode, do nothing and exit the caller loop. */
  454. if (!user_mode(regs))
  455. return 0;
  456. /* Enable interrupts; they are disabled again on return to caller. */
  457. local_irq_enable();
  458. if (thread_info_flags & _TIF_NEED_RESCHED) {
  459. schedule();
  460. return 1;
  461. }
  462. #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
  463. if (thread_info_flags & _TIF_ASYNC_TLB) {
  464. do_async_page_fault(regs);
  465. return 1;
  466. }
  467. #endif
  468. if (thread_info_flags & _TIF_SIGPENDING) {
  469. do_signal(regs);
  470. return 1;
  471. }
  472. if (thread_info_flags & _TIF_NOTIFY_RESUME) {
  473. clear_thread_flag(TIF_NOTIFY_RESUME);
  474. tracehook_notify_resume(regs);
  475. return 1;
  476. }
  477. if (thread_info_flags & _TIF_SINGLESTEP) {
  478. single_step_once(regs);
  479. return 0;
  480. }
  481. panic("work_pending: bad flags %#x\n", thread_info_flags);
  482. }
  483. unsigned long get_wchan(struct task_struct *p)
  484. {
  485. struct KBacktraceIterator kbt;
  486. if (!p || p == current || p->state == TASK_RUNNING)
  487. return 0;
  488. for (KBacktraceIterator_init(&kbt, p, NULL);
  489. !KBacktraceIterator_end(&kbt);
  490. KBacktraceIterator_next(&kbt)) {
  491. if (!in_sched_functions(kbt.it.pc))
  492. return kbt.it.pc;
  493. }
  494. return 0;
  495. }
  496. /* Flush thread state. */
  497. void flush_thread(void)
  498. {
  499. /* Nothing */
  500. }
  501. /*
  502. * Free current thread data structures etc..
  503. */
  504. void exit_thread(void)
  505. {
  506. /* Nothing */
  507. }
  508. void show_regs(struct pt_regs *regs)
  509. {
  510. struct task_struct *tsk = validate_current();
  511. int i;
  512. pr_err("\n");
  513. show_regs_print_info(KERN_ERR);
  514. #ifdef __tilegx__
  515. for (i = 0; i < 51; i += 3)
  516. pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
  517. i, regs->regs[i], i+1, regs->regs[i+1],
  518. i+2, regs->regs[i+2]);
  519. pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
  520. regs->regs[51], regs->regs[52], regs->tp);
  521. pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
  522. #else
  523. for (i = 0; i < 52; i += 4)
  524. pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
  525. " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
  526. i, regs->regs[i], i+1, regs->regs[i+1],
  527. i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
  528. pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
  529. regs->regs[52], regs->tp, regs->sp, regs->lr);
  530. #endif
  531. pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
  532. regs->pc, regs->ex1, regs->faultnum);
  533. dump_stack_regs(regs);
  534. }