pgtable.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045
  1. /*
  2. * Copyright IBM Corp. 2007, 2011
  3. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  4. */
  5. #include <linux/sched.h>
  6. #include <linux/kernel.h>
  7. #include <linux/errno.h>
  8. #include <linux/gfp.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/smp.h>
  12. #include <linux/highmem.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/module.h>
  16. #include <linux/quicklist.h>
  17. #include <linux/rcupdate.h>
  18. #include <linux/slab.h>
  19. #include <asm/pgtable.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/tlb.h>
  22. #include <asm/tlbflush.h>
  23. #include <asm/mmu_context.h>
  24. #ifndef CONFIG_64BIT
  25. #define ALLOC_ORDER 1
  26. #define FRAG_MASK 0x0f
  27. #else
  28. #define ALLOC_ORDER 2
  29. #define FRAG_MASK 0x03
  30. #endif
  31. unsigned long *crst_table_alloc(struct mm_struct *mm)
  32. {
  33. struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
  34. if (!page)
  35. return NULL;
  36. return (unsigned long *) page_to_phys(page);
  37. }
  38. void crst_table_free(struct mm_struct *mm, unsigned long *table)
  39. {
  40. free_pages((unsigned long) table, ALLOC_ORDER);
  41. }
  42. #ifdef CONFIG_64BIT
  43. int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
  44. {
  45. unsigned long *table, *pgd;
  46. unsigned long entry;
  47. BUG_ON(limit > (1UL << 53));
  48. repeat:
  49. table = crst_table_alloc(mm);
  50. if (!table)
  51. return -ENOMEM;
  52. spin_lock_bh(&mm->page_table_lock);
  53. if (mm->context.asce_limit < limit) {
  54. pgd = (unsigned long *) mm->pgd;
  55. if (mm->context.asce_limit <= (1UL << 31)) {
  56. entry = _REGION3_ENTRY_EMPTY;
  57. mm->context.asce_limit = 1UL << 42;
  58. mm->context.asce_bits = _ASCE_TABLE_LENGTH |
  59. _ASCE_USER_BITS |
  60. _ASCE_TYPE_REGION3;
  61. } else {
  62. entry = _REGION2_ENTRY_EMPTY;
  63. mm->context.asce_limit = 1UL << 53;
  64. mm->context.asce_bits = _ASCE_TABLE_LENGTH |
  65. _ASCE_USER_BITS |
  66. _ASCE_TYPE_REGION2;
  67. }
  68. crst_table_init(table, entry);
  69. pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
  70. mm->pgd = (pgd_t *) table;
  71. mm->task_size = mm->context.asce_limit;
  72. table = NULL;
  73. }
  74. spin_unlock_bh(&mm->page_table_lock);
  75. if (table)
  76. crst_table_free(mm, table);
  77. if (mm->context.asce_limit < limit)
  78. goto repeat;
  79. return 0;
  80. }
  81. void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
  82. {
  83. pgd_t *pgd;
  84. while (mm->context.asce_limit > limit) {
  85. pgd = mm->pgd;
  86. switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
  87. case _REGION_ENTRY_TYPE_R2:
  88. mm->context.asce_limit = 1UL << 42;
  89. mm->context.asce_bits = _ASCE_TABLE_LENGTH |
  90. _ASCE_USER_BITS |
  91. _ASCE_TYPE_REGION3;
  92. break;
  93. case _REGION_ENTRY_TYPE_R3:
  94. mm->context.asce_limit = 1UL << 31;
  95. mm->context.asce_bits = _ASCE_TABLE_LENGTH |
  96. _ASCE_USER_BITS |
  97. _ASCE_TYPE_SEGMENT;
  98. break;
  99. default:
  100. BUG();
  101. }
  102. mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
  103. mm->task_size = mm->context.asce_limit;
  104. crst_table_free(mm, (unsigned long *) pgd);
  105. }
  106. }
  107. #endif
  108. #ifdef CONFIG_PGSTE
  109. /**
  110. * gmap_alloc - allocate a guest address space
  111. * @mm: pointer to the parent mm_struct
  112. *
  113. * Returns a guest address space structure.
  114. */
  115. struct gmap *gmap_alloc(struct mm_struct *mm)
  116. {
  117. struct gmap *gmap;
  118. struct page *page;
  119. unsigned long *table;
  120. gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
  121. if (!gmap)
  122. goto out;
  123. INIT_LIST_HEAD(&gmap->crst_list);
  124. gmap->mm = mm;
  125. page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
  126. if (!page)
  127. goto out_free;
  128. list_add(&page->lru, &gmap->crst_list);
  129. table = (unsigned long *) page_to_phys(page);
  130. crst_table_init(table, _REGION1_ENTRY_EMPTY);
  131. gmap->table = table;
  132. gmap->asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH |
  133. _ASCE_USER_BITS | __pa(table);
  134. list_add(&gmap->list, &mm->context.gmap_list);
  135. return gmap;
  136. out_free:
  137. kfree(gmap);
  138. out:
  139. return NULL;
  140. }
  141. EXPORT_SYMBOL_GPL(gmap_alloc);
  142. static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table)
  143. {
  144. struct gmap_pgtable *mp;
  145. struct gmap_rmap *rmap;
  146. struct page *page;
  147. if (*table & _SEGMENT_ENTRY_INV)
  148. return 0;
  149. page = pfn_to_page(*table >> PAGE_SHIFT);
  150. mp = (struct gmap_pgtable *) page->index;
  151. list_for_each_entry(rmap, &mp->mapper, list) {
  152. if (rmap->entry != table)
  153. continue;
  154. list_del(&rmap->list);
  155. kfree(rmap);
  156. break;
  157. }
  158. *table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
  159. return 1;
  160. }
  161. static void gmap_flush_tlb(struct gmap *gmap)
  162. {
  163. if (MACHINE_HAS_IDTE)
  164. __tlb_flush_idte((unsigned long) gmap->table |
  165. _ASCE_TYPE_REGION1);
  166. else
  167. __tlb_flush_global();
  168. }
  169. /**
  170. * gmap_free - free a guest address space
  171. * @gmap: pointer to the guest address space structure
  172. */
  173. void gmap_free(struct gmap *gmap)
  174. {
  175. struct page *page, *next;
  176. unsigned long *table;
  177. int i;
  178. /* Flush tlb. */
  179. if (MACHINE_HAS_IDTE)
  180. __tlb_flush_idte((unsigned long) gmap->table |
  181. _ASCE_TYPE_REGION1);
  182. else
  183. __tlb_flush_global();
  184. /* Free all segment & region tables. */
  185. down_read(&gmap->mm->mmap_sem);
  186. spin_lock(&gmap->mm->page_table_lock);
  187. list_for_each_entry_safe(page, next, &gmap->crst_list, lru) {
  188. table = (unsigned long *) page_to_phys(page);
  189. if ((*table & _REGION_ENTRY_TYPE_MASK) == 0)
  190. /* Remove gmap rmap structures for segment table. */
  191. for (i = 0; i < PTRS_PER_PMD; i++, table++)
  192. gmap_unlink_segment(gmap, table);
  193. __free_pages(page, ALLOC_ORDER);
  194. }
  195. spin_unlock(&gmap->mm->page_table_lock);
  196. up_read(&gmap->mm->mmap_sem);
  197. list_del(&gmap->list);
  198. kfree(gmap);
  199. }
  200. EXPORT_SYMBOL_GPL(gmap_free);
  201. /**
  202. * gmap_enable - switch primary space to the guest address space
  203. * @gmap: pointer to the guest address space structure
  204. */
  205. void gmap_enable(struct gmap *gmap)
  206. {
  207. S390_lowcore.gmap = (unsigned long) gmap;
  208. }
  209. EXPORT_SYMBOL_GPL(gmap_enable);
  210. /**
  211. * gmap_disable - switch back to the standard primary address space
  212. * @gmap: pointer to the guest address space structure
  213. */
  214. void gmap_disable(struct gmap *gmap)
  215. {
  216. S390_lowcore.gmap = 0UL;
  217. }
  218. EXPORT_SYMBOL_GPL(gmap_disable);
  219. /*
  220. * gmap_alloc_table is assumed to be called with mmap_sem held
  221. */
  222. static int gmap_alloc_table(struct gmap *gmap,
  223. unsigned long *table, unsigned long init)
  224. {
  225. struct page *page;
  226. unsigned long *new;
  227. /* since we dont free the gmap table until gmap_free we can unlock */
  228. spin_unlock(&gmap->mm->page_table_lock);
  229. page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
  230. spin_lock(&gmap->mm->page_table_lock);
  231. if (!page)
  232. return -ENOMEM;
  233. new = (unsigned long *) page_to_phys(page);
  234. crst_table_init(new, init);
  235. if (*table & _REGION_ENTRY_INV) {
  236. list_add(&page->lru, &gmap->crst_list);
  237. *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
  238. (*table & _REGION_ENTRY_TYPE_MASK);
  239. } else
  240. __free_pages(page, ALLOC_ORDER);
  241. return 0;
  242. }
  243. /**
  244. * gmap_unmap_segment - unmap segment from the guest address space
  245. * @gmap: pointer to the guest address space structure
  246. * @addr: address in the guest address space
  247. * @len: length of the memory area to unmap
  248. *
  249. * Returns 0 if the unmap succeded, -EINVAL if not.
  250. */
  251. int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
  252. {
  253. unsigned long *table;
  254. unsigned long off;
  255. int flush;
  256. if ((to | len) & (PMD_SIZE - 1))
  257. return -EINVAL;
  258. if (len == 0 || to + len < to)
  259. return -EINVAL;
  260. flush = 0;
  261. down_read(&gmap->mm->mmap_sem);
  262. spin_lock(&gmap->mm->page_table_lock);
  263. for (off = 0; off < len; off += PMD_SIZE) {
  264. /* Walk the guest addr space page table */
  265. table = gmap->table + (((to + off) >> 53) & 0x7ff);
  266. if (*table & _REGION_ENTRY_INV)
  267. goto out;
  268. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  269. table = table + (((to + off) >> 42) & 0x7ff);
  270. if (*table & _REGION_ENTRY_INV)
  271. goto out;
  272. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  273. table = table + (((to + off) >> 31) & 0x7ff);
  274. if (*table & _REGION_ENTRY_INV)
  275. goto out;
  276. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  277. table = table + (((to + off) >> 20) & 0x7ff);
  278. /* Clear segment table entry in guest address space. */
  279. flush |= gmap_unlink_segment(gmap, table);
  280. *table = _SEGMENT_ENTRY_INV;
  281. }
  282. out:
  283. spin_unlock(&gmap->mm->page_table_lock);
  284. up_read(&gmap->mm->mmap_sem);
  285. if (flush)
  286. gmap_flush_tlb(gmap);
  287. return 0;
  288. }
  289. EXPORT_SYMBOL_GPL(gmap_unmap_segment);
  290. /**
  291. * gmap_mmap_segment - map a segment to the guest address space
  292. * @gmap: pointer to the guest address space structure
  293. * @from: source address in the parent address space
  294. * @to: target address in the guest address space
  295. *
  296. * Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not.
  297. */
  298. int gmap_map_segment(struct gmap *gmap, unsigned long from,
  299. unsigned long to, unsigned long len)
  300. {
  301. unsigned long *table;
  302. unsigned long off;
  303. int flush;
  304. if ((from | to | len) & (PMD_SIZE - 1))
  305. return -EINVAL;
  306. if (len == 0 || from + len > PGDIR_SIZE ||
  307. from + len < from || to + len < to)
  308. return -EINVAL;
  309. flush = 0;
  310. down_read(&gmap->mm->mmap_sem);
  311. spin_lock(&gmap->mm->page_table_lock);
  312. for (off = 0; off < len; off += PMD_SIZE) {
  313. /* Walk the gmap address space page table */
  314. table = gmap->table + (((to + off) >> 53) & 0x7ff);
  315. if ((*table & _REGION_ENTRY_INV) &&
  316. gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY))
  317. goto out_unmap;
  318. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  319. table = table + (((to + off) >> 42) & 0x7ff);
  320. if ((*table & _REGION_ENTRY_INV) &&
  321. gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY))
  322. goto out_unmap;
  323. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  324. table = table + (((to + off) >> 31) & 0x7ff);
  325. if ((*table & _REGION_ENTRY_INV) &&
  326. gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY))
  327. goto out_unmap;
  328. table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN);
  329. table = table + (((to + off) >> 20) & 0x7ff);
  330. /* Store 'from' address in an invalid segment table entry. */
  331. flush |= gmap_unlink_segment(gmap, table);
  332. *table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | (from + off);
  333. }
  334. spin_unlock(&gmap->mm->page_table_lock);
  335. up_read(&gmap->mm->mmap_sem);
  336. if (flush)
  337. gmap_flush_tlb(gmap);
  338. return 0;
  339. out_unmap:
  340. spin_unlock(&gmap->mm->page_table_lock);
  341. up_read(&gmap->mm->mmap_sem);
  342. gmap_unmap_segment(gmap, to, len);
  343. return -ENOMEM;
  344. }
  345. EXPORT_SYMBOL_GPL(gmap_map_segment);
  346. static unsigned long *gmap_table_walk(unsigned long address, struct gmap *gmap)
  347. {
  348. unsigned long *table;
  349. table = gmap->table + ((address >> 53) & 0x7ff);
  350. if (unlikely(*table & _REGION_ENTRY_INV))
  351. return ERR_PTR(-EFAULT);
  352. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  353. table = table + ((address >> 42) & 0x7ff);
  354. if (unlikely(*table & _REGION_ENTRY_INV))
  355. return ERR_PTR(-EFAULT);
  356. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  357. table = table + ((address >> 31) & 0x7ff);
  358. if (unlikely(*table & _REGION_ENTRY_INV))
  359. return ERR_PTR(-EFAULT);
  360. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  361. table = table + ((address >> 20) & 0x7ff);
  362. return table;
  363. }
  364. /**
  365. * __gmap_translate - translate a guest address to a user space address
  366. * @address: guest address
  367. * @gmap: pointer to guest mapping meta data structure
  368. *
  369. * Returns user space address which corresponds to the guest address or
  370. * -EFAULT if no such mapping exists.
  371. * This function does not establish potentially missing page table entries.
  372. * The mmap_sem of the mm that belongs to the address space must be held
  373. * when this function gets called.
  374. */
  375. unsigned long __gmap_translate(unsigned long address, struct gmap *gmap)
  376. {
  377. unsigned long *segment_ptr, vmaddr, segment;
  378. struct gmap_pgtable *mp;
  379. struct page *page;
  380. current->thread.gmap_addr = address;
  381. segment_ptr = gmap_table_walk(address, gmap);
  382. if (IS_ERR(segment_ptr))
  383. return PTR_ERR(segment_ptr);
  384. /* Convert the gmap address to an mm address. */
  385. segment = *segment_ptr;
  386. if (!(segment & _SEGMENT_ENTRY_INV)) {
  387. page = pfn_to_page(segment >> PAGE_SHIFT);
  388. mp = (struct gmap_pgtable *) page->index;
  389. return mp->vmaddr | (address & ~PMD_MASK);
  390. } else if (segment & _SEGMENT_ENTRY_RO) {
  391. vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
  392. return vmaddr | (address & ~PMD_MASK);
  393. }
  394. return -EFAULT;
  395. }
  396. EXPORT_SYMBOL_GPL(__gmap_translate);
  397. /**
  398. * gmap_translate - translate a guest address to a user space address
  399. * @address: guest address
  400. * @gmap: pointer to guest mapping meta data structure
  401. *
  402. * Returns user space address which corresponds to the guest address or
  403. * -EFAULT if no such mapping exists.
  404. * This function does not establish potentially missing page table entries.
  405. */
  406. unsigned long gmap_translate(unsigned long address, struct gmap *gmap)
  407. {
  408. unsigned long rc;
  409. down_read(&gmap->mm->mmap_sem);
  410. rc = __gmap_translate(address, gmap);
  411. up_read(&gmap->mm->mmap_sem);
  412. return rc;
  413. }
  414. EXPORT_SYMBOL_GPL(gmap_translate);
  415. static int gmap_connect_pgtable(unsigned long segment,
  416. unsigned long *segment_ptr,
  417. struct gmap *gmap)
  418. {
  419. unsigned long vmaddr;
  420. struct vm_area_struct *vma;
  421. struct gmap_pgtable *mp;
  422. struct gmap_rmap *rmap;
  423. struct mm_struct *mm;
  424. struct page *page;
  425. pgd_t *pgd;
  426. pud_t *pud;
  427. pmd_t *pmd;
  428. mm = gmap->mm;
  429. vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
  430. vma = find_vma(mm, vmaddr);
  431. if (!vma || vma->vm_start > vmaddr)
  432. return -EFAULT;
  433. /* Walk the parent mm page table */
  434. pgd = pgd_offset(mm, vmaddr);
  435. pud = pud_alloc(mm, pgd, vmaddr);
  436. if (!pud)
  437. return -ENOMEM;
  438. pmd = pmd_alloc(mm, pud, vmaddr);
  439. if (!pmd)
  440. return -ENOMEM;
  441. if (!pmd_present(*pmd) &&
  442. __pte_alloc(mm, vma, pmd, vmaddr))
  443. return -ENOMEM;
  444. /* pmd now points to a valid segment table entry. */
  445. rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT);
  446. if (!rmap)
  447. return -ENOMEM;
  448. /* Link gmap segment table entry location to page table. */
  449. page = pmd_page(*pmd);
  450. mp = (struct gmap_pgtable *) page->index;
  451. rmap->entry = segment_ptr;
  452. spin_lock(&mm->page_table_lock);
  453. if (*segment_ptr == segment) {
  454. list_add(&rmap->list, &mp->mapper);
  455. /* Set gmap segment table entry to page table. */
  456. *segment_ptr = pmd_val(*pmd) & PAGE_MASK;
  457. rmap = NULL;
  458. }
  459. spin_unlock(&mm->page_table_lock);
  460. kfree(rmap);
  461. return 0;
  462. }
  463. static void gmap_disconnect_pgtable(struct mm_struct *mm, unsigned long *table)
  464. {
  465. struct gmap_rmap *rmap, *next;
  466. struct gmap_pgtable *mp;
  467. struct page *page;
  468. int flush;
  469. flush = 0;
  470. spin_lock(&mm->page_table_lock);
  471. page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
  472. mp = (struct gmap_pgtable *) page->index;
  473. list_for_each_entry_safe(rmap, next, &mp->mapper, list) {
  474. *rmap->entry =
  475. _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
  476. list_del(&rmap->list);
  477. kfree(rmap);
  478. flush = 1;
  479. }
  480. spin_unlock(&mm->page_table_lock);
  481. if (flush)
  482. __tlb_flush_global();
  483. }
  484. /*
  485. * this function is assumed to be called with mmap_sem held
  486. */
  487. unsigned long __gmap_fault(unsigned long address, struct gmap *gmap)
  488. {
  489. unsigned long *segment_ptr, segment;
  490. struct gmap_pgtable *mp;
  491. struct page *page;
  492. int rc;
  493. current->thread.gmap_addr = address;
  494. segment_ptr = gmap_table_walk(address, gmap);
  495. if (IS_ERR(segment_ptr))
  496. return -EFAULT;
  497. /* Convert the gmap address to an mm address. */
  498. while (1) {
  499. segment = *segment_ptr;
  500. if (!(segment & _SEGMENT_ENTRY_INV)) {
  501. /* Page table is present */
  502. page = pfn_to_page(segment >> PAGE_SHIFT);
  503. mp = (struct gmap_pgtable *) page->index;
  504. return mp->vmaddr | (address & ~PMD_MASK);
  505. }
  506. if (!(segment & _SEGMENT_ENTRY_RO))
  507. /* Nothing mapped in the gmap address space. */
  508. break;
  509. rc = gmap_connect_pgtable(segment, segment_ptr, gmap);
  510. if (rc)
  511. return rc;
  512. }
  513. return -EFAULT;
  514. }
  515. unsigned long gmap_fault(unsigned long address, struct gmap *gmap)
  516. {
  517. unsigned long rc;
  518. down_read(&gmap->mm->mmap_sem);
  519. rc = __gmap_fault(address, gmap);
  520. up_read(&gmap->mm->mmap_sem);
  521. return rc;
  522. }
  523. EXPORT_SYMBOL_GPL(gmap_fault);
  524. void gmap_discard(unsigned long from, unsigned long to, struct gmap *gmap)
  525. {
  526. unsigned long *table, address, size;
  527. struct vm_area_struct *vma;
  528. struct gmap_pgtable *mp;
  529. struct page *page;
  530. down_read(&gmap->mm->mmap_sem);
  531. address = from;
  532. while (address < to) {
  533. /* Walk the gmap address space page table */
  534. table = gmap->table + ((address >> 53) & 0x7ff);
  535. if (unlikely(*table & _REGION_ENTRY_INV)) {
  536. address = (address + PMD_SIZE) & PMD_MASK;
  537. continue;
  538. }
  539. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  540. table = table + ((address >> 42) & 0x7ff);
  541. if (unlikely(*table & _REGION_ENTRY_INV)) {
  542. address = (address + PMD_SIZE) & PMD_MASK;
  543. continue;
  544. }
  545. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  546. table = table + ((address >> 31) & 0x7ff);
  547. if (unlikely(*table & _REGION_ENTRY_INV)) {
  548. address = (address + PMD_SIZE) & PMD_MASK;
  549. continue;
  550. }
  551. table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
  552. table = table + ((address >> 20) & 0x7ff);
  553. if (unlikely(*table & _SEGMENT_ENTRY_INV)) {
  554. address = (address + PMD_SIZE) & PMD_MASK;
  555. continue;
  556. }
  557. page = pfn_to_page(*table >> PAGE_SHIFT);
  558. mp = (struct gmap_pgtable *) page->index;
  559. vma = find_vma(gmap->mm, mp->vmaddr);
  560. size = min(to - address, PMD_SIZE - (address & ~PMD_MASK));
  561. zap_page_range(vma, mp->vmaddr | (address & ~PMD_MASK),
  562. size, NULL);
  563. address = (address + PMD_SIZE) & PMD_MASK;
  564. }
  565. up_read(&gmap->mm->mmap_sem);
  566. }
  567. EXPORT_SYMBOL_GPL(gmap_discard);
  568. static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
  569. unsigned long vmaddr)
  570. {
  571. struct page *page;
  572. unsigned long *table;
  573. struct gmap_pgtable *mp;
  574. page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
  575. if (!page)
  576. return NULL;
  577. mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT);
  578. if (!mp) {
  579. __free_page(page);
  580. return NULL;
  581. }
  582. pgtable_page_ctor(page);
  583. mp->vmaddr = vmaddr & PMD_MASK;
  584. INIT_LIST_HEAD(&mp->mapper);
  585. page->index = (unsigned long) mp;
  586. atomic_set(&page->_mapcount, 3);
  587. table = (unsigned long *) page_to_phys(page);
  588. clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE/2);
  589. clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
  590. return table;
  591. }
  592. static inline void page_table_free_pgste(unsigned long *table)
  593. {
  594. struct page *page;
  595. struct gmap_pgtable *mp;
  596. page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
  597. mp = (struct gmap_pgtable *) page->index;
  598. BUG_ON(!list_empty(&mp->mapper));
  599. pgtable_page_dtor(page);
  600. atomic_set(&page->_mapcount, -1);
  601. kfree(mp);
  602. __free_page(page);
  603. }
  604. #else /* CONFIG_PGSTE */
  605. static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
  606. unsigned long vmaddr)
  607. {
  608. return NULL;
  609. }
  610. static inline void page_table_free_pgste(unsigned long *table)
  611. {
  612. }
  613. static inline void gmap_disconnect_pgtable(struct mm_struct *mm,
  614. unsigned long *table)
  615. {
  616. }
  617. #endif /* CONFIG_PGSTE */
  618. static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
  619. {
  620. unsigned int old, new;
  621. do {
  622. old = atomic_read(v);
  623. new = old ^ bits;
  624. } while (atomic_cmpxchg(v, old, new) != old);
  625. return new;
  626. }
  627. /*
  628. * page table entry allocation/free routines.
  629. */
  630. unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr)
  631. {
  632. unsigned long *uninitialized_var(table);
  633. struct page *uninitialized_var(page);
  634. unsigned int mask, bit;
  635. if (mm_has_pgste(mm))
  636. return page_table_alloc_pgste(mm, vmaddr);
  637. /* Allocate fragments of a 4K page as 1K/2K page table */
  638. spin_lock_bh(&mm->context.list_lock);
  639. mask = FRAG_MASK;
  640. if (!list_empty(&mm->context.pgtable_list)) {
  641. page = list_first_entry(&mm->context.pgtable_list,
  642. struct page, lru);
  643. table = (unsigned long *) page_to_phys(page);
  644. mask = atomic_read(&page->_mapcount);
  645. mask = mask | (mask >> 4);
  646. }
  647. if ((mask & FRAG_MASK) == FRAG_MASK) {
  648. spin_unlock_bh(&mm->context.list_lock);
  649. page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
  650. if (!page)
  651. return NULL;
  652. pgtable_page_ctor(page);
  653. atomic_set(&page->_mapcount, 1);
  654. table = (unsigned long *) page_to_phys(page);
  655. clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE);
  656. spin_lock_bh(&mm->context.list_lock);
  657. list_add(&page->lru, &mm->context.pgtable_list);
  658. } else {
  659. for (bit = 1; mask & bit; bit <<= 1)
  660. table += PTRS_PER_PTE;
  661. mask = atomic_xor_bits(&page->_mapcount, bit);
  662. if ((mask & FRAG_MASK) == FRAG_MASK)
  663. list_del(&page->lru);
  664. }
  665. spin_unlock_bh(&mm->context.list_lock);
  666. return table;
  667. }
  668. void page_table_free(struct mm_struct *mm, unsigned long *table)
  669. {
  670. struct page *page;
  671. unsigned int bit, mask;
  672. if (mm_has_pgste(mm)) {
  673. gmap_disconnect_pgtable(mm, table);
  674. return page_table_free_pgste(table);
  675. }
  676. /* Free 1K/2K page table fragment of a 4K page */
  677. page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
  678. bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
  679. spin_lock_bh(&mm->context.list_lock);
  680. if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
  681. list_del(&page->lru);
  682. mask = atomic_xor_bits(&page->_mapcount, bit);
  683. if (mask & FRAG_MASK)
  684. list_add(&page->lru, &mm->context.pgtable_list);
  685. spin_unlock_bh(&mm->context.list_lock);
  686. if (mask == 0) {
  687. pgtable_page_dtor(page);
  688. atomic_set(&page->_mapcount, -1);
  689. __free_page(page);
  690. }
  691. }
  692. static void __page_table_free_rcu(void *table, unsigned bit)
  693. {
  694. struct page *page;
  695. if (bit == FRAG_MASK)
  696. return page_table_free_pgste(table);
  697. /* Free 1K/2K page table fragment of a 4K page */
  698. page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
  699. if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
  700. pgtable_page_dtor(page);
  701. atomic_set(&page->_mapcount, -1);
  702. __free_page(page);
  703. }
  704. }
  705. void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table)
  706. {
  707. struct mm_struct *mm;
  708. struct page *page;
  709. unsigned int bit, mask;
  710. mm = tlb->mm;
  711. if (mm_has_pgste(mm)) {
  712. gmap_disconnect_pgtable(mm, table);
  713. table = (unsigned long *) (__pa(table) | FRAG_MASK);
  714. tlb_remove_table(tlb, table);
  715. return;
  716. }
  717. bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
  718. page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
  719. spin_lock_bh(&mm->context.list_lock);
  720. if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
  721. list_del(&page->lru);
  722. mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
  723. if (mask & FRAG_MASK)
  724. list_add_tail(&page->lru, &mm->context.pgtable_list);
  725. spin_unlock_bh(&mm->context.list_lock);
  726. table = (unsigned long *) (__pa(table) | (bit << 4));
  727. tlb_remove_table(tlb, table);
  728. }
  729. void __tlb_remove_table(void *_table)
  730. {
  731. const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
  732. void *table = (void *)((unsigned long) _table & ~mask);
  733. unsigned type = (unsigned long) _table & mask;
  734. if (type)
  735. __page_table_free_rcu(table, type);
  736. else
  737. free_pages((unsigned long) table, ALLOC_ORDER);
  738. }
  739. static void tlb_remove_table_smp_sync(void *arg)
  740. {
  741. /* Simply deliver the interrupt */
  742. }
  743. static void tlb_remove_table_one(void *table)
  744. {
  745. /*
  746. * This isn't an RCU grace period and hence the page-tables cannot be
  747. * assumed to be actually RCU-freed.
  748. *
  749. * It is however sufficient for software page-table walkers that rely
  750. * on IRQ disabling. See the comment near struct mmu_table_batch.
  751. */
  752. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  753. __tlb_remove_table(table);
  754. }
  755. static void tlb_remove_table_rcu(struct rcu_head *head)
  756. {
  757. struct mmu_table_batch *batch;
  758. int i;
  759. batch = container_of(head, struct mmu_table_batch, rcu);
  760. for (i = 0; i < batch->nr; i++)
  761. __tlb_remove_table(batch->tables[i]);
  762. free_page((unsigned long)batch);
  763. }
  764. void tlb_table_flush(struct mmu_gather *tlb)
  765. {
  766. struct mmu_table_batch **batch = &tlb->batch;
  767. if (*batch) {
  768. __tlb_flush_mm(tlb->mm);
  769. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  770. *batch = NULL;
  771. }
  772. }
  773. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  774. {
  775. struct mmu_table_batch **batch = &tlb->batch;
  776. if (*batch == NULL) {
  777. *batch = (struct mmu_table_batch *)
  778. __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  779. if (*batch == NULL) {
  780. __tlb_flush_mm(tlb->mm);
  781. tlb_remove_table_one(table);
  782. return;
  783. }
  784. (*batch)->nr = 0;
  785. }
  786. (*batch)->tables[(*batch)->nr++] = table;
  787. if ((*batch)->nr == MAX_TABLE_BATCH)
  788. tlb_table_flush(tlb);
  789. }
  790. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  791. void thp_split_vma(struct vm_area_struct *vma)
  792. {
  793. unsigned long addr;
  794. struct page *page;
  795. for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
  796. page = follow_page(vma, addr, FOLL_SPLIT);
  797. }
  798. }
  799. void thp_split_mm(struct mm_struct *mm)
  800. {
  801. struct vm_area_struct *vma = mm->mmap;
  802. while (vma != NULL) {
  803. thp_split_vma(vma);
  804. vma->vm_flags &= ~VM_HUGEPAGE;
  805. vma->vm_flags |= VM_NOHUGEPAGE;
  806. vma = vma->vm_next;
  807. }
  808. }
  809. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  810. /*
  811. * switch on pgstes for its userspace process (for kvm)
  812. */
  813. int s390_enable_sie(void)
  814. {
  815. struct task_struct *tsk = current;
  816. struct mm_struct *mm, *old_mm;
  817. /* Do we have switched amode? If no, we cannot do sie */
  818. if (s390_user_mode == HOME_SPACE_MODE)
  819. return -EINVAL;
  820. /* Do we have pgstes? if yes, we are done */
  821. if (mm_has_pgste(tsk->mm))
  822. return 0;
  823. /* lets check if we are allowed to replace the mm */
  824. task_lock(tsk);
  825. if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
  826. #ifdef CONFIG_AIO
  827. !hlist_empty(&tsk->mm->ioctx_list) ||
  828. #endif
  829. tsk->mm != tsk->active_mm) {
  830. task_unlock(tsk);
  831. return -EINVAL;
  832. }
  833. task_unlock(tsk);
  834. /* we copy the mm and let dup_mm create the page tables with_pgstes */
  835. tsk->mm->context.alloc_pgste = 1;
  836. /* make sure that both mms have a correct rss state */
  837. sync_mm_rss(tsk->mm);
  838. mm = dup_mm(tsk);
  839. tsk->mm->context.alloc_pgste = 0;
  840. if (!mm)
  841. return -ENOMEM;
  842. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  843. /* split thp mappings and disable thp for future mappings */
  844. thp_split_mm(mm);
  845. mm->def_flags |= VM_NOHUGEPAGE;
  846. #endif
  847. /* Now lets check again if something happened */
  848. task_lock(tsk);
  849. if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
  850. #ifdef CONFIG_AIO
  851. !hlist_empty(&tsk->mm->ioctx_list) ||
  852. #endif
  853. tsk->mm != tsk->active_mm) {
  854. mmput(mm);
  855. task_unlock(tsk);
  856. return -EINVAL;
  857. }
  858. /* ok, we are alone. No ptrace, no threads, etc. */
  859. old_mm = tsk->mm;
  860. tsk->mm = tsk->active_mm = mm;
  861. preempt_disable();
  862. update_mm(mm, tsk);
  863. atomic_inc(&mm->context.attach_count);
  864. atomic_dec(&old_mm->context.attach_count);
  865. cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
  866. preempt_enable();
  867. task_unlock(tsk);
  868. mmput(old_mm);
  869. return 0;
  870. }
  871. EXPORT_SYMBOL_GPL(s390_enable_sie);
  872. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  873. int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
  874. pmd_t *pmdp)
  875. {
  876. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  877. /* No need to flush TLB
  878. * On s390 reference bits are in storage key and never in TLB */
  879. return pmdp_test_and_clear_young(vma, address, pmdp);
  880. }
  881. int pmdp_set_access_flags(struct vm_area_struct *vma,
  882. unsigned long address, pmd_t *pmdp,
  883. pmd_t entry, int dirty)
  884. {
  885. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  886. if (pmd_same(*pmdp, entry))
  887. return 0;
  888. pmdp_invalidate(vma, address, pmdp);
  889. set_pmd_at(vma->vm_mm, address, pmdp, entry);
  890. return 1;
  891. }
  892. static void pmdp_splitting_flush_sync(void *arg)
  893. {
  894. /* Simply deliver the interrupt */
  895. }
  896. void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
  897. pmd_t *pmdp)
  898. {
  899. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  900. if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
  901. (unsigned long *) pmdp)) {
  902. /* need to serialize against gup-fast (IRQ disabled) */
  903. smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
  904. }
  905. }
  906. void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable)
  907. {
  908. struct list_head *lh = (struct list_head *) pgtable;
  909. assert_spin_locked(&mm->page_table_lock);
  910. /* FIFO */
  911. if (!mm->pmd_huge_pte)
  912. INIT_LIST_HEAD(lh);
  913. else
  914. list_add(lh, (struct list_head *) mm->pmd_huge_pte);
  915. mm->pmd_huge_pte = pgtable;
  916. }
  917. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm)
  918. {
  919. struct list_head *lh;
  920. pgtable_t pgtable;
  921. pte_t *ptep;
  922. assert_spin_locked(&mm->page_table_lock);
  923. /* FIFO */
  924. pgtable = mm->pmd_huge_pte;
  925. lh = (struct list_head *) pgtable;
  926. if (list_empty(lh))
  927. mm->pmd_huge_pte = NULL;
  928. else {
  929. mm->pmd_huge_pte = (pgtable_t) lh->next;
  930. list_del(lh);
  931. }
  932. ptep = (pte_t *) pgtable;
  933. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  934. ptep++;
  935. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  936. return pgtable;
  937. }
  938. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */