process.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. /*
  2. * This file handles the architecture dependent parts of process handling.
  3. *
  4. * Copyright IBM Corp. 1999, 2009
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6. * Hartmut Penner <hp@de.ibm.com>,
  7. * Denis Joseph Barrow,
  8. */
  9. #include <linux/compiler.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <linux/kernel.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/smp.h>
  16. #include <linux/slab.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/tick.h>
  19. #include <linux/personality.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/compat.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/random.h>
  24. #include <linux/module.h>
  25. #include <asm/io.h>
  26. #include <asm/processor.h>
  27. #include <asm/vtimer.h>
  28. #include <asm/exec.h>
  29. #include <asm/irq.h>
  30. #include <asm/nmi.h>
  31. #include <asm/smp.h>
  32. #include <asm/switch_to.h>
  33. #include <asm/runtime_instr.h>
  34. #include "entry.h"
  35. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  36. /*
  37. * Return saved PC of a blocked thread. used in kernel/sched.
  38. * resume in entry.S does not create a new stack frame, it
  39. * just stores the registers %r6-%r15 to the frame given by
  40. * schedule. We want to return the address of the caller of
  41. * schedule, so we have to walk the backchain one time to
  42. * find the frame schedule() store its return address.
  43. */
  44. unsigned long thread_saved_pc(struct task_struct *tsk)
  45. {
  46. struct stack_frame *sf, *low, *high;
  47. if (!tsk || !task_stack_page(tsk))
  48. return 0;
  49. low = task_stack_page(tsk);
  50. high = (struct stack_frame *) task_pt_regs(tsk);
  51. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  52. if (sf <= low || sf > high)
  53. return 0;
  54. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  55. if (sf <= low || sf > high)
  56. return 0;
  57. return sf->gprs[8];
  58. }
  59. void arch_cpu_idle(void)
  60. {
  61. local_mcck_disable();
  62. if (test_thread_flag(TIF_MCCK_PENDING)) {
  63. local_mcck_enable();
  64. local_irq_enable();
  65. return;
  66. }
  67. /* Halt the cpu and keep track of cpu time accounting. */
  68. vtime_stop_cpu();
  69. }
  70. void arch_cpu_idle_exit(void)
  71. {
  72. if (test_thread_flag(TIF_MCCK_PENDING))
  73. s390_handle_mcck();
  74. }
  75. void arch_cpu_idle_dead(void)
  76. {
  77. cpu_die();
  78. }
  79. extern void __kprobes kernel_thread_starter(void);
  80. /*
  81. * Free current thread data structures etc..
  82. */
  83. void exit_thread(void)
  84. {
  85. exit_thread_runtime_instr();
  86. }
  87. void flush_thread(void)
  88. {
  89. }
  90. void release_thread(struct task_struct *dead_task)
  91. {
  92. }
  93. int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
  94. unsigned long arg, struct task_struct *p)
  95. {
  96. struct thread_info *ti;
  97. struct fake_frame
  98. {
  99. struct stack_frame sf;
  100. struct pt_regs childregs;
  101. } *frame;
  102. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  103. p->thread.ksp = (unsigned long) frame;
  104. /* Save access registers to new thread structure. */
  105. save_access_regs(&p->thread.acrs[0]);
  106. /* start new process with ar4 pointing to the correct address space */
  107. p->thread.mm_segment = get_fs();
  108. /* Don't copy debug registers */
  109. memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
  110. memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
  111. clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
  112. clear_tsk_thread_flag(p, TIF_PER_TRAP);
  113. /* Initialize per thread user and system timer values */
  114. ti = task_thread_info(p);
  115. ti->user_timer = 0;
  116. ti->system_timer = 0;
  117. frame->sf.back_chain = 0;
  118. /* new return point is ret_from_fork */
  119. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  120. /* fake return stack for resume(), don't go back to schedule */
  121. frame->sf.gprs[9] = (unsigned long) frame;
  122. /* Store access registers to kernel stack of new process. */
  123. if (unlikely(p->flags & PF_KTHREAD)) {
  124. /* kernel thread */
  125. memset(&frame->childregs, 0, sizeof(struct pt_regs));
  126. frame->childregs.psw.mask = psw_kernel_bits | PSW_MASK_DAT |
  127. PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
  128. frame->childregs.psw.addr = PSW_ADDR_AMODE |
  129. (unsigned long) kernel_thread_starter;
  130. frame->childregs.gprs[9] = new_stackp; /* function */
  131. frame->childregs.gprs[10] = arg;
  132. frame->childregs.gprs[11] = (unsigned long) do_exit;
  133. frame->childregs.orig_gpr2 = -1;
  134. return 0;
  135. }
  136. frame->childregs = *current_pt_regs();
  137. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  138. if (new_stackp)
  139. frame->childregs.gprs[15] = new_stackp;
  140. /* Don't copy runtime instrumentation info */
  141. p->thread.ri_cb = NULL;
  142. p->thread.ri_signum = 0;
  143. frame->childregs.psw.mask &= ~PSW_MASK_RI;
  144. #ifndef CONFIG_64BIT
  145. /*
  146. * save fprs to current->thread.fp_regs to merge them with
  147. * the emulated registers and then copy the result to the child.
  148. */
  149. save_fp_regs(&current->thread.fp_regs);
  150. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  151. sizeof(s390_fp_regs));
  152. /* Set a new TLS ? */
  153. if (clone_flags & CLONE_SETTLS)
  154. p->thread.acrs[0] = frame->childregs.gprs[6];
  155. #else /* CONFIG_64BIT */
  156. /* Save the fpu registers to new thread structure. */
  157. save_fp_regs(&p->thread.fp_regs);
  158. /* Set a new TLS ? */
  159. if (clone_flags & CLONE_SETTLS) {
  160. unsigned long tls = frame->childregs.gprs[6];
  161. if (is_compat_task()) {
  162. p->thread.acrs[0] = (unsigned int)tls;
  163. } else {
  164. p->thread.acrs[0] = (unsigned int)(tls >> 32);
  165. p->thread.acrs[1] = (unsigned int)tls;
  166. }
  167. }
  168. #endif /* CONFIG_64BIT */
  169. return 0;
  170. }
  171. asmlinkage void execve_tail(void)
  172. {
  173. current->thread.fp_regs.fpc = 0;
  174. if (MACHINE_HAS_IEEE)
  175. asm volatile("sfpc %0,%0" : : "d" (0));
  176. }
  177. /*
  178. * fill in the FPU structure for a core dump.
  179. */
  180. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  181. {
  182. #ifndef CONFIG_64BIT
  183. /*
  184. * save fprs to current->thread.fp_regs to merge them with
  185. * the emulated registers and then copy the result to the dump.
  186. */
  187. save_fp_regs(&current->thread.fp_regs);
  188. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  189. #else /* CONFIG_64BIT */
  190. save_fp_regs(fpregs);
  191. #endif /* CONFIG_64BIT */
  192. return 1;
  193. }
  194. EXPORT_SYMBOL(dump_fpu);
  195. unsigned long get_wchan(struct task_struct *p)
  196. {
  197. struct stack_frame *sf, *low, *high;
  198. unsigned long return_address;
  199. int count;
  200. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  201. return 0;
  202. low = task_stack_page(p);
  203. high = (struct stack_frame *) task_pt_regs(p);
  204. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  205. if (sf <= low || sf > high)
  206. return 0;
  207. for (count = 0; count < 16; count++) {
  208. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  209. if (sf <= low || sf > high)
  210. return 0;
  211. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  212. if (!in_sched_functions(return_address))
  213. return return_address;
  214. }
  215. return 0;
  216. }
  217. unsigned long arch_align_stack(unsigned long sp)
  218. {
  219. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  220. sp -= get_random_int() & ~PAGE_MASK;
  221. return sp & ~0xf;
  222. }
  223. static inline unsigned long brk_rnd(void)
  224. {
  225. /* 8MB for 32bit, 1GB for 64bit */
  226. if (is_32bit_task())
  227. return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
  228. else
  229. return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
  230. }
  231. unsigned long arch_randomize_brk(struct mm_struct *mm)
  232. {
  233. unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
  234. if (ret < mm->brk)
  235. return mm->brk;
  236. return ret;
  237. }
  238. unsigned long randomize_et_dyn(unsigned long base)
  239. {
  240. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  241. if (!(current->flags & PF_RANDOMIZE))
  242. return base;
  243. if (ret < base)
  244. return base;
  245. return ret;
  246. }