pci.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741
  1. /*
  2. * pci.c - Low-Level PCI Access in IA-64
  3. *
  4. * Derived from bios32.c of i386 tree.
  5. *
  6. * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  9. * Copyright (C) 2004 Silicon Graphics, Inc.
  10. *
  11. * Note: Above list of copyright holders is incomplete...
  12. */
  13. #include <linux/acpi.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/pci.h>
  17. #include <linux/pci-acpi.h>
  18. #include <linux/init.h>
  19. #include <linux/ioport.h>
  20. #include <linux/slab.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/export.h>
  24. #include <asm/machvec.h>
  25. #include <asm/page.h>
  26. #include <asm/io.h>
  27. #include <asm/sal.h>
  28. #include <asm/smp.h>
  29. #include <asm/irq.h>
  30. #include <asm/hw_irq.h>
  31. /*
  32. * Low-level SAL-based PCI configuration access functions. Note that SAL
  33. * calls are already serialized (via sal_lock), so we don't need another
  34. * synchronization mechanism here.
  35. */
  36. #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
  37. (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
  38. /* SAL 3.2 adds support for extended config space. */
  39. #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
  40. (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
  41. int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
  42. int reg, int len, u32 *value)
  43. {
  44. u64 addr, data = 0;
  45. int mode, result;
  46. if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  47. return -EINVAL;
  48. if ((seg | reg) <= 255) {
  49. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  50. mode = 0;
  51. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  52. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  53. mode = 1;
  54. } else {
  55. return -EINVAL;
  56. }
  57. result = ia64_sal_pci_config_read(addr, mode, len, &data);
  58. if (result != 0)
  59. return -EINVAL;
  60. *value = (u32) data;
  61. return 0;
  62. }
  63. int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
  64. int reg, int len, u32 value)
  65. {
  66. u64 addr;
  67. int mode, result;
  68. if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  69. return -EINVAL;
  70. if ((seg | reg) <= 255) {
  71. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  72. mode = 0;
  73. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  74. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  75. mode = 1;
  76. } else {
  77. return -EINVAL;
  78. }
  79. result = ia64_sal_pci_config_write(addr, mode, len, value);
  80. if (result != 0)
  81. return -EINVAL;
  82. return 0;
  83. }
  84. static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
  85. int size, u32 *value)
  86. {
  87. return raw_pci_read(pci_domain_nr(bus), bus->number,
  88. devfn, where, size, value);
  89. }
  90. static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
  91. int size, u32 value)
  92. {
  93. return raw_pci_write(pci_domain_nr(bus), bus->number,
  94. devfn, where, size, value);
  95. }
  96. struct pci_ops pci_root_ops = {
  97. .read = pci_read,
  98. .write = pci_write,
  99. };
  100. /* Called by ACPI when it finds a new root bus. */
  101. static struct pci_controller *alloc_pci_controller(int seg)
  102. {
  103. struct pci_controller *controller;
  104. controller = kzalloc(sizeof(*controller), GFP_KERNEL);
  105. if (!controller)
  106. return NULL;
  107. controller->segment = seg;
  108. controller->node = -1;
  109. return controller;
  110. }
  111. struct pci_root_info {
  112. struct acpi_device *bridge;
  113. struct pci_controller *controller;
  114. struct list_head resources;
  115. char *name;
  116. };
  117. static unsigned int
  118. new_space (u64 phys_base, int sparse)
  119. {
  120. u64 mmio_base;
  121. int i;
  122. if (phys_base == 0)
  123. return 0; /* legacy I/O port space */
  124. mmio_base = (u64) ioremap(phys_base, 0);
  125. for (i = 0; i < num_io_spaces; i++)
  126. if (io_space[i].mmio_base == mmio_base &&
  127. io_space[i].sparse == sparse)
  128. return i;
  129. if (num_io_spaces == MAX_IO_SPACES) {
  130. printk(KERN_ERR "PCI: Too many IO port spaces "
  131. "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
  132. return ~0;
  133. }
  134. i = num_io_spaces++;
  135. io_space[i].mmio_base = mmio_base;
  136. io_space[i].sparse = sparse;
  137. return i;
  138. }
  139. static u64 add_io_space(struct pci_root_info *info,
  140. struct acpi_resource_address64 *addr)
  141. {
  142. struct resource *resource;
  143. char *name;
  144. unsigned long base, min, max, base_port;
  145. unsigned int sparse = 0, space_nr, len;
  146. resource = kzalloc(sizeof(*resource), GFP_KERNEL);
  147. if (!resource) {
  148. printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
  149. info->name);
  150. goto out;
  151. }
  152. len = strlen(info->name) + 32;
  153. name = kzalloc(len, GFP_KERNEL);
  154. if (!name) {
  155. printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
  156. info->name);
  157. goto free_resource;
  158. }
  159. min = addr->minimum;
  160. max = min + addr->address_length - 1;
  161. if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
  162. sparse = 1;
  163. space_nr = new_space(addr->translation_offset, sparse);
  164. if (space_nr == ~0)
  165. goto free_name;
  166. base = __pa(io_space[space_nr].mmio_base);
  167. base_port = IO_SPACE_BASE(space_nr);
  168. snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
  169. base_port + min, base_port + max);
  170. /*
  171. * The SDM guarantees the legacy 0-64K space is sparse, but if the
  172. * mapping is done by the processor (not the bridge), ACPI may not
  173. * mark it as sparse.
  174. */
  175. if (space_nr == 0)
  176. sparse = 1;
  177. resource->name = name;
  178. resource->flags = IORESOURCE_MEM;
  179. resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
  180. resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
  181. insert_resource(&iomem_resource, resource);
  182. return base_port;
  183. free_name:
  184. kfree(name);
  185. free_resource:
  186. kfree(resource);
  187. out:
  188. return ~0;
  189. }
  190. static acpi_status resource_to_window(struct acpi_resource *resource,
  191. struct acpi_resource_address64 *addr)
  192. {
  193. acpi_status status;
  194. /*
  195. * We're only interested in _CRS descriptors that are
  196. * - address space descriptors for memory or I/O space
  197. * - non-zero size
  198. * - producers, i.e., the address space is routed downstream,
  199. * not consumed by the bridge itself
  200. */
  201. status = acpi_resource_to_address64(resource, addr);
  202. if (ACPI_SUCCESS(status) &&
  203. (addr->resource_type == ACPI_MEMORY_RANGE ||
  204. addr->resource_type == ACPI_IO_RANGE) &&
  205. addr->address_length &&
  206. addr->producer_consumer == ACPI_PRODUCER)
  207. return AE_OK;
  208. return AE_ERROR;
  209. }
  210. static acpi_status count_window(struct acpi_resource *resource, void *data)
  211. {
  212. unsigned int *windows = (unsigned int *) data;
  213. struct acpi_resource_address64 addr;
  214. acpi_status status;
  215. status = resource_to_window(resource, &addr);
  216. if (ACPI_SUCCESS(status))
  217. (*windows)++;
  218. return AE_OK;
  219. }
  220. static acpi_status add_window(struct acpi_resource *res, void *data)
  221. {
  222. struct pci_root_info *info = data;
  223. struct pci_window *window;
  224. struct acpi_resource_address64 addr;
  225. acpi_status status;
  226. unsigned long flags, offset = 0;
  227. struct resource *root;
  228. /* Return AE_OK for non-window resources to keep scanning for more */
  229. status = resource_to_window(res, &addr);
  230. if (!ACPI_SUCCESS(status))
  231. return AE_OK;
  232. if (addr.resource_type == ACPI_MEMORY_RANGE) {
  233. flags = IORESOURCE_MEM;
  234. root = &iomem_resource;
  235. offset = addr.translation_offset;
  236. } else if (addr.resource_type == ACPI_IO_RANGE) {
  237. flags = IORESOURCE_IO;
  238. root = &ioport_resource;
  239. offset = add_io_space(info, &addr);
  240. if (offset == ~0)
  241. return AE_OK;
  242. } else
  243. return AE_OK;
  244. window = &info->controller->window[info->controller->windows++];
  245. window->resource.name = info->name;
  246. window->resource.flags = flags;
  247. window->resource.start = addr.minimum + offset;
  248. window->resource.end = window->resource.start + addr.address_length - 1;
  249. window->offset = offset;
  250. if (insert_resource(root, &window->resource)) {
  251. dev_err(&info->bridge->dev,
  252. "can't allocate host bridge window %pR\n",
  253. &window->resource);
  254. } else {
  255. if (offset)
  256. dev_info(&info->bridge->dev, "host bridge window %pR "
  257. "(PCI address [%#llx-%#llx])\n",
  258. &window->resource,
  259. window->resource.start - offset,
  260. window->resource.end - offset);
  261. else
  262. dev_info(&info->bridge->dev,
  263. "host bridge window %pR\n",
  264. &window->resource);
  265. }
  266. /* HP's firmware has a hack to work around a Windows bug.
  267. * Ignore these tiny memory ranges */
  268. if (!((window->resource.flags & IORESOURCE_MEM) &&
  269. (window->resource.end - window->resource.start < 16)))
  270. pci_add_resource_offset(&info->resources, &window->resource,
  271. window->offset);
  272. return AE_OK;
  273. }
  274. struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
  275. {
  276. struct acpi_device *device = root->device;
  277. int domain = root->segment;
  278. int bus = root->secondary.start;
  279. struct pci_controller *controller;
  280. unsigned int windows = 0;
  281. struct pci_root_info info;
  282. struct pci_bus *pbus;
  283. char *name;
  284. int pxm;
  285. controller = alloc_pci_controller(domain);
  286. if (!controller)
  287. goto out1;
  288. controller->acpi_handle = device->handle;
  289. pxm = acpi_get_pxm(controller->acpi_handle);
  290. #ifdef CONFIG_NUMA
  291. if (pxm >= 0)
  292. controller->node = pxm_to_node(pxm);
  293. #endif
  294. INIT_LIST_HEAD(&info.resources);
  295. /* insert busn resource at first */
  296. pci_add_resource(&info.resources, &root->secondary);
  297. acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
  298. &windows);
  299. if (windows) {
  300. controller->window =
  301. kzalloc_node(sizeof(*controller->window) * windows,
  302. GFP_KERNEL, controller->node);
  303. if (!controller->window)
  304. goto out2;
  305. name = kmalloc(16, GFP_KERNEL);
  306. if (!name)
  307. goto out3;
  308. sprintf(name, "PCI Bus %04x:%02x", domain, bus);
  309. info.bridge = device;
  310. info.controller = controller;
  311. info.name = name;
  312. acpi_walk_resources(device->handle, METHOD_NAME__CRS,
  313. add_window, &info);
  314. }
  315. /*
  316. * See arch/x86/pci/acpi.c.
  317. * The desired pci bus might already be scanned in a quirk. We
  318. * should handle the case here, but it appears that IA64 hasn't
  319. * such quirk. So we just ignore the case now.
  320. */
  321. pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
  322. &info.resources);
  323. if (!pbus) {
  324. pci_free_resource_list(&info.resources);
  325. return NULL;
  326. }
  327. pci_scan_child_bus(pbus);
  328. return pbus;
  329. out3:
  330. kfree(controller->window);
  331. out2:
  332. kfree(controller);
  333. out1:
  334. return NULL;
  335. }
  336. int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
  337. {
  338. struct pci_controller *controller = bridge->bus->sysdata;
  339. ACPI_HANDLE_SET(&bridge->dev, controller->acpi_handle);
  340. return 0;
  341. }
  342. static int is_valid_resource(struct pci_dev *dev, int idx)
  343. {
  344. unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
  345. struct resource *devr = &dev->resource[idx], *busr;
  346. if (!dev->bus)
  347. return 0;
  348. pci_bus_for_each_resource(dev->bus, busr, i) {
  349. if (!busr || ((busr->flags ^ devr->flags) & type_mask))
  350. continue;
  351. if ((devr->start) && (devr->start >= busr->start) &&
  352. (devr->end <= busr->end))
  353. return 1;
  354. }
  355. return 0;
  356. }
  357. static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
  358. {
  359. int i;
  360. for (i = start; i < limit; i++) {
  361. if (!dev->resource[i].flags)
  362. continue;
  363. if ((is_valid_resource(dev, i)))
  364. pci_claim_resource(dev, i);
  365. }
  366. }
  367. void pcibios_fixup_device_resources(struct pci_dev *dev)
  368. {
  369. pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
  370. }
  371. EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
  372. static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
  373. {
  374. pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
  375. }
  376. /*
  377. * Called after each bus is probed, but before its children are examined.
  378. */
  379. void pcibios_fixup_bus(struct pci_bus *b)
  380. {
  381. struct pci_dev *dev;
  382. if (b->self) {
  383. pci_read_bridge_bases(b);
  384. pcibios_fixup_bridge_resources(b->self);
  385. }
  386. list_for_each_entry(dev, &b->devices, bus_list)
  387. pcibios_fixup_device_resources(dev);
  388. platform_pci_fixup_bus(b);
  389. }
  390. void pcibios_add_bus(struct pci_bus *bus)
  391. {
  392. acpi_pci_add_bus(bus);
  393. }
  394. void pcibios_remove_bus(struct pci_bus *bus)
  395. {
  396. acpi_pci_remove_bus(bus);
  397. }
  398. void pcibios_set_master (struct pci_dev *dev)
  399. {
  400. /* No special bus mastering setup handling */
  401. }
  402. int
  403. pcibios_enable_device (struct pci_dev *dev, int mask)
  404. {
  405. int ret;
  406. ret = pci_enable_resources(dev, mask);
  407. if (ret < 0)
  408. return ret;
  409. if (!dev->msi_enabled)
  410. return acpi_pci_irq_enable(dev);
  411. return 0;
  412. }
  413. void
  414. pcibios_disable_device (struct pci_dev *dev)
  415. {
  416. BUG_ON(atomic_read(&dev->enable_cnt));
  417. if (!dev->msi_enabled)
  418. acpi_pci_irq_disable(dev);
  419. }
  420. resource_size_t
  421. pcibios_align_resource (void *data, const struct resource *res,
  422. resource_size_t size, resource_size_t align)
  423. {
  424. return res->start;
  425. }
  426. int
  427. pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
  428. enum pci_mmap_state mmap_state, int write_combine)
  429. {
  430. unsigned long size = vma->vm_end - vma->vm_start;
  431. pgprot_t prot;
  432. /*
  433. * I/O space cannot be accessed via normal processor loads and
  434. * stores on this platform.
  435. */
  436. if (mmap_state == pci_mmap_io)
  437. /*
  438. * XXX we could relax this for I/O spaces for which ACPI
  439. * indicates that the space is 1-to-1 mapped. But at the
  440. * moment, we don't support multiple PCI address spaces and
  441. * the legacy I/O space is not 1-to-1 mapped, so this is moot.
  442. */
  443. return -EINVAL;
  444. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  445. return -EINVAL;
  446. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  447. vma->vm_page_prot);
  448. /*
  449. * If the user requested WC, the kernel uses UC or WC for this region,
  450. * and the chipset supports WC, we can use WC. Otherwise, we have to
  451. * use the same attribute the kernel uses.
  452. */
  453. if (write_combine &&
  454. ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
  455. (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
  456. efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
  457. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  458. else
  459. vma->vm_page_prot = prot;
  460. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  461. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  462. return -EAGAIN;
  463. return 0;
  464. }
  465. /**
  466. * ia64_pci_get_legacy_mem - generic legacy mem routine
  467. * @bus: bus to get legacy memory base address for
  468. *
  469. * Find the base of legacy memory for @bus. This is typically the first
  470. * megabyte of bus address space for @bus or is simply 0 on platforms whose
  471. * chipsets support legacy I/O and memory routing. Returns the base address
  472. * or an error pointer if an error occurred.
  473. *
  474. * This is the ia64 generic version of this routine. Other platforms
  475. * are free to override it with a machine vector.
  476. */
  477. char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
  478. {
  479. return (char *)__IA64_UNCACHED_OFFSET;
  480. }
  481. /**
  482. * pci_mmap_legacy_page_range - map legacy memory space to userland
  483. * @bus: bus whose legacy space we're mapping
  484. * @vma: vma passed in by mmap
  485. *
  486. * Map legacy memory space for this device back to userspace using a machine
  487. * vector to get the base address.
  488. */
  489. int
  490. pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
  491. enum pci_mmap_state mmap_state)
  492. {
  493. unsigned long size = vma->vm_end - vma->vm_start;
  494. pgprot_t prot;
  495. char *addr;
  496. /* We only support mmap'ing of legacy memory space */
  497. if (mmap_state != pci_mmap_mem)
  498. return -ENOSYS;
  499. /*
  500. * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
  501. * for more details.
  502. */
  503. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  504. return -EINVAL;
  505. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  506. vma->vm_page_prot);
  507. addr = pci_get_legacy_mem(bus);
  508. if (IS_ERR(addr))
  509. return PTR_ERR(addr);
  510. vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
  511. vma->vm_page_prot = prot;
  512. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  513. size, vma->vm_page_prot))
  514. return -EAGAIN;
  515. return 0;
  516. }
  517. /**
  518. * ia64_pci_legacy_read - read from legacy I/O space
  519. * @bus: bus to read
  520. * @port: legacy port value
  521. * @val: caller allocated storage for returned value
  522. * @size: number of bytes to read
  523. *
  524. * Simply reads @size bytes from @port and puts the result in @val.
  525. *
  526. * Again, this (and the write routine) are generic versions that can be
  527. * overridden by the platform. This is necessary on platforms that don't
  528. * support legacy I/O routing or that hard fail on legacy I/O timeouts.
  529. */
  530. int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
  531. {
  532. int ret = size;
  533. switch (size) {
  534. case 1:
  535. *val = inb(port);
  536. break;
  537. case 2:
  538. *val = inw(port);
  539. break;
  540. case 4:
  541. *val = inl(port);
  542. break;
  543. default:
  544. ret = -EINVAL;
  545. break;
  546. }
  547. return ret;
  548. }
  549. /**
  550. * ia64_pci_legacy_write - perform a legacy I/O write
  551. * @bus: bus pointer
  552. * @port: port to write
  553. * @val: value to write
  554. * @size: number of bytes to write from @val
  555. *
  556. * Simply writes @size bytes of @val to @port.
  557. */
  558. int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
  559. {
  560. int ret = size;
  561. switch (size) {
  562. case 1:
  563. outb(val, port);
  564. break;
  565. case 2:
  566. outw(val, port);
  567. break;
  568. case 4:
  569. outl(val, port);
  570. break;
  571. default:
  572. ret = -EINVAL;
  573. break;
  574. }
  575. return ret;
  576. }
  577. /**
  578. * set_pci_cacheline_size - determine cacheline size for PCI devices
  579. *
  580. * We want to use the line-size of the outer-most cache. We assume
  581. * that this line-size is the same for all CPUs.
  582. *
  583. * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
  584. */
  585. static void __init set_pci_dfl_cacheline_size(void)
  586. {
  587. unsigned long levels, unique_caches;
  588. long status;
  589. pal_cache_config_info_t cci;
  590. status = ia64_pal_cache_summary(&levels, &unique_caches);
  591. if (status != 0) {
  592. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
  593. "(status=%ld)\n", __func__, status);
  594. return;
  595. }
  596. status = ia64_pal_cache_config_info(levels - 1,
  597. /* cache_type (data_or_unified)= */ 2, &cci);
  598. if (status != 0) {
  599. printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
  600. "(status=%ld)\n", __func__, status);
  601. return;
  602. }
  603. pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
  604. }
  605. u64 ia64_dma_get_required_mask(struct device *dev)
  606. {
  607. u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
  608. u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
  609. u64 mask;
  610. if (!high_totalram) {
  611. /* convert to mask just covering totalram */
  612. low_totalram = (1 << (fls(low_totalram) - 1));
  613. low_totalram += low_totalram - 1;
  614. mask = low_totalram;
  615. } else {
  616. high_totalram = (1 << (fls(high_totalram) - 1));
  617. high_totalram += high_totalram - 1;
  618. mask = (((u64)high_totalram) << 32) + 0xffffffff;
  619. }
  620. return mask;
  621. }
  622. EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
  623. u64 dma_get_required_mask(struct device *dev)
  624. {
  625. return platform_dma_get_required_mask(dev);
  626. }
  627. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  628. static int __init pcibios_init(void)
  629. {
  630. set_pci_dfl_cacheline_size();
  631. return 0;
  632. }
  633. subsys_initcall(pcibios_init);