coproc.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/mm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/kvm_arm.h>
  23. #include <asm/kvm_host.h>
  24. #include <asm/kvm_emulate.h>
  25. #include <asm/kvm_coproc.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/cputype.h>
  28. #include <trace/events/kvm.h>
  29. #include <asm/vfp.h>
  30. #include "../vfp/vfpinstr.h"
  31. #include "trace.h"
  32. #include "coproc.h"
  33. /******************************************************************************
  34. * Co-processor emulation
  35. *****************************************************************************/
  36. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  37. static u32 cache_levels;
  38. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  39. #define CSSELR_MAX 12
  40. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  41. {
  42. kvm_inject_undefined(vcpu);
  43. return 1;
  44. }
  45. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  46. {
  47. /*
  48. * We can get here, if the host has been built without VFPv3 support,
  49. * but the guest attempted a floating point operation.
  50. */
  51. kvm_inject_undefined(vcpu);
  52. return 1;
  53. }
  54. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  55. {
  56. kvm_inject_undefined(vcpu);
  57. return 1;
  58. }
  59. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  60. {
  61. kvm_inject_undefined(vcpu);
  62. return 1;
  63. }
  64. /* See note at ARM ARM B1.14.4 */
  65. static bool access_dcsw(struct kvm_vcpu *vcpu,
  66. const struct coproc_params *p,
  67. const struct coproc_reg *r)
  68. {
  69. u32 val;
  70. int cpu;
  71. if (!p->is_write)
  72. return read_from_write_only(vcpu, p);
  73. cpu = get_cpu();
  74. cpumask_setall(&vcpu->arch.require_dcache_flush);
  75. cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
  76. /* If we were already preempted, take the long way around */
  77. if (cpu != vcpu->arch.last_pcpu) {
  78. flush_cache_all();
  79. goto done;
  80. }
  81. val = *vcpu_reg(vcpu, p->Rt1);
  82. switch (p->CRm) {
  83. case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
  84. case 14: /* DCCISW */
  85. asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
  86. break;
  87. case 10: /* DCCSW */
  88. asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
  89. break;
  90. }
  91. done:
  92. put_cpu();
  93. return true;
  94. }
  95. /*
  96. * We could trap ID_DFR0 and tell the guest we don't support performance
  97. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  98. * NAKed, so it will read the PMCR anyway.
  99. *
  100. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  101. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  102. * all PM registers, which doesn't crash the guest kernel at least.
  103. */
  104. static bool pm_fake(struct kvm_vcpu *vcpu,
  105. const struct coproc_params *p,
  106. const struct coproc_reg *r)
  107. {
  108. if (p->is_write)
  109. return ignore_write(vcpu, p);
  110. else
  111. return read_zero(vcpu, p);
  112. }
  113. #define access_pmcr pm_fake
  114. #define access_pmcntenset pm_fake
  115. #define access_pmcntenclr pm_fake
  116. #define access_pmovsr pm_fake
  117. #define access_pmselr pm_fake
  118. #define access_pmceid0 pm_fake
  119. #define access_pmceid1 pm_fake
  120. #define access_pmccntr pm_fake
  121. #define access_pmxevtyper pm_fake
  122. #define access_pmxevcntr pm_fake
  123. #define access_pmuserenr pm_fake
  124. #define access_pmintenset pm_fake
  125. #define access_pmintenclr pm_fake
  126. /* Architected CP15 registers.
  127. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2
  128. */
  129. static const struct coproc_reg cp15_regs[] = {
  130. /* CSSELR: swapped by interrupt.S. */
  131. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  132. NULL, reset_unknown, c0_CSSELR },
  133. /* TTBR0/TTBR1: swapped by interrupt.S. */
  134. { CRm( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
  135. { CRm( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
  136. /* TTBCR: swapped by interrupt.S. */
  137. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  138. NULL, reset_val, c2_TTBCR, 0x00000000 },
  139. /* DACR: swapped by interrupt.S. */
  140. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  141. NULL, reset_unknown, c3_DACR },
  142. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  143. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  144. NULL, reset_unknown, c5_DFSR },
  145. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  146. NULL, reset_unknown, c5_IFSR },
  147. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  148. NULL, reset_unknown, c5_ADFSR },
  149. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  150. NULL, reset_unknown, c5_AIFSR },
  151. /* DFAR/IFAR: swapped by interrupt.S. */
  152. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  153. NULL, reset_unknown, c6_DFAR },
  154. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  155. NULL, reset_unknown, c6_IFAR },
  156. /*
  157. * DC{C,I,CI}SW operations:
  158. */
  159. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  160. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  161. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  162. /*
  163. * Dummy performance monitor implementation.
  164. */
  165. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  166. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  167. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  168. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  169. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  170. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  171. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  172. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  173. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  174. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  175. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  176. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  177. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  178. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  179. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  180. NULL, reset_unknown, c10_PRRR},
  181. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  182. NULL, reset_unknown, c10_NMRR},
  183. /* VBAR: swapped by interrupt.S. */
  184. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  185. NULL, reset_val, c12_VBAR, 0x00000000 },
  186. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  187. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  188. NULL, reset_val, c13_CID, 0x00000000 },
  189. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  190. NULL, reset_unknown, c13_TID_URW },
  191. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  192. NULL, reset_unknown, c13_TID_URO },
  193. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  194. NULL, reset_unknown, c13_TID_PRIV },
  195. /* CNTKCTL: swapped by interrupt.S. */
  196. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  197. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  198. };
  199. /* Target specific emulation tables */
  200. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  201. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  202. {
  203. target_tables[table->target] = table;
  204. }
  205. /* Get specific register table for this target. */
  206. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  207. {
  208. struct kvm_coproc_target_table *table;
  209. table = target_tables[target];
  210. *num = table->num;
  211. return table->table;
  212. }
  213. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  214. const struct coproc_reg table[],
  215. unsigned int num)
  216. {
  217. unsigned int i;
  218. for (i = 0; i < num; i++) {
  219. const struct coproc_reg *r = &table[i];
  220. if (params->is_64bit != r->is_64)
  221. continue;
  222. if (params->CRn != r->CRn)
  223. continue;
  224. if (params->CRm != r->CRm)
  225. continue;
  226. if (params->Op1 != r->Op1)
  227. continue;
  228. if (params->Op2 != r->Op2)
  229. continue;
  230. return r;
  231. }
  232. return NULL;
  233. }
  234. static int emulate_cp15(struct kvm_vcpu *vcpu,
  235. const struct coproc_params *params)
  236. {
  237. size_t num;
  238. const struct coproc_reg *table, *r;
  239. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  240. params->CRm, params->Op2, params->is_write);
  241. table = get_target_table(vcpu->arch.target, &num);
  242. /* Search target-specific then generic table. */
  243. r = find_reg(params, table, num);
  244. if (!r)
  245. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  246. if (likely(r)) {
  247. /* If we don't have an accessor, we should never get here! */
  248. BUG_ON(!r->access);
  249. if (likely(r->access(vcpu, params, r))) {
  250. /* Skip instruction, since it was emulated */
  251. kvm_skip_instr(vcpu, (vcpu->arch.hsr >> 25) & 1);
  252. return 1;
  253. }
  254. /* If access function fails, it should complain. */
  255. } else {
  256. kvm_err("Unsupported guest CP15 access at: %08x\n",
  257. *vcpu_pc(vcpu));
  258. print_cp_instr(params);
  259. }
  260. kvm_inject_undefined(vcpu);
  261. return 1;
  262. }
  263. /**
  264. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  265. * @vcpu: The VCPU pointer
  266. * @run: The kvm_run struct
  267. */
  268. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  269. {
  270. struct coproc_params params;
  271. params.CRm = (vcpu->arch.hsr >> 1) & 0xf;
  272. params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf;
  273. params.is_write = ((vcpu->arch.hsr & 1) == 0);
  274. params.is_64bit = true;
  275. params.Op1 = (vcpu->arch.hsr >> 16) & 0xf;
  276. params.Op2 = 0;
  277. params.Rt2 = (vcpu->arch.hsr >> 10) & 0xf;
  278. params.CRn = 0;
  279. return emulate_cp15(vcpu, &params);
  280. }
  281. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  282. const struct coproc_reg *table, size_t num)
  283. {
  284. unsigned long i;
  285. for (i = 0; i < num; i++)
  286. if (table[i].reset)
  287. table[i].reset(vcpu, &table[i]);
  288. }
  289. /**
  290. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  291. * @vcpu: The VCPU pointer
  292. * @run: The kvm_run struct
  293. */
  294. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  295. {
  296. struct coproc_params params;
  297. params.CRm = (vcpu->arch.hsr >> 1) & 0xf;
  298. params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf;
  299. params.is_write = ((vcpu->arch.hsr & 1) == 0);
  300. params.is_64bit = false;
  301. params.CRn = (vcpu->arch.hsr >> 10) & 0xf;
  302. params.Op1 = (vcpu->arch.hsr >> 14) & 0x7;
  303. params.Op2 = (vcpu->arch.hsr >> 17) & 0x7;
  304. params.Rt2 = 0;
  305. return emulate_cp15(vcpu, &params);
  306. }
  307. /******************************************************************************
  308. * Userspace API
  309. *****************************************************************************/
  310. static bool index_to_params(u64 id, struct coproc_params *params)
  311. {
  312. switch (id & KVM_REG_SIZE_MASK) {
  313. case KVM_REG_SIZE_U32:
  314. /* Any unused index bits means it's not valid. */
  315. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  316. | KVM_REG_ARM_COPROC_MASK
  317. | KVM_REG_ARM_32_CRN_MASK
  318. | KVM_REG_ARM_CRM_MASK
  319. | KVM_REG_ARM_OPC1_MASK
  320. | KVM_REG_ARM_32_OPC2_MASK))
  321. return false;
  322. params->is_64bit = false;
  323. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  324. >> KVM_REG_ARM_32_CRN_SHIFT);
  325. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  326. >> KVM_REG_ARM_CRM_SHIFT);
  327. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  328. >> KVM_REG_ARM_OPC1_SHIFT);
  329. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  330. >> KVM_REG_ARM_32_OPC2_SHIFT);
  331. return true;
  332. case KVM_REG_SIZE_U64:
  333. /* Any unused index bits means it's not valid. */
  334. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  335. | KVM_REG_ARM_COPROC_MASK
  336. | KVM_REG_ARM_CRM_MASK
  337. | KVM_REG_ARM_OPC1_MASK))
  338. return false;
  339. params->is_64bit = true;
  340. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  341. >> KVM_REG_ARM_CRM_SHIFT);
  342. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  343. >> KVM_REG_ARM_OPC1_SHIFT);
  344. params->Op2 = 0;
  345. params->CRn = 0;
  346. return true;
  347. default:
  348. return false;
  349. }
  350. }
  351. /* Decode an index value, and find the cp15 coproc_reg entry. */
  352. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  353. u64 id)
  354. {
  355. size_t num;
  356. const struct coproc_reg *table, *r;
  357. struct coproc_params params;
  358. /* We only do cp15 for now. */
  359. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  360. return NULL;
  361. if (!index_to_params(id, &params))
  362. return NULL;
  363. table = get_target_table(vcpu->arch.target, &num);
  364. r = find_reg(&params, table, num);
  365. if (!r)
  366. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  367. /* Not saved in the cp15 array? */
  368. if (r && !r->reg)
  369. r = NULL;
  370. return r;
  371. }
  372. /*
  373. * These are the invariant cp15 registers: we let the guest see the host
  374. * versions of these, so they're part of the guest state.
  375. *
  376. * A future CPU may provide a mechanism to present different values to
  377. * the guest, or a future kvm may trap them.
  378. */
  379. /* Unfortunately, there's no register-argument for mrc, so generate. */
  380. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  381. static void get_##name(struct kvm_vcpu *v, \
  382. const struct coproc_reg *r) \
  383. { \
  384. u32 val; \
  385. \
  386. asm volatile("mrc p15, " __stringify(op1) \
  387. ", %0, c" __stringify(crn) \
  388. ", c" __stringify(crm) \
  389. ", " __stringify(op2) "\n" : "=r" (val)); \
  390. ((struct coproc_reg *)r)->val = val; \
  391. }
  392. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  393. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  394. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  395. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  396. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  397. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  398. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  399. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  400. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  401. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  402. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  403. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  404. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  405. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  406. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  407. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  408. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  409. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  410. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  411. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  412. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  413. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  414. static struct coproc_reg invariant_cp15[] = {
  415. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  416. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  417. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  418. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  419. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  420. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  421. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  422. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  423. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  424. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  425. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  426. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  427. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  428. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  429. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  430. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  431. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  432. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  433. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  434. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  435. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  436. };
  437. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  438. {
  439. /* This Just Works because we are little endian. */
  440. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  441. return -EFAULT;
  442. return 0;
  443. }
  444. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  445. {
  446. /* This Just Works because we are little endian. */
  447. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  448. return -EFAULT;
  449. return 0;
  450. }
  451. static int get_invariant_cp15(u64 id, void __user *uaddr)
  452. {
  453. struct coproc_params params;
  454. const struct coproc_reg *r;
  455. if (!index_to_params(id, &params))
  456. return -ENOENT;
  457. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  458. if (!r)
  459. return -ENOENT;
  460. return reg_to_user(uaddr, &r->val, id);
  461. }
  462. static int set_invariant_cp15(u64 id, void __user *uaddr)
  463. {
  464. struct coproc_params params;
  465. const struct coproc_reg *r;
  466. int err;
  467. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  468. if (!index_to_params(id, &params))
  469. return -ENOENT;
  470. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  471. if (!r)
  472. return -ENOENT;
  473. err = reg_from_user(&val, uaddr, id);
  474. if (err)
  475. return err;
  476. /* This is what we mean by invariant: you can't change it. */
  477. if (r->val != val)
  478. return -EINVAL;
  479. return 0;
  480. }
  481. static bool is_valid_cache(u32 val)
  482. {
  483. u32 level, ctype;
  484. if (val >= CSSELR_MAX)
  485. return -ENOENT;
  486. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  487. level = (val >> 1);
  488. ctype = (cache_levels >> (level * 3)) & 7;
  489. switch (ctype) {
  490. case 0: /* No cache */
  491. return false;
  492. case 1: /* Instruction cache only */
  493. return (val & 1);
  494. case 2: /* Data cache only */
  495. case 4: /* Unified cache */
  496. return !(val & 1);
  497. case 3: /* Separate instruction and data caches */
  498. return true;
  499. default: /* Reserved: we can't know instruction or data. */
  500. return false;
  501. }
  502. }
  503. /* Which cache CCSIDR represents depends on CSSELR value. */
  504. static u32 get_ccsidr(u32 csselr)
  505. {
  506. u32 ccsidr;
  507. /* Make sure noone else changes CSSELR during this! */
  508. local_irq_disable();
  509. /* Put value into CSSELR */
  510. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  511. isb();
  512. /* Read result out of CCSIDR */
  513. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  514. local_irq_enable();
  515. return ccsidr;
  516. }
  517. static int demux_c15_get(u64 id, void __user *uaddr)
  518. {
  519. u32 val;
  520. u32 __user *uval = uaddr;
  521. /* Fail if we have unknown bits set. */
  522. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  523. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  524. return -ENOENT;
  525. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  526. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  527. if (KVM_REG_SIZE(id) != 4)
  528. return -ENOENT;
  529. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  530. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  531. if (!is_valid_cache(val))
  532. return -ENOENT;
  533. return put_user(get_ccsidr(val), uval);
  534. default:
  535. return -ENOENT;
  536. }
  537. }
  538. static int demux_c15_set(u64 id, void __user *uaddr)
  539. {
  540. u32 val, newval;
  541. u32 __user *uval = uaddr;
  542. /* Fail if we have unknown bits set. */
  543. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  544. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  545. return -ENOENT;
  546. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  547. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  548. if (KVM_REG_SIZE(id) != 4)
  549. return -ENOENT;
  550. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  551. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  552. if (!is_valid_cache(val))
  553. return -ENOENT;
  554. if (get_user(newval, uval))
  555. return -EFAULT;
  556. /* This is also invariant: you can't change it. */
  557. if (newval != get_ccsidr(val))
  558. return -EINVAL;
  559. return 0;
  560. default:
  561. return -ENOENT;
  562. }
  563. }
  564. #ifdef CONFIG_VFPv3
  565. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  566. KVM_REG_ARM_VFP_FPSCR,
  567. KVM_REG_ARM_VFP_FPINST,
  568. KVM_REG_ARM_VFP_FPINST2,
  569. KVM_REG_ARM_VFP_MVFR0,
  570. KVM_REG_ARM_VFP_MVFR1,
  571. KVM_REG_ARM_VFP_FPSID };
  572. static unsigned int num_fp_regs(void)
  573. {
  574. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  575. return 32;
  576. else
  577. return 16;
  578. }
  579. static unsigned int num_vfp_regs(void)
  580. {
  581. /* Normal FP regs + control regs. */
  582. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  583. }
  584. static int copy_vfp_regids(u64 __user *uindices)
  585. {
  586. unsigned int i;
  587. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  588. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  589. for (i = 0; i < num_fp_regs(); i++) {
  590. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  591. uindices))
  592. return -EFAULT;
  593. uindices++;
  594. }
  595. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  596. if (put_user(u32reg | vfp_sysregs[i], uindices))
  597. return -EFAULT;
  598. uindices++;
  599. }
  600. return num_vfp_regs();
  601. }
  602. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  603. {
  604. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  605. u32 val;
  606. /* Fail if we have unknown bits set. */
  607. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  608. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  609. return -ENOENT;
  610. if (vfpid < num_fp_regs()) {
  611. if (KVM_REG_SIZE(id) != 8)
  612. return -ENOENT;
  613. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
  614. id);
  615. }
  616. /* FP control registers are all 32 bit. */
  617. if (KVM_REG_SIZE(id) != 4)
  618. return -ENOENT;
  619. switch (vfpid) {
  620. case KVM_REG_ARM_VFP_FPEXC:
  621. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
  622. case KVM_REG_ARM_VFP_FPSCR:
  623. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
  624. case KVM_REG_ARM_VFP_FPINST:
  625. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
  626. case KVM_REG_ARM_VFP_FPINST2:
  627. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
  628. case KVM_REG_ARM_VFP_MVFR0:
  629. val = fmrx(MVFR0);
  630. return reg_to_user(uaddr, &val, id);
  631. case KVM_REG_ARM_VFP_MVFR1:
  632. val = fmrx(MVFR1);
  633. return reg_to_user(uaddr, &val, id);
  634. case KVM_REG_ARM_VFP_FPSID:
  635. val = fmrx(FPSID);
  636. return reg_to_user(uaddr, &val, id);
  637. default:
  638. return -ENOENT;
  639. }
  640. }
  641. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  642. {
  643. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  644. u32 val;
  645. /* Fail if we have unknown bits set. */
  646. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  647. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  648. return -ENOENT;
  649. if (vfpid < num_fp_regs()) {
  650. if (KVM_REG_SIZE(id) != 8)
  651. return -ENOENT;
  652. return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
  653. uaddr, id);
  654. }
  655. /* FP control registers are all 32 bit. */
  656. if (KVM_REG_SIZE(id) != 4)
  657. return -ENOENT;
  658. switch (vfpid) {
  659. case KVM_REG_ARM_VFP_FPEXC:
  660. return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
  661. case KVM_REG_ARM_VFP_FPSCR:
  662. return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
  663. case KVM_REG_ARM_VFP_FPINST:
  664. return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
  665. case KVM_REG_ARM_VFP_FPINST2:
  666. return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
  667. /* These are invariant. */
  668. case KVM_REG_ARM_VFP_MVFR0:
  669. if (reg_from_user(&val, uaddr, id))
  670. return -EFAULT;
  671. if (val != fmrx(MVFR0))
  672. return -EINVAL;
  673. return 0;
  674. case KVM_REG_ARM_VFP_MVFR1:
  675. if (reg_from_user(&val, uaddr, id))
  676. return -EFAULT;
  677. if (val != fmrx(MVFR1))
  678. return -EINVAL;
  679. return 0;
  680. case KVM_REG_ARM_VFP_FPSID:
  681. if (reg_from_user(&val, uaddr, id))
  682. return -EFAULT;
  683. if (val != fmrx(FPSID))
  684. return -EINVAL;
  685. return 0;
  686. default:
  687. return -ENOENT;
  688. }
  689. }
  690. #else /* !CONFIG_VFPv3 */
  691. static unsigned int num_vfp_regs(void)
  692. {
  693. return 0;
  694. }
  695. static int copy_vfp_regids(u64 __user *uindices)
  696. {
  697. return 0;
  698. }
  699. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  700. {
  701. return -ENOENT;
  702. }
  703. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  704. {
  705. return -ENOENT;
  706. }
  707. #endif /* !CONFIG_VFPv3 */
  708. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  709. {
  710. const struct coproc_reg *r;
  711. void __user *uaddr = (void __user *)(long)reg->addr;
  712. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  713. return demux_c15_get(reg->id, uaddr);
  714. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  715. return vfp_get_reg(vcpu, reg->id, uaddr);
  716. r = index_to_coproc_reg(vcpu, reg->id);
  717. if (!r)
  718. return get_invariant_cp15(reg->id, uaddr);
  719. /* Note: copies two regs if size is 64 bit. */
  720. return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
  721. }
  722. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  723. {
  724. const struct coproc_reg *r;
  725. void __user *uaddr = (void __user *)(long)reg->addr;
  726. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  727. return demux_c15_set(reg->id, uaddr);
  728. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  729. return vfp_set_reg(vcpu, reg->id, uaddr);
  730. r = index_to_coproc_reg(vcpu, reg->id);
  731. if (!r)
  732. return set_invariant_cp15(reg->id, uaddr);
  733. /* Note: copies two regs if size is 64 bit */
  734. return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
  735. }
  736. static unsigned int num_demux_regs(void)
  737. {
  738. unsigned int i, count = 0;
  739. for (i = 0; i < CSSELR_MAX; i++)
  740. if (is_valid_cache(i))
  741. count++;
  742. return count;
  743. }
  744. static int write_demux_regids(u64 __user *uindices)
  745. {
  746. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  747. unsigned int i;
  748. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  749. for (i = 0; i < CSSELR_MAX; i++) {
  750. if (!is_valid_cache(i))
  751. continue;
  752. if (put_user(val | i, uindices))
  753. return -EFAULT;
  754. uindices++;
  755. }
  756. return 0;
  757. }
  758. static u64 cp15_to_index(const struct coproc_reg *reg)
  759. {
  760. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  761. if (reg->is_64) {
  762. val |= KVM_REG_SIZE_U64;
  763. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  764. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  765. } else {
  766. val |= KVM_REG_SIZE_U32;
  767. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  768. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  769. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  770. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  771. }
  772. return val;
  773. }
  774. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  775. {
  776. if (!*uind)
  777. return true;
  778. if (put_user(cp15_to_index(reg), *uind))
  779. return false;
  780. (*uind)++;
  781. return true;
  782. }
  783. /* Assumed ordered tables, see kvm_coproc_table_init. */
  784. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  785. {
  786. const struct coproc_reg *i1, *i2, *end1, *end2;
  787. unsigned int total = 0;
  788. size_t num;
  789. /* We check for duplicates here, to allow arch-specific overrides. */
  790. i1 = get_target_table(vcpu->arch.target, &num);
  791. end1 = i1 + num;
  792. i2 = cp15_regs;
  793. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  794. BUG_ON(i1 == end1 || i2 == end2);
  795. /* Walk carefully, as both tables may refer to the same register. */
  796. while (i1 || i2) {
  797. int cmp = cmp_reg(i1, i2);
  798. /* target-specific overrides generic entry. */
  799. if (cmp <= 0) {
  800. /* Ignore registers we trap but don't save. */
  801. if (i1->reg) {
  802. if (!copy_reg_to_user(i1, &uind))
  803. return -EFAULT;
  804. total++;
  805. }
  806. } else {
  807. /* Ignore registers we trap but don't save. */
  808. if (i2->reg) {
  809. if (!copy_reg_to_user(i2, &uind))
  810. return -EFAULT;
  811. total++;
  812. }
  813. }
  814. if (cmp <= 0 && ++i1 == end1)
  815. i1 = NULL;
  816. if (cmp >= 0 && ++i2 == end2)
  817. i2 = NULL;
  818. }
  819. return total;
  820. }
  821. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  822. {
  823. return ARRAY_SIZE(invariant_cp15)
  824. + num_demux_regs()
  825. + num_vfp_regs()
  826. + walk_cp15(vcpu, (u64 __user *)NULL);
  827. }
  828. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  829. {
  830. unsigned int i;
  831. int err;
  832. /* Then give them all the invariant registers' indices. */
  833. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  834. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  835. return -EFAULT;
  836. uindices++;
  837. }
  838. err = walk_cp15(vcpu, uindices);
  839. if (err < 0)
  840. return err;
  841. uindices += err;
  842. err = copy_vfp_regids(uindices);
  843. if (err < 0)
  844. return err;
  845. uindices += err;
  846. return write_demux_regids(uindices);
  847. }
  848. void kvm_coproc_table_init(void)
  849. {
  850. unsigned int i;
  851. /* Make sure tables are unique and in order. */
  852. for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
  853. BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
  854. /* We abuse the reset function to overwrite the table itself. */
  855. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  856. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  857. /*
  858. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  859. *
  860. * If software reads the Cache Type fields from Ctype1
  861. * upwards, once it has seen a value of 0b000, no caches
  862. * exist at further-out levels of the hierarchy. So, for
  863. * example, if Ctype3 is the first Cache Type field with a
  864. * value of 0b000, the values of Ctype4 to Ctype7 must be
  865. * ignored.
  866. */
  867. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  868. for (i = 0; i < 7; i++)
  869. if (((cache_levels >> (i*3)) & 7) == 0)
  870. break;
  871. /* Clear all higher bits. */
  872. cache_levels &= (1 << (i*3))-1;
  873. }
  874. /**
  875. * kvm_reset_coprocs - sets cp15 registers to reset value
  876. * @vcpu: The VCPU pointer
  877. *
  878. * This function finds the right table above and sets the registers on the
  879. * virtual CPU struct to their architecturally defined reset values.
  880. */
  881. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  882. {
  883. size_t num;
  884. const struct coproc_reg *table;
  885. /* Catch someone adding a register without putting in reset entry. */
  886. memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
  887. /* Generic chip reset first (so target could override). */
  888. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  889. table = get_target_table(vcpu->arch.target, &num);
  890. reset_coproc_regs(vcpu, table, num);
  891. for (num = 1; num < NR_CP15_REGS; num++)
  892. if (vcpu->arch.cp15[num] == 0x42424242)
  893. panic("Didn't reset vcpu->arch.cp15[%zi]", num);
  894. }