init_64.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/system.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/dma.h>
  37. #include <asm/fixmap.h>
  38. #include <asm/e820.h>
  39. #include <asm/apic.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/proto.h>
  43. #include <asm/smp.h>
  44. #include <asm/sections.h>
  45. #include <asm/kdebug.h>
  46. #include <asm/numa.h>
  47. #include <asm/cacheflush.h>
  48. /*
  49. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  50. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  51. * apertures, ACPI and other tables without having to play with fixmaps.
  52. */
  53. unsigned long max_low_pfn_mapped;
  54. unsigned long max_pfn_mapped;
  55. static unsigned long dma_reserve __initdata;
  56. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  57. int direct_gbpages
  58. #ifdef CONFIG_DIRECT_GBPAGES
  59. = 1
  60. #endif
  61. ;
  62. static int __init parse_direct_gbpages_off(char *arg)
  63. {
  64. direct_gbpages = 0;
  65. return 0;
  66. }
  67. early_param("nogbpages", parse_direct_gbpages_off);
  68. static int __init parse_direct_gbpages_on(char *arg)
  69. {
  70. direct_gbpages = 1;
  71. return 0;
  72. }
  73. early_param("gbpages", parse_direct_gbpages_on);
  74. /*
  75. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  76. * physical space so we can cache the place of the first one and move
  77. * around without checking the pgd every time.
  78. */
  79. int after_bootmem;
  80. /*
  81. * NOTE: This function is marked __ref because it calls __init function
  82. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  83. */
  84. static __ref void *spp_getpage(void)
  85. {
  86. void *ptr;
  87. if (after_bootmem)
  88. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  89. else
  90. ptr = alloc_bootmem_pages(PAGE_SIZE);
  91. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  92. panic("set_pte_phys: cannot allocate page data %s\n",
  93. after_bootmem ? "after bootmem" : "");
  94. }
  95. pr_debug("spp_getpage %p\n", ptr);
  96. return ptr;
  97. }
  98. void
  99. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  100. {
  101. pud_t *pud;
  102. pmd_t *pmd;
  103. pte_t *pte;
  104. pud = pud_page + pud_index(vaddr);
  105. if (pud_none(*pud)) {
  106. pmd = (pmd_t *) spp_getpage();
  107. pud_populate(&init_mm, pud, pmd);
  108. if (pmd != pmd_offset(pud, 0)) {
  109. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  110. pmd, pmd_offset(pud, 0));
  111. return;
  112. }
  113. }
  114. pmd = pmd_offset(pud, vaddr);
  115. if (pmd_none(*pmd)) {
  116. pte = (pte_t *) spp_getpage();
  117. pmd_populate_kernel(&init_mm, pmd, pte);
  118. if (pte != pte_offset_kernel(pmd, 0)) {
  119. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  120. return;
  121. }
  122. }
  123. pte = pte_offset_kernel(pmd, vaddr);
  124. if (!pte_none(*pte) && pte_val(new_pte) &&
  125. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  126. pte_ERROR(*pte);
  127. set_pte(pte, new_pte);
  128. /*
  129. * It's enough to flush this one mapping.
  130. * (PGE mappings get flushed as well)
  131. */
  132. __flush_tlb_one(vaddr);
  133. }
  134. void
  135. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  136. {
  137. pgd_t *pgd;
  138. pud_t *pud_page;
  139. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  140. pgd = pgd_offset_k(vaddr);
  141. if (pgd_none(*pgd)) {
  142. printk(KERN_ERR
  143. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  144. return;
  145. }
  146. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  147. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  148. }
  149. /*
  150. * Create large page table mappings for a range of physical addresses.
  151. */
  152. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  153. pgprot_t prot)
  154. {
  155. pgd_t *pgd;
  156. pud_t *pud;
  157. pmd_t *pmd;
  158. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  159. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  160. pgd = pgd_offset_k((unsigned long)__va(phys));
  161. if (pgd_none(*pgd)) {
  162. pud = (pud_t *) spp_getpage();
  163. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  164. _PAGE_USER));
  165. }
  166. pud = pud_offset(pgd, (unsigned long)__va(phys));
  167. if (pud_none(*pud)) {
  168. pmd = (pmd_t *) spp_getpage();
  169. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  170. _PAGE_USER));
  171. }
  172. pmd = pmd_offset(pud, phys);
  173. BUG_ON(!pmd_none(*pmd));
  174. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  175. }
  176. }
  177. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  178. {
  179. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  180. }
  181. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  182. {
  183. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  184. }
  185. /*
  186. * The head.S code sets up the kernel high mapping:
  187. *
  188. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  189. *
  190. * phys_addr holds the negative offset to the kernel, which is added
  191. * to the compile time generated pmds. This results in invalid pmds up
  192. * to the point where we hit the physaddr 0 mapping.
  193. *
  194. * We limit the mappings to the region from _text to _end. _end is
  195. * rounded up to the 2MB boundary. This catches the invalid pmds as
  196. * well, as they are located before _text:
  197. */
  198. void __init cleanup_highmap(void)
  199. {
  200. unsigned long vaddr = __START_KERNEL_map;
  201. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  202. pmd_t *pmd = level2_kernel_pgt;
  203. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  204. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  205. if (pmd_none(*pmd))
  206. continue;
  207. if (vaddr < (unsigned long) _text || vaddr > end)
  208. set_pmd(pmd, __pmd(0));
  209. }
  210. }
  211. static unsigned long __initdata table_start;
  212. static unsigned long __meminitdata table_end;
  213. static unsigned long __meminitdata table_top;
  214. static __meminit void *alloc_low_page(unsigned long *phys)
  215. {
  216. unsigned long pfn = table_end++;
  217. void *adr;
  218. if (after_bootmem) {
  219. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  220. *phys = __pa(adr);
  221. return adr;
  222. }
  223. if (pfn >= table_top)
  224. panic("alloc_low_page: ran out of memory");
  225. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  226. memset(adr, 0, PAGE_SIZE);
  227. *phys = pfn * PAGE_SIZE;
  228. return adr;
  229. }
  230. static __meminit void unmap_low_page(void *adr)
  231. {
  232. if (after_bootmem)
  233. return;
  234. early_iounmap(adr, PAGE_SIZE);
  235. }
  236. static unsigned long __meminit
  237. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
  238. {
  239. unsigned pages = 0;
  240. unsigned long last_map_addr = end;
  241. int i;
  242. pte_t *pte = pte_page + pte_index(addr);
  243. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  244. if (addr >= end) {
  245. if (!after_bootmem) {
  246. for(; i < PTRS_PER_PTE; i++, pte++)
  247. set_pte(pte, __pte(0));
  248. }
  249. break;
  250. }
  251. if (pte_val(*pte))
  252. continue;
  253. if (0)
  254. printk(" pte=%p addr=%lx pte=%016lx\n",
  255. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  256. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
  257. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  258. pages++;
  259. }
  260. update_page_count(PG_LEVEL_4K, pages);
  261. return last_map_addr;
  262. }
  263. static unsigned long __meminit
  264. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
  265. {
  266. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  267. return phys_pte_init(pte, address, end);
  268. }
  269. static unsigned long __meminit
  270. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  271. unsigned long page_size_mask)
  272. {
  273. unsigned long pages = 0;
  274. unsigned long last_map_addr = end;
  275. unsigned long start = address;
  276. int i = pmd_index(address);
  277. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  278. unsigned long pte_phys;
  279. pmd_t *pmd = pmd_page + pmd_index(address);
  280. pte_t *pte;
  281. if (address >= end) {
  282. if (!after_bootmem) {
  283. for (; i < PTRS_PER_PMD; i++, pmd++)
  284. set_pmd(pmd, __pmd(0));
  285. }
  286. break;
  287. }
  288. if (pmd_val(*pmd)) {
  289. if (!pmd_large(*pmd))
  290. last_map_addr = phys_pte_update(pmd, address,
  291. end);
  292. /* Count entries we're using from level2_ident_pgt */
  293. if (start == 0)
  294. pages++;
  295. continue;
  296. }
  297. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  298. pages++;
  299. set_pte((pte_t *)pmd,
  300. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  301. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  302. continue;
  303. }
  304. pte = alloc_low_page(&pte_phys);
  305. last_map_addr = phys_pte_init(pte, address, end);
  306. unmap_low_page(pte);
  307. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  308. }
  309. update_page_count(PG_LEVEL_2M, pages);
  310. return last_map_addr;
  311. }
  312. static unsigned long __meminit
  313. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  314. unsigned long page_size_mask)
  315. {
  316. pmd_t *pmd = pmd_offset(pud, 0);
  317. unsigned long last_map_addr;
  318. spin_lock(&init_mm.page_table_lock);
  319. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
  320. spin_unlock(&init_mm.page_table_lock);
  321. __flush_tlb_all();
  322. return last_map_addr;
  323. }
  324. static unsigned long __meminit
  325. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  326. unsigned long page_size_mask)
  327. {
  328. unsigned long pages = 0;
  329. unsigned long last_map_addr = end;
  330. int i = pud_index(addr);
  331. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  332. unsigned long pmd_phys;
  333. pud_t *pud = pud_page + pud_index(addr);
  334. pmd_t *pmd;
  335. if (addr >= end)
  336. break;
  337. if (!after_bootmem &&
  338. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  339. set_pud(pud, __pud(0));
  340. continue;
  341. }
  342. if (pud_val(*pud)) {
  343. if (!pud_large(*pud))
  344. last_map_addr = phys_pmd_update(pud, addr, end,
  345. page_size_mask);
  346. continue;
  347. }
  348. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  349. pages++;
  350. set_pte((pte_t *)pud,
  351. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  352. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  353. continue;
  354. }
  355. pmd = alloc_low_page(&pmd_phys);
  356. spin_lock(&init_mm.page_table_lock);
  357. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
  358. unmap_low_page(pmd);
  359. pud_populate(&init_mm, pud, __va(pmd_phys));
  360. spin_unlock(&init_mm.page_table_lock);
  361. }
  362. __flush_tlb_all();
  363. update_page_count(PG_LEVEL_1G, pages);
  364. return last_map_addr;
  365. }
  366. static unsigned long __meminit
  367. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  368. unsigned long page_size_mask)
  369. {
  370. pud_t *pud;
  371. pud = (pud_t *)pgd_page_vaddr(*pgd);
  372. return phys_pud_init(pud, addr, end, page_size_mask);
  373. }
  374. static void __init find_early_table_space(unsigned long end)
  375. {
  376. unsigned long puds, pmds, ptes, tables, start;
  377. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  378. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  379. if (direct_gbpages) {
  380. unsigned long extra;
  381. extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
  382. pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  383. } else
  384. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  385. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  386. if (cpu_has_pse) {
  387. unsigned long extra;
  388. extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
  389. ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  390. } else
  391. ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  392. tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
  393. /*
  394. * RED-PEN putting page tables only on node 0 could
  395. * cause a hotspot and fill up ZONE_DMA. The page tables
  396. * need roughly 0.5KB per GB.
  397. */
  398. start = 0x8000;
  399. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  400. if (table_start == -1UL)
  401. panic("Cannot find space for the kernel page tables");
  402. table_start >>= PAGE_SHIFT;
  403. table_end = table_start;
  404. table_top = table_start + (tables >> PAGE_SHIFT);
  405. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  406. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  407. }
  408. static void __init init_gbpages(void)
  409. {
  410. if (direct_gbpages && cpu_has_gbpages)
  411. printk(KERN_INFO "Using GB pages for direct mapping\n");
  412. else
  413. direct_gbpages = 0;
  414. }
  415. static unsigned long __init kernel_physical_mapping_init(unsigned long start,
  416. unsigned long end,
  417. unsigned long page_size_mask)
  418. {
  419. unsigned long next, last_map_addr = end;
  420. start = (unsigned long)__va(start);
  421. end = (unsigned long)__va(end);
  422. for (; start < end; start = next) {
  423. pgd_t *pgd = pgd_offset_k(start);
  424. unsigned long pud_phys;
  425. pud_t *pud;
  426. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  427. if (next > end)
  428. next = end;
  429. if (pgd_val(*pgd)) {
  430. last_map_addr = phys_pud_update(pgd, __pa(start),
  431. __pa(end), page_size_mask);
  432. continue;
  433. }
  434. if (after_bootmem)
  435. pud = pud_offset(pgd, start & PGDIR_MASK);
  436. else
  437. pud = alloc_low_page(&pud_phys);
  438. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  439. page_size_mask);
  440. unmap_low_page(pud);
  441. pgd_populate(&init_mm, pgd_offset_k(start),
  442. __va(pud_phys));
  443. }
  444. return last_map_addr;
  445. }
  446. struct map_range {
  447. unsigned long start;
  448. unsigned long end;
  449. unsigned page_size_mask;
  450. };
  451. #define NR_RANGE_MR 5
  452. static int save_mr(struct map_range *mr, int nr_range,
  453. unsigned long start_pfn, unsigned long end_pfn,
  454. unsigned long page_size_mask)
  455. {
  456. if (start_pfn < end_pfn) {
  457. if (nr_range >= NR_RANGE_MR)
  458. panic("run out of range for init_memory_mapping\n");
  459. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  460. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  461. mr[nr_range].page_size_mask = page_size_mask;
  462. nr_range++;
  463. }
  464. return nr_range;
  465. }
  466. /*
  467. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  468. * This runs before bootmem is initialized and gets pages directly from
  469. * the physical memory. To access them they are temporarily mapped.
  470. */
  471. unsigned long __init_refok init_memory_mapping(unsigned long start,
  472. unsigned long end)
  473. {
  474. unsigned long last_map_addr = 0;
  475. unsigned long page_size_mask = 0;
  476. unsigned long start_pfn, end_pfn;
  477. struct map_range mr[NR_RANGE_MR];
  478. int nr_range, i;
  479. printk(KERN_INFO "init_memory_mapping\n");
  480. /*
  481. * Find space for the kernel direct mapping tables.
  482. *
  483. * Later we should allocate these tables in the local node of the
  484. * memory mapped. Unfortunately this is done currently before the
  485. * nodes are discovered.
  486. */
  487. if (!after_bootmem)
  488. init_gbpages();
  489. if (direct_gbpages)
  490. page_size_mask |= 1 << PG_LEVEL_1G;
  491. if (cpu_has_pse)
  492. page_size_mask |= 1 << PG_LEVEL_2M;
  493. memset(mr, 0, sizeof(mr));
  494. nr_range = 0;
  495. /* head if not big page alignment ?*/
  496. start_pfn = start >> PAGE_SHIFT;
  497. end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
  498. << (PMD_SHIFT - PAGE_SHIFT);
  499. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  500. /* big page (2M) range*/
  501. start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
  502. << (PMD_SHIFT - PAGE_SHIFT);
  503. end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
  504. << (PUD_SHIFT - PAGE_SHIFT);
  505. if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
  506. end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
  507. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  508. page_size_mask & (1<<PG_LEVEL_2M));
  509. /* big page (1G) range */
  510. start_pfn = end_pfn;
  511. end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  512. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  513. page_size_mask &
  514. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  515. /* tail is not big page (1G) alignment */
  516. start_pfn = end_pfn;
  517. end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  518. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  519. page_size_mask & (1<<PG_LEVEL_2M));
  520. /* tail is not big page (2M) alignment */
  521. start_pfn = end_pfn;
  522. end_pfn = end>>PAGE_SHIFT;
  523. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  524. /* try to merge same page size and continuous */
  525. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  526. unsigned long old_start;
  527. if (mr[i].end != mr[i+1].start ||
  528. mr[i].page_size_mask != mr[i+1].page_size_mask)
  529. continue;
  530. /* move it */
  531. old_start = mr[i].start;
  532. memmove(&mr[i], &mr[i+1],
  533. (nr_range - 1 - i) * sizeof (struct map_range));
  534. mr[i].start = old_start;
  535. nr_range--;
  536. }
  537. for (i = 0; i < nr_range; i++)
  538. printk(KERN_DEBUG " %010lx - %010lx page %s\n",
  539. mr[i].start, mr[i].end,
  540. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  541. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  542. if (!after_bootmem)
  543. find_early_table_space(end);
  544. for (i = 0; i < nr_range; i++)
  545. last_map_addr = kernel_physical_mapping_init(
  546. mr[i].start, mr[i].end,
  547. mr[i].page_size_mask);
  548. if (!after_bootmem)
  549. mmu_cr4_features = read_cr4();
  550. __flush_tlb_all();
  551. if (!after_bootmem && table_end > table_start)
  552. reserve_early(table_start << PAGE_SHIFT,
  553. table_end << PAGE_SHIFT, "PGTABLE");
  554. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  555. last_map_addr, end);
  556. if (!after_bootmem)
  557. early_memtest(start, end);
  558. return last_map_addr >> PAGE_SHIFT;
  559. }
  560. #ifndef CONFIG_NUMA
  561. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  562. {
  563. unsigned long bootmap_size, bootmap;
  564. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  565. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  566. PAGE_SIZE);
  567. if (bootmap == -1L)
  568. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  569. /* don't touch min_low_pfn */
  570. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  571. 0, end_pfn);
  572. e820_register_active_regions(0, start_pfn, end_pfn);
  573. free_bootmem_with_active_regions(0, end_pfn);
  574. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  575. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  576. }
  577. void __init paging_init(void)
  578. {
  579. unsigned long max_zone_pfns[MAX_NR_ZONES];
  580. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  581. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  582. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  583. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  584. memory_present(0, 0, max_pfn);
  585. sparse_init();
  586. free_area_init_nodes(max_zone_pfns);
  587. }
  588. #endif
  589. /*
  590. * Memory hotplug specific functions
  591. */
  592. #ifdef CONFIG_MEMORY_HOTPLUG
  593. /*
  594. * Memory is added always to NORMAL zone. This means you will never get
  595. * additional DMA/DMA32 memory.
  596. */
  597. int arch_add_memory(int nid, u64 start, u64 size)
  598. {
  599. struct pglist_data *pgdat = NODE_DATA(nid);
  600. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  601. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  602. unsigned long nr_pages = size >> PAGE_SHIFT;
  603. int ret;
  604. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  605. if (last_mapped_pfn > max_pfn_mapped)
  606. max_pfn_mapped = last_mapped_pfn;
  607. ret = __add_pages(zone, start_pfn, nr_pages);
  608. WARN_ON(1);
  609. return ret;
  610. }
  611. EXPORT_SYMBOL_GPL(arch_add_memory);
  612. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  613. int memory_add_physaddr_to_nid(u64 start)
  614. {
  615. return 0;
  616. }
  617. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  618. #endif
  619. #endif /* CONFIG_MEMORY_HOTPLUG */
  620. /*
  621. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  622. * is valid. The argument is a physical page number.
  623. *
  624. *
  625. * On x86, access has to be given to the first megabyte of ram because that area
  626. * contains bios code and data regions used by X and dosemu and similar apps.
  627. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  628. * mmio resources as well as potential bios/acpi data regions.
  629. */
  630. int devmem_is_allowed(unsigned long pagenr)
  631. {
  632. if (pagenr <= 256)
  633. return 1;
  634. if (!page_is_ram(pagenr))
  635. return 1;
  636. return 0;
  637. }
  638. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  639. kcore_modules, kcore_vsyscall;
  640. void __init mem_init(void)
  641. {
  642. long codesize, reservedpages, datasize, initsize;
  643. pci_iommu_alloc();
  644. /* clear_bss() already clear the empty_zero_page */
  645. reservedpages = 0;
  646. /* this will put all low memory onto the freelists */
  647. #ifdef CONFIG_NUMA
  648. totalram_pages = numa_free_all_bootmem();
  649. #else
  650. totalram_pages = free_all_bootmem();
  651. #endif
  652. reservedpages = max_pfn - totalram_pages -
  653. absent_pages_in_range(0, max_pfn);
  654. after_bootmem = 1;
  655. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  656. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  657. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  658. /* Register memory areas for /proc/kcore */
  659. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  660. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  661. VMALLOC_END-VMALLOC_START);
  662. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  663. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  664. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  665. VSYSCALL_END - VSYSCALL_START);
  666. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  667. "%ldk reserved, %ldk data, %ldk init)\n",
  668. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  669. max_pfn << (PAGE_SHIFT-10),
  670. codesize >> 10,
  671. reservedpages << (PAGE_SHIFT-10),
  672. datasize >> 10,
  673. initsize >> 10);
  674. cpa_init();
  675. }
  676. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  677. {
  678. unsigned long addr = begin;
  679. if (addr >= end)
  680. return;
  681. /*
  682. * If debugging page accesses then do not free this memory but
  683. * mark them not present - any buggy init-section access will
  684. * create a kernel page fault:
  685. */
  686. #ifdef CONFIG_DEBUG_PAGEALLOC
  687. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  688. begin, PAGE_ALIGN(end));
  689. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  690. #else
  691. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  692. for (; addr < end; addr += PAGE_SIZE) {
  693. ClearPageReserved(virt_to_page(addr));
  694. init_page_count(virt_to_page(addr));
  695. memset((void *)(addr & ~(PAGE_SIZE-1)),
  696. POISON_FREE_INITMEM, PAGE_SIZE);
  697. free_page(addr);
  698. totalram_pages++;
  699. }
  700. #endif
  701. }
  702. void free_initmem(void)
  703. {
  704. free_init_pages("unused kernel memory",
  705. (unsigned long)(&__init_begin),
  706. (unsigned long)(&__init_end));
  707. }
  708. #ifdef CONFIG_DEBUG_RODATA
  709. const int rodata_test_data = 0xC3;
  710. EXPORT_SYMBOL_GPL(rodata_test_data);
  711. void mark_rodata_ro(void)
  712. {
  713. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  714. unsigned long rodata_start =
  715. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  716. #ifdef CONFIG_DYNAMIC_FTRACE
  717. /* Dynamic tracing modifies the kernel text section */
  718. start = rodata_start;
  719. #endif
  720. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  721. (end - start) >> 10);
  722. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  723. /*
  724. * The rodata section (but not the kernel text!) should also be
  725. * not-executable.
  726. */
  727. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  728. rodata_test();
  729. #ifdef CONFIG_CPA_DEBUG
  730. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  731. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  732. printk(KERN_INFO "Testing CPA: again\n");
  733. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  734. #endif
  735. }
  736. #endif
  737. #ifdef CONFIG_BLK_DEV_INITRD
  738. void free_initrd_mem(unsigned long start, unsigned long end)
  739. {
  740. free_init_pages("initrd memory", start, end);
  741. }
  742. #endif
  743. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  744. int flags)
  745. {
  746. #ifdef CONFIG_NUMA
  747. int nid, next_nid;
  748. int ret;
  749. #endif
  750. unsigned long pfn = phys >> PAGE_SHIFT;
  751. if (pfn >= max_pfn) {
  752. /*
  753. * This can happen with kdump kernels when accessing
  754. * firmware tables:
  755. */
  756. if (pfn < max_pfn_mapped)
  757. return -EFAULT;
  758. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  759. phys, len);
  760. return -EFAULT;
  761. }
  762. /* Should check here against the e820 map to avoid double free */
  763. #ifdef CONFIG_NUMA
  764. nid = phys_to_nid(phys);
  765. next_nid = phys_to_nid(phys + len - 1);
  766. if (nid == next_nid)
  767. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  768. else
  769. ret = reserve_bootmem(phys, len, flags);
  770. if (ret != 0)
  771. return ret;
  772. #else
  773. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  774. #endif
  775. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  776. dma_reserve += len / PAGE_SIZE;
  777. set_dma_reserve(dma_reserve);
  778. }
  779. return 0;
  780. }
  781. int kern_addr_valid(unsigned long addr)
  782. {
  783. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  784. pgd_t *pgd;
  785. pud_t *pud;
  786. pmd_t *pmd;
  787. pte_t *pte;
  788. if (above != 0 && above != -1UL)
  789. return 0;
  790. pgd = pgd_offset_k(addr);
  791. if (pgd_none(*pgd))
  792. return 0;
  793. pud = pud_offset(pgd, addr);
  794. if (pud_none(*pud))
  795. return 0;
  796. pmd = pmd_offset(pud, addr);
  797. if (pmd_none(*pmd))
  798. return 0;
  799. if (pmd_large(*pmd))
  800. return pfn_valid(pmd_pfn(*pmd));
  801. pte = pte_offset_kernel(pmd, addr);
  802. if (pte_none(*pte))
  803. return 0;
  804. return pfn_valid(pte_pfn(*pte));
  805. }
  806. /*
  807. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  808. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  809. * not need special handling anymore:
  810. */
  811. static struct vm_area_struct gate_vma = {
  812. .vm_start = VSYSCALL_START,
  813. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  814. .vm_page_prot = PAGE_READONLY_EXEC,
  815. .vm_flags = VM_READ | VM_EXEC
  816. };
  817. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  818. {
  819. #ifdef CONFIG_IA32_EMULATION
  820. if (test_tsk_thread_flag(tsk, TIF_IA32))
  821. return NULL;
  822. #endif
  823. return &gate_vma;
  824. }
  825. int in_gate_area(struct task_struct *task, unsigned long addr)
  826. {
  827. struct vm_area_struct *vma = get_gate_vma(task);
  828. if (!vma)
  829. return 0;
  830. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  831. }
  832. /*
  833. * Use this when you have no reliable task/vma, typically from interrupt
  834. * context. It is less reliable than using the task's vma and may give
  835. * false positives:
  836. */
  837. int in_gate_area_no_task(unsigned long addr)
  838. {
  839. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  840. }
  841. const char *arch_vma_name(struct vm_area_struct *vma)
  842. {
  843. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  844. return "[vdso]";
  845. if (vma == &gate_vma)
  846. return "[vsyscall]";
  847. return NULL;
  848. }
  849. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  850. /*
  851. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  852. */
  853. static long __meminitdata addr_start, addr_end;
  854. static void __meminitdata *p_start, *p_end;
  855. static int __meminitdata node_start;
  856. int __meminit
  857. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  858. {
  859. unsigned long addr = (unsigned long)start_page;
  860. unsigned long end = (unsigned long)(start_page + size);
  861. unsigned long next;
  862. pgd_t *pgd;
  863. pud_t *pud;
  864. pmd_t *pmd;
  865. for (; addr < end; addr = next) {
  866. void *p = NULL;
  867. pgd = vmemmap_pgd_populate(addr, node);
  868. if (!pgd)
  869. return -ENOMEM;
  870. pud = vmemmap_pud_populate(pgd, addr, node);
  871. if (!pud)
  872. return -ENOMEM;
  873. if (!cpu_has_pse) {
  874. next = (addr + PAGE_SIZE) & PAGE_MASK;
  875. pmd = vmemmap_pmd_populate(pud, addr, node);
  876. if (!pmd)
  877. return -ENOMEM;
  878. p = vmemmap_pte_populate(pmd, addr, node);
  879. if (!p)
  880. return -ENOMEM;
  881. addr_end = addr + PAGE_SIZE;
  882. p_end = p + PAGE_SIZE;
  883. } else {
  884. next = pmd_addr_end(addr, end);
  885. pmd = pmd_offset(pud, addr);
  886. if (pmd_none(*pmd)) {
  887. pte_t entry;
  888. p = vmemmap_alloc_block(PMD_SIZE, node);
  889. if (!p)
  890. return -ENOMEM;
  891. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  892. PAGE_KERNEL_LARGE);
  893. set_pmd(pmd, __pmd(pte_val(entry)));
  894. /* check to see if we have contiguous blocks */
  895. if (p_end != p || node_start != node) {
  896. if (p_start)
  897. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  898. addr_start, addr_end-1, p_start, p_end-1, node_start);
  899. addr_start = addr;
  900. node_start = node;
  901. p_start = p;
  902. }
  903. addr_end = addr + PMD_SIZE;
  904. p_end = p + PMD_SIZE;
  905. } else
  906. vmemmap_verify((pte_t *)pmd, node, addr, next);
  907. }
  908. }
  909. return 0;
  910. }
  911. void __meminit vmemmap_populate_print_last(void)
  912. {
  913. if (p_start) {
  914. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  915. addr_start, addr_end-1, p_start, p_end-1, node_start);
  916. p_start = NULL;
  917. p_end = NULL;
  918. node_start = 0;
  919. }
  920. }
  921. #endif