bfin_dma_5xx.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. /*
  2. * bfin_dma_5xx.c - Blackfin DMA implementation
  3. *
  4. * Copyright 2004-2008 Analog Devices Inc.
  5. * Licensed under the GPL-2 or later.
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/param.h>
  12. #include <linux/proc_fs.h>
  13. #include <linux/sched.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/spinlock.h>
  16. #include <asm/blackfin.h>
  17. #include <asm/cacheflush.h>
  18. #include <asm/dma.h>
  19. #include <asm/uaccess.h>
  20. /*
  21. * To make sure we work around 05000119 - we always check DMA_DONE bit,
  22. * never the DMA_RUN bit
  23. */
  24. struct dma_channel dma_ch[MAX_DMA_CHANNELS];
  25. EXPORT_SYMBOL(dma_ch);
  26. static int __init blackfin_dma_init(void)
  27. {
  28. int i;
  29. printk(KERN_INFO "Blackfin DMA Controller\n");
  30. for (i = 0; i < MAX_DMA_CHANNELS; i++) {
  31. dma_ch[i].chan_status = DMA_CHANNEL_FREE;
  32. dma_ch[i].regs = dma_io_base_addr[i];
  33. mutex_init(&(dma_ch[i].dmalock));
  34. }
  35. /* Mark MEMDMA Channel 0 as requested since we're using it internally */
  36. request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy");
  37. request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy");
  38. #if defined(CONFIG_DEB_DMA_URGENT)
  39. bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
  40. | DEB1_URGENT | DEB2_URGENT | DEB3_URGENT);
  41. #endif
  42. return 0;
  43. }
  44. arch_initcall(blackfin_dma_init);
  45. #ifdef CONFIG_PROC_FS
  46. static int proc_dma_show(struct seq_file *m, void *v)
  47. {
  48. int i;
  49. for (i = 0; i < MAX_DMA_CHANNELS; ++i)
  50. if (dma_ch[i].chan_status != DMA_CHANNEL_FREE)
  51. seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id);
  52. return 0;
  53. }
  54. static int proc_dma_open(struct inode *inode, struct file *file)
  55. {
  56. return single_open(file, proc_dma_show, NULL);
  57. }
  58. static const struct file_operations proc_dma_operations = {
  59. .open = proc_dma_open,
  60. .read = seq_read,
  61. .llseek = seq_lseek,
  62. .release = single_release,
  63. };
  64. static int __init proc_dma_init(void)
  65. {
  66. return proc_create("dma", 0, NULL, &proc_dma_operations) != NULL;
  67. }
  68. late_initcall(proc_dma_init);
  69. #endif
  70. /**
  71. * request_dma - request a DMA channel
  72. *
  73. * Request the specific DMA channel from the system if it's available.
  74. */
  75. int request_dma(unsigned int channel, const char *device_id)
  76. {
  77. pr_debug("request_dma() : BEGIN \n");
  78. if (device_id == NULL)
  79. printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel);
  80. #if defined(CONFIG_BF561) && ANOMALY_05000182
  81. if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) {
  82. if (get_cclk() > 500000000) {
  83. printk(KERN_WARNING
  84. "Request IMDMA failed due to ANOMALY 05000182\n");
  85. return -EFAULT;
  86. }
  87. }
  88. #endif
  89. mutex_lock(&(dma_ch[channel].dmalock));
  90. if ((dma_ch[channel].chan_status == DMA_CHANNEL_REQUESTED)
  91. || (dma_ch[channel].chan_status == DMA_CHANNEL_ENABLED)) {
  92. mutex_unlock(&(dma_ch[channel].dmalock));
  93. pr_debug("DMA CHANNEL IN USE \n");
  94. return -EBUSY;
  95. } else {
  96. dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED;
  97. pr_debug("DMA CHANNEL IS ALLOCATED \n");
  98. }
  99. mutex_unlock(&(dma_ch[channel].dmalock));
  100. #ifdef CONFIG_BF54x
  101. if (channel >= CH_UART2_RX && channel <= CH_UART3_TX) {
  102. unsigned int per_map;
  103. per_map = dma_ch[channel].regs->peripheral_map & 0xFFF;
  104. if (strncmp(device_id, "BFIN_UART", 9) == 0)
  105. dma_ch[channel].regs->peripheral_map = per_map |
  106. ((channel - CH_UART2_RX + 0xC)<<12);
  107. else
  108. dma_ch[channel].regs->peripheral_map = per_map |
  109. ((channel - CH_UART2_RX + 0x6)<<12);
  110. }
  111. #endif
  112. dma_ch[channel].device_id = device_id;
  113. dma_ch[channel].irq = 0;
  114. /* This is to be enabled by putting a restriction -
  115. * you have to request DMA, before doing any operations on
  116. * descriptor/channel
  117. */
  118. pr_debug("request_dma() : END \n");
  119. return 0;
  120. }
  121. EXPORT_SYMBOL(request_dma);
  122. int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data)
  123. {
  124. BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
  125. && channel < MAX_DMA_CHANNELS));
  126. if (callback != NULL) {
  127. int ret;
  128. unsigned int irq = channel2irq(channel);
  129. ret = request_irq(irq, callback, IRQF_DISABLED,
  130. dma_ch[channel].device_id, data);
  131. if (ret)
  132. return ret;
  133. dma_ch[channel].irq = irq;
  134. dma_ch[channel].data = data;
  135. }
  136. return 0;
  137. }
  138. EXPORT_SYMBOL(set_dma_callback);
  139. /**
  140. * clear_dma_buffer - clear DMA fifos for specified channel
  141. *
  142. * Set the Buffer Clear bit in the Configuration register of specific DMA
  143. * channel. This will stop the descriptor based DMA operation.
  144. */
  145. static void clear_dma_buffer(unsigned int channel)
  146. {
  147. dma_ch[channel].regs->cfg |= RESTART;
  148. SSYNC();
  149. dma_ch[channel].regs->cfg &= ~RESTART;
  150. }
  151. void free_dma(unsigned int channel)
  152. {
  153. pr_debug("freedma() : BEGIN \n");
  154. BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
  155. && channel < MAX_DMA_CHANNELS));
  156. /* Halt the DMA */
  157. disable_dma(channel);
  158. clear_dma_buffer(channel);
  159. if (dma_ch[channel].irq)
  160. free_irq(dma_ch[channel].irq, dma_ch[channel].data);
  161. /* Clear the DMA Variable in the Channel */
  162. mutex_lock(&(dma_ch[channel].dmalock));
  163. dma_ch[channel].chan_status = DMA_CHANNEL_FREE;
  164. mutex_unlock(&(dma_ch[channel].dmalock));
  165. pr_debug("freedma() : END \n");
  166. }
  167. EXPORT_SYMBOL(free_dma);
  168. #ifdef CONFIG_PM
  169. # ifndef MAX_DMA_SUSPEND_CHANNELS
  170. # define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
  171. # endif
  172. int blackfin_dma_suspend(void)
  173. {
  174. int i;
  175. for (i = 0; i < MAX_DMA_SUSPEND_CHANNELS; ++i) {
  176. if (dma_ch[i].chan_status == DMA_CHANNEL_ENABLED) {
  177. printk(KERN_ERR "DMA Channel %d failed to suspend\n", i);
  178. return -EBUSY;
  179. }
  180. dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map;
  181. }
  182. return 0;
  183. }
  184. void blackfin_dma_resume(void)
  185. {
  186. int i;
  187. for (i = 0; i < MAX_DMA_SUSPEND_CHANNELS; ++i)
  188. dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map;
  189. }
  190. #endif
  191. /**
  192. * blackfin_dma_early_init - minimal DMA init
  193. *
  194. * Setup a few DMA registers so we can safely do DMA transfers early on in
  195. * the kernel booting process. Really this just means using dma_memcpy().
  196. */
  197. void __init blackfin_dma_early_init(void)
  198. {
  199. bfin_write_MDMA_S0_CONFIG(0);
  200. bfin_write_MDMA_S1_CONFIG(0);
  201. }
  202. void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
  203. {
  204. unsigned long dst = (unsigned long)pdst;
  205. unsigned long src = (unsigned long)psrc;
  206. struct dma_register *dst_ch, *src_ch;
  207. /* We assume that everything is 4 byte aligned, so include
  208. * a basic sanity check
  209. */
  210. BUG_ON(dst % 4);
  211. BUG_ON(src % 4);
  212. BUG_ON(size % 4);
  213. /* Force a sync in case a previous config reset on this channel
  214. * occurred. This is needed so subsequent writes to DMA registers
  215. * are not spuriously lost/corrupted.
  216. */
  217. __builtin_bfin_ssync();
  218. src_ch = 0;
  219. /* Find an avalible memDMA channel */
  220. while (1) {
  221. if (!src_ch || src_ch == (struct dma_register *)MDMA_S1_NEXT_DESC_PTR) {
  222. dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
  223. src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
  224. } else {
  225. dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
  226. src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
  227. }
  228. if (!bfin_read16(&src_ch->cfg)) {
  229. break;
  230. } else {
  231. if (bfin_read16(&src_ch->irq_status) & DMA_DONE)
  232. bfin_write16(&src_ch->cfg, 0);
  233. }
  234. }
  235. /* Destination */
  236. bfin_write32(&dst_ch->start_addr, dst);
  237. bfin_write16(&dst_ch->x_count, size >> 2);
  238. bfin_write16(&dst_ch->x_modify, 1 << 2);
  239. bfin_write16(&dst_ch->irq_status, DMA_DONE | DMA_ERR);
  240. /* Source */
  241. bfin_write32(&src_ch->start_addr, src);
  242. bfin_write16(&src_ch->x_count, size >> 2);
  243. bfin_write16(&src_ch->x_modify, 1 << 2);
  244. bfin_write16(&src_ch->irq_status, DMA_DONE | DMA_ERR);
  245. /* Enable */
  246. bfin_write16(&src_ch->cfg, DMAEN | WDSIZE_32);
  247. bfin_write16(&dst_ch->cfg, WNR | DI_EN | DMAEN | WDSIZE_32);
  248. /* Since we are atomic now, don't use the workaround ssync */
  249. __builtin_bfin_ssync();
  250. }
  251. void __init early_dma_memcpy_done(void)
  252. {
  253. while ((bfin_read_MDMA_S0_CONFIG() && !(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) ||
  254. (bfin_read_MDMA_S1_CONFIG() && !(bfin_read_MDMA_D1_IRQ_STATUS() & DMA_DONE)))
  255. continue;
  256. bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
  257. bfin_write_MDMA_D1_IRQ_STATUS(DMA_DONE | DMA_ERR);
  258. /*
  259. * Now that DMA is done, we would normally flush cache, but
  260. * i/d cache isn't running this early, so we don't bother,
  261. * and just clear out the DMA channel for next time
  262. */
  263. bfin_write_MDMA_S0_CONFIG(0);
  264. bfin_write_MDMA_S1_CONFIG(0);
  265. bfin_write_MDMA_D0_CONFIG(0);
  266. bfin_write_MDMA_D1_CONFIG(0);
  267. __builtin_bfin_ssync();
  268. }
  269. /**
  270. * __dma_memcpy - program the MDMA registers
  271. *
  272. * Actually program MDMA0 and wait for the transfer to finish. Disable IRQs
  273. * while programming registers so that everything is fully configured. Wait
  274. * for DMA to finish with IRQs enabled. If interrupted, the initial DMA_DONE
  275. * check will make sure we don't clobber any existing transfer.
  276. */
  277. static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf)
  278. {
  279. static DEFINE_SPINLOCK(mdma_lock);
  280. unsigned long flags;
  281. spin_lock_irqsave(&mdma_lock, flags);
  282. /* Force a sync in case a previous config reset on this channel
  283. * occurred. This is needed so subsequent writes to DMA registers
  284. * are not spuriously lost/corrupted. Do it under irq lock and
  285. * without the anomaly version (because we are atomic already).
  286. */
  287. __builtin_bfin_ssync();
  288. if (bfin_read_MDMA_S0_CONFIG())
  289. while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
  290. continue;
  291. if (conf & DMA2D) {
  292. /* For larger bit sizes, we've already divided down cnt so it
  293. * is no longer a multiple of 64k. So we have to break down
  294. * the limit here so it is a multiple of the incoming size.
  295. * There is no limitation here in terms of total size other
  296. * than the hardware though as the bits lost in the shift are
  297. * made up by MODIFY (== we can hit the whole address space).
  298. * X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
  299. */
  300. u32 shift = abs(dmod) >> 1;
  301. size_t ycnt = cnt >> (16 - shift);
  302. cnt = 1 << (16 - shift);
  303. bfin_write_MDMA_D0_Y_COUNT(ycnt);
  304. bfin_write_MDMA_S0_Y_COUNT(ycnt);
  305. bfin_write_MDMA_D0_Y_MODIFY(dmod);
  306. bfin_write_MDMA_S0_Y_MODIFY(smod);
  307. }
  308. bfin_write_MDMA_D0_START_ADDR(daddr);
  309. bfin_write_MDMA_D0_X_COUNT(cnt);
  310. bfin_write_MDMA_D0_X_MODIFY(dmod);
  311. bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
  312. bfin_write_MDMA_S0_START_ADDR(saddr);
  313. bfin_write_MDMA_S0_X_COUNT(cnt);
  314. bfin_write_MDMA_S0_X_MODIFY(smod);
  315. bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
  316. bfin_write_MDMA_S0_CONFIG(DMAEN | conf);
  317. bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | conf);
  318. spin_unlock_irqrestore(&mdma_lock, flags);
  319. SSYNC();
  320. while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
  321. if (bfin_read_MDMA_S0_CONFIG())
  322. continue;
  323. else
  324. return;
  325. bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
  326. bfin_write_MDMA_S0_CONFIG(0);
  327. bfin_write_MDMA_D0_CONFIG(0);
  328. }
  329. /**
  330. * _dma_memcpy - translate C memcpy settings into MDMA settings
  331. *
  332. * Handle all the high level steps before we touch the MDMA registers. So
  333. * handle direction, tweaking of sizes, and formatting of addresses.
  334. */
  335. static void *_dma_memcpy(void *pdst, const void *psrc, size_t size)
  336. {
  337. u32 conf, shift;
  338. s16 mod;
  339. unsigned long dst = (unsigned long)pdst;
  340. unsigned long src = (unsigned long)psrc;
  341. if (size == 0)
  342. return NULL;
  343. if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) {
  344. conf = WDSIZE_32;
  345. shift = 2;
  346. } else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) {
  347. conf = WDSIZE_16;
  348. shift = 1;
  349. } else {
  350. conf = WDSIZE_8;
  351. shift = 0;
  352. }
  353. /* If the two memory regions have a chance of overlapping, make
  354. * sure the memcpy still works as expected. Do this by having the
  355. * copy run backwards instead.
  356. */
  357. mod = 1 << shift;
  358. if (src < dst) {
  359. mod *= -1;
  360. dst += size + mod;
  361. src += size + mod;
  362. }
  363. size >>= shift;
  364. if (size > 0x10000)
  365. conf |= DMA2D;
  366. __dma_memcpy(dst, mod, src, mod, size, conf);
  367. return pdst;
  368. }
  369. /**
  370. * dma_memcpy - DMA memcpy under mutex lock
  371. *
  372. * Do not check arguments before starting the DMA memcpy. Break the transfer
  373. * up into two pieces. The first transfer is in multiples of 64k and the
  374. * second transfer is the piece smaller than 64k.
  375. */
  376. void *dma_memcpy(void *pdst, const void *psrc, size_t size)
  377. {
  378. unsigned long dst = (unsigned long)pdst;
  379. unsigned long src = (unsigned long)psrc;
  380. size_t bulk, rest;
  381. if (bfin_addr_dcacheable(src))
  382. blackfin_dcache_flush_range(src, src + size);
  383. if (bfin_addr_dcacheable(dst))
  384. blackfin_dcache_invalidate_range(dst, dst + size);
  385. bulk = size & ~0xffff;
  386. rest = size - bulk;
  387. if (bulk)
  388. _dma_memcpy(pdst, psrc, bulk);
  389. _dma_memcpy(pdst + bulk, psrc + bulk, rest);
  390. return pdst;
  391. }
  392. EXPORT_SYMBOL(dma_memcpy);
  393. /**
  394. * safe_dma_memcpy - DMA memcpy w/argument checking
  395. *
  396. * Verify arguments are safe before heading to dma_memcpy().
  397. */
  398. void *safe_dma_memcpy(void *dst, const void *src, size_t size)
  399. {
  400. if (!access_ok(VERIFY_WRITE, dst, size))
  401. return NULL;
  402. if (!access_ok(VERIFY_READ, src, size))
  403. return NULL;
  404. return dma_memcpy(dst, src, size);
  405. }
  406. EXPORT_SYMBOL(safe_dma_memcpy);
  407. static void _dma_out(unsigned long addr, unsigned long buf, unsigned short len,
  408. u16 size, u16 dma_size)
  409. {
  410. blackfin_dcache_flush_range(buf, buf + len * size);
  411. __dma_memcpy(addr, 0, buf, size, len, dma_size);
  412. }
  413. static void _dma_in(unsigned long addr, unsigned long buf, unsigned short len,
  414. u16 size, u16 dma_size)
  415. {
  416. blackfin_dcache_invalidate_range(buf, buf + len * size);
  417. __dma_memcpy(buf, size, addr, 0, len, dma_size);
  418. }
  419. #define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
  420. void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned short len) \
  421. { \
  422. _dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
  423. } \
  424. EXPORT_SYMBOL(dma_##io##s##bwl)
  425. MAKE_DMA_IO(out, b, 1, 8, const);
  426. MAKE_DMA_IO(in, b, 1, 8, );
  427. MAKE_DMA_IO(out, w, 2, 16, const);
  428. MAKE_DMA_IO(in, w, 2, 16, );
  429. MAKE_DMA_IO(out, l, 4, 32, const);
  430. MAKE_DMA_IO(in, l, 4, 32, );