swapfile.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224
  1. /*
  2. * linux/mm/swapfile.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/hugetlb.h>
  9. #include <linux/mman.h>
  10. #include <linux/slab.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/namei.h>
  16. #include <linux/shm.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/random.h>
  19. #include <linux/writeback.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/rmap.h>
  25. #include <linux/security.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/mutex.h>
  28. #include <linux/capability.h>
  29. #include <linux/syscalls.h>
  30. #include <linux/memcontrol.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/tlbflush.h>
  33. #include <linux/swapops.h>
  34. #include <linux/page_cgroup.h>
  35. static DEFINE_SPINLOCK(swap_lock);
  36. static unsigned int nr_swapfiles;
  37. long nr_swap_pages;
  38. long total_swap_pages;
  39. static int swap_overflow;
  40. static int least_priority;
  41. static const char Bad_file[] = "Bad swap file entry ";
  42. static const char Unused_file[] = "Unused swap file entry ";
  43. static const char Bad_offset[] = "Bad swap offset entry ";
  44. static const char Unused_offset[] = "Unused swap offset entry ";
  45. static struct swap_list_t swap_list = {-1, -1};
  46. static struct swap_info_struct *swap_info[MAX_SWAPFILES];
  47. static DEFINE_MUTEX(swapon_mutex);
  48. static inline unsigned char swap_count(unsigned char ent)
  49. {
  50. return ent & ~SWAP_HAS_CACHE;
  51. }
  52. /* returns 1 if swap entry is freed */
  53. static int
  54. __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  55. {
  56. swp_entry_t entry = swp_entry(si->type, offset);
  57. struct page *page;
  58. int ret = 0;
  59. page = find_get_page(&swapper_space, entry.val);
  60. if (!page)
  61. return 0;
  62. /*
  63. * This function is called from scan_swap_map() and it's called
  64. * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  65. * We have to use trylock for avoiding deadlock. This is a special
  66. * case and you should use try_to_free_swap() with explicit lock_page()
  67. * in usual operations.
  68. */
  69. if (trylock_page(page)) {
  70. ret = try_to_free_swap(page);
  71. unlock_page(page);
  72. }
  73. page_cache_release(page);
  74. return ret;
  75. }
  76. /*
  77. * We need this because the bdev->unplug_fn can sleep and we cannot
  78. * hold swap_lock while calling the unplug_fn. And swap_lock
  79. * cannot be turned into a mutex.
  80. */
  81. static DECLARE_RWSEM(swap_unplug_sem);
  82. void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
  83. {
  84. swp_entry_t entry;
  85. down_read(&swap_unplug_sem);
  86. entry.val = page_private(page);
  87. if (PageSwapCache(page)) {
  88. struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
  89. struct backing_dev_info *bdi;
  90. /*
  91. * If the page is removed from swapcache from under us (with a
  92. * racy try_to_unuse/swapoff) we need an additional reference
  93. * count to avoid reading garbage from page_private(page) above.
  94. * If the WARN_ON triggers during a swapoff it maybe the race
  95. * condition and it's harmless. However if it triggers without
  96. * swapoff it signals a problem.
  97. */
  98. WARN_ON(page_count(page) <= 1);
  99. bdi = bdev->bd_inode->i_mapping->backing_dev_info;
  100. blk_run_backing_dev(bdi, page);
  101. }
  102. up_read(&swap_unplug_sem);
  103. }
  104. /*
  105. * swapon tell device that all the old swap contents can be discarded,
  106. * to allow the swap device to optimize its wear-levelling.
  107. */
  108. static int discard_swap(struct swap_info_struct *si)
  109. {
  110. struct swap_extent *se;
  111. sector_t start_block;
  112. sector_t nr_blocks;
  113. int err = 0;
  114. /* Do not discard the swap header page! */
  115. se = &si->first_swap_extent;
  116. start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
  117. nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
  118. if (nr_blocks) {
  119. err = blkdev_issue_discard(si->bdev, start_block,
  120. nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
  121. if (err)
  122. return err;
  123. cond_resched();
  124. }
  125. list_for_each_entry(se, &si->first_swap_extent.list, list) {
  126. start_block = se->start_block << (PAGE_SHIFT - 9);
  127. nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
  128. err = blkdev_issue_discard(si->bdev, start_block,
  129. nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
  130. if (err)
  131. break;
  132. cond_resched();
  133. }
  134. return err; /* That will often be -EOPNOTSUPP */
  135. }
  136. /*
  137. * swap allocation tell device that a cluster of swap can now be discarded,
  138. * to allow the swap device to optimize its wear-levelling.
  139. */
  140. static void discard_swap_cluster(struct swap_info_struct *si,
  141. pgoff_t start_page, pgoff_t nr_pages)
  142. {
  143. struct swap_extent *se = si->curr_swap_extent;
  144. int found_extent = 0;
  145. while (nr_pages) {
  146. struct list_head *lh;
  147. if (se->start_page <= start_page &&
  148. start_page < se->start_page + se->nr_pages) {
  149. pgoff_t offset = start_page - se->start_page;
  150. sector_t start_block = se->start_block + offset;
  151. sector_t nr_blocks = se->nr_pages - offset;
  152. if (nr_blocks > nr_pages)
  153. nr_blocks = nr_pages;
  154. start_page += nr_blocks;
  155. nr_pages -= nr_blocks;
  156. if (!found_extent++)
  157. si->curr_swap_extent = se;
  158. start_block <<= PAGE_SHIFT - 9;
  159. nr_blocks <<= PAGE_SHIFT - 9;
  160. if (blkdev_issue_discard(si->bdev, start_block,
  161. nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
  162. break;
  163. }
  164. lh = se->list.next;
  165. se = list_entry(lh, struct swap_extent, list);
  166. }
  167. }
  168. static int wait_for_discard(void *word)
  169. {
  170. schedule();
  171. return 0;
  172. }
  173. #define SWAPFILE_CLUSTER 256
  174. #define LATENCY_LIMIT 256
  175. static inline unsigned long scan_swap_map(struct swap_info_struct *si,
  176. unsigned char usage)
  177. {
  178. unsigned long offset;
  179. unsigned long scan_base;
  180. unsigned long last_in_cluster = 0;
  181. int latency_ration = LATENCY_LIMIT;
  182. int found_free_cluster = 0;
  183. /*
  184. * We try to cluster swap pages by allocating them sequentially
  185. * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
  186. * way, however, we resort to first-free allocation, starting
  187. * a new cluster. This prevents us from scattering swap pages
  188. * all over the entire swap partition, so that we reduce
  189. * overall disk seek times between swap pages. -- sct
  190. * But we do now try to find an empty cluster. -Andrea
  191. * And we let swap pages go all over an SSD partition. Hugh
  192. */
  193. si->flags += SWP_SCANNING;
  194. scan_base = offset = si->cluster_next;
  195. if (unlikely(!si->cluster_nr--)) {
  196. if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
  197. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  198. goto checks;
  199. }
  200. if (si->flags & SWP_DISCARDABLE) {
  201. /*
  202. * Start range check on racing allocations, in case
  203. * they overlap the cluster we eventually decide on
  204. * (we scan without swap_lock to allow preemption).
  205. * It's hardly conceivable that cluster_nr could be
  206. * wrapped during our scan, but don't depend on it.
  207. */
  208. if (si->lowest_alloc)
  209. goto checks;
  210. si->lowest_alloc = si->max;
  211. si->highest_alloc = 0;
  212. }
  213. spin_unlock(&swap_lock);
  214. /*
  215. * If seek is expensive, start searching for new cluster from
  216. * start of partition, to minimize the span of allocated swap.
  217. * But if seek is cheap, search from our current position, so
  218. * that swap is allocated from all over the partition: if the
  219. * Flash Translation Layer only remaps within limited zones,
  220. * we don't want to wear out the first zone too quickly.
  221. */
  222. if (!(si->flags & SWP_SOLIDSTATE))
  223. scan_base = offset = si->lowest_bit;
  224. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  225. /* Locate the first empty (unaligned) cluster */
  226. for (; last_in_cluster <= si->highest_bit; offset++) {
  227. if (si->swap_map[offset])
  228. last_in_cluster = offset + SWAPFILE_CLUSTER;
  229. else if (offset == last_in_cluster) {
  230. spin_lock(&swap_lock);
  231. offset -= SWAPFILE_CLUSTER - 1;
  232. si->cluster_next = offset;
  233. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  234. found_free_cluster = 1;
  235. goto checks;
  236. }
  237. if (unlikely(--latency_ration < 0)) {
  238. cond_resched();
  239. latency_ration = LATENCY_LIMIT;
  240. }
  241. }
  242. offset = si->lowest_bit;
  243. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  244. /* Locate the first empty (unaligned) cluster */
  245. for (; last_in_cluster < scan_base; offset++) {
  246. if (si->swap_map[offset])
  247. last_in_cluster = offset + SWAPFILE_CLUSTER;
  248. else if (offset == last_in_cluster) {
  249. spin_lock(&swap_lock);
  250. offset -= SWAPFILE_CLUSTER - 1;
  251. si->cluster_next = offset;
  252. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  253. found_free_cluster = 1;
  254. goto checks;
  255. }
  256. if (unlikely(--latency_ration < 0)) {
  257. cond_resched();
  258. latency_ration = LATENCY_LIMIT;
  259. }
  260. }
  261. offset = scan_base;
  262. spin_lock(&swap_lock);
  263. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  264. si->lowest_alloc = 0;
  265. }
  266. checks:
  267. if (!(si->flags & SWP_WRITEOK))
  268. goto no_page;
  269. if (!si->highest_bit)
  270. goto no_page;
  271. if (offset > si->highest_bit)
  272. scan_base = offset = si->lowest_bit;
  273. /* reuse swap entry of cache-only swap if not busy. */
  274. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  275. int swap_was_freed;
  276. spin_unlock(&swap_lock);
  277. swap_was_freed = __try_to_reclaim_swap(si, offset);
  278. spin_lock(&swap_lock);
  279. /* entry was freed successfully, try to use this again */
  280. if (swap_was_freed)
  281. goto checks;
  282. goto scan; /* check next one */
  283. }
  284. if (si->swap_map[offset])
  285. goto scan;
  286. if (offset == si->lowest_bit)
  287. si->lowest_bit++;
  288. if (offset == si->highest_bit)
  289. si->highest_bit--;
  290. si->inuse_pages++;
  291. if (si->inuse_pages == si->pages) {
  292. si->lowest_bit = si->max;
  293. si->highest_bit = 0;
  294. }
  295. si->swap_map[offset] = usage;
  296. si->cluster_next = offset + 1;
  297. si->flags -= SWP_SCANNING;
  298. if (si->lowest_alloc) {
  299. /*
  300. * Only set when SWP_DISCARDABLE, and there's a scan
  301. * for a free cluster in progress or just completed.
  302. */
  303. if (found_free_cluster) {
  304. /*
  305. * To optimize wear-levelling, discard the
  306. * old data of the cluster, taking care not to
  307. * discard any of its pages that have already
  308. * been allocated by racing tasks (offset has
  309. * already stepped over any at the beginning).
  310. */
  311. if (offset < si->highest_alloc &&
  312. si->lowest_alloc <= last_in_cluster)
  313. last_in_cluster = si->lowest_alloc - 1;
  314. si->flags |= SWP_DISCARDING;
  315. spin_unlock(&swap_lock);
  316. if (offset < last_in_cluster)
  317. discard_swap_cluster(si, offset,
  318. last_in_cluster - offset + 1);
  319. spin_lock(&swap_lock);
  320. si->lowest_alloc = 0;
  321. si->flags &= ~SWP_DISCARDING;
  322. smp_mb(); /* wake_up_bit advises this */
  323. wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
  324. } else if (si->flags & SWP_DISCARDING) {
  325. /*
  326. * Delay using pages allocated by racing tasks
  327. * until the whole discard has been issued. We
  328. * could defer that delay until swap_writepage,
  329. * but it's easier to keep this self-contained.
  330. */
  331. spin_unlock(&swap_lock);
  332. wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
  333. wait_for_discard, TASK_UNINTERRUPTIBLE);
  334. spin_lock(&swap_lock);
  335. } else {
  336. /*
  337. * Note pages allocated by racing tasks while
  338. * scan for a free cluster is in progress, so
  339. * that its final discard can exclude them.
  340. */
  341. if (offset < si->lowest_alloc)
  342. si->lowest_alloc = offset;
  343. if (offset > si->highest_alloc)
  344. si->highest_alloc = offset;
  345. }
  346. }
  347. return offset;
  348. scan:
  349. spin_unlock(&swap_lock);
  350. while (++offset <= si->highest_bit) {
  351. if (!si->swap_map[offset]) {
  352. spin_lock(&swap_lock);
  353. goto checks;
  354. }
  355. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  356. spin_lock(&swap_lock);
  357. goto checks;
  358. }
  359. if (unlikely(--latency_ration < 0)) {
  360. cond_resched();
  361. latency_ration = LATENCY_LIMIT;
  362. }
  363. }
  364. offset = si->lowest_bit;
  365. while (++offset < scan_base) {
  366. if (!si->swap_map[offset]) {
  367. spin_lock(&swap_lock);
  368. goto checks;
  369. }
  370. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  371. spin_lock(&swap_lock);
  372. goto checks;
  373. }
  374. if (unlikely(--latency_ration < 0)) {
  375. cond_resched();
  376. latency_ration = LATENCY_LIMIT;
  377. }
  378. }
  379. spin_lock(&swap_lock);
  380. no_page:
  381. si->flags -= SWP_SCANNING;
  382. return 0;
  383. }
  384. swp_entry_t get_swap_page(void)
  385. {
  386. struct swap_info_struct *si;
  387. pgoff_t offset;
  388. int type, next;
  389. int wrapped = 0;
  390. spin_lock(&swap_lock);
  391. if (nr_swap_pages <= 0)
  392. goto noswap;
  393. nr_swap_pages--;
  394. for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
  395. si = swap_info[type];
  396. next = si->next;
  397. if (next < 0 ||
  398. (!wrapped && si->prio != swap_info[next]->prio)) {
  399. next = swap_list.head;
  400. wrapped++;
  401. }
  402. if (!si->highest_bit)
  403. continue;
  404. if (!(si->flags & SWP_WRITEOK))
  405. continue;
  406. swap_list.next = next;
  407. /* This is called for allocating swap entry for cache */
  408. offset = scan_swap_map(si, SWAP_HAS_CACHE);
  409. if (offset) {
  410. spin_unlock(&swap_lock);
  411. return swp_entry(type, offset);
  412. }
  413. next = swap_list.next;
  414. }
  415. nr_swap_pages++;
  416. noswap:
  417. spin_unlock(&swap_lock);
  418. return (swp_entry_t) {0};
  419. }
  420. /* The only caller of this function is now susupend routine */
  421. swp_entry_t get_swap_page_of_type(int type)
  422. {
  423. struct swap_info_struct *si;
  424. pgoff_t offset;
  425. spin_lock(&swap_lock);
  426. si = swap_info[type];
  427. if (si && (si->flags & SWP_WRITEOK)) {
  428. nr_swap_pages--;
  429. /* This is called for allocating swap entry, not cache */
  430. offset = scan_swap_map(si, 1);
  431. if (offset) {
  432. spin_unlock(&swap_lock);
  433. return swp_entry(type, offset);
  434. }
  435. nr_swap_pages++;
  436. }
  437. spin_unlock(&swap_lock);
  438. return (swp_entry_t) {0};
  439. }
  440. static struct swap_info_struct *swap_info_get(swp_entry_t entry)
  441. {
  442. struct swap_info_struct *p;
  443. unsigned long offset, type;
  444. if (!entry.val)
  445. goto out;
  446. type = swp_type(entry);
  447. if (type >= nr_swapfiles)
  448. goto bad_nofile;
  449. p = swap_info[type];
  450. if (!(p->flags & SWP_USED))
  451. goto bad_device;
  452. offset = swp_offset(entry);
  453. if (offset >= p->max)
  454. goto bad_offset;
  455. if (!p->swap_map[offset])
  456. goto bad_free;
  457. spin_lock(&swap_lock);
  458. return p;
  459. bad_free:
  460. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
  461. goto out;
  462. bad_offset:
  463. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
  464. goto out;
  465. bad_device:
  466. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
  467. goto out;
  468. bad_nofile:
  469. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
  470. out:
  471. return NULL;
  472. }
  473. static unsigned char swap_entry_free(struct swap_info_struct *p,
  474. swp_entry_t entry, unsigned char usage)
  475. {
  476. unsigned long offset = swp_offset(entry);
  477. unsigned char count;
  478. unsigned char has_cache;
  479. count = p->swap_map[offset];
  480. has_cache = count & SWAP_HAS_CACHE;
  481. count &= ~SWAP_HAS_CACHE;
  482. if (usage == SWAP_HAS_CACHE) {
  483. VM_BUG_ON(!has_cache);
  484. has_cache = 0;
  485. } else if (count < SWAP_MAP_MAX)
  486. count--;
  487. if (!count)
  488. mem_cgroup_uncharge_swap(entry);
  489. usage = count | has_cache;
  490. p->swap_map[offset] = usage;
  491. /* free if no reference */
  492. if (!usage) {
  493. if (offset < p->lowest_bit)
  494. p->lowest_bit = offset;
  495. if (offset > p->highest_bit)
  496. p->highest_bit = offset;
  497. if (swap_list.next >= 0 &&
  498. p->prio > swap_info[swap_list.next]->prio)
  499. swap_list.next = p->type;
  500. nr_swap_pages++;
  501. p->inuse_pages--;
  502. }
  503. return usage;
  504. }
  505. /*
  506. * Caller has made sure that the swapdevice corresponding to entry
  507. * is still around or has not been recycled.
  508. */
  509. void swap_free(swp_entry_t entry)
  510. {
  511. struct swap_info_struct *p;
  512. p = swap_info_get(entry);
  513. if (p) {
  514. swap_entry_free(p, entry, 1);
  515. spin_unlock(&swap_lock);
  516. }
  517. }
  518. /*
  519. * Called after dropping swapcache to decrease refcnt to swap entries.
  520. */
  521. void swapcache_free(swp_entry_t entry, struct page *page)
  522. {
  523. struct swap_info_struct *p;
  524. unsigned char count;
  525. p = swap_info_get(entry);
  526. if (p) {
  527. count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
  528. if (page)
  529. mem_cgroup_uncharge_swapcache(page, entry, count != 0);
  530. spin_unlock(&swap_lock);
  531. }
  532. }
  533. /*
  534. * How many references to page are currently swapped out?
  535. */
  536. static inline int page_swapcount(struct page *page)
  537. {
  538. int count = 0;
  539. struct swap_info_struct *p;
  540. swp_entry_t entry;
  541. entry.val = page_private(page);
  542. p = swap_info_get(entry);
  543. if (p) {
  544. count = swap_count(p->swap_map[swp_offset(entry)]);
  545. spin_unlock(&swap_lock);
  546. }
  547. return count;
  548. }
  549. /*
  550. * We can write to an anon page without COW if there are no other references
  551. * to it. And as a side-effect, free up its swap: because the old content
  552. * on disk will never be read, and seeking back there to write new content
  553. * later would only waste time away from clustering.
  554. */
  555. int reuse_swap_page(struct page *page)
  556. {
  557. int count;
  558. VM_BUG_ON(!PageLocked(page));
  559. count = page_mapcount(page);
  560. if (count <= 1 && PageSwapCache(page)) {
  561. count += page_swapcount(page);
  562. if (count == 1 && !PageWriteback(page)) {
  563. delete_from_swap_cache(page);
  564. SetPageDirty(page);
  565. }
  566. }
  567. return count == 1;
  568. }
  569. /*
  570. * If swap is getting full, or if there are no more mappings of this page,
  571. * then try_to_free_swap is called to free its swap space.
  572. */
  573. int try_to_free_swap(struct page *page)
  574. {
  575. VM_BUG_ON(!PageLocked(page));
  576. if (!PageSwapCache(page))
  577. return 0;
  578. if (PageWriteback(page))
  579. return 0;
  580. if (page_swapcount(page))
  581. return 0;
  582. delete_from_swap_cache(page);
  583. SetPageDirty(page);
  584. return 1;
  585. }
  586. /*
  587. * Free the swap entry like above, but also try to
  588. * free the page cache entry if it is the last user.
  589. */
  590. int free_swap_and_cache(swp_entry_t entry)
  591. {
  592. struct swap_info_struct *p;
  593. struct page *page = NULL;
  594. if (non_swap_entry(entry))
  595. return 1;
  596. p = swap_info_get(entry);
  597. if (p) {
  598. if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
  599. page = find_get_page(&swapper_space, entry.val);
  600. if (page && !trylock_page(page)) {
  601. page_cache_release(page);
  602. page = NULL;
  603. }
  604. }
  605. spin_unlock(&swap_lock);
  606. }
  607. if (page) {
  608. /*
  609. * Not mapped elsewhere, or swap space full? Free it!
  610. * Also recheck PageSwapCache now page is locked (above).
  611. */
  612. if (PageSwapCache(page) && !PageWriteback(page) &&
  613. (!page_mapped(page) || vm_swap_full())) {
  614. delete_from_swap_cache(page);
  615. SetPageDirty(page);
  616. }
  617. unlock_page(page);
  618. page_cache_release(page);
  619. }
  620. return p != NULL;
  621. }
  622. #ifdef CONFIG_HIBERNATION
  623. /*
  624. * Find the swap type that corresponds to given device (if any).
  625. *
  626. * @offset - number of the PAGE_SIZE-sized block of the device, starting
  627. * from 0, in which the swap header is expected to be located.
  628. *
  629. * This is needed for the suspend to disk (aka swsusp).
  630. */
  631. int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
  632. {
  633. struct block_device *bdev = NULL;
  634. int type;
  635. if (device)
  636. bdev = bdget(device);
  637. spin_lock(&swap_lock);
  638. for (type = 0; type < nr_swapfiles; type++) {
  639. struct swap_info_struct *sis = swap_info[type];
  640. if (!(sis->flags & SWP_WRITEOK))
  641. continue;
  642. if (!bdev) {
  643. if (bdev_p)
  644. *bdev_p = bdgrab(sis->bdev);
  645. spin_unlock(&swap_lock);
  646. return type;
  647. }
  648. if (bdev == sis->bdev) {
  649. struct swap_extent *se = &sis->first_swap_extent;
  650. if (se->start_block == offset) {
  651. if (bdev_p)
  652. *bdev_p = bdgrab(sis->bdev);
  653. spin_unlock(&swap_lock);
  654. bdput(bdev);
  655. return type;
  656. }
  657. }
  658. }
  659. spin_unlock(&swap_lock);
  660. if (bdev)
  661. bdput(bdev);
  662. return -ENODEV;
  663. }
  664. /*
  665. * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
  666. * corresponding to given index in swap_info (swap type).
  667. */
  668. sector_t swapdev_block(int type, pgoff_t offset)
  669. {
  670. struct block_device *bdev;
  671. if ((unsigned int)type >= nr_swapfiles)
  672. return 0;
  673. if (!(swap_info[type]->flags & SWP_WRITEOK))
  674. return 0;
  675. return map_swap_page(swp_entry(type, offset), &bdev);
  676. }
  677. /*
  678. * Return either the total number of swap pages of given type, or the number
  679. * of free pages of that type (depending on @free)
  680. *
  681. * This is needed for software suspend
  682. */
  683. unsigned int count_swap_pages(int type, int free)
  684. {
  685. unsigned int n = 0;
  686. spin_lock(&swap_lock);
  687. if ((unsigned int)type < nr_swapfiles) {
  688. struct swap_info_struct *sis = swap_info[type];
  689. if (sis->flags & SWP_WRITEOK) {
  690. n = sis->pages;
  691. if (free)
  692. n -= sis->inuse_pages;
  693. }
  694. }
  695. spin_unlock(&swap_lock);
  696. return n;
  697. }
  698. #endif /* CONFIG_HIBERNATION */
  699. /*
  700. * No need to decide whether this PTE shares the swap entry with others,
  701. * just let do_wp_page work it out if a write is requested later - to
  702. * force COW, vm_page_prot omits write permission from any private vma.
  703. */
  704. static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
  705. unsigned long addr, swp_entry_t entry, struct page *page)
  706. {
  707. struct mem_cgroup *ptr = NULL;
  708. spinlock_t *ptl;
  709. pte_t *pte;
  710. int ret = 1;
  711. if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
  712. ret = -ENOMEM;
  713. goto out_nolock;
  714. }
  715. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  716. if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
  717. if (ret > 0)
  718. mem_cgroup_cancel_charge_swapin(ptr);
  719. ret = 0;
  720. goto out;
  721. }
  722. inc_mm_counter(vma->vm_mm, anon_rss);
  723. get_page(page);
  724. set_pte_at(vma->vm_mm, addr, pte,
  725. pte_mkold(mk_pte(page, vma->vm_page_prot)));
  726. page_add_anon_rmap(page, vma, addr);
  727. mem_cgroup_commit_charge_swapin(page, ptr);
  728. swap_free(entry);
  729. /*
  730. * Move the page to the active list so it is not
  731. * immediately swapped out again after swapon.
  732. */
  733. activate_page(page);
  734. out:
  735. pte_unmap_unlock(pte, ptl);
  736. out_nolock:
  737. return ret;
  738. }
  739. static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  740. unsigned long addr, unsigned long end,
  741. swp_entry_t entry, struct page *page)
  742. {
  743. pte_t swp_pte = swp_entry_to_pte(entry);
  744. pte_t *pte;
  745. int ret = 0;
  746. /*
  747. * We don't actually need pte lock while scanning for swp_pte: since
  748. * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
  749. * page table while we're scanning; though it could get zapped, and on
  750. * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
  751. * of unmatched parts which look like swp_pte, so unuse_pte must
  752. * recheck under pte lock. Scanning without pte lock lets it be
  753. * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
  754. */
  755. pte = pte_offset_map(pmd, addr);
  756. do {
  757. /*
  758. * swapoff spends a _lot_ of time in this loop!
  759. * Test inline before going to call unuse_pte.
  760. */
  761. if (unlikely(pte_same(*pte, swp_pte))) {
  762. pte_unmap(pte);
  763. ret = unuse_pte(vma, pmd, addr, entry, page);
  764. if (ret)
  765. goto out;
  766. pte = pte_offset_map(pmd, addr);
  767. }
  768. } while (pte++, addr += PAGE_SIZE, addr != end);
  769. pte_unmap(pte - 1);
  770. out:
  771. return ret;
  772. }
  773. static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  774. unsigned long addr, unsigned long end,
  775. swp_entry_t entry, struct page *page)
  776. {
  777. pmd_t *pmd;
  778. unsigned long next;
  779. int ret;
  780. pmd = pmd_offset(pud, addr);
  781. do {
  782. next = pmd_addr_end(addr, end);
  783. if (pmd_none_or_clear_bad(pmd))
  784. continue;
  785. ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
  786. if (ret)
  787. return ret;
  788. } while (pmd++, addr = next, addr != end);
  789. return 0;
  790. }
  791. static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  792. unsigned long addr, unsigned long end,
  793. swp_entry_t entry, struct page *page)
  794. {
  795. pud_t *pud;
  796. unsigned long next;
  797. int ret;
  798. pud = pud_offset(pgd, addr);
  799. do {
  800. next = pud_addr_end(addr, end);
  801. if (pud_none_or_clear_bad(pud))
  802. continue;
  803. ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
  804. if (ret)
  805. return ret;
  806. } while (pud++, addr = next, addr != end);
  807. return 0;
  808. }
  809. static int unuse_vma(struct vm_area_struct *vma,
  810. swp_entry_t entry, struct page *page)
  811. {
  812. pgd_t *pgd;
  813. unsigned long addr, end, next;
  814. int ret;
  815. if (page->mapping) {
  816. addr = page_address_in_vma(page, vma);
  817. if (addr == -EFAULT)
  818. return 0;
  819. else
  820. end = addr + PAGE_SIZE;
  821. } else {
  822. addr = vma->vm_start;
  823. end = vma->vm_end;
  824. }
  825. pgd = pgd_offset(vma->vm_mm, addr);
  826. do {
  827. next = pgd_addr_end(addr, end);
  828. if (pgd_none_or_clear_bad(pgd))
  829. continue;
  830. ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
  831. if (ret)
  832. return ret;
  833. } while (pgd++, addr = next, addr != end);
  834. return 0;
  835. }
  836. static int unuse_mm(struct mm_struct *mm,
  837. swp_entry_t entry, struct page *page)
  838. {
  839. struct vm_area_struct *vma;
  840. int ret = 0;
  841. if (!down_read_trylock(&mm->mmap_sem)) {
  842. /*
  843. * Activate page so shrink_inactive_list is unlikely to unmap
  844. * its ptes while lock is dropped, so swapoff can make progress.
  845. */
  846. activate_page(page);
  847. unlock_page(page);
  848. down_read(&mm->mmap_sem);
  849. lock_page(page);
  850. }
  851. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  852. if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
  853. break;
  854. }
  855. up_read(&mm->mmap_sem);
  856. return (ret < 0)? ret: 0;
  857. }
  858. /*
  859. * Scan swap_map from current position to next entry still in use.
  860. * Recycle to start on reaching the end, returning 0 when empty.
  861. */
  862. static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  863. unsigned int prev)
  864. {
  865. unsigned int max = si->max;
  866. unsigned int i = prev;
  867. unsigned char count;
  868. /*
  869. * No need for swap_lock here: we're just looking
  870. * for whether an entry is in use, not modifying it; false
  871. * hits are okay, and sys_swapoff() has already prevented new
  872. * allocations from this area (while holding swap_lock).
  873. */
  874. for (;;) {
  875. if (++i >= max) {
  876. if (!prev) {
  877. i = 0;
  878. break;
  879. }
  880. /*
  881. * No entries in use at top of swap_map,
  882. * loop back to start and recheck there.
  883. */
  884. max = prev + 1;
  885. prev = 0;
  886. i = 1;
  887. }
  888. count = si->swap_map[i];
  889. if (count && swap_count(count) != SWAP_MAP_BAD)
  890. break;
  891. }
  892. return i;
  893. }
  894. /*
  895. * We completely avoid races by reading each swap page in advance,
  896. * and then search for the process using it. All the necessary
  897. * page table adjustments can then be made atomically.
  898. */
  899. static int try_to_unuse(unsigned int type)
  900. {
  901. struct swap_info_struct *si = swap_info[type];
  902. struct mm_struct *start_mm;
  903. unsigned char *swap_map;
  904. unsigned char swcount;
  905. struct page *page;
  906. swp_entry_t entry;
  907. unsigned int i = 0;
  908. int retval = 0;
  909. int reset_overflow = 0;
  910. int shmem;
  911. /*
  912. * When searching mms for an entry, a good strategy is to
  913. * start at the first mm we freed the previous entry from
  914. * (though actually we don't notice whether we or coincidence
  915. * freed the entry). Initialize this start_mm with a hold.
  916. *
  917. * A simpler strategy would be to start at the last mm we
  918. * freed the previous entry from; but that would take less
  919. * advantage of mmlist ordering, which clusters forked mms
  920. * together, child after parent. If we race with dup_mmap(), we
  921. * prefer to resolve parent before child, lest we miss entries
  922. * duplicated after we scanned child: using last mm would invert
  923. * that. Though it's only a serious concern when an overflowed
  924. * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
  925. */
  926. start_mm = &init_mm;
  927. atomic_inc(&init_mm.mm_users);
  928. /*
  929. * Keep on scanning until all entries have gone. Usually,
  930. * one pass through swap_map is enough, but not necessarily:
  931. * there are races when an instance of an entry might be missed.
  932. */
  933. while ((i = find_next_to_unuse(si, i)) != 0) {
  934. if (signal_pending(current)) {
  935. retval = -EINTR;
  936. break;
  937. }
  938. /*
  939. * Get a page for the entry, using the existing swap
  940. * cache page if there is one. Otherwise, get a clean
  941. * page and read the swap into it.
  942. */
  943. swap_map = &si->swap_map[i];
  944. entry = swp_entry(type, i);
  945. page = read_swap_cache_async(entry,
  946. GFP_HIGHUSER_MOVABLE, NULL, 0);
  947. if (!page) {
  948. /*
  949. * Either swap_duplicate() failed because entry
  950. * has been freed independently, and will not be
  951. * reused since sys_swapoff() already disabled
  952. * allocation from here, or alloc_page() failed.
  953. */
  954. if (!*swap_map)
  955. continue;
  956. retval = -ENOMEM;
  957. break;
  958. }
  959. /*
  960. * Don't hold on to start_mm if it looks like exiting.
  961. */
  962. if (atomic_read(&start_mm->mm_users) == 1) {
  963. mmput(start_mm);
  964. start_mm = &init_mm;
  965. atomic_inc(&init_mm.mm_users);
  966. }
  967. /*
  968. * Wait for and lock page. When do_swap_page races with
  969. * try_to_unuse, do_swap_page can handle the fault much
  970. * faster than try_to_unuse can locate the entry. This
  971. * apparently redundant "wait_on_page_locked" lets try_to_unuse
  972. * defer to do_swap_page in such a case - in some tests,
  973. * do_swap_page and try_to_unuse repeatedly compete.
  974. */
  975. wait_on_page_locked(page);
  976. wait_on_page_writeback(page);
  977. lock_page(page);
  978. wait_on_page_writeback(page);
  979. /*
  980. * Remove all references to entry.
  981. * Whenever we reach init_mm, there's no address space
  982. * to search, but use it as a reminder to search shmem.
  983. */
  984. shmem = 0;
  985. swcount = *swap_map;
  986. if (swap_count(swcount)) {
  987. if (start_mm == &init_mm)
  988. shmem = shmem_unuse(entry, page);
  989. else
  990. retval = unuse_mm(start_mm, entry, page);
  991. }
  992. if (swap_count(*swap_map)) {
  993. int set_start_mm = (*swap_map >= swcount);
  994. struct list_head *p = &start_mm->mmlist;
  995. struct mm_struct *new_start_mm = start_mm;
  996. struct mm_struct *prev_mm = start_mm;
  997. struct mm_struct *mm;
  998. atomic_inc(&new_start_mm->mm_users);
  999. atomic_inc(&prev_mm->mm_users);
  1000. spin_lock(&mmlist_lock);
  1001. while (swap_count(*swap_map) && !retval && !shmem &&
  1002. (p = p->next) != &start_mm->mmlist) {
  1003. mm = list_entry(p, struct mm_struct, mmlist);
  1004. if (!atomic_inc_not_zero(&mm->mm_users))
  1005. continue;
  1006. spin_unlock(&mmlist_lock);
  1007. mmput(prev_mm);
  1008. prev_mm = mm;
  1009. cond_resched();
  1010. swcount = *swap_map;
  1011. if (!swap_count(swcount)) /* any usage ? */
  1012. ;
  1013. else if (mm == &init_mm) {
  1014. set_start_mm = 1;
  1015. shmem = shmem_unuse(entry, page);
  1016. } else
  1017. retval = unuse_mm(mm, entry, page);
  1018. if (set_start_mm && *swap_map < swcount) {
  1019. mmput(new_start_mm);
  1020. atomic_inc(&mm->mm_users);
  1021. new_start_mm = mm;
  1022. set_start_mm = 0;
  1023. }
  1024. spin_lock(&mmlist_lock);
  1025. }
  1026. spin_unlock(&mmlist_lock);
  1027. mmput(prev_mm);
  1028. mmput(start_mm);
  1029. start_mm = new_start_mm;
  1030. }
  1031. if (shmem) {
  1032. /* page has already been unlocked and released */
  1033. if (shmem > 0)
  1034. continue;
  1035. retval = shmem;
  1036. break;
  1037. }
  1038. if (retval) {
  1039. unlock_page(page);
  1040. page_cache_release(page);
  1041. break;
  1042. }
  1043. /*
  1044. * How could swap count reach 0x7ffe ?
  1045. * There's no way to repeat a swap page within an mm
  1046. * (except in shmem, where it's the shared object which takes
  1047. * the reference count)?
  1048. * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
  1049. * short is too small....)
  1050. * If that's wrong, then we should worry more about
  1051. * exit_mmap() and do_munmap() cases described above:
  1052. * we might be resetting SWAP_MAP_MAX too early here.
  1053. *
  1054. * Yes, that's wrong: though very unlikely, swap count 0x7ffe
  1055. * could surely occur if pid_max raised from PID_MAX_DEFAULT;
  1056. * and we are now lowering SWAP_MAP_MAX to 0x7e, making it
  1057. * much easier to reach. But the next patch will fix that.
  1058. *
  1059. * We know "Undead"s can happen, they're okay, so don't
  1060. * report them; but do report if we reset SWAP_MAP_MAX.
  1061. */
  1062. /* We might release the lock_page() in unuse_mm(). */
  1063. if (!PageSwapCache(page) || page_private(page) != entry.val)
  1064. goto retry;
  1065. if (swap_count(*swap_map) == SWAP_MAP_MAX) {
  1066. spin_lock(&swap_lock);
  1067. *swap_map = SWAP_HAS_CACHE;
  1068. spin_unlock(&swap_lock);
  1069. reset_overflow = 1;
  1070. }
  1071. /*
  1072. * If a reference remains (rare), we would like to leave
  1073. * the page in the swap cache; but try_to_unmap could
  1074. * then re-duplicate the entry once we drop page lock,
  1075. * so we might loop indefinitely; also, that page could
  1076. * not be swapped out to other storage meanwhile. So:
  1077. * delete from cache even if there's another reference,
  1078. * after ensuring that the data has been saved to disk -
  1079. * since if the reference remains (rarer), it will be
  1080. * read from disk into another page. Splitting into two
  1081. * pages would be incorrect if swap supported "shared
  1082. * private" pages, but they are handled by tmpfs files.
  1083. */
  1084. if (swap_count(*swap_map) &&
  1085. PageDirty(page) && PageSwapCache(page)) {
  1086. struct writeback_control wbc = {
  1087. .sync_mode = WB_SYNC_NONE,
  1088. };
  1089. swap_writepage(page, &wbc);
  1090. lock_page(page);
  1091. wait_on_page_writeback(page);
  1092. }
  1093. /*
  1094. * It is conceivable that a racing task removed this page from
  1095. * swap cache just before we acquired the page lock at the top,
  1096. * or while we dropped it in unuse_mm(). The page might even
  1097. * be back in swap cache on another swap area: that we must not
  1098. * delete, since it may not have been written out to swap yet.
  1099. */
  1100. if (PageSwapCache(page) &&
  1101. likely(page_private(page) == entry.val))
  1102. delete_from_swap_cache(page);
  1103. /*
  1104. * So we could skip searching mms once swap count went
  1105. * to 1, we did not mark any present ptes as dirty: must
  1106. * mark page dirty so shrink_page_list will preserve it.
  1107. */
  1108. SetPageDirty(page);
  1109. retry:
  1110. unlock_page(page);
  1111. page_cache_release(page);
  1112. /*
  1113. * Make sure that we aren't completely killing
  1114. * interactive performance.
  1115. */
  1116. cond_resched();
  1117. }
  1118. mmput(start_mm);
  1119. if (reset_overflow) {
  1120. printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
  1121. swap_overflow = 0;
  1122. }
  1123. return retval;
  1124. }
  1125. /*
  1126. * After a successful try_to_unuse, if no swap is now in use, we know
  1127. * we can empty the mmlist. swap_lock must be held on entry and exit.
  1128. * Note that mmlist_lock nests inside swap_lock, and an mm must be
  1129. * added to the mmlist just after page_duplicate - before would be racy.
  1130. */
  1131. static void drain_mmlist(void)
  1132. {
  1133. struct list_head *p, *next;
  1134. unsigned int type;
  1135. for (type = 0; type < nr_swapfiles; type++)
  1136. if (swap_info[type]->inuse_pages)
  1137. return;
  1138. spin_lock(&mmlist_lock);
  1139. list_for_each_safe(p, next, &init_mm.mmlist)
  1140. list_del_init(p);
  1141. spin_unlock(&mmlist_lock);
  1142. }
  1143. /*
  1144. * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
  1145. * corresponds to page offset `offset'. Note that the type of this function
  1146. * is sector_t, but it returns page offset into the bdev, not sector offset.
  1147. */
  1148. sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
  1149. {
  1150. struct swap_info_struct *sis;
  1151. struct swap_extent *start_se;
  1152. struct swap_extent *se;
  1153. pgoff_t offset;
  1154. sis = swap_info[swp_type(entry)];
  1155. *bdev = sis->bdev;
  1156. offset = swp_offset(entry);
  1157. start_se = sis->curr_swap_extent;
  1158. se = start_se;
  1159. for ( ; ; ) {
  1160. struct list_head *lh;
  1161. if (se->start_page <= offset &&
  1162. offset < (se->start_page + se->nr_pages)) {
  1163. return se->start_block + (offset - se->start_page);
  1164. }
  1165. lh = se->list.next;
  1166. se = list_entry(lh, struct swap_extent, list);
  1167. sis->curr_swap_extent = se;
  1168. BUG_ON(se == start_se); /* It *must* be present */
  1169. }
  1170. }
  1171. /*
  1172. * Free all of a swapdev's extent information
  1173. */
  1174. static void destroy_swap_extents(struct swap_info_struct *sis)
  1175. {
  1176. while (!list_empty(&sis->first_swap_extent.list)) {
  1177. struct swap_extent *se;
  1178. se = list_entry(sis->first_swap_extent.list.next,
  1179. struct swap_extent, list);
  1180. list_del(&se->list);
  1181. kfree(se);
  1182. }
  1183. }
  1184. /*
  1185. * Add a block range (and the corresponding page range) into this swapdev's
  1186. * extent list. The extent list is kept sorted in page order.
  1187. *
  1188. * This function rather assumes that it is called in ascending page order.
  1189. */
  1190. static int
  1191. add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
  1192. unsigned long nr_pages, sector_t start_block)
  1193. {
  1194. struct swap_extent *se;
  1195. struct swap_extent *new_se;
  1196. struct list_head *lh;
  1197. if (start_page == 0) {
  1198. se = &sis->first_swap_extent;
  1199. sis->curr_swap_extent = se;
  1200. se->start_page = 0;
  1201. se->nr_pages = nr_pages;
  1202. se->start_block = start_block;
  1203. return 1;
  1204. } else {
  1205. lh = sis->first_swap_extent.list.prev; /* Highest extent */
  1206. se = list_entry(lh, struct swap_extent, list);
  1207. BUG_ON(se->start_page + se->nr_pages != start_page);
  1208. if (se->start_block + se->nr_pages == start_block) {
  1209. /* Merge it */
  1210. se->nr_pages += nr_pages;
  1211. return 0;
  1212. }
  1213. }
  1214. /*
  1215. * No merge. Insert a new extent, preserving ordering.
  1216. */
  1217. new_se = kmalloc(sizeof(*se), GFP_KERNEL);
  1218. if (new_se == NULL)
  1219. return -ENOMEM;
  1220. new_se->start_page = start_page;
  1221. new_se->nr_pages = nr_pages;
  1222. new_se->start_block = start_block;
  1223. list_add_tail(&new_se->list, &sis->first_swap_extent.list);
  1224. return 1;
  1225. }
  1226. /*
  1227. * A `swap extent' is a simple thing which maps a contiguous range of pages
  1228. * onto a contiguous range of disk blocks. An ordered list of swap extents
  1229. * is built at swapon time and is then used at swap_writepage/swap_readpage
  1230. * time for locating where on disk a page belongs.
  1231. *
  1232. * If the swapfile is an S_ISBLK block device, a single extent is installed.
  1233. * This is done so that the main operating code can treat S_ISBLK and S_ISREG
  1234. * swap files identically.
  1235. *
  1236. * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
  1237. * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
  1238. * swapfiles are handled *identically* after swapon time.
  1239. *
  1240. * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
  1241. * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
  1242. * some stray blocks are found which do not fall within the PAGE_SIZE alignment
  1243. * requirements, they are simply tossed out - we will never use those blocks
  1244. * for swapping.
  1245. *
  1246. * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
  1247. * prevents root from shooting her foot off by ftruncating an in-use swapfile,
  1248. * which will scribble on the fs.
  1249. *
  1250. * The amount of disk space which a single swap extent represents varies.
  1251. * Typically it is in the 1-4 megabyte range. So we can have hundreds of
  1252. * extents in the list. To avoid much list walking, we cache the previous
  1253. * search location in `curr_swap_extent', and start new searches from there.
  1254. * This is extremely effective. The average number of iterations in
  1255. * map_swap_page() has been measured at about 0.3 per page. - akpm.
  1256. */
  1257. static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
  1258. {
  1259. struct inode *inode;
  1260. unsigned blocks_per_page;
  1261. unsigned long page_no;
  1262. unsigned blkbits;
  1263. sector_t probe_block;
  1264. sector_t last_block;
  1265. sector_t lowest_block = -1;
  1266. sector_t highest_block = 0;
  1267. int nr_extents = 0;
  1268. int ret;
  1269. inode = sis->swap_file->f_mapping->host;
  1270. if (S_ISBLK(inode->i_mode)) {
  1271. ret = add_swap_extent(sis, 0, sis->max, 0);
  1272. *span = sis->pages;
  1273. goto out;
  1274. }
  1275. blkbits = inode->i_blkbits;
  1276. blocks_per_page = PAGE_SIZE >> blkbits;
  1277. /*
  1278. * Map all the blocks into the extent list. This code doesn't try
  1279. * to be very smart.
  1280. */
  1281. probe_block = 0;
  1282. page_no = 0;
  1283. last_block = i_size_read(inode) >> blkbits;
  1284. while ((probe_block + blocks_per_page) <= last_block &&
  1285. page_no < sis->max) {
  1286. unsigned block_in_page;
  1287. sector_t first_block;
  1288. first_block = bmap(inode, probe_block);
  1289. if (first_block == 0)
  1290. goto bad_bmap;
  1291. /*
  1292. * It must be PAGE_SIZE aligned on-disk
  1293. */
  1294. if (first_block & (blocks_per_page - 1)) {
  1295. probe_block++;
  1296. goto reprobe;
  1297. }
  1298. for (block_in_page = 1; block_in_page < blocks_per_page;
  1299. block_in_page++) {
  1300. sector_t block;
  1301. block = bmap(inode, probe_block + block_in_page);
  1302. if (block == 0)
  1303. goto bad_bmap;
  1304. if (block != first_block + block_in_page) {
  1305. /* Discontiguity */
  1306. probe_block++;
  1307. goto reprobe;
  1308. }
  1309. }
  1310. first_block >>= (PAGE_SHIFT - blkbits);
  1311. if (page_no) { /* exclude the header page */
  1312. if (first_block < lowest_block)
  1313. lowest_block = first_block;
  1314. if (first_block > highest_block)
  1315. highest_block = first_block;
  1316. }
  1317. /*
  1318. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  1319. */
  1320. ret = add_swap_extent(sis, page_no, 1, first_block);
  1321. if (ret < 0)
  1322. goto out;
  1323. nr_extents += ret;
  1324. page_no++;
  1325. probe_block += blocks_per_page;
  1326. reprobe:
  1327. continue;
  1328. }
  1329. ret = nr_extents;
  1330. *span = 1 + highest_block - lowest_block;
  1331. if (page_no == 0)
  1332. page_no = 1; /* force Empty message */
  1333. sis->max = page_no;
  1334. sis->pages = page_no - 1;
  1335. sis->highest_bit = page_no - 1;
  1336. out:
  1337. return ret;
  1338. bad_bmap:
  1339. printk(KERN_ERR "swapon: swapfile has holes\n");
  1340. ret = -EINVAL;
  1341. goto out;
  1342. }
  1343. SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
  1344. {
  1345. struct swap_info_struct *p = NULL;
  1346. unsigned char *swap_map;
  1347. struct file *swap_file, *victim;
  1348. struct address_space *mapping;
  1349. struct inode *inode;
  1350. char *pathname;
  1351. int i, type, prev;
  1352. int err;
  1353. if (!capable(CAP_SYS_ADMIN))
  1354. return -EPERM;
  1355. pathname = getname(specialfile);
  1356. err = PTR_ERR(pathname);
  1357. if (IS_ERR(pathname))
  1358. goto out;
  1359. victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
  1360. putname(pathname);
  1361. err = PTR_ERR(victim);
  1362. if (IS_ERR(victim))
  1363. goto out;
  1364. mapping = victim->f_mapping;
  1365. prev = -1;
  1366. spin_lock(&swap_lock);
  1367. for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
  1368. p = swap_info[type];
  1369. if (p->flags & SWP_WRITEOK) {
  1370. if (p->swap_file->f_mapping == mapping)
  1371. break;
  1372. }
  1373. prev = type;
  1374. }
  1375. if (type < 0) {
  1376. err = -EINVAL;
  1377. spin_unlock(&swap_lock);
  1378. goto out_dput;
  1379. }
  1380. if (!security_vm_enough_memory(p->pages))
  1381. vm_unacct_memory(p->pages);
  1382. else {
  1383. err = -ENOMEM;
  1384. spin_unlock(&swap_lock);
  1385. goto out_dput;
  1386. }
  1387. if (prev < 0)
  1388. swap_list.head = p->next;
  1389. else
  1390. swap_info[prev]->next = p->next;
  1391. if (type == swap_list.next) {
  1392. /* just pick something that's safe... */
  1393. swap_list.next = swap_list.head;
  1394. }
  1395. if (p->prio < 0) {
  1396. for (i = p->next; i >= 0; i = swap_info[i]->next)
  1397. swap_info[i]->prio = p->prio--;
  1398. least_priority++;
  1399. }
  1400. nr_swap_pages -= p->pages;
  1401. total_swap_pages -= p->pages;
  1402. p->flags &= ~SWP_WRITEOK;
  1403. spin_unlock(&swap_lock);
  1404. current->flags |= PF_OOM_ORIGIN;
  1405. err = try_to_unuse(type);
  1406. current->flags &= ~PF_OOM_ORIGIN;
  1407. if (err) {
  1408. /* re-insert swap space back into swap_list */
  1409. spin_lock(&swap_lock);
  1410. if (p->prio < 0)
  1411. p->prio = --least_priority;
  1412. prev = -1;
  1413. for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
  1414. if (p->prio >= swap_info[i]->prio)
  1415. break;
  1416. prev = i;
  1417. }
  1418. p->next = i;
  1419. if (prev < 0)
  1420. swap_list.head = swap_list.next = type;
  1421. else
  1422. swap_info[prev]->next = type;
  1423. nr_swap_pages += p->pages;
  1424. total_swap_pages += p->pages;
  1425. p->flags |= SWP_WRITEOK;
  1426. spin_unlock(&swap_lock);
  1427. goto out_dput;
  1428. }
  1429. /* wait for any unplug function to finish */
  1430. down_write(&swap_unplug_sem);
  1431. up_write(&swap_unplug_sem);
  1432. destroy_swap_extents(p);
  1433. mutex_lock(&swapon_mutex);
  1434. spin_lock(&swap_lock);
  1435. drain_mmlist();
  1436. /* wait for anyone still in scan_swap_map */
  1437. p->highest_bit = 0; /* cuts scans short */
  1438. while (p->flags >= SWP_SCANNING) {
  1439. spin_unlock(&swap_lock);
  1440. schedule_timeout_uninterruptible(1);
  1441. spin_lock(&swap_lock);
  1442. }
  1443. swap_file = p->swap_file;
  1444. p->swap_file = NULL;
  1445. p->max = 0;
  1446. swap_map = p->swap_map;
  1447. p->swap_map = NULL;
  1448. p->flags = 0;
  1449. spin_unlock(&swap_lock);
  1450. mutex_unlock(&swapon_mutex);
  1451. vfree(swap_map);
  1452. /* Destroy swap account informatin */
  1453. swap_cgroup_swapoff(type);
  1454. inode = mapping->host;
  1455. if (S_ISBLK(inode->i_mode)) {
  1456. struct block_device *bdev = I_BDEV(inode);
  1457. set_blocksize(bdev, p->old_block_size);
  1458. bd_release(bdev);
  1459. } else {
  1460. mutex_lock(&inode->i_mutex);
  1461. inode->i_flags &= ~S_SWAPFILE;
  1462. mutex_unlock(&inode->i_mutex);
  1463. }
  1464. filp_close(swap_file, NULL);
  1465. err = 0;
  1466. out_dput:
  1467. filp_close(victim, NULL);
  1468. out:
  1469. return err;
  1470. }
  1471. #ifdef CONFIG_PROC_FS
  1472. /* iterator */
  1473. static void *swap_start(struct seq_file *swap, loff_t *pos)
  1474. {
  1475. struct swap_info_struct *si;
  1476. int type;
  1477. loff_t l = *pos;
  1478. mutex_lock(&swapon_mutex);
  1479. if (!l)
  1480. return SEQ_START_TOKEN;
  1481. for (type = 0; type < nr_swapfiles; type++) {
  1482. smp_rmb(); /* read nr_swapfiles before swap_info[type] */
  1483. si = swap_info[type];
  1484. if (!(si->flags & SWP_USED) || !si->swap_map)
  1485. continue;
  1486. if (!--l)
  1487. return si;
  1488. }
  1489. return NULL;
  1490. }
  1491. static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
  1492. {
  1493. struct swap_info_struct *si = v;
  1494. int type;
  1495. if (v == SEQ_START_TOKEN)
  1496. type = 0;
  1497. else
  1498. type = si->type + 1;
  1499. for (; type < nr_swapfiles; type++) {
  1500. smp_rmb(); /* read nr_swapfiles before swap_info[type] */
  1501. si = swap_info[type];
  1502. if (!(si->flags & SWP_USED) || !si->swap_map)
  1503. continue;
  1504. ++*pos;
  1505. return si;
  1506. }
  1507. return NULL;
  1508. }
  1509. static void swap_stop(struct seq_file *swap, void *v)
  1510. {
  1511. mutex_unlock(&swapon_mutex);
  1512. }
  1513. static int swap_show(struct seq_file *swap, void *v)
  1514. {
  1515. struct swap_info_struct *si = v;
  1516. struct file *file;
  1517. int len;
  1518. if (si == SEQ_START_TOKEN) {
  1519. seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
  1520. return 0;
  1521. }
  1522. file = si->swap_file;
  1523. len = seq_path(swap, &file->f_path, " \t\n\\");
  1524. seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
  1525. len < 40 ? 40 - len : 1, " ",
  1526. S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
  1527. "partition" : "file\t",
  1528. si->pages << (PAGE_SHIFT - 10),
  1529. si->inuse_pages << (PAGE_SHIFT - 10),
  1530. si->prio);
  1531. return 0;
  1532. }
  1533. static const struct seq_operations swaps_op = {
  1534. .start = swap_start,
  1535. .next = swap_next,
  1536. .stop = swap_stop,
  1537. .show = swap_show
  1538. };
  1539. static int swaps_open(struct inode *inode, struct file *file)
  1540. {
  1541. return seq_open(file, &swaps_op);
  1542. }
  1543. static const struct file_operations proc_swaps_operations = {
  1544. .open = swaps_open,
  1545. .read = seq_read,
  1546. .llseek = seq_lseek,
  1547. .release = seq_release,
  1548. };
  1549. static int __init procswaps_init(void)
  1550. {
  1551. proc_create("swaps", 0, NULL, &proc_swaps_operations);
  1552. return 0;
  1553. }
  1554. __initcall(procswaps_init);
  1555. #endif /* CONFIG_PROC_FS */
  1556. #ifdef MAX_SWAPFILES_CHECK
  1557. static int __init max_swapfiles_check(void)
  1558. {
  1559. MAX_SWAPFILES_CHECK();
  1560. return 0;
  1561. }
  1562. late_initcall(max_swapfiles_check);
  1563. #endif
  1564. /*
  1565. * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
  1566. *
  1567. * The swapon system call
  1568. */
  1569. SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
  1570. {
  1571. struct swap_info_struct *p;
  1572. char *name = NULL;
  1573. struct block_device *bdev = NULL;
  1574. struct file *swap_file = NULL;
  1575. struct address_space *mapping;
  1576. unsigned int type;
  1577. int i, prev;
  1578. int error;
  1579. union swap_header *swap_header = NULL;
  1580. unsigned int nr_good_pages = 0;
  1581. int nr_extents = 0;
  1582. sector_t span;
  1583. unsigned long maxpages = 1;
  1584. unsigned long swapfilepages;
  1585. unsigned char *swap_map = NULL;
  1586. struct page *page = NULL;
  1587. struct inode *inode = NULL;
  1588. int did_down = 0;
  1589. if (!capable(CAP_SYS_ADMIN))
  1590. return -EPERM;
  1591. p = kzalloc(sizeof(*p), GFP_KERNEL);
  1592. if (!p)
  1593. return -ENOMEM;
  1594. spin_lock(&swap_lock);
  1595. for (type = 0; type < nr_swapfiles; type++) {
  1596. if (!(swap_info[type]->flags & SWP_USED))
  1597. break;
  1598. }
  1599. error = -EPERM;
  1600. if (type >= MAX_SWAPFILES) {
  1601. spin_unlock(&swap_lock);
  1602. kfree(p);
  1603. goto out;
  1604. }
  1605. if (type >= nr_swapfiles) {
  1606. p->type = type;
  1607. swap_info[type] = p;
  1608. /*
  1609. * Write swap_info[type] before nr_swapfiles, in case a
  1610. * racing procfs swap_start() or swap_next() is reading them.
  1611. * (We never shrink nr_swapfiles, we never free this entry.)
  1612. */
  1613. smp_wmb();
  1614. nr_swapfiles++;
  1615. } else {
  1616. kfree(p);
  1617. p = swap_info[type];
  1618. /*
  1619. * Do not memset this entry: a racing procfs swap_next()
  1620. * would be relying on p->type to remain valid.
  1621. */
  1622. }
  1623. INIT_LIST_HEAD(&p->first_swap_extent.list);
  1624. p->flags = SWP_USED;
  1625. p->next = -1;
  1626. spin_unlock(&swap_lock);
  1627. name = getname(specialfile);
  1628. error = PTR_ERR(name);
  1629. if (IS_ERR(name)) {
  1630. name = NULL;
  1631. goto bad_swap_2;
  1632. }
  1633. swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
  1634. error = PTR_ERR(swap_file);
  1635. if (IS_ERR(swap_file)) {
  1636. swap_file = NULL;
  1637. goto bad_swap_2;
  1638. }
  1639. p->swap_file = swap_file;
  1640. mapping = swap_file->f_mapping;
  1641. inode = mapping->host;
  1642. error = -EBUSY;
  1643. for (i = 0; i < nr_swapfiles; i++) {
  1644. struct swap_info_struct *q = swap_info[i];
  1645. if (i == type || !q->swap_file)
  1646. continue;
  1647. if (mapping == q->swap_file->f_mapping)
  1648. goto bad_swap;
  1649. }
  1650. error = -EINVAL;
  1651. if (S_ISBLK(inode->i_mode)) {
  1652. bdev = I_BDEV(inode);
  1653. error = bd_claim(bdev, sys_swapon);
  1654. if (error < 0) {
  1655. bdev = NULL;
  1656. error = -EINVAL;
  1657. goto bad_swap;
  1658. }
  1659. p->old_block_size = block_size(bdev);
  1660. error = set_blocksize(bdev, PAGE_SIZE);
  1661. if (error < 0)
  1662. goto bad_swap;
  1663. p->bdev = bdev;
  1664. } else if (S_ISREG(inode->i_mode)) {
  1665. p->bdev = inode->i_sb->s_bdev;
  1666. mutex_lock(&inode->i_mutex);
  1667. did_down = 1;
  1668. if (IS_SWAPFILE(inode)) {
  1669. error = -EBUSY;
  1670. goto bad_swap;
  1671. }
  1672. } else {
  1673. goto bad_swap;
  1674. }
  1675. swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
  1676. /*
  1677. * Read the swap header.
  1678. */
  1679. if (!mapping->a_ops->readpage) {
  1680. error = -EINVAL;
  1681. goto bad_swap;
  1682. }
  1683. page = read_mapping_page(mapping, 0, swap_file);
  1684. if (IS_ERR(page)) {
  1685. error = PTR_ERR(page);
  1686. goto bad_swap;
  1687. }
  1688. swap_header = kmap(page);
  1689. if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
  1690. printk(KERN_ERR "Unable to find swap-space signature\n");
  1691. error = -EINVAL;
  1692. goto bad_swap;
  1693. }
  1694. /* swap partition endianess hack... */
  1695. if (swab32(swap_header->info.version) == 1) {
  1696. swab32s(&swap_header->info.version);
  1697. swab32s(&swap_header->info.last_page);
  1698. swab32s(&swap_header->info.nr_badpages);
  1699. for (i = 0; i < swap_header->info.nr_badpages; i++)
  1700. swab32s(&swap_header->info.badpages[i]);
  1701. }
  1702. /* Check the swap header's sub-version */
  1703. if (swap_header->info.version != 1) {
  1704. printk(KERN_WARNING
  1705. "Unable to handle swap header version %d\n",
  1706. swap_header->info.version);
  1707. error = -EINVAL;
  1708. goto bad_swap;
  1709. }
  1710. p->lowest_bit = 1;
  1711. p->cluster_next = 1;
  1712. p->cluster_nr = 0;
  1713. /*
  1714. * Find out how many pages are allowed for a single swap
  1715. * device. There are two limiting factors: 1) the number of
  1716. * bits for the swap offset in the swp_entry_t type and
  1717. * 2) the number of bits in the a swap pte as defined by
  1718. * the different architectures. In order to find the
  1719. * largest possible bit mask a swap entry with swap type 0
  1720. * and swap offset ~0UL is created, encoded to a swap pte,
  1721. * decoded to a swp_entry_t again and finally the swap
  1722. * offset is extracted. This will mask all the bits from
  1723. * the initial ~0UL mask that can't be encoded in either
  1724. * the swp_entry_t or the architecture definition of a
  1725. * swap pte.
  1726. */
  1727. maxpages = swp_offset(pte_to_swp_entry(
  1728. swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
  1729. if (maxpages > swap_header->info.last_page)
  1730. maxpages = swap_header->info.last_page;
  1731. p->highest_bit = maxpages - 1;
  1732. error = -EINVAL;
  1733. if (!maxpages)
  1734. goto bad_swap;
  1735. if (swapfilepages && maxpages > swapfilepages) {
  1736. printk(KERN_WARNING
  1737. "Swap area shorter than signature indicates\n");
  1738. goto bad_swap;
  1739. }
  1740. if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
  1741. goto bad_swap;
  1742. if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
  1743. goto bad_swap;
  1744. /* OK, set up the swap map and apply the bad block list */
  1745. swap_map = vmalloc(maxpages);
  1746. if (!swap_map) {
  1747. error = -ENOMEM;
  1748. goto bad_swap;
  1749. }
  1750. memset(swap_map, 0, maxpages);
  1751. for (i = 0; i < swap_header->info.nr_badpages; i++) {
  1752. int page_nr = swap_header->info.badpages[i];
  1753. if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
  1754. error = -EINVAL;
  1755. goto bad_swap;
  1756. }
  1757. swap_map[page_nr] = SWAP_MAP_BAD;
  1758. }
  1759. error = swap_cgroup_swapon(type, maxpages);
  1760. if (error)
  1761. goto bad_swap;
  1762. nr_good_pages = swap_header->info.last_page -
  1763. swap_header->info.nr_badpages -
  1764. 1 /* header page */;
  1765. if (nr_good_pages) {
  1766. swap_map[0] = SWAP_MAP_BAD;
  1767. p->max = maxpages;
  1768. p->pages = nr_good_pages;
  1769. nr_extents = setup_swap_extents(p, &span);
  1770. if (nr_extents < 0) {
  1771. error = nr_extents;
  1772. goto bad_swap;
  1773. }
  1774. nr_good_pages = p->pages;
  1775. }
  1776. if (!nr_good_pages) {
  1777. printk(KERN_WARNING "Empty swap-file\n");
  1778. error = -EINVAL;
  1779. goto bad_swap;
  1780. }
  1781. if (p->bdev) {
  1782. if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
  1783. p->flags |= SWP_SOLIDSTATE;
  1784. p->cluster_next = 1 + (random32() % p->highest_bit);
  1785. }
  1786. if (discard_swap(p) == 0)
  1787. p->flags |= SWP_DISCARDABLE;
  1788. }
  1789. mutex_lock(&swapon_mutex);
  1790. spin_lock(&swap_lock);
  1791. if (swap_flags & SWAP_FLAG_PREFER)
  1792. p->prio =
  1793. (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
  1794. else
  1795. p->prio = --least_priority;
  1796. p->swap_map = swap_map;
  1797. p->flags |= SWP_WRITEOK;
  1798. nr_swap_pages += nr_good_pages;
  1799. total_swap_pages += nr_good_pages;
  1800. printk(KERN_INFO "Adding %uk swap on %s. "
  1801. "Priority:%d extents:%d across:%lluk %s%s\n",
  1802. nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
  1803. nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
  1804. (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
  1805. (p->flags & SWP_DISCARDABLE) ? "D" : "");
  1806. /* insert swap space into swap_list: */
  1807. prev = -1;
  1808. for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
  1809. if (p->prio >= swap_info[i]->prio)
  1810. break;
  1811. prev = i;
  1812. }
  1813. p->next = i;
  1814. if (prev < 0)
  1815. swap_list.head = swap_list.next = type;
  1816. else
  1817. swap_info[prev]->next = type;
  1818. spin_unlock(&swap_lock);
  1819. mutex_unlock(&swapon_mutex);
  1820. error = 0;
  1821. goto out;
  1822. bad_swap:
  1823. if (bdev) {
  1824. set_blocksize(bdev, p->old_block_size);
  1825. bd_release(bdev);
  1826. }
  1827. destroy_swap_extents(p);
  1828. swap_cgroup_swapoff(type);
  1829. bad_swap_2:
  1830. spin_lock(&swap_lock);
  1831. p->swap_file = NULL;
  1832. p->flags = 0;
  1833. spin_unlock(&swap_lock);
  1834. vfree(swap_map);
  1835. if (swap_file)
  1836. filp_close(swap_file, NULL);
  1837. out:
  1838. if (page && !IS_ERR(page)) {
  1839. kunmap(page);
  1840. page_cache_release(page);
  1841. }
  1842. if (name)
  1843. putname(name);
  1844. if (did_down) {
  1845. if (!error)
  1846. inode->i_flags |= S_SWAPFILE;
  1847. mutex_unlock(&inode->i_mutex);
  1848. }
  1849. return error;
  1850. }
  1851. void si_swapinfo(struct sysinfo *val)
  1852. {
  1853. unsigned int type;
  1854. unsigned long nr_to_be_unused = 0;
  1855. spin_lock(&swap_lock);
  1856. for (type = 0; type < nr_swapfiles; type++) {
  1857. struct swap_info_struct *si = swap_info[type];
  1858. if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
  1859. nr_to_be_unused += si->inuse_pages;
  1860. }
  1861. val->freeswap = nr_swap_pages + nr_to_be_unused;
  1862. val->totalswap = total_swap_pages + nr_to_be_unused;
  1863. spin_unlock(&swap_lock);
  1864. }
  1865. /*
  1866. * Verify that a swap entry is valid and increment its swap map count.
  1867. *
  1868. * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
  1869. * "permanent", but will be reclaimed by the next swapoff.
  1870. * Returns error code in following case.
  1871. * - success -> 0
  1872. * - swp_entry is invalid -> EINVAL
  1873. * - swp_entry is migration entry -> EINVAL
  1874. * - swap-cache reference is requested but there is already one. -> EEXIST
  1875. * - swap-cache reference is requested but the entry is not used. -> ENOENT
  1876. */
  1877. static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
  1878. {
  1879. struct swap_info_struct *p;
  1880. unsigned long offset, type;
  1881. unsigned char count;
  1882. unsigned char has_cache;
  1883. int err = -EINVAL;
  1884. if (non_swap_entry(entry))
  1885. goto out;
  1886. type = swp_type(entry);
  1887. if (type >= nr_swapfiles)
  1888. goto bad_file;
  1889. p = swap_info[type];
  1890. offset = swp_offset(entry);
  1891. spin_lock(&swap_lock);
  1892. if (unlikely(offset >= p->max))
  1893. goto unlock_out;
  1894. count = p->swap_map[offset];
  1895. has_cache = count & SWAP_HAS_CACHE;
  1896. count &= ~SWAP_HAS_CACHE;
  1897. err = 0;
  1898. if (usage == SWAP_HAS_CACHE) {
  1899. /* set SWAP_HAS_CACHE if there is no cache and entry is used */
  1900. if (!has_cache && count)
  1901. has_cache = SWAP_HAS_CACHE;
  1902. else if (has_cache) /* someone else added cache */
  1903. err = -EEXIST;
  1904. else /* no users remaining */
  1905. err = -ENOENT;
  1906. } else if (count || has_cache) {
  1907. if (count < SWAP_MAP_MAX - 1)
  1908. count++;
  1909. else if (count <= SWAP_MAP_MAX) {
  1910. if (swap_overflow++ < 5)
  1911. printk(KERN_WARNING
  1912. "swap_dup: swap entry overflow\n");
  1913. count = SWAP_MAP_MAX;
  1914. } else
  1915. err = -EINVAL;
  1916. } else
  1917. err = -ENOENT; /* unused swap entry */
  1918. p->swap_map[offset] = count | has_cache;
  1919. unlock_out:
  1920. spin_unlock(&swap_lock);
  1921. out:
  1922. return err;
  1923. bad_file:
  1924. printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
  1925. goto out;
  1926. }
  1927. /*
  1928. * increase reference count of swap entry by 1.
  1929. */
  1930. void swap_duplicate(swp_entry_t entry)
  1931. {
  1932. __swap_duplicate(entry, 1);
  1933. }
  1934. /*
  1935. * @entry: swap entry for which we allocate swap cache.
  1936. *
  1937. * Called when allocating swap cache for existing swap entry,
  1938. * This can return error codes. Returns 0 at success.
  1939. * -EBUSY means there is a swap cache.
  1940. * Note: return code is different from swap_duplicate().
  1941. */
  1942. int swapcache_prepare(swp_entry_t entry)
  1943. {
  1944. return __swap_duplicate(entry, SWAP_HAS_CACHE);
  1945. }
  1946. /*
  1947. * swap_lock prevents swap_map being freed. Don't grab an extra
  1948. * reference on the swaphandle, it doesn't matter if it becomes unused.
  1949. */
  1950. int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
  1951. {
  1952. struct swap_info_struct *si;
  1953. int our_page_cluster = page_cluster;
  1954. pgoff_t target, toff;
  1955. pgoff_t base, end;
  1956. int nr_pages = 0;
  1957. if (!our_page_cluster) /* no readahead */
  1958. return 0;
  1959. si = swap_info[swp_type(entry)];
  1960. target = swp_offset(entry);
  1961. base = (target >> our_page_cluster) << our_page_cluster;
  1962. end = base + (1 << our_page_cluster);
  1963. if (!base) /* first page is swap header */
  1964. base++;
  1965. spin_lock(&swap_lock);
  1966. if (end > si->max) /* don't go beyond end of map */
  1967. end = si->max;
  1968. /* Count contiguous allocated slots above our target */
  1969. for (toff = target; ++toff < end; nr_pages++) {
  1970. /* Don't read in free or bad pages */
  1971. if (!si->swap_map[toff])
  1972. break;
  1973. if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
  1974. break;
  1975. }
  1976. /* Count contiguous allocated slots below our target */
  1977. for (toff = target; --toff >= base; nr_pages++) {
  1978. /* Don't read in free or bad pages */
  1979. if (!si->swap_map[toff])
  1980. break;
  1981. if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
  1982. break;
  1983. }
  1984. spin_unlock(&swap_lock);
  1985. /*
  1986. * Indicate starting offset, and return number of pages to get:
  1987. * if only 1, say 0, since there's then no readahead to be done.
  1988. */
  1989. *offset = ++toff;
  1990. return nr_pages? ++nr_pages: 0;
  1991. }