init_64.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <asm/processor.h>
  35. #include <asm/bios_ebda.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/dma.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/e820.h>
  42. #include <asm/apic.h>
  43. #include <asm/tlb.h>
  44. #include <asm/mmu_context.h>
  45. #include <asm/proto.h>
  46. #include <asm/smp.h>
  47. #include <asm/sections.h>
  48. #include <asm/kdebug.h>
  49. #include <asm/numa.h>
  50. #include <asm/cacheflush.h>
  51. #include <asm/init.h>
  52. #include <asm/uv/uv.h>
  53. #include <asm/setup.h>
  54. static int __init parse_direct_gbpages_off(char *arg)
  55. {
  56. direct_gbpages = 0;
  57. return 0;
  58. }
  59. early_param("nogbpages", parse_direct_gbpages_off);
  60. static int __init parse_direct_gbpages_on(char *arg)
  61. {
  62. direct_gbpages = 1;
  63. return 0;
  64. }
  65. early_param("gbpages", parse_direct_gbpages_on);
  66. /*
  67. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  68. * physical space so we can cache the place of the first one and move
  69. * around without checking the pgd every time.
  70. */
  71. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  72. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  73. int force_personality32;
  74. /*
  75. * noexec32=on|off
  76. * Control non executable heap for 32bit processes.
  77. * To control the stack too use noexec=off
  78. *
  79. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  80. * off PROT_READ implies PROT_EXEC
  81. */
  82. static int __init nonx32_setup(char *str)
  83. {
  84. if (!strcmp(str, "on"))
  85. force_personality32 &= ~READ_IMPLIES_EXEC;
  86. else if (!strcmp(str, "off"))
  87. force_personality32 |= READ_IMPLIES_EXEC;
  88. return 1;
  89. }
  90. __setup("noexec32=", nonx32_setup);
  91. /*
  92. * When memory was added/removed make sure all the processes MM have
  93. * suitable PGD entries in the local PGD level page.
  94. */
  95. void sync_global_pgds(unsigned long start, unsigned long end)
  96. {
  97. unsigned long address;
  98. for (address = start; address <= end; address += PGDIR_SIZE) {
  99. const pgd_t *pgd_ref = pgd_offset_k(address);
  100. struct page *page;
  101. if (pgd_none(*pgd_ref))
  102. continue;
  103. spin_lock(&pgd_lock);
  104. list_for_each_entry(page, &pgd_list, lru) {
  105. pgd_t *pgd;
  106. spinlock_t *pgt_lock;
  107. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  108. /* the pgt_lock only for Xen */
  109. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  110. spin_lock(pgt_lock);
  111. if (pgd_none(*pgd))
  112. set_pgd(pgd, *pgd_ref);
  113. else
  114. BUG_ON(pgd_page_vaddr(*pgd)
  115. != pgd_page_vaddr(*pgd_ref));
  116. spin_unlock(pgt_lock);
  117. }
  118. spin_unlock(&pgd_lock);
  119. }
  120. }
  121. /*
  122. * NOTE: This function is marked __ref because it calls __init function
  123. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  124. */
  125. static __ref void *spp_getpage(void)
  126. {
  127. void *ptr;
  128. if (after_bootmem)
  129. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  130. else
  131. ptr = alloc_bootmem_pages(PAGE_SIZE);
  132. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  133. panic("set_pte_phys: cannot allocate page data %s\n",
  134. after_bootmem ? "after bootmem" : "");
  135. }
  136. pr_debug("spp_getpage %p\n", ptr);
  137. return ptr;
  138. }
  139. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  140. {
  141. if (pgd_none(*pgd)) {
  142. pud_t *pud = (pud_t *)spp_getpage();
  143. pgd_populate(&init_mm, pgd, pud);
  144. if (pud != pud_offset(pgd, 0))
  145. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  146. pud, pud_offset(pgd, 0));
  147. }
  148. return pud_offset(pgd, vaddr);
  149. }
  150. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  151. {
  152. if (pud_none(*pud)) {
  153. pmd_t *pmd = (pmd_t *) spp_getpage();
  154. pud_populate(&init_mm, pud, pmd);
  155. if (pmd != pmd_offset(pud, 0))
  156. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  157. pmd, pmd_offset(pud, 0));
  158. }
  159. return pmd_offset(pud, vaddr);
  160. }
  161. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  162. {
  163. if (pmd_none(*pmd)) {
  164. pte_t *pte = (pte_t *) spp_getpage();
  165. pmd_populate_kernel(&init_mm, pmd, pte);
  166. if (pte != pte_offset_kernel(pmd, 0))
  167. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  168. }
  169. return pte_offset_kernel(pmd, vaddr);
  170. }
  171. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  172. {
  173. pud_t *pud;
  174. pmd_t *pmd;
  175. pte_t *pte;
  176. pud = pud_page + pud_index(vaddr);
  177. pmd = fill_pmd(pud, vaddr);
  178. pte = fill_pte(pmd, vaddr);
  179. set_pte(pte, new_pte);
  180. /*
  181. * It's enough to flush this one mapping.
  182. * (PGE mappings get flushed as well)
  183. */
  184. __flush_tlb_one(vaddr);
  185. }
  186. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  187. {
  188. pgd_t *pgd;
  189. pud_t *pud_page;
  190. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  191. pgd = pgd_offset_k(vaddr);
  192. if (pgd_none(*pgd)) {
  193. printk(KERN_ERR
  194. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  195. return;
  196. }
  197. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  198. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  199. }
  200. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  201. {
  202. pgd_t *pgd;
  203. pud_t *pud;
  204. pgd = pgd_offset_k(vaddr);
  205. pud = fill_pud(pgd, vaddr);
  206. return fill_pmd(pud, vaddr);
  207. }
  208. pte_t * __init populate_extra_pte(unsigned long vaddr)
  209. {
  210. pmd_t *pmd;
  211. pmd = populate_extra_pmd(vaddr);
  212. return fill_pte(pmd, vaddr);
  213. }
  214. /*
  215. * Create large page table mappings for a range of physical addresses.
  216. */
  217. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  218. pgprot_t prot)
  219. {
  220. pgd_t *pgd;
  221. pud_t *pud;
  222. pmd_t *pmd;
  223. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  224. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  225. pgd = pgd_offset_k((unsigned long)__va(phys));
  226. if (pgd_none(*pgd)) {
  227. pud = (pud_t *) spp_getpage();
  228. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  229. _PAGE_USER));
  230. }
  231. pud = pud_offset(pgd, (unsigned long)__va(phys));
  232. if (pud_none(*pud)) {
  233. pmd = (pmd_t *) spp_getpage();
  234. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  235. _PAGE_USER));
  236. }
  237. pmd = pmd_offset(pud, phys);
  238. BUG_ON(!pmd_none(*pmd));
  239. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  240. }
  241. }
  242. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  243. {
  244. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  245. }
  246. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  247. {
  248. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  249. }
  250. /*
  251. * The head.S code sets up the kernel high mapping:
  252. *
  253. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  254. *
  255. * phys_addr holds the negative offset to the kernel, which is added
  256. * to the compile time generated pmds. This results in invalid pmds up
  257. * to the point where we hit the physaddr 0 mapping.
  258. *
  259. * We limit the mappings to the region from _text to _brk_end. _brk_end
  260. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  261. * well, as they are located before _text:
  262. */
  263. void __init cleanup_highmap(void)
  264. {
  265. unsigned long vaddr = __START_KERNEL_map;
  266. unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  267. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  268. pmd_t *pmd = level2_kernel_pgt;
  269. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  270. if (pmd_none(*pmd))
  271. continue;
  272. if (vaddr < (unsigned long) _text || vaddr > end)
  273. set_pmd(pmd, __pmd(0));
  274. }
  275. }
  276. static __ref void *alloc_low_page(unsigned long *phys)
  277. {
  278. unsigned long pfn;
  279. void *adr;
  280. if (after_bootmem) {
  281. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  282. *phys = __pa(adr);
  283. return adr;
  284. }
  285. if ((pgt_buf_end + 1) >= pgt_buf_top) {
  286. unsigned long ret;
  287. if (min_pfn_mapped >= max_pfn_mapped)
  288. panic("alloc_low_page: ran out of memory");
  289. ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  290. max_pfn_mapped << PAGE_SHIFT,
  291. PAGE_SIZE, PAGE_SIZE);
  292. if (!ret)
  293. panic("alloc_low_page: can not alloc memory");
  294. memblock_reserve(ret, PAGE_SIZE);
  295. pfn = ret >> PAGE_SHIFT;
  296. } else
  297. pfn = pgt_buf_end++;
  298. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  299. clear_page(adr);
  300. *phys = pfn * PAGE_SIZE;
  301. return adr;
  302. }
  303. static __ref void *map_low_page(void *virt)
  304. {
  305. void *adr;
  306. unsigned long phys, left;
  307. if (after_bootmem)
  308. return virt;
  309. phys = __pa(virt);
  310. left = phys & (PAGE_SIZE - 1);
  311. adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
  312. adr = (void *)(((unsigned long)adr) | left);
  313. return adr;
  314. }
  315. static __ref void unmap_low_page(void *adr)
  316. {
  317. if (after_bootmem)
  318. return;
  319. early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
  320. }
  321. static unsigned long __meminit
  322. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  323. pgprot_t prot)
  324. {
  325. unsigned long pages = 0, next;
  326. unsigned long last_map_addr = end;
  327. int i;
  328. pte_t *pte = pte_page + pte_index(addr);
  329. for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
  330. next = (addr & PAGE_MASK) + PAGE_SIZE;
  331. if (addr >= end) {
  332. if (!after_bootmem &&
  333. !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
  334. !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
  335. set_pte(pte, __pte(0));
  336. continue;
  337. }
  338. /*
  339. * We will re-use the existing mapping.
  340. * Xen for example has some special requirements, like mapping
  341. * pagetable pages as RO. So assume someone who pre-setup
  342. * these mappings are more intelligent.
  343. */
  344. if (pte_val(*pte)) {
  345. if (!after_bootmem)
  346. pages++;
  347. continue;
  348. }
  349. if (0)
  350. printk(" pte=%p addr=%lx pte=%016lx\n",
  351. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  352. pages++;
  353. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  354. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  355. }
  356. update_page_count(PG_LEVEL_4K, pages);
  357. return last_map_addr;
  358. }
  359. static unsigned long __meminit
  360. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  361. unsigned long page_size_mask, pgprot_t prot)
  362. {
  363. unsigned long pages = 0, next;
  364. unsigned long last_map_addr = end;
  365. int i = pmd_index(address);
  366. for (; i < PTRS_PER_PMD; i++, address = next) {
  367. unsigned long pte_phys;
  368. pmd_t *pmd = pmd_page + pmd_index(address);
  369. pte_t *pte;
  370. pgprot_t new_prot = prot;
  371. next = (address & PMD_MASK) + PMD_SIZE;
  372. if (address >= end) {
  373. if (!after_bootmem &&
  374. !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
  375. !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
  376. set_pmd(pmd, __pmd(0));
  377. continue;
  378. }
  379. if (pmd_val(*pmd)) {
  380. if (!pmd_large(*pmd)) {
  381. spin_lock(&init_mm.page_table_lock);
  382. pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
  383. last_map_addr = phys_pte_init(pte, address,
  384. end, prot);
  385. unmap_low_page(pte);
  386. spin_unlock(&init_mm.page_table_lock);
  387. continue;
  388. }
  389. /*
  390. * If we are ok with PG_LEVEL_2M mapping, then we will
  391. * use the existing mapping,
  392. *
  393. * Otherwise, we will split the large page mapping but
  394. * use the same existing protection bits except for
  395. * large page, so that we don't violate Intel's TLB
  396. * Application note (317080) which says, while changing
  397. * the page sizes, new and old translations should
  398. * not differ with respect to page frame and
  399. * attributes.
  400. */
  401. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  402. if (!after_bootmem)
  403. pages++;
  404. last_map_addr = next;
  405. continue;
  406. }
  407. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  408. }
  409. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  410. pages++;
  411. spin_lock(&init_mm.page_table_lock);
  412. set_pte((pte_t *)pmd,
  413. pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
  414. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  415. spin_unlock(&init_mm.page_table_lock);
  416. last_map_addr = next;
  417. continue;
  418. }
  419. pte = alloc_low_page(&pte_phys);
  420. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  421. unmap_low_page(pte);
  422. spin_lock(&init_mm.page_table_lock);
  423. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  424. spin_unlock(&init_mm.page_table_lock);
  425. }
  426. update_page_count(PG_LEVEL_2M, pages);
  427. return last_map_addr;
  428. }
  429. static unsigned long __meminit
  430. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  431. unsigned long page_size_mask)
  432. {
  433. unsigned long pages = 0, next;
  434. unsigned long last_map_addr = end;
  435. int i = pud_index(addr);
  436. for (; i < PTRS_PER_PUD; i++, addr = next) {
  437. unsigned long pmd_phys;
  438. pud_t *pud = pud_page + pud_index(addr);
  439. pmd_t *pmd;
  440. pgprot_t prot = PAGE_KERNEL;
  441. next = (addr & PUD_MASK) + PUD_SIZE;
  442. if (addr >= end) {
  443. if (!after_bootmem &&
  444. !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
  445. !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
  446. set_pud(pud, __pud(0));
  447. continue;
  448. }
  449. if (pud_val(*pud)) {
  450. if (!pud_large(*pud)) {
  451. pmd = map_low_page(pmd_offset(pud, 0));
  452. last_map_addr = phys_pmd_init(pmd, addr, end,
  453. page_size_mask, prot);
  454. unmap_low_page(pmd);
  455. __flush_tlb_all();
  456. continue;
  457. }
  458. /*
  459. * If we are ok with PG_LEVEL_1G mapping, then we will
  460. * use the existing mapping.
  461. *
  462. * Otherwise, we will split the gbpage mapping but use
  463. * the same existing protection bits except for large
  464. * page, so that we don't violate Intel's TLB
  465. * Application note (317080) which says, while changing
  466. * the page sizes, new and old translations should
  467. * not differ with respect to page frame and
  468. * attributes.
  469. */
  470. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  471. if (!after_bootmem)
  472. pages++;
  473. last_map_addr = next;
  474. continue;
  475. }
  476. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  477. }
  478. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  479. pages++;
  480. spin_lock(&init_mm.page_table_lock);
  481. set_pte((pte_t *)pud,
  482. pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
  483. PAGE_KERNEL_LARGE));
  484. spin_unlock(&init_mm.page_table_lock);
  485. last_map_addr = next;
  486. continue;
  487. }
  488. pmd = alloc_low_page(&pmd_phys);
  489. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  490. prot);
  491. unmap_low_page(pmd);
  492. spin_lock(&init_mm.page_table_lock);
  493. pud_populate(&init_mm, pud, __va(pmd_phys));
  494. spin_unlock(&init_mm.page_table_lock);
  495. }
  496. __flush_tlb_all();
  497. update_page_count(PG_LEVEL_1G, pages);
  498. return last_map_addr;
  499. }
  500. unsigned long __meminit
  501. kernel_physical_mapping_init(unsigned long start,
  502. unsigned long end,
  503. unsigned long page_size_mask)
  504. {
  505. bool pgd_changed = false;
  506. unsigned long next, last_map_addr = end;
  507. unsigned long addr;
  508. start = (unsigned long)__va(start);
  509. end = (unsigned long)__va(end);
  510. addr = start;
  511. for (; start < end; start = next) {
  512. pgd_t *pgd = pgd_offset_k(start);
  513. unsigned long pud_phys;
  514. pud_t *pud;
  515. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  516. if (next > end)
  517. next = end;
  518. if (pgd_val(*pgd)) {
  519. pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
  520. last_map_addr = phys_pud_init(pud, __pa(start),
  521. __pa(end), page_size_mask);
  522. unmap_low_page(pud);
  523. continue;
  524. }
  525. pud = alloc_low_page(&pud_phys);
  526. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  527. page_size_mask);
  528. unmap_low_page(pud);
  529. spin_lock(&init_mm.page_table_lock);
  530. pgd_populate(&init_mm, pgd, __va(pud_phys));
  531. spin_unlock(&init_mm.page_table_lock);
  532. pgd_changed = true;
  533. }
  534. if (pgd_changed)
  535. sync_global_pgds(addr, end);
  536. __flush_tlb_all();
  537. return last_map_addr;
  538. }
  539. #ifndef CONFIG_NUMA
  540. void __init initmem_init(void)
  541. {
  542. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
  543. }
  544. #endif
  545. void __init paging_init(void)
  546. {
  547. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  548. sparse_init();
  549. /*
  550. * clear the default setting with node 0
  551. * note: don't use nodes_clear here, that is really clearing when
  552. * numa support is not compiled in, and later node_set_state
  553. * will not set it back.
  554. */
  555. node_clear_state(0, N_NORMAL_MEMORY);
  556. zone_sizes_init();
  557. }
  558. /*
  559. * Memory hotplug specific functions
  560. */
  561. #ifdef CONFIG_MEMORY_HOTPLUG
  562. /*
  563. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  564. * updating.
  565. */
  566. static void update_end_of_memory_vars(u64 start, u64 size)
  567. {
  568. unsigned long end_pfn = PFN_UP(start + size);
  569. if (end_pfn > max_pfn) {
  570. max_pfn = end_pfn;
  571. max_low_pfn = end_pfn;
  572. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  573. }
  574. }
  575. /*
  576. * Memory is added always to NORMAL zone. This means you will never get
  577. * additional DMA/DMA32 memory.
  578. */
  579. int arch_add_memory(int nid, u64 start, u64 size)
  580. {
  581. struct pglist_data *pgdat = NODE_DATA(nid);
  582. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  583. unsigned long start_pfn = start >> PAGE_SHIFT;
  584. unsigned long nr_pages = size >> PAGE_SHIFT;
  585. int ret;
  586. init_memory_mapping(start, start + size);
  587. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  588. WARN_ON_ONCE(ret);
  589. /* update max_pfn, max_low_pfn and high_memory */
  590. update_end_of_memory_vars(start, size);
  591. return ret;
  592. }
  593. EXPORT_SYMBOL_GPL(arch_add_memory);
  594. #endif /* CONFIG_MEMORY_HOTPLUG */
  595. static struct kcore_list kcore_vsyscall;
  596. void __init mem_init(void)
  597. {
  598. long codesize, reservedpages, datasize, initsize;
  599. unsigned long absent_pages;
  600. pci_iommu_alloc();
  601. /* clear_bss() already clear the empty_zero_page */
  602. reservedpages = 0;
  603. /* this will put all low memory onto the freelists */
  604. #ifdef CONFIG_NUMA
  605. totalram_pages = numa_free_all_bootmem();
  606. #else
  607. totalram_pages = free_all_bootmem();
  608. #endif
  609. absent_pages = absent_pages_in_range(0, max_pfn);
  610. reservedpages = max_pfn - totalram_pages - absent_pages;
  611. after_bootmem = 1;
  612. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  613. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  614. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  615. /* Register memory areas for /proc/kcore */
  616. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  617. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  618. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  619. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  620. nr_free_pages() << (PAGE_SHIFT-10),
  621. max_pfn << (PAGE_SHIFT-10),
  622. codesize >> 10,
  623. absent_pages << (PAGE_SHIFT-10),
  624. reservedpages << (PAGE_SHIFT-10),
  625. datasize >> 10,
  626. initsize >> 10);
  627. }
  628. #ifdef CONFIG_DEBUG_RODATA
  629. const int rodata_test_data = 0xC3;
  630. EXPORT_SYMBOL_GPL(rodata_test_data);
  631. int kernel_set_to_readonly;
  632. void set_kernel_text_rw(void)
  633. {
  634. unsigned long start = PFN_ALIGN(_text);
  635. unsigned long end = PFN_ALIGN(__stop___ex_table);
  636. if (!kernel_set_to_readonly)
  637. return;
  638. pr_debug("Set kernel text: %lx - %lx for read write\n",
  639. start, end);
  640. /*
  641. * Make the kernel identity mapping for text RW. Kernel text
  642. * mapping will always be RO. Refer to the comment in
  643. * static_protections() in pageattr.c
  644. */
  645. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  646. }
  647. void set_kernel_text_ro(void)
  648. {
  649. unsigned long start = PFN_ALIGN(_text);
  650. unsigned long end = PFN_ALIGN(__stop___ex_table);
  651. if (!kernel_set_to_readonly)
  652. return;
  653. pr_debug("Set kernel text: %lx - %lx for read only\n",
  654. start, end);
  655. /*
  656. * Set the kernel identity mapping for text RO.
  657. */
  658. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  659. }
  660. void mark_rodata_ro(void)
  661. {
  662. unsigned long start = PFN_ALIGN(_text);
  663. unsigned long rodata_start =
  664. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  665. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  666. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  667. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  668. unsigned long data_start = (unsigned long) &_sdata;
  669. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  670. (end - start) >> 10);
  671. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  672. kernel_set_to_readonly = 1;
  673. /*
  674. * The rodata section (but not the kernel text!) should also be
  675. * not-executable.
  676. */
  677. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  678. rodata_test();
  679. #ifdef CONFIG_CPA_DEBUG
  680. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  681. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  682. printk(KERN_INFO "Testing CPA: again\n");
  683. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  684. #endif
  685. free_init_pages("unused kernel memory",
  686. (unsigned long) page_address(virt_to_page(text_end)),
  687. (unsigned long)
  688. page_address(virt_to_page(rodata_start)));
  689. free_init_pages("unused kernel memory",
  690. (unsigned long) page_address(virt_to_page(rodata_end)),
  691. (unsigned long) page_address(virt_to_page(data_start)));
  692. }
  693. #endif
  694. int kern_addr_valid(unsigned long addr)
  695. {
  696. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  697. pgd_t *pgd;
  698. pud_t *pud;
  699. pmd_t *pmd;
  700. pte_t *pte;
  701. if (above != 0 && above != -1UL)
  702. return 0;
  703. pgd = pgd_offset_k(addr);
  704. if (pgd_none(*pgd))
  705. return 0;
  706. pud = pud_offset(pgd, addr);
  707. if (pud_none(*pud))
  708. return 0;
  709. pmd = pmd_offset(pud, addr);
  710. if (pmd_none(*pmd))
  711. return 0;
  712. if (pmd_large(*pmd))
  713. return pfn_valid(pmd_pfn(*pmd));
  714. pte = pte_offset_kernel(pmd, addr);
  715. if (pte_none(*pte))
  716. return 0;
  717. return pfn_valid(pte_pfn(*pte));
  718. }
  719. /*
  720. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  721. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  722. * not need special handling anymore:
  723. */
  724. static struct vm_area_struct gate_vma = {
  725. .vm_start = VSYSCALL_START,
  726. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  727. .vm_page_prot = PAGE_READONLY_EXEC,
  728. .vm_flags = VM_READ | VM_EXEC
  729. };
  730. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  731. {
  732. #ifdef CONFIG_IA32_EMULATION
  733. if (!mm || mm->context.ia32_compat)
  734. return NULL;
  735. #endif
  736. return &gate_vma;
  737. }
  738. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  739. {
  740. struct vm_area_struct *vma = get_gate_vma(mm);
  741. if (!vma)
  742. return 0;
  743. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  744. }
  745. /*
  746. * Use this when you have no reliable mm, typically from interrupt
  747. * context. It is less reliable than using a task's mm and may give
  748. * false positives.
  749. */
  750. int in_gate_area_no_mm(unsigned long addr)
  751. {
  752. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  753. }
  754. const char *arch_vma_name(struct vm_area_struct *vma)
  755. {
  756. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  757. return "[vdso]";
  758. if (vma == &gate_vma)
  759. return "[vsyscall]";
  760. return NULL;
  761. }
  762. #ifdef CONFIG_X86_UV
  763. unsigned long memory_block_size_bytes(void)
  764. {
  765. if (is_uv_system()) {
  766. printk(KERN_INFO "UV: memory block size 2GB\n");
  767. return 2UL * 1024 * 1024 * 1024;
  768. }
  769. return MIN_MEMORY_BLOCK_SIZE;
  770. }
  771. #endif
  772. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  773. /*
  774. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  775. */
  776. static long __meminitdata addr_start, addr_end;
  777. static void __meminitdata *p_start, *p_end;
  778. static int __meminitdata node_start;
  779. int __meminit
  780. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  781. {
  782. unsigned long addr = (unsigned long)start_page;
  783. unsigned long end = (unsigned long)(start_page + size);
  784. unsigned long next;
  785. pgd_t *pgd;
  786. pud_t *pud;
  787. pmd_t *pmd;
  788. for (; addr < end; addr = next) {
  789. void *p = NULL;
  790. pgd = vmemmap_pgd_populate(addr, node);
  791. if (!pgd)
  792. return -ENOMEM;
  793. pud = vmemmap_pud_populate(pgd, addr, node);
  794. if (!pud)
  795. return -ENOMEM;
  796. if (!cpu_has_pse) {
  797. next = (addr + PAGE_SIZE) & PAGE_MASK;
  798. pmd = vmemmap_pmd_populate(pud, addr, node);
  799. if (!pmd)
  800. return -ENOMEM;
  801. p = vmemmap_pte_populate(pmd, addr, node);
  802. if (!p)
  803. return -ENOMEM;
  804. addr_end = addr + PAGE_SIZE;
  805. p_end = p + PAGE_SIZE;
  806. } else {
  807. next = pmd_addr_end(addr, end);
  808. pmd = pmd_offset(pud, addr);
  809. if (pmd_none(*pmd)) {
  810. pte_t entry;
  811. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  812. if (!p)
  813. return -ENOMEM;
  814. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  815. PAGE_KERNEL_LARGE);
  816. set_pmd(pmd, __pmd(pte_val(entry)));
  817. /* check to see if we have contiguous blocks */
  818. if (p_end != p || node_start != node) {
  819. if (p_start)
  820. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  821. addr_start, addr_end-1, p_start, p_end-1, node_start);
  822. addr_start = addr;
  823. node_start = node;
  824. p_start = p;
  825. }
  826. addr_end = addr + PMD_SIZE;
  827. p_end = p + PMD_SIZE;
  828. } else
  829. vmemmap_verify((pte_t *)pmd, node, addr, next);
  830. }
  831. }
  832. sync_global_pgds((unsigned long)start_page, end);
  833. return 0;
  834. }
  835. void __meminit vmemmap_populate_print_last(void)
  836. {
  837. if (p_start) {
  838. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  839. addr_start, addr_end-1, p_start, p_end-1, node_start);
  840. p_start = NULL;
  841. p_end = NULL;
  842. node_start = 0;
  843. }
  844. }
  845. #endif