kvm_main.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "segment_descriptor.h"
  21. #include "irq.h"
  22. #include <linux/kvm.h>
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/percpu.h>
  26. #include <linux/gfp.h>
  27. #include <linux/mm.h>
  28. #include <linux/miscdevice.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/reboot.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <linux/sysdev.h>
  35. #include <linux/cpu.h>
  36. #include <linux/sched.h>
  37. #include <linux/cpumask.h>
  38. #include <linux/smp.h>
  39. #include <linux/anon_inodes.h>
  40. #include <linux/profile.h>
  41. #include <linux/kvm_para.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/mman.h>
  44. #include <asm/processor.h>
  45. #include <asm/msr.h>
  46. #include <asm/io.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/desc.h>
  49. MODULE_AUTHOR("Qumranet");
  50. MODULE_LICENSE("GPL");
  51. static DEFINE_SPINLOCK(kvm_lock);
  52. static LIST_HEAD(vm_list);
  53. static cpumask_t cpus_hardware_enabled;
  54. struct kvm_x86_ops *kvm_x86_ops;
  55. struct kmem_cache *kvm_vcpu_cache;
  56. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  57. static __read_mostly struct preempt_ops kvm_preempt_ops;
  58. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  59. static struct kvm_stats_debugfs_item {
  60. const char *name;
  61. int offset;
  62. struct dentry *dentry;
  63. } debugfs_entries[] = {
  64. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  65. { "pf_guest", STAT_OFFSET(pf_guest) },
  66. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  67. { "invlpg", STAT_OFFSET(invlpg) },
  68. { "exits", STAT_OFFSET(exits) },
  69. { "io_exits", STAT_OFFSET(io_exits) },
  70. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  71. { "signal_exits", STAT_OFFSET(signal_exits) },
  72. { "irq_window", STAT_OFFSET(irq_window_exits) },
  73. { "halt_exits", STAT_OFFSET(halt_exits) },
  74. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  75. { "request_irq", STAT_OFFSET(request_irq_exits) },
  76. { "irq_exits", STAT_OFFSET(irq_exits) },
  77. { "light_exits", STAT_OFFSET(light_exits) },
  78. { "efer_reload", STAT_OFFSET(efer_reload) },
  79. { NULL }
  80. };
  81. static struct dentry *debugfs_dir;
  82. #define CR0_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  84. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  85. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  86. #define CR4_RESERVED_BITS \
  87. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  88. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  89. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  90. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  91. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  92. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  93. #ifdef CONFIG_X86_64
  94. /* LDT or TSS descriptor in the GDT. 16 bytes. */
  95. struct segment_descriptor_64 {
  96. struct segment_descriptor s;
  97. u32 base_higher;
  98. u32 pad_zero;
  99. };
  100. #endif
  101. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  102. unsigned long arg);
  103. unsigned long segment_base(u16 selector)
  104. {
  105. struct descriptor_table gdt;
  106. struct segment_descriptor *d;
  107. unsigned long table_base;
  108. unsigned long v;
  109. if (selector == 0)
  110. return 0;
  111. asm("sgdt %0" : "=m"(gdt));
  112. table_base = gdt.base;
  113. if (selector & 4) { /* from ldt */
  114. u16 ldt_selector;
  115. asm("sldt %0" : "=g"(ldt_selector));
  116. table_base = segment_base(ldt_selector);
  117. }
  118. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  119. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  120. ((unsigned long)d->base_high << 24);
  121. #ifdef CONFIG_X86_64
  122. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  123. v |= ((unsigned long) \
  124. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  125. #endif
  126. return v;
  127. }
  128. EXPORT_SYMBOL_GPL(segment_base);
  129. static inline int valid_vcpu(int n)
  130. {
  131. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  132. }
  133. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  134. {
  135. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  136. return;
  137. vcpu->guest_fpu_loaded = 1;
  138. fx_save(&vcpu->host_fx_image);
  139. fx_restore(&vcpu->guest_fx_image);
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  142. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  143. {
  144. if (!vcpu->guest_fpu_loaded)
  145. return;
  146. vcpu->guest_fpu_loaded = 0;
  147. fx_save(&vcpu->guest_fx_image);
  148. fx_restore(&vcpu->host_fx_image);
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  151. /*
  152. * Switches to specified vcpu, until a matching vcpu_put()
  153. */
  154. void vcpu_load(struct kvm_vcpu *vcpu)
  155. {
  156. int cpu;
  157. mutex_lock(&vcpu->mutex);
  158. cpu = get_cpu();
  159. preempt_notifier_register(&vcpu->preempt_notifier);
  160. kvm_arch_vcpu_load(vcpu, cpu);
  161. put_cpu();
  162. }
  163. void vcpu_put(struct kvm_vcpu *vcpu)
  164. {
  165. preempt_disable();
  166. kvm_arch_vcpu_put(vcpu);
  167. preempt_notifier_unregister(&vcpu->preempt_notifier);
  168. preempt_enable();
  169. mutex_unlock(&vcpu->mutex);
  170. }
  171. static void ack_flush(void *_completed)
  172. {
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. int i, cpu;
  177. cpumask_t cpus;
  178. struct kvm_vcpu *vcpu;
  179. cpus_clear(cpus);
  180. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  181. vcpu = kvm->vcpus[i];
  182. if (!vcpu)
  183. continue;
  184. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  185. continue;
  186. cpu = vcpu->cpu;
  187. if (cpu != -1 && cpu != raw_smp_processor_id())
  188. cpu_set(cpu, cpus);
  189. }
  190. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  191. }
  192. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  193. {
  194. struct page *page;
  195. int r;
  196. mutex_init(&vcpu->mutex);
  197. vcpu->cpu = -1;
  198. vcpu->mmu.root_hpa = INVALID_PAGE;
  199. vcpu->kvm = kvm;
  200. vcpu->vcpu_id = id;
  201. if (!irqchip_in_kernel(kvm) || id == 0)
  202. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  203. else
  204. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  205. init_waitqueue_head(&vcpu->wq);
  206. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  207. if (!page) {
  208. r = -ENOMEM;
  209. goto fail;
  210. }
  211. vcpu->run = page_address(page);
  212. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  213. if (!page) {
  214. r = -ENOMEM;
  215. goto fail_free_run;
  216. }
  217. vcpu->pio_data = page_address(page);
  218. r = kvm_mmu_create(vcpu);
  219. if (r < 0)
  220. goto fail_free_pio_data;
  221. if (irqchip_in_kernel(kvm)) {
  222. r = kvm_create_lapic(vcpu);
  223. if (r < 0)
  224. goto fail_mmu_destroy;
  225. }
  226. return 0;
  227. fail_mmu_destroy:
  228. kvm_mmu_destroy(vcpu);
  229. fail_free_pio_data:
  230. free_page((unsigned long)vcpu->pio_data);
  231. fail_free_run:
  232. free_page((unsigned long)vcpu->run);
  233. fail:
  234. return r;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  237. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  238. {
  239. kvm_free_lapic(vcpu);
  240. kvm_mmu_destroy(vcpu);
  241. free_page((unsigned long)vcpu->pio_data);
  242. free_page((unsigned long)vcpu->run);
  243. }
  244. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  245. static struct kvm *kvm_create_vm(void)
  246. {
  247. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  248. if (!kvm)
  249. return ERR_PTR(-ENOMEM);
  250. kvm_io_bus_init(&kvm->pio_bus);
  251. mutex_init(&kvm->lock);
  252. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  253. kvm_io_bus_init(&kvm->mmio_bus);
  254. spin_lock(&kvm_lock);
  255. list_add(&kvm->vm_list, &vm_list);
  256. spin_unlock(&kvm_lock);
  257. return kvm;
  258. }
  259. /*
  260. * Free any memory in @free but not in @dont.
  261. */
  262. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  263. struct kvm_memory_slot *dont)
  264. {
  265. if (!dont || free->rmap != dont->rmap)
  266. vfree(free->rmap);
  267. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  268. vfree(free->dirty_bitmap);
  269. free->npages = 0;
  270. free->dirty_bitmap = NULL;
  271. free->rmap = NULL;
  272. }
  273. static void kvm_free_physmem(struct kvm *kvm)
  274. {
  275. int i;
  276. for (i = 0; i < kvm->nmemslots; ++i)
  277. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  278. }
  279. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  280. {
  281. int i;
  282. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  283. if (vcpu->pio.guest_pages[i]) {
  284. kvm_release_page(vcpu->pio.guest_pages[i]);
  285. vcpu->pio.guest_pages[i] = NULL;
  286. }
  287. }
  288. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  289. {
  290. vcpu_load(vcpu);
  291. kvm_mmu_unload(vcpu);
  292. vcpu_put(vcpu);
  293. }
  294. static void kvm_free_vcpus(struct kvm *kvm)
  295. {
  296. unsigned int i;
  297. /*
  298. * Unpin any mmu pages first.
  299. */
  300. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  301. if (kvm->vcpus[i])
  302. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  303. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  304. if (kvm->vcpus[i]) {
  305. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  306. kvm->vcpus[i] = NULL;
  307. }
  308. }
  309. }
  310. static void kvm_destroy_vm(struct kvm *kvm)
  311. {
  312. spin_lock(&kvm_lock);
  313. list_del(&kvm->vm_list);
  314. spin_unlock(&kvm_lock);
  315. kvm_io_bus_destroy(&kvm->pio_bus);
  316. kvm_io_bus_destroy(&kvm->mmio_bus);
  317. kfree(kvm->vpic);
  318. kfree(kvm->vioapic);
  319. kvm_free_vcpus(kvm);
  320. kvm_free_physmem(kvm);
  321. kfree(kvm);
  322. }
  323. static int kvm_vm_release(struct inode *inode, struct file *filp)
  324. {
  325. struct kvm *kvm = filp->private_data;
  326. kvm_destroy_vm(kvm);
  327. return 0;
  328. }
  329. static void inject_gp(struct kvm_vcpu *vcpu)
  330. {
  331. kvm_x86_ops->inject_gp(vcpu, 0);
  332. }
  333. /*
  334. * Load the pae pdptrs. Return true is they are all valid.
  335. */
  336. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  337. {
  338. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  339. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  340. int i;
  341. int ret;
  342. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  343. mutex_lock(&vcpu->kvm->lock);
  344. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  345. offset * sizeof(u64), sizeof(pdpte));
  346. if (ret < 0) {
  347. ret = 0;
  348. goto out;
  349. }
  350. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  351. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  352. ret = 0;
  353. goto out;
  354. }
  355. }
  356. ret = 1;
  357. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  358. out:
  359. mutex_unlock(&vcpu->kvm->lock);
  360. return ret;
  361. }
  362. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  363. {
  364. if (cr0 & CR0_RESERVED_BITS) {
  365. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  366. cr0, vcpu->cr0);
  367. inject_gp(vcpu);
  368. return;
  369. }
  370. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  371. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  372. inject_gp(vcpu);
  373. return;
  374. }
  375. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  376. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  377. "and a clear PE flag\n");
  378. inject_gp(vcpu);
  379. return;
  380. }
  381. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  382. #ifdef CONFIG_X86_64
  383. if ((vcpu->shadow_efer & EFER_LME)) {
  384. int cs_db, cs_l;
  385. if (!is_pae(vcpu)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  387. "in long mode while PAE is disabled\n");
  388. inject_gp(vcpu);
  389. return;
  390. }
  391. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  392. if (cs_l) {
  393. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  394. "in long mode while CS.L == 1\n");
  395. inject_gp(vcpu);
  396. return;
  397. }
  398. } else
  399. #endif
  400. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  402. "reserved bits\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. }
  407. kvm_x86_ops->set_cr0(vcpu, cr0);
  408. vcpu->cr0 = cr0;
  409. mutex_lock(&vcpu->kvm->lock);
  410. kvm_mmu_reset_context(vcpu);
  411. mutex_unlock(&vcpu->kvm->lock);
  412. return;
  413. }
  414. EXPORT_SYMBOL_GPL(set_cr0);
  415. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  416. {
  417. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  418. }
  419. EXPORT_SYMBOL_GPL(lmsw);
  420. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  421. {
  422. if (cr4 & CR4_RESERVED_BITS) {
  423. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  424. inject_gp(vcpu);
  425. return;
  426. }
  427. if (is_long_mode(vcpu)) {
  428. if (!(cr4 & X86_CR4_PAE)) {
  429. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  430. "in long mode\n");
  431. inject_gp(vcpu);
  432. return;
  433. }
  434. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  435. && !load_pdptrs(vcpu, vcpu->cr3)) {
  436. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  437. inject_gp(vcpu);
  438. return;
  439. }
  440. if (cr4 & X86_CR4_VMXE) {
  441. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  442. inject_gp(vcpu);
  443. return;
  444. }
  445. kvm_x86_ops->set_cr4(vcpu, cr4);
  446. vcpu->cr4 = cr4;
  447. mutex_lock(&vcpu->kvm->lock);
  448. kvm_mmu_reset_context(vcpu);
  449. mutex_unlock(&vcpu->kvm->lock);
  450. }
  451. EXPORT_SYMBOL_GPL(set_cr4);
  452. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  453. {
  454. if (is_long_mode(vcpu)) {
  455. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  456. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. } else {
  461. if (is_pae(vcpu)) {
  462. if (cr3 & CR3_PAE_RESERVED_BITS) {
  463. printk(KERN_DEBUG
  464. "set_cr3: #GP, reserved bits\n");
  465. inject_gp(vcpu);
  466. return;
  467. }
  468. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  469. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  470. "reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. }
  475. /*
  476. * We don't check reserved bits in nonpae mode, because
  477. * this isn't enforced, and VMware depends on this.
  478. */
  479. }
  480. mutex_lock(&vcpu->kvm->lock);
  481. /*
  482. * Does the new cr3 value map to physical memory? (Note, we
  483. * catch an invalid cr3 even in real-mode, because it would
  484. * cause trouble later on when we turn on paging anyway.)
  485. *
  486. * A real CPU would silently accept an invalid cr3 and would
  487. * attempt to use it - with largely undefined (and often hard
  488. * to debug) behavior on the guest side.
  489. */
  490. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  491. inject_gp(vcpu);
  492. else {
  493. vcpu->cr3 = cr3;
  494. vcpu->mmu.new_cr3(vcpu);
  495. }
  496. mutex_unlock(&vcpu->kvm->lock);
  497. }
  498. EXPORT_SYMBOL_GPL(set_cr3);
  499. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  500. {
  501. if (cr8 & CR8_RESERVED_BITS) {
  502. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  503. inject_gp(vcpu);
  504. return;
  505. }
  506. if (irqchip_in_kernel(vcpu->kvm))
  507. kvm_lapic_set_tpr(vcpu, cr8);
  508. else
  509. vcpu->cr8 = cr8;
  510. }
  511. EXPORT_SYMBOL_GPL(set_cr8);
  512. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  513. {
  514. if (irqchip_in_kernel(vcpu->kvm))
  515. return kvm_lapic_get_cr8(vcpu);
  516. else
  517. return vcpu->cr8;
  518. }
  519. EXPORT_SYMBOL_GPL(get_cr8);
  520. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  521. {
  522. if (irqchip_in_kernel(vcpu->kvm))
  523. return vcpu->apic_base;
  524. else
  525. return vcpu->apic_base;
  526. }
  527. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  528. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  529. {
  530. /* TODO: reserve bits check */
  531. if (irqchip_in_kernel(vcpu->kvm))
  532. kvm_lapic_set_base(vcpu, data);
  533. else
  534. vcpu->apic_base = data;
  535. }
  536. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  537. void fx_init(struct kvm_vcpu *vcpu)
  538. {
  539. unsigned after_mxcsr_mask;
  540. /* Initialize guest FPU by resetting ours and saving into guest's */
  541. preempt_disable();
  542. fx_save(&vcpu->host_fx_image);
  543. fpu_init();
  544. fx_save(&vcpu->guest_fx_image);
  545. fx_restore(&vcpu->host_fx_image);
  546. preempt_enable();
  547. vcpu->cr0 |= X86_CR0_ET;
  548. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  549. vcpu->guest_fx_image.mxcsr = 0x1f80;
  550. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  551. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  552. }
  553. EXPORT_SYMBOL_GPL(fx_init);
  554. /*
  555. * Allocate some memory and give it an address in the guest physical address
  556. * space.
  557. *
  558. * Discontiguous memory is allowed, mostly for framebuffers.
  559. */
  560. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  561. struct
  562. kvm_userspace_memory_region *mem,
  563. int user_alloc)
  564. {
  565. int r;
  566. gfn_t base_gfn;
  567. unsigned long npages;
  568. unsigned long i;
  569. struct kvm_memory_slot *memslot;
  570. struct kvm_memory_slot old, new;
  571. r = -EINVAL;
  572. /* General sanity checks */
  573. if (mem->memory_size & (PAGE_SIZE - 1))
  574. goto out;
  575. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  576. goto out;
  577. if (mem->slot >= KVM_MEMORY_SLOTS)
  578. goto out;
  579. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  580. goto out;
  581. memslot = &kvm->memslots[mem->slot];
  582. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  583. npages = mem->memory_size >> PAGE_SHIFT;
  584. if (!npages)
  585. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  586. mutex_lock(&kvm->lock);
  587. new = old = *memslot;
  588. new.base_gfn = base_gfn;
  589. new.npages = npages;
  590. new.flags = mem->flags;
  591. /* Disallow changing a memory slot's size. */
  592. r = -EINVAL;
  593. if (npages && old.npages && npages != old.npages)
  594. goto out_unlock;
  595. /* Check for overlaps */
  596. r = -EEXIST;
  597. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  598. struct kvm_memory_slot *s = &kvm->memslots[i];
  599. if (s == memslot)
  600. continue;
  601. if (!((base_gfn + npages <= s->base_gfn) ||
  602. (base_gfn >= s->base_gfn + s->npages)))
  603. goto out_unlock;
  604. }
  605. /* Free page dirty bitmap if unneeded */
  606. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  607. new.dirty_bitmap = NULL;
  608. r = -ENOMEM;
  609. /* Allocate if a slot is being created */
  610. if (npages && !new.rmap) {
  611. new.rmap = vmalloc(npages * sizeof(struct page *));
  612. if (!new.rmap)
  613. goto out_unlock;
  614. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  615. if (user_alloc)
  616. new.userspace_addr = mem->userspace_addr;
  617. else {
  618. down_write(&current->mm->mmap_sem);
  619. new.userspace_addr = do_mmap(NULL, 0,
  620. npages * PAGE_SIZE,
  621. PROT_READ | PROT_WRITE,
  622. MAP_SHARED | MAP_ANONYMOUS,
  623. 0);
  624. up_write(&current->mm->mmap_sem);
  625. if (IS_ERR((void *)new.userspace_addr))
  626. goto out_unlock;
  627. }
  628. }
  629. /* Allocate page dirty bitmap if needed */
  630. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  631. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  632. new.dirty_bitmap = vmalloc(dirty_bytes);
  633. if (!new.dirty_bitmap)
  634. goto out_unlock;
  635. memset(new.dirty_bitmap, 0, dirty_bytes);
  636. }
  637. if (mem->slot >= kvm->nmemslots)
  638. kvm->nmemslots = mem->slot + 1;
  639. if (!kvm->n_requested_mmu_pages) {
  640. unsigned int n_pages;
  641. if (npages) {
  642. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  643. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  644. n_pages);
  645. } else {
  646. unsigned int nr_mmu_pages;
  647. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  648. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  649. nr_mmu_pages = max(nr_mmu_pages,
  650. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  651. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  652. }
  653. }
  654. *memslot = new;
  655. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  656. kvm_flush_remote_tlbs(kvm);
  657. mutex_unlock(&kvm->lock);
  658. kvm_free_physmem_slot(&old, &new);
  659. return 0;
  660. out_unlock:
  661. mutex_unlock(&kvm->lock);
  662. kvm_free_physmem_slot(&new, &old);
  663. out:
  664. return r;
  665. }
  666. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  667. u32 kvm_nr_mmu_pages)
  668. {
  669. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  670. return -EINVAL;
  671. mutex_lock(&kvm->lock);
  672. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  673. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  674. mutex_unlock(&kvm->lock);
  675. return 0;
  676. }
  677. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  678. {
  679. return kvm->n_alloc_mmu_pages;
  680. }
  681. /*
  682. * Get (and clear) the dirty memory log for a memory slot.
  683. */
  684. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  685. struct kvm_dirty_log *log)
  686. {
  687. struct kvm_memory_slot *memslot;
  688. int r, i;
  689. int n;
  690. unsigned long any = 0;
  691. mutex_lock(&kvm->lock);
  692. r = -EINVAL;
  693. if (log->slot >= KVM_MEMORY_SLOTS)
  694. goto out;
  695. memslot = &kvm->memslots[log->slot];
  696. r = -ENOENT;
  697. if (!memslot->dirty_bitmap)
  698. goto out;
  699. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  700. for (i = 0; !any && i < n/sizeof(long); ++i)
  701. any = memslot->dirty_bitmap[i];
  702. r = -EFAULT;
  703. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  704. goto out;
  705. /* If nothing is dirty, don't bother messing with page tables. */
  706. if (any) {
  707. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  708. kvm_flush_remote_tlbs(kvm);
  709. memset(memslot->dirty_bitmap, 0, n);
  710. }
  711. r = 0;
  712. out:
  713. mutex_unlock(&kvm->lock);
  714. return r;
  715. }
  716. /*
  717. * Set a new alias region. Aliases map a portion of physical memory into
  718. * another portion. This is useful for memory windows, for example the PC
  719. * VGA region.
  720. */
  721. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  722. struct kvm_memory_alias *alias)
  723. {
  724. int r, n;
  725. struct kvm_mem_alias *p;
  726. r = -EINVAL;
  727. /* General sanity checks */
  728. if (alias->memory_size & (PAGE_SIZE - 1))
  729. goto out;
  730. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  731. goto out;
  732. if (alias->slot >= KVM_ALIAS_SLOTS)
  733. goto out;
  734. if (alias->guest_phys_addr + alias->memory_size
  735. < alias->guest_phys_addr)
  736. goto out;
  737. if (alias->target_phys_addr + alias->memory_size
  738. < alias->target_phys_addr)
  739. goto out;
  740. mutex_lock(&kvm->lock);
  741. p = &kvm->aliases[alias->slot];
  742. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  743. p->npages = alias->memory_size >> PAGE_SHIFT;
  744. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  745. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  746. if (kvm->aliases[n - 1].npages)
  747. break;
  748. kvm->naliases = n;
  749. kvm_mmu_zap_all(kvm);
  750. mutex_unlock(&kvm->lock);
  751. return 0;
  752. out:
  753. return r;
  754. }
  755. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  756. {
  757. int r;
  758. r = 0;
  759. switch (chip->chip_id) {
  760. case KVM_IRQCHIP_PIC_MASTER:
  761. memcpy(&chip->chip.pic,
  762. &pic_irqchip(kvm)->pics[0],
  763. sizeof(struct kvm_pic_state));
  764. break;
  765. case KVM_IRQCHIP_PIC_SLAVE:
  766. memcpy(&chip->chip.pic,
  767. &pic_irqchip(kvm)->pics[1],
  768. sizeof(struct kvm_pic_state));
  769. break;
  770. case KVM_IRQCHIP_IOAPIC:
  771. memcpy(&chip->chip.ioapic,
  772. ioapic_irqchip(kvm),
  773. sizeof(struct kvm_ioapic_state));
  774. break;
  775. default:
  776. r = -EINVAL;
  777. break;
  778. }
  779. return r;
  780. }
  781. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  782. {
  783. int r;
  784. r = 0;
  785. switch (chip->chip_id) {
  786. case KVM_IRQCHIP_PIC_MASTER:
  787. memcpy(&pic_irqchip(kvm)->pics[0],
  788. &chip->chip.pic,
  789. sizeof(struct kvm_pic_state));
  790. break;
  791. case KVM_IRQCHIP_PIC_SLAVE:
  792. memcpy(&pic_irqchip(kvm)->pics[1],
  793. &chip->chip.pic,
  794. sizeof(struct kvm_pic_state));
  795. break;
  796. case KVM_IRQCHIP_IOAPIC:
  797. memcpy(ioapic_irqchip(kvm),
  798. &chip->chip.ioapic,
  799. sizeof(struct kvm_ioapic_state));
  800. break;
  801. default:
  802. r = -EINVAL;
  803. break;
  804. }
  805. kvm_pic_update_irq(pic_irqchip(kvm));
  806. return r;
  807. }
  808. int is_error_page(struct page *page)
  809. {
  810. return page == bad_page;
  811. }
  812. EXPORT_SYMBOL_GPL(is_error_page);
  813. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  814. {
  815. int i;
  816. struct kvm_mem_alias *alias;
  817. for (i = 0; i < kvm->naliases; ++i) {
  818. alias = &kvm->aliases[i];
  819. if (gfn >= alias->base_gfn
  820. && gfn < alias->base_gfn + alias->npages)
  821. return alias->target_gfn + gfn - alias->base_gfn;
  822. }
  823. return gfn;
  824. }
  825. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  826. {
  827. int i;
  828. for (i = 0; i < kvm->nmemslots; ++i) {
  829. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  830. if (gfn >= memslot->base_gfn
  831. && gfn < memslot->base_gfn + memslot->npages)
  832. return memslot;
  833. }
  834. return NULL;
  835. }
  836. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  837. {
  838. gfn = unalias_gfn(kvm, gfn);
  839. return __gfn_to_memslot(kvm, gfn);
  840. }
  841. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  842. {
  843. struct kvm_memory_slot *slot;
  844. struct page *page[1];
  845. int npages;
  846. gfn = unalias_gfn(kvm, gfn);
  847. slot = __gfn_to_memslot(kvm, gfn);
  848. if (!slot) {
  849. get_page(bad_page);
  850. return bad_page;
  851. }
  852. down_read(&current->mm->mmap_sem);
  853. npages = get_user_pages(current, current->mm,
  854. slot->userspace_addr
  855. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  856. 1, 1, page, NULL);
  857. up_read(&current->mm->mmap_sem);
  858. if (npages != 1) {
  859. get_page(bad_page);
  860. return bad_page;
  861. }
  862. return page[0];
  863. }
  864. EXPORT_SYMBOL_GPL(gfn_to_page);
  865. void kvm_release_page(struct page *page)
  866. {
  867. if (!PageReserved(page))
  868. SetPageDirty(page);
  869. put_page(page);
  870. }
  871. EXPORT_SYMBOL_GPL(kvm_release_page);
  872. static int next_segment(unsigned long len, int offset)
  873. {
  874. if (len > PAGE_SIZE - offset)
  875. return PAGE_SIZE - offset;
  876. else
  877. return len;
  878. }
  879. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  880. int len)
  881. {
  882. void *page_virt;
  883. struct page *page;
  884. page = gfn_to_page(kvm, gfn);
  885. if (is_error_page(page)) {
  886. kvm_release_page(page);
  887. return -EFAULT;
  888. }
  889. page_virt = kmap_atomic(page, KM_USER0);
  890. memcpy(data, page_virt + offset, len);
  891. kunmap_atomic(page_virt, KM_USER0);
  892. kvm_release_page(page);
  893. return 0;
  894. }
  895. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  896. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  897. {
  898. gfn_t gfn = gpa >> PAGE_SHIFT;
  899. int seg;
  900. int offset = offset_in_page(gpa);
  901. int ret;
  902. while ((seg = next_segment(len, offset)) != 0) {
  903. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  904. if (ret < 0)
  905. return ret;
  906. offset = 0;
  907. len -= seg;
  908. data += seg;
  909. ++gfn;
  910. }
  911. return 0;
  912. }
  913. EXPORT_SYMBOL_GPL(kvm_read_guest);
  914. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  915. int offset, int len)
  916. {
  917. void *page_virt;
  918. struct page *page;
  919. page = gfn_to_page(kvm, gfn);
  920. if (is_error_page(page)) {
  921. kvm_release_page(page);
  922. return -EFAULT;
  923. }
  924. page_virt = kmap_atomic(page, KM_USER0);
  925. memcpy(page_virt + offset, data, len);
  926. kunmap_atomic(page_virt, KM_USER0);
  927. mark_page_dirty(kvm, gfn);
  928. kvm_release_page(page);
  929. return 0;
  930. }
  931. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  932. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  933. unsigned long len)
  934. {
  935. gfn_t gfn = gpa >> PAGE_SHIFT;
  936. int seg;
  937. int offset = offset_in_page(gpa);
  938. int ret;
  939. while ((seg = next_segment(len, offset)) != 0) {
  940. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  941. if (ret < 0)
  942. return ret;
  943. offset = 0;
  944. len -= seg;
  945. data += seg;
  946. ++gfn;
  947. }
  948. return 0;
  949. }
  950. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  951. {
  952. void *page_virt;
  953. struct page *page;
  954. page = gfn_to_page(kvm, gfn);
  955. if (is_error_page(page)) {
  956. kvm_release_page(page);
  957. return -EFAULT;
  958. }
  959. page_virt = kmap_atomic(page, KM_USER0);
  960. memset(page_virt + offset, 0, len);
  961. kunmap_atomic(page_virt, KM_USER0);
  962. kvm_release_page(page);
  963. return 0;
  964. }
  965. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  966. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  967. {
  968. gfn_t gfn = gpa >> PAGE_SHIFT;
  969. int seg;
  970. int offset = offset_in_page(gpa);
  971. int ret;
  972. while ((seg = next_segment(len, offset)) != 0) {
  973. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  974. if (ret < 0)
  975. return ret;
  976. offset = 0;
  977. len -= seg;
  978. ++gfn;
  979. }
  980. return 0;
  981. }
  982. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  983. /* WARNING: Does not work on aliased pages. */
  984. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  985. {
  986. struct kvm_memory_slot *memslot;
  987. memslot = __gfn_to_memslot(kvm, gfn);
  988. if (memslot && memslot->dirty_bitmap) {
  989. unsigned long rel_gfn = gfn - memslot->base_gfn;
  990. /* avoid RMW */
  991. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  992. set_bit(rel_gfn, memslot->dirty_bitmap);
  993. }
  994. }
  995. int emulator_read_std(unsigned long addr,
  996. void *val,
  997. unsigned int bytes,
  998. struct kvm_vcpu *vcpu)
  999. {
  1000. void *data = val;
  1001. while (bytes) {
  1002. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1003. unsigned offset = addr & (PAGE_SIZE-1);
  1004. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1005. int ret;
  1006. if (gpa == UNMAPPED_GVA)
  1007. return X86EMUL_PROPAGATE_FAULT;
  1008. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1009. if (ret < 0)
  1010. return X86EMUL_UNHANDLEABLE;
  1011. bytes -= tocopy;
  1012. data += tocopy;
  1013. addr += tocopy;
  1014. }
  1015. return X86EMUL_CONTINUE;
  1016. }
  1017. EXPORT_SYMBOL_GPL(emulator_read_std);
  1018. static int emulator_write_std(unsigned long addr,
  1019. const void *val,
  1020. unsigned int bytes,
  1021. struct kvm_vcpu *vcpu)
  1022. {
  1023. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  1024. return X86EMUL_UNHANDLEABLE;
  1025. }
  1026. /*
  1027. * Only apic need an MMIO device hook, so shortcut now..
  1028. */
  1029. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1030. gpa_t addr)
  1031. {
  1032. struct kvm_io_device *dev;
  1033. if (vcpu->apic) {
  1034. dev = &vcpu->apic->dev;
  1035. if (dev->in_range(dev, addr))
  1036. return dev;
  1037. }
  1038. return NULL;
  1039. }
  1040. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1041. gpa_t addr)
  1042. {
  1043. struct kvm_io_device *dev;
  1044. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1045. if (dev == NULL)
  1046. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1047. return dev;
  1048. }
  1049. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1050. gpa_t addr)
  1051. {
  1052. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1053. }
  1054. static int emulator_read_emulated(unsigned long addr,
  1055. void *val,
  1056. unsigned int bytes,
  1057. struct kvm_vcpu *vcpu)
  1058. {
  1059. struct kvm_io_device *mmio_dev;
  1060. gpa_t gpa;
  1061. if (vcpu->mmio_read_completed) {
  1062. memcpy(val, vcpu->mmio_data, bytes);
  1063. vcpu->mmio_read_completed = 0;
  1064. return X86EMUL_CONTINUE;
  1065. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1066. == X86EMUL_CONTINUE)
  1067. return X86EMUL_CONTINUE;
  1068. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1069. if (gpa == UNMAPPED_GVA)
  1070. return X86EMUL_PROPAGATE_FAULT;
  1071. /*
  1072. * Is this MMIO handled locally?
  1073. */
  1074. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1075. if (mmio_dev) {
  1076. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1077. return X86EMUL_CONTINUE;
  1078. }
  1079. vcpu->mmio_needed = 1;
  1080. vcpu->mmio_phys_addr = gpa;
  1081. vcpu->mmio_size = bytes;
  1082. vcpu->mmio_is_write = 0;
  1083. return X86EMUL_UNHANDLEABLE;
  1084. }
  1085. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1086. const void *val, int bytes)
  1087. {
  1088. int ret;
  1089. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1090. if (ret < 0)
  1091. return 0;
  1092. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1093. return 1;
  1094. }
  1095. static int emulator_write_emulated_onepage(unsigned long addr,
  1096. const void *val,
  1097. unsigned int bytes,
  1098. struct kvm_vcpu *vcpu)
  1099. {
  1100. struct kvm_io_device *mmio_dev;
  1101. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1102. if (gpa == UNMAPPED_GVA) {
  1103. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1104. return X86EMUL_PROPAGATE_FAULT;
  1105. }
  1106. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1107. return X86EMUL_CONTINUE;
  1108. /*
  1109. * Is this MMIO handled locally?
  1110. */
  1111. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1112. if (mmio_dev) {
  1113. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1114. return X86EMUL_CONTINUE;
  1115. }
  1116. vcpu->mmio_needed = 1;
  1117. vcpu->mmio_phys_addr = gpa;
  1118. vcpu->mmio_size = bytes;
  1119. vcpu->mmio_is_write = 1;
  1120. memcpy(vcpu->mmio_data, val, bytes);
  1121. return X86EMUL_CONTINUE;
  1122. }
  1123. int emulator_write_emulated(unsigned long addr,
  1124. const void *val,
  1125. unsigned int bytes,
  1126. struct kvm_vcpu *vcpu)
  1127. {
  1128. /* Crossing a page boundary? */
  1129. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1130. int rc, now;
  1131. now = -addr & ~PAGE_MASK;
  1132. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1133. if (rc != X86EMUL_CONTINUE)
  1134. return rc;
  1135. addr += now;
  1136. val += now;
  1137. bytes -= now;
  1138. }
  1139. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1140. }
  1141. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1142. static int emulator_cmpxchg_emulated(unsigned long addr,
  1143. const void *old,
  1144. const void *new,
  1145. unsigned int bytes,
  1146. struct kvm_vcpu *vcpu)
  1147. {
  1148. static int reported;
  1149. if (!reported) {
  1150. reported = 1;
  1151. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1152. }
  1153. return emulator_write_emulated(addr, new, bytes, vcpu);
  1154. }
  1155. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1156. {
  1157. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1158. }
  1159. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1160. {
  1161. return X86EMUL_CONTINUE;
  1162. }
  1163. int emulate_clts(struct kvm_vcpu *vcpu)
  1164. {
  1165. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1166. return X86EMUL_CONTINUE;
  1167. }
  1168. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1169. {
  1170. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1171. switch (dr) {
  1172. case 0 ... 3:
  1173. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1174. return X86EMUL_CONTINUE;
  1175. default:
  1176. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1177. return X86EMUL_UNHANDLEABLE;
  1178. }
  1179. }
  1180. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1181. {
  1182. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1183. int exception;
  1184. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1185. if (exception) {
  1186. /* FIXME: better handling */
  1187. return X86EMUL_UNHANDLEABLE;
  1188. }
  1189. return X86EMUL_CONTINUE;
  1190. }
  1191. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1192. {
  1193. static int reported;
  1194. u8 opcodes[4];
  1195. unsigned long rip = vcpu->rip;
  1196. unsigned long rip_linear;
  1197. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1198. if (reported)
  1199. return;
  1200. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1201. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1202. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1203. reported = 1;
  1204. }
  1205. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1206. struct x86_emulate_ops emulate_ops = {
  1207. .read_std = emulator_read_std,
  1208. .write_std = emulator_write_std,
  1209. .read_emulated = emulator_read_emulated,
  1210. .write_emulated = emulator_write_emulated,
  1211. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1212. };
  1213. int emulate_instruction(struct kvm_vcpu *vcpu,
  1214. struct kvm_run *run,
  1215. unsigned long cr2,
  1216. u16 error_code,
  1217. int no_decode)
  1218. {
  1219. int r;
  1220. vcpu->mmio_fault_cr2 = cr2;
  1221. kvm_x86_ops->cache_regs(vcpu);
  1222. vcpu->mmio_is_write = 0;
  1223. vcpu->pio.string = 0;
  1224. if (!no_decode) {
  1225. int cs_db, cs_l;
  1226. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1227. vcpu->emulate_ctxt.vcpu = vcpu;
  1228. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1229. vcpu->emulate_ctxt.cr2 = cr2;
  1230. vcpu->emulate_ctxt.mode =
  1231. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1232. ? X86EMUL_MODE_REAL : cs_l
  1233. ? X86EMUL_MODE_PROT64 : cs_db
  1234. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1235. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1236. vcpu->emulate_ctxt.cs_base = 0;
  1237. vcpu->emulate_ctxt.ds_base = 0;
  1238. vcpu->emulate_ctxt.es_base = 0;
  1239. vcpu->emulate_ctxt.ss_base = 0;
  1240. } else {
  1241. vcpu->emulate_ctxt.cs_base =
  1242. get_segment_base(vcpu, VCPU_SREG_CS);
  1243. vcpu->emulate_ctxt.ds_base =
  1244. get_segment_base(vcpu, VCPU_SREG_DS);
  1245. vcpu->emulate_ctxt.es_base =
  1246. get_segment_base(vcpu, VCPU_SREG_ES);
  1247. vcpu->emulate_ctxt.ss_base =
  1248. get_segment_base(vcpu, VCPU_SREG_SS);
  1249. }
  1250. vcpu->emulate_ctxt.gs_base =
  1251. get_segment_base(vcpu, VCPU_SREG_GS);
  1252. vcpu->emulate_ctxt.fs_base =
  1253. get_segment_base(vcpu, VCPU_SREG_FS);
  1254. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1255. if (r) {
  1256. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1257. return EMULATE_DONE;
  1258. return EMULATE_FAIL;
  1259. }
  1260. }
  1261. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1262. if (vcpu->pio.string)
  1263. return EMULATE_DO_MMIO;
  1264. if ((r || vcpu->mmio_is_write) && run) {
  1265. run->exit_reason = KVM_EXIT_MMIO;
  1266. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1267. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1268. run->mmio.len = vcpu->mmio_size;
  1269. run->mmio.is_write = vcpu->mmio_is_write;
  1270. }
  1271. if (r) {
  1272. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1273. return EMULATE_DONE;
  1274. if (!vcpu->mmio_needed) {
  1275. kvm_report_emulation_failure(vcpu, "mmio");
  1276. return EMULATE_FAIL;
  1277. }
  1278. return EMULATE_DO_MMIO;
  1279. }
  1280. kvm_x86_ops->decache_regs(vcpu);
  1281. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1282. if (vcpu->mmio_is_write) {
  1283. vcpu->mmio_needed = 0;
  1284. return EMULATE_DO_MMIO;
  1285. }
  1286. return EMULATE_DONE;
  1287. }
  1288. EXPORT_SYMBOL_GPL(emulate_instruction);
  1289. /*
  1290. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1291. */
  1292. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1293. {
  1294. DECLARE_WAITQUEUE(wait, current);
  1295. add_wait_queue(&vcpu->wq, &wait);
  1296. /*
  1297. * We will block until either an interrupt or a signal wakes us up
  1298. */
  1299. while (!kvm_cpu_has_interrupt(vcpu)
  1300. && !signal_pending(current)
  1301. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1302. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1303. set_current_state(TASK_INTERRUPTIBLE);
  1304. vcpu_put(vcpu);
  1305. schedule();
  1306. vcpu_load(vcpu);
  1307. }
  1308. __set_current_state(TASK_RUNNING);
  1309. remove_wait_queue(&vcpu->wq, &wait);
  1310. }
  1311. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1312. {
  1313. ++vcpu->stat.halt_exits;
  1314. if (irqchip_in_kernel(vcpu->kvm)) {
  1315. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1316. kvm_vcpu_block(vcpu);
  1317. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1318. return -EINTR;
  1319. return 1;
  1320. } else {
  1321. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1322. return 0;
  1323. }
  1324. }
  1325. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1326. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1327. {
  1328. unsigned long nr, a0, a1, a2, a3, ret;
  1329. kvm_x86_ops->cache_regs(vcpu);
  1330. nr = vcpu->regs[VCPU_REGS_RAX];
  1331. a0 = vcpu->regs[VCPU_REGS_RBX];
  1332. a1 = vcpu->regs[VCPU_REGS_RCX];
  1333. a2 = vcpu->regs[VCPU_REGS_RDX];
  1334. a3 = vcpu->regs[VCPU_REGS_RSI];
  1335. if (!is_long_mode(vcpu)) {
  1336. nr &= 0xFFFFFFFF;
  1337. a0 &= 0xFFFFFFFF;
  1338. a1 &= 0xFFFFFFFF;
  1339. a2 &= 0xFFFFFFFF;
  1340. a3 &= 0xFFFFFFFF;
  1341. }
  1342. switch (nr) {
  1343. default:
  1344. ret = -KVM_ENOSYS;
  1345. break;
  1346. }
  1347. vcpu->regs[VCPU_REGS_RAX] = ret;
  1348. kvm_x86_ops->decache_regs(vcpu);
  1349. return 0;
  1350. }
  1351. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1352. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1353. {
  1354. char instruction[3];
  1355. int ret = 0;
  1356. mutex_lock(&vcpu->kvm->lock);
  1357. /*
  1358. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1359. * to ensure that the updated hypercall appears atomically across all
  1360. * VCPUs.
  1361. */
  1362. kvm_mmu_zap_all(vcpu->kvm);
  1363. kvm_x86_ops->cache_regs(vcpu);
  1364. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1365. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1366. != X86EMUL_CONTINUE)
  1367. ret = -EFAULT;
  1368. mutex_unlock(&vcpu->kvm->lock);
  1369. return ret;
  1370. }
  1371. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1372. {
  1373. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1374. }
  1375. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1376. {
  1377. struct descriptor_table dt = { limit, base };
  1378. kvm_x86_ops->set_gdt(vcpu, &dt);
  1379. }
  1380. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1381. {
  1382. struct descriptor_table dt = { limit, base };
  1383. kvm_x86_ops->set_idt(vcpu, &dt);
  1384. }
  1385. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1386. unsigned long *rflags)
  1387. {
  1388. lmsw(vcpu, msw);
  1389. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1390. }
  1391. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1392. {
  1393. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1394. switch (cr) {
  1395. case 0:
  1396. return vcpu->cr0;
  1397. case 2:
  1398. return vcpu->cr2;
  1399. case 3:
  1400. return vcpu->cr3;
  1401. case 4:
  1402. return vcpu->cr4;
  1403. default:
  1404. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1405. return 0;
  1406. }
  1407. }
  1408. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1409. unsigned long *rflags)
  1410. {
  1411. switch (cr) {
  1412. case 0:
  1413. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1414. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1415. break;
  1416. case 2:
  1417. vcpu->cr2 = val;
  1418. break;
  1419. case 3:
  1420. set_cr3(vcpu, val);
  1421. break;
  1422. case 4:
  1423. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1424. break;
  1425. default:
  1426. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1427. }
  1428. }
  1429. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1430. {
  1431. u64 data;
  1432. switch (msr) {
  1433. case 0xc0010010: /* SYSCFG */
  1434. case 0xc0010015: /* HWCR */
  1435. case MSR_IA32_PLATFORM_ID:
  1436. case MSR_IA32_P5_MC_ADDR:
  1437. case MSR_IA32_P5_MC_TYPE:
  1438. case MSR_IA32_MC0_CTL:
  1439. case MSR_IA32_MCG_STATUS:
  1440. case MSR_IA32_MCG_CAP:
  1441. case MSR_IA32_MC0_MISC:
  1442. case MSR_IA32_MC0_MISC+4:
  1443. case MSR_IA32_MC0_MISC+8:
  1444. case MSR_IA32_MC0_MISC+12:
  1445. case MSR_IA32_MC0_MISC+16:
  1446. case MSR_IA32_UCODE_REV:
  1447. case MSR_IA32_PERF_STATUS:
  1448. case MSR_IA32_EBL_CR_POWERON:
  1449. /* MTRR registers */
  1450. case 0xfe:
  1451. case 0x200 ... 0x2ff:
  1452. data = 0;
  1453. break;
  1454. case 0xcd: /* fsb frequency */
  1455. data = 3;
  1456. break;
  1457. case MSR_IA32_APICBASE:
  1458. data = kvm_get_apic_base(vcpu);
  1459. break;
  1460. case MSR_IA32_MISC_ENABLE:
  1461. data = vcpu->ia32_misc_enable_msr;
  1462. break;
  1463. #ifdef CONFIG_X86_64
  1464. case MSR_EFER:
  1465. data = vcpu->shadow_efer;
  1466. break;
  1467. #endif
  1468. default:
  1469. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1470. return 1;
  1471. }
  1472. *pdata = data;
  1473. return 0;
  1474. }
  1475. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1476. /*
  1477. * Reads an msr value (of 'msr_index') into 'pdata'.
  1478. * Returns 0 on success, non-0 otherwise.
  1479. * Assumes vcpu_load() was already called.
  1480. */
  1481. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1482. {
  1483. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1484. }
  1485. #ifdef CONFIG_X86_64
  1486. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1487. {
  1488. if (efer & EFER_RESERVED_BITS) {
  1489. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1490. efer);
  1491. inject_gp(vcpu);
  1492. return;
  1493. }
  1494. if (is_paging(vcpu)
  1495. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1496. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1497. inject_gp(vcpu);
  1498. return;
  1499. }
  1500. kvm_x86_ops->set_efer(vcpu, efer);
  1501. efer &= ~EFER_LMA;
  1502. efer |= vcpu->shadow_efer & EFER_LMA;
  1503. vcpu->shadow_efer = efer;
  1504. }
  1505. #endif
  1506. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1507. {
  1508. switch (msr) {
  1509. #ifdef CONFIG_X86_64
  1510. case MSR_EFER:
  1511. set_efer(vcpu, data);
  1512. break;
  1513. #endif
  1514. case MSR_IA32_MC0_STATUS:
  1515. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1516. __FUNCTION__, data);
  1517. break;
  1518. case MSR_IA32_MCG_STATUS:
  1519. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1520. __FUNCTION__, data);
  1521. break;
  1522. case MSR_IA32_UCODE_REV:
  1523. case MSR_IA32_UCODE_WRITE:
  1524. case 0x200 ... 0x2ff: /* MTRRs */
  1525. break;
  1526. case MSR_IA32_APICBASE:
  1527. kvm_set_apic_base(vcpu, data);
  1528. break;
  1529. case MSR_IA32_MISC_ENABLE:
  1530. vcpu->ia32_misc_enable_msr = data;
  1531. break;
  1532. default:
  1533. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1534. return 1;
  1535. }
  1536. return 0;
  1537. }
  1538. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1539. /*
  1540. * Writes msr value into into the appropriate "register".
  1541. * Returns 0 on success, non-0 otherwise.
  1542. * Assumes vcpu_load() was already called.
  1543. */
  1544. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1545. {
  1546. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1547. }
  1548. void kvm_resched(struct kvm_vcpu *vcpu)
  1549. {
  1550. if (!need_resched())
  1551. return;
  1552. cond_resched();
  1553. }
  1554. EXPORT_SYMBOL_GPL(kvm_resched);
  1555. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1556. {
  1557. int i;
  1558. u32 function;
  1559. struct kvm_cpuid_entry *e, *best;
  1560. kvm_x86_ops->cache_regs(vcpu);
  1561. function = vcpu->regs[VCPU_REGS_RAX];
  1562. vcpu->regs[VCPU_REGS_RAX] = 0;
  1563. vcpu->regs[VCPU_REGS_RBX] = 0;
  1564. vcpu->regs[VCPU_REGS_RCX] = 0;
  1565. vcpu->regs[VCPU_REGS_RDX] = 0;
  1566. best = NULL;
  1567. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1568. e = &vcpu->cpuid_entries[i];
  1569. if (e->function == function) {
  1570. best = e;
  1571. break;
  1572. }
  1573. /*
  1574. * Both basic or both extended?
  1575. */
  1576. if (((e->function ^ function) & 0x80000000) == 0)
  1577. if (!best || e->function > best->function)
  1578. best = e;
  1579. }
  1580. if (best) {
  1581. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1582. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1583. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1584. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1585. }
  1586. kvm_x86_ops->decache_regs(vcpu);
  1587. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1588. }
  1589. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1590. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1591. {
  1592. void *p = vcpu->pio_data;
  1593. void *q;
  1594. unsigned bytes;
  1595. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1596. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1597. PAGE_KERNEL);
  1598. if (!q) {
  1599. free_pio_guest_pages(vcpu);
  1600. return -ENOMEM;
  1601. }
  1602. q += vcpu->pio.guest_page_offset;
  1603. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1604. if (vcpu->pio.in)
  1605. memcpy(q, p, bytes);
  1606. else
  1607. memcpy(p, q, bytes);
  1608. q -= vcpu->pio.guest_page_offset;
  1609. vunmap(q);
  1610. free_pio_guest_pages(vcpu);
  1611. return 0;
  1612. }
  1613. static int complete_pio(struct kvm_vcpu *vcpu)
  1614. {
  1615. struct kvm_pio_request *io = &vcpu->pio;
  1616. long delta;
  1617. int r;
  1618. kvm_x86_ops->cache_regs(vcpu);
  1619. if (!io->string) {
  1620. if (io->in)
  1621. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1622. io->size);
  1623. } else {
  1624. if (io->in) {
  1625. r = pio_copy_data(vcpu);
  1626. if (r) {
  1627. kvm_x86_ops->cache_regs(vcpu);
  1628. return r;
  1629. }
  1630. }
  1631. delta = 1;
  1632. if (io->rep) {
  1633. delta *= io->cur_count;
  1634. /*
  1635. * The size of the register should really depend on
  1636. * current address size.
  1637. */
  1638. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1639. }
  1640. if (io->down)
  1641. delta = -delta;
  1642. delta *= io->size;
  1643. if (io->in)
  1644. vcpu->regs[VCPU_REGS_RDI] += delta;
  1645. else
  1646. vcpu->regs[VCPU_REGS_RSI] += delta;
  1647. }
  1648. kvm_x86_ops->decache_regs(vcpu);
  1649. io->count -= io->cur_count;
  1650. io->cur_count = 0;
  1651. return 0;
  1652. }
  1653. static void kernel_pio(struct kvm_io_device *pio_dev,
  1654. struct kvm_vcpu *vcpu,
  1655. void *pd)
  1656. {
  1657. /* TODO: String I/O for in kernel device */
  1658. mutex_lock(&vcpu->kvm->lock);
  1659. if (vcpu->pio.in)
  1660. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1661. vcpu->pio.size,
  1662. pd);
  1663. else
  1664. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1665. vcpu->pio.size,
  1666. pd);
  1667. mutex_unlock(&vcpu->kvm->lock);
  1668. }
  1669. static void pio_string_write(struct kvm_io_device *pio_dev,
  1670. struct kvm_vcpu *vcpu)
  1671. {
  1672. struct kvm_pio_request *io = &vcpu->pio;
  1673. void *pd = vcpu->pio_data;
  1674. int i;
  1675. mutex_lock(&vcpu->kvm->lock);
  1676. for (i = 0; i < io->cur_count; i++) {
  1677. kvm_iodevice_write(pio_dev, io->port,
  1678. io->size,
  1679. pd);
  1680. pd += io->size;
  1681. }
  1682. mutex_unlock(&vcpu->kvm->lock);
  1683. }
  1684. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1685. int size, unsigned port)
  1686. {
  1687. struct kvm_io_device *pio_dev;
  1688. vcpu->run->exit_reason = KVM_EXIT_IO;
  1689. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1690. vcpu->run->io.size = vcpu->pio.size = size;
  1691. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1692. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1693. vcpu->run->io.port = vcpu->pio.port = port;
  1694. vcpu->pio.in = in;
  1695. vcpu->pio.string = 0;
  1696. vcpu->pio.down = 0;
  1697. vcpu->pio.guest_page_offset = 0;
  1698. vcpu->pio.rep = 0;
  1699. kvm_x86_ops->cache_regs(vcpu);
  1700. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1701. kvm_x86_ops->decache_regs(vcpu);
  1702. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1703. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1704. if (pio_dev) {
  1705. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1706. complete_pio(vcpu);
  1707. return 1;
  1708. }
  1709. return 0;
  1710. }
  1711. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1712. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1713. int size, unsigned long count, int down,
  1714. gva_t address, int rep, unsigned port)
  1715. {
  1716. unsigned now, in_page;
  1717. int i, ret = 0;
  1718. int nr_pages = 1;
  1719. struct page *page;
  1720. struct kvm_io_device *pio_dev;
  1721. vcpu->run->exit_reason = KVM_EXIT_IO;
  1722. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1723. vcpu->run->io.size = vcpu->pio.size = size;
  1724. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1725. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1726. vcpu->run->io.port = vcpu->pio.port = port;
  1727. vcpu->pio.in = in;
  1728. vcpu->pio.string = 1;
  1729. vcpu->pio.down = down;
  1730. vcpu->pio.guest_page_offset = offset_in_page(address);
  1731. vcpu->pio.rep = rep;
  1732. if (!count) {
  1733. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1734. return 1;
  1735. }
  1736. if (!down)
  1737. in_page = PAGE_SIZE - offset_in_page(address);
  1738. else
  1739. in_page = offset_in_page(address) + size;
  1740. now = min(count, (unsigned long)in_page / size);
  1741. if (!now) {
  1742. /*
  1743. * String I/O straddles page boundary. Pin two guest pages
  1744. * so that we satisfy atomicity constraints. Do just one
  1745. * transaction to avoid complexity.
  1746. */
  1747. nr_pages = 2;
  1748. now = 1;
  1749. }
  1750. if (down) {
  1751. /*
  1752. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1753. */
  1754. pr_unimpl(vcpu, "guest string pio down\n");
  1755. inject_gp(vcpu);
  1756. return 1;
  1757. }
  1758. vcpu->run->io.count = now;
  1759. vcpu->pio.cur_count = now;
  1760. if (vcpu->pio.cur_count == vcpu->pio.count)
  1761. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1762. for (i = 0; i < nr_pages; ++i) {
  1763. mutex_lock(&vcpu->kvm->lock);
  1764. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1765. vcpu->pio.guest_pages[i] = page;
  1766. mutex_unlock(&vcpu->kvm->lock);
  1767. if (!page) {
  1768. inject_gp(vcpu);
  1769. free_pio_guest_pages(vcpu);
  1770. return 1;
  1771. }
  1772. }
  1773. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1774. if (!vcpu->pio.in) {
  1775. /* string PIO write */
  1776. ret = pio_copy_data(vcpu);
  1777. if (ret >= 0 && pio_dev) {
  1778. pio_string_write(pio_dev, vcpu);
  1779. complete_pio(vcpu);
  1780. if (vcpu->pio.count == 0)
  1781. ret = 1;
  1782. }
  1783. } else if (pio_dev)
  1784. pr_unimpl(vcpu, "no string pio read support yet, "
  1785. "port %x size %d count %ld\n",
  1786. port, size, count);
  1787. return ret;
  1788. }
  1789. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1790. /*
  1791. * Check if userspace requested an interrupt window, and that the
  1792. * interrupt window is open.
  1793. *
  1794. * No need to exit to userspace if we already have an interrupt queued.
  1795. */
  1796. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1797. struct kvm_run *kvm_run)
  1798. {
  1799. return (!vcpu->irq_summary &&
  1800. kvm_run->request_interrupt_window &&
  1801. vcpu->interrupt_window_open &&
  1802. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1803. }
  1804. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1805. struct kvm_run *kvm_run)
  1806. {
  1807. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1808. kvm_run->cr8 = get_cr8(vcpu);
  1809. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1810. if (irqchip_in_kernel(vcpu->kvm))
  1811. kvm_run->ready_for_interrupt_injection = 1;
  1812. else
  1813. kvm_run->ready_for_interrupt_injection =
  1814. (vcpu->interrupt_window_open &&
  1815. vcpu->irq_summary == 0);
  1816. }
  1817. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1818. {
  1819. int r;
  1820. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1821. pr_debug("vcpu %d received sipi with vector # %x\n",
  1822. vcpu->vcpu_id, vcpu->sipi_vector);
  1823. kvm_lapic_reset(vcpu);
  1824. kvm_x86_ops->vcpu_reset(vcpu);
  1825. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1826. }
  1827. preempted:
  1828. if (vcpu->guest_debug.enabled)
  1829. kvm_x86_ops->guest_debug_pre(vcpu);
  1830. again:
  1831. r = kvm_mmu_reload(vcpu);
  1832. if (unlikely(r))
  1833. goto out;
  1834. kvm_inject_pending_timer_irqs(vcpu);
  1835. preempt_disable();
  1836. kvm_x86_ops->prepare_guest_switch(vcpu);
  1837. kvm_load_guest_fpu(vcpu);
  1838. local_irq_disable();
  1839. if (signal_pending(current)) {
  1840. local_irq_enable();
  1841. preempt_enable();
  1842. r = -EINTR;
  1843. kvm_run->exit_reason = KVM_EXIT_INTR;
  1844. ++vcpu->stat.signal_exits;
  1845. goto out;
  1846. }
  1847. if (irqchip_in_kernel(vcpu->kvm))
  1848. kvm_x86_ops->inject_pending_irq(vcpu);
  1849. else if (!vcpu->mmio_read_completed)
  1850. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1851. vcpu->guest_mode = 1;
  1852. kvm_guest_enter();
  1853. if (vcpu->requests)
  1854. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1855. kvm_x86_ops->tlb_flush(vcpu);
  1856. kvm_x86_ops->run(vcpu, kvm_run);
  1857. vcpu->guest_mode = 0;
  1858. local_irq_enable();
  1859. ++vcpu->stat.exits;
  1860. /*
  1861. * We must have an instruction between local_irq_enable() and
  1862. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1863. * the interrupt shadow. The stat.exits increment will do nicely.
  1864. * But we need to prevent reordering, hence this barrier():
  1865. */
  1866. barrier();
  1867. kvm_guest_exit();
  1868. preempt_enable();
  1869. /*
  1870. * Profile KVM exit RIPs:
  1871. */
  1872. if (unlikely(prof_on == KVM_PROFILING)) {
  1873. kvm_x86_ops->cache_regs(vcpu);
  1874. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1875. }
  1876. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1877. if (r > 0) {
  1878. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1879. r = -EINTR;
  1880. kvm_run->exit_reason = KVM_EXIT_INTR;
  1881. ++vcpu->stat.request_irq_exits;
  1882. goto out;
  1883. }
  1884. if (!need_resched()) {
  1885. ++vcpu->stat.light_exits;
  1886. goto again;
  1887. }
  1888. }
  1889. out:
  1890. if (r > 0) {
  1891. kvm_resched(vcpu);
  1892. goto preempted;
  1893. }
  1894. post_kvm_run_save(vcpu, kvm_run);
  1895. return r;
  1896. }
  1897. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1898. {
  1899. int r;
  1900. sigset_t sigsaved;
  1901. vcpu_load(vcpu);
  1902. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1903. kvm_vcpu_block(vcpu);
  1904. vcpu_put(vcpu);
  1905. return -EAGAIN;
  1906. }
  1907. if (vcpu->sigset_active)
  1908. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1909. /* re-sync apic's tpr */
  1910. if (!irqchip_in_kernel(vcpu->kvm))
  1911. set_cr8(vcpu, kvm_run->cr8);
  1912. if (vcpu->pio.cur_count) {
  1913. r = complete_pio(vcpu);
  1914. if (r)
  1915. goto out;
  1916. }
  1917. if (vcpu->mmio_needed) {
  1918. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1919. vcpu->mmio_read_completed = 1;
  1920. vcpu->mmio_needed = 0;
  1921. r = emulate_instruction(vcpu, kvm_run,
  1922. vcpu->mmio_fault_cr2, 0, 1);
  1923. if (r == EMULATE_DO_MMIO) {
  1924. /*
  1925. * Read-modify-write. Back to userspace.
  1926. */
  1927. r = 0;
  1928. goto out;
  1929. }
  1930. }
  1931. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1932. kvm_x86_ops->cache_regs(vcpu);
  1933. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1934. kvm_x86_ops->decache_regs(vcpu);
  1935. }
  1936. r = __vcpu_run(vcpu, kvm_run);
  1937. out:
  1938. if (vcpu->sigset_active)
  1939. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1940. vcpu_put(vcpu);
  1941. return r;
  1942. }
  1943. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1944. struct kvm_regs *regs)
  1945. {
  1946. vcpu_load(vcpu);
  1947. kvm_x86_ops->cache_regs(vcpu);
  1948. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1949. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1950. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1951. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1952. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1953. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1954. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1955. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1956. #ifdef CONFIG_X86_64
  1957. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1958. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1959. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1960. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1961. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1962. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1963. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1964. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1965. #endif
  1966. regs->rip = vcpu->rip;
  1967. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1968. /*
  1969. * Don't leak debug flags in case they were set for guest debugging
  1970. */
  1971. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1972. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1973. vcpu_put(vcpu);
  1974. return 0;
  1975. }
  1976. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1977. struct kvm_regs *regs)
  1978. {
  1979. vcpu_load(vcpu);
  1980. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1981. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1982. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1983. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1984. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1985. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1986. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1987. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1988. #ifdef CONFIG_X86_64
  1989. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1990. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1991. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1992. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1993. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1994. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1995. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1996. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1997. #endif
  1998. vcpu->rip = regs->rip;
  1999. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2000. kvm_x86_ops->decache_regs(vcpu);
  2001. vcpu_put(vcpu);
  2002. return 0;
  2003. }
  2004. static void get_segment(struct kvm_vcpu *vcpu,
  2005. struct kvm_segment *var, int seg)
  2006. {
  2007. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2008. }
  2009. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2010. struct kvm_sregs *sregs)
  2011. {
  2012. struct descriptor_table dt;
  2013. int pending_vec;
  2014. vcpu_load(vcpu);
  2015. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2016. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2017. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2018. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2019. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2020. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2021. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2022. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2023. kvm_x86_ops->get_idt(vcpu, &dt);
  2024. sregs->idt.limit = dt.limit;
  2025. sregs->idt.base = dt.base;
  2026. kvm_x86_ops->get_gdt(vcpu, &dt);
  2027. sregs->gdt.limit = dt.limit;
  2028. sregs->gdt.base = dt.base;
  2029. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2030. sregs->cr0 = vcpu->cr0;
  2031. sregs->cr2 = vcpu->cr2;
  2032. sregs->cr3 = vcpu->cr3;
  2033. sregs->cr4 = vcpu->cr4;
  2034. sregs->cr8 = get_cr8(vcpu);
  2035. sregs->efer = vcpu->shadow_efer;
  2036. sregs->apic_base = kvm_get_apic_base(vcpu);
  2037. if (irqchip_in_kernel(vcpu->kvm)) {
  2038. memset(sregs->interrupt_bitmap, 0,
  2039. sizeof sregs->interrupt_bitmap);
  2040. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2041. if (pending_vec >= 0)
  2042. set_bit(pending_vec,
  2043. (unsigned long *)sregs->interrupt_bitmap);
  2044. } else
  2045. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2046. sizeof sregs->interrupt_bitmap);
  2047. vcpu_put(vcpu);
  2048. return 0;
  2049. }
  2050. static void set_segment(struct kvm_vcpu *vcpu,
  2051. struct kvm_segment *var, int seg)
  2052. {
  2053. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2054. }
  2055. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2056. struct kvm_sregs *sregs)
  2057. {
  2058. int mmu_reset_needed = 0;
  2059. int i, pending_vec, max_bits;
  2060. struct descriptor_table dt;
  2061. vcpu_load(vcpu);
  2062. dt.limit = sregs->idt.limit;
  2063. dt.base = sregs->idt.base;
  2064. kvm_x86_ops->set_idt(vcpu, &dt);
  2065. dt.limit = sregs->gdt.limit;
  2066. dt.base = sregs->gdt.base;
  2067. kvm_x86_ops->set_gdt(vcpu, &dt);
  2068. vcpu->cr2 = sregs->cr2;
  2069. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2070. vcpu->cr3 = sregs->cr3;
  2071. set_cr8(vcpu, sregs->cr8);
  2072. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2073. #ifdef CONFIG_X86_64
  2074. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2075. #endif
  2076. kvm_set_apic_base(vcpu, sregs->apic_base);
  2077. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2078. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2079. vcpu->cr0 = sregs->cr0;
  2080. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2081. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2082. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2083. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2084. load_pdptrs(vcpu, vcpu->cr3);
  2085. if (mmu_reset_needed)
  2086. kvm_mmu_reset_context(vcpu);
  2087. if (!irqchip_in_kernel(vcpu->kvm)) {
  2088. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2089. sizeof vcpu->irq_pending);
  2090. vcpu->irq_summary = 0;
  2091. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2092. if (vcpu->irq_pending[i])
  2093. __set_bit(i, &vcpu->irq_summary);
  2094. } else {
  2095. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2096. pending_vec = find_first_bit(
  2097. (const unsigned long *)sregs->interrupt_bitmap,
  2098. max_bits);
  2099. /* Only pending external irq is handled here */
  2100. if (pending_vec < max_bits) {
  2101. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2102. pr_debug("Set back pending irq %d\n",
  2103. pending_vec);
  2104. }
  2105. }
  2106. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2107. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2108. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2109. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2110. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2111. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2112. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2113. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2114. vcpu_put(vcpu);
  2115. return 0;
  2116. }
  2117. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2118. {
  2119. struct kvm_segment cs;
  2120. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2121. *db = cs.db;
  2122. *l = cs.l;
  2123. }
  2124. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2125. /*
  2126. * Translate a guest virtual address to a guest physical address.
  2127. */
  2128. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2129. struct kvm_translation *tr)
  2130. {
  2131. unsigned long vaddr = tr->linear_address;
  2132. gpa_t gpa;
  2133. vcpu_load(vcpu);
  2134. mutex_lock(&vcpu->kvm->lock);
  2135. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2136. tr->physical_address = gpa;
  2137. tr->valid = gpa != UNMAPPED_GVA;
  2138. tr->writeable = 1;
  2139. tr->usermode = 0;
  2140. mutex_unlock(&vcpu->kvm->lock);
  2141. vcpu_put(vcpu);
  2142. return 0;
  2143. }
  2144. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2145. struct kvm_interrupt *irq)
  2146. {
  2147. if (irq->irq < 0 || irq->irq >= 256)
  2148. return -EINVAL;
  2149. if (irqchip_in_kernel(vcpu->kvm))
  2150. return -ENXIO;
  2151. vcpu_load(vcpu);
  2152. set_bit(irq->irq, vcpu->irq_pending);
  2153. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2154. vcpu_put(vcpu);
  2155. return 0;
  2156. }
  2157. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2158. struct kvm_debug_guest *dbg)
  2159. {
  2160. int r;
  2161. vcpu_load(vcpu);
  2162. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2163. vcpu_put(vcpu);
  2164. return r;
  2165. }
  2166. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2167. unsigned long address,
  2168. int *type)
  2169. {
  2170. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2171. unsigned long pgoff;
  2172. struct page *page;
  2173. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2174. if (pgoff == 0)
  2175. page = virt_to_page(vcpu->run);
  2176. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2177. page = virt_to_page(vcpu->pio_data);
  2178. else
  2179. return NOPAGE_SIGBUS;
  2180. get_page(page);
  2181. if (type != NULL)
  2182. *type = VM_FAULT_MINOR;
  2183. return page;
  2184. }
  2185. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2186. .nopage = kvm_vcpu_nopage,
  2187. };
  2188. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2189. {
  2190. vma->vm_ops = &kvm_vcpu_vm_ops;
  2191. return 0;
  2192. }
  2193. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2194. {
  2195. struct kvm_vcpu *vcpu = filp->private_data;
  2196. fput(vcpu->kvm->filp);
  2197. return 0;
  2198. }
  2199. static struct file_operations kvm_vcpu_fops = {
  2200. .release = kvm_vcpu_release,
  2201. .unlocked_ioctl = kvm_vcpu_ioctl,
  2202. .compat_ioctl = kvm_vcpu_ioctl,
  2203. .mmap = kvm_vcpu_mmap,
  2204. };
  2205. /*
  2206. * Allocates an inode for the vcpu.
  2207. */
  2208. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2209. {
  2210. int fd, r;
  2211. struct inode *inode;
  2212. struct file *file;
  2213. r = anon_inode_getfd(&fd, &inode, &file,
  2214. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2215. if (r)
  2216. return r;
  2217. atomic_inc(&vcpu->kvm->filp->f_count);
  2218. return fd;
  2219. }
  2220. /*
  2221. * Creates some virtual cpus. Good luck creating more than one.
  2222. */
  2223. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2224. {
  2225. int r;
  2226. struct kvm_vcpu *vcpu;
  2227. if (!valid_vcpu(n))
  2228. return -EINVAL;
  2229. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2230. if (IS_ERR(vcpu))
  2231. return PTR_ERR(vcpu);
  2232. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2233. /* We do fxsave: this must be aligned. */
  2234. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2235. vcpu_load(vcpu);
  2236. r = kvm_mmu_setup(vcpu);
  2237. vcpu_put(vcpu);
  2238. if (r < 0)
  2239. goto free_vcpu;
  2240. mutex_lock(&kvm->lock);
  2241. if (kvm->vcpus[n]) {
  2242. r = -EEXIST;
  2243. mutex_unlock(&kvm->lock);
  2244. goto mmu_unload;
  2245. }
  2246. kvm->vcpus[n] = vcpu;
  2247. mutex_unlock(&kvm->lock);
  2248. /* Now it's all set up, let userspace reach it */
  2249. r = create_vcpu_fd(vcpu);
  2250. if (r < 0)
  2251. goto unlink;
  2252. return r;
  2253. unlink:
  2254. mutex_lock(&kvm->lock);
  2255. kvm->vcpus[n] = NULL;
  2256. mutex_unlock(&kvm->lock);
  2257. mmu_unload:
  2258. vcpu_load(vcpu);
  2259. kvm_mmu_unload(vcpu);
  2260. vcpu_put(vcpu);
  2261. free_vcpu:
  2262. kvm_x86_ops->vcpu_free(vcpu);
  2263. return r;
  2264. }
  2265. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2266. {
  2267. if (sigset) {
  2268. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2269. vcpu->sigset_active = 1;
  2270. vcpu->sigset = *sigset;
  2271. } else
  2272. vcpu->sigset_active = 0;
  2273. return 0;
  2274. }
  2275. /*
  2276. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2277. * we have asm/x86/processor.h
  2278. */
  2279. struct fxsave {
  2280. u16 cwd;
  2281. u16 swd;
  2282. u16 twd;
  2283. u16 fop;
  2284. u64 rip;
  2285. u64 rdp;
  2286. u32 mxcsr;
  2287. u32 mxcsr_mask;
  2288. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2289. #ifdef CONFIG_X86_64
  2290. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2291. #else
  2292. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2293. #endif
  2294. };
  2295. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2296. {
  2297. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2298. vcpu_load(vcpu);
  2299. memcpy(fpu->fpr, fxsave->st_space, 128);
  2300. fpu->fcw = fxsave->cwd;
  2301. fpu->fsw = fxsave->swd;
  2302. fpu->ftwx = fxsave->twd;
  2303. fpu->last_opcode = fxsave->fop;
  2304. fpu->last_ip = fxsave->rip;
  2305. fpu->last_dp = fxsave->rdp;
  2306. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2307. vcpu_put(vcpu);
  2308. return 0;
  2309. }
  2310. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2311. {
  2312. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2313. vcpu_load(vcpu);
  2314. memcpy(fxsave->st_space, fpu->fpr, 128);
  2315. fxsave->cwd = fpu->fcw;
  2316. fxsave->swd = fpu->fsw;
  2317. fxsave->twd = fpu->ftwx;
  2318. fxsave->fop = fpu->last_opcode;
  2319. fxsave->rip = fpu->last_ip;
  2320. fxsave->rdp = fpu->last_dp;
  2321. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2322. vcpu_put(vcpu);
  2323. return 0;
  2324. }
  2325. static long kvm_vcpu_ioctl(struct file *filp,
  2326. unsigned int ioctl, unsigned long arg)
  2327. {
  2328. struct kvm_vcpu *vcpu = filp->private_data;
  2329. void __user *argp = (void __user *)arg;
  2330. int r;
  2331. switch (ioctl) {
  2332. case KVM_RUN:
  2333. r = -EINVAL;
  2334. if (arg)
  2335. goto out;
  2336. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2337. break;
  2338. case KVM_GET_REGS: {
  2339. struct kvm_regs kvm_regs;
  2340. memset(&kvm_regs, 0, sizeof kvm_regs);
  2341. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2342. if (r)
  2343. goto out;
  2344. r = -EFAULT;
  2345. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2346. goto out;
  2347. r = 0;
  2348. break;
  2349. }
  2350. case KVM_SET_REGS: {
  2351. struct kvm_regs kvm_regs;
  2352. r = -EFAULT;
  2353. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2354. goto out;
  2355. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2356. if (r)
  2357. goto out;
  2358. r = 0;
  2359. break;
  2360. }
  2361. case KVM_GET_SREGS: {
  2362. struct kvm_sregs kvm_sregs;
  2363. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2364. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2365. if (r)
  2366. goto out;
  2367. r = -EFAULT;
  2368. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2369. goto out;
  2370. r = 0;
  2371. break;
  2372. }
  2373. case KVM_SET_SREGS: {
  2374. struct kvm_sregs kvm_sregs;
  2375. r = -EFAULT;
  2376. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2377. goto out;
  2378. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2379. if (r)
  2380. goto out;
  2381. r = 0;
  2382. break;
  2383. }
  2384. case KVM_TRANSLATE: {
  2385. struct kvm_translation tr;
  2386. r = -EFAULT;
  2387. if (copy_from_user(&tr, argp, sizeof tr))
  2388. goto out;
  2389. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2390. if (r)
  2391. goto out;
  2392. r = -EFAULT;
  2393. if (copy_to_user(argp, &tr, sizeof tr))
  2394. goto out;
  2395. r = 0;
  2396. break;
  2397. }
  2398. case KVM_INTERRUPT: {
  2399. struct kvm_interrupt irq;
  2400. r = -EFAULT;
  2401. if (copy_from_user(&irq, argp, sizeof irq))
  2402. goto out;
  2403. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2404. if (r)
  2405. goto out;
  2406. r = 0;
  2407. break;
  2408. }
  2409. case KVM_DEBUG_GUEST: {
  2410. struct kvm_debug_guest dbg;
  2411. r = -EFAULT;
  2412. if (copy_from_user(&dbg, argp, sizeof dbg))
  2413. goto out;
  2414. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2415. if (r)
  2416. goto out;
  2417. r = 0;
  2418. break;
  2419. }
  2420. case KVM_SET_SIGNAL_MASK: {
  2421. struct kvm_signal_mask __user *sigmask_arg = argp;
  2422. struct kvm_signal_mask kvm_sigmask;
  2423. sigset_t sigset, *p;
  2424. p = NULL;
  2425. if (argp) {
  2426. r = -EFAULT;
  2427. if (copy_from_user(&kvm_sigmask, argp,
  2428. sizeof kvm_sigmask))
  2429. goto out;
  2430. r = -EINVAL;
  2431. if (kvm_sigmask.len != sizeof sigset)
  2432. goto out;
  2433. r = -EFAULT;
  2434. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2435. sizeof sigset))
  2436. goto out;
  2437. p = &sigset;
  2438. }
  2439. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2440. break;
  2441. }
  2442. case KVM_GET_FPU: {
  2443. struct kvm_fpu fpu;
  2444. memset(&fpu, 0, sizeof fpu);
  2445. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2446. if (r)
  2447. goto out;
  2448. r = -EFAULT;
  2449. if (copy_to_user(argp, &fpu, sizeof fpu))
  2450. goto out;
  2451. r = 0;
  2452. break;
  2453. }
  2454. case KVM_SET_FPU: {
  2455. struct kvm_fpu fpu;
  2456. r = -EFAULT;
  2457. if (copy_from_user(&fpu, argp, sizeof fpu))
  2458. goto out;
  2459. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2460. if (r)
  2461. goto out;
  2462. r = 0;
  2463. break;
  2464. }
  2465. default:
  2466. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2467. }
  2468. out:
  2469. return r;
  2470. }
  2471. static long kvm_vm_ioctl(struct file *filp,
  2472. unsigned int ioctl, unsigned long arg)
  2473. {
  2474. struct kvm *kvm = filp->private_data;
  2475. void __user *argp = (void __user *)arg;
  2476. int r = -EINVAL;
  2477. switch (ioctl) {
  2478. case KVM_CREATE_VCPU:
  2479. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2480. if (r < 0)
  2481. goto out;
  2482. break;
  2483. case KVM_SET_MEMORY_REGION: {
  2484. struct kvm_memory_region kvm_mem;
  2485. struct kvm_userspace_memory_region kvm_userspace_mem;
  2486. r = -EFAULT;
  2487. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2488. goto out;
  2489. kvm_userspace_mem.slot = kvm_mem.slot;
  2490. kvm_userspace_mem.flags = kvm_mem.flags;
  2491. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2492. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2493. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2494. if (r)
  2495. goto out;
  2496. break;
  2497. }
  2498. case KVM_SET_USER_MEMORY_REGION: {
  2499. struct kvm_userspace_memory_region kvm_userspace_mem;
  2500. r = -EFAULT;
  2501. if (copy_from_user(&kvm_userspace_mem, argp,
  2502. sizeof kvm_userspace_mem))
  2503. goto out;
  2504. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2505. if (r)
  2506. goto out;
  2507. break;
  2508. }
  2509. case KVM_SET_NR_MMU_PAGES:
  2510. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2511. if (r)
  2512. goto out;
  2513. break;
  2514. case KVM_GET_NR_MMU_PAGES:
  2515. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2516. break;
  2517. case KVM_GET_DIRTY_LOG: {
  2518. struct kvm_dirty_log log;
  2519. r = -EFAULT;
  2520. if (copy_from_user(&log, argp, sizeof log))
  2521. goto out;
  2522. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2523. if (r)
  2524. goto out;
  2525. break;
  2526. }
  2527. case KVM_SET_MEMORY_ALIAS: {
  2528. struct kvm_memory_alias alias;
  2529. r = -EFAULT;
  2530. if (copy_from_user(&alias, argp, sizeof alias))
  2531. goto out;
  2532. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2533. if (r)
  2534. goto out;
  2535. break;
  2536. }
  2537. case KVM_CREATE_IRQCHIP:
  2538. r = -ENOMEM;
  2539. kvm->vpic = kvm_create_pic(kvm);
  2540. if (kvm->vpic) {
  2541. r = kvm_ioapic_init(kvm);
  2542. if (r) {
  2543. kfree(kvm->vpic);
  2544. kvm->vpic = NULL;
  2545. goto out;
  2546. }
  2547. } else
  2548. goto out;
  2549. break;
  2550. case KVM_IRQ_LINE: {
  2551. struct kvm_irq_level irq_event;
  2552. r = -EFAULT;
  2553. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2554. goto out;
  2555. if (irqchip_in_kernel(kvm)) {
  2556. mutex_lock(&kvm->lock);
  2557. if (irq_event.irq < 16)
  2558. kvm_pic_set_irq(pic_irqchip(kvm),
  2559. irq_event.irq,
  2560. irq_event.level);
  2561. kvm_ioapic_set_irq(kvm->vioapic,
  2562. irq_event.irq,
  2563. irq_event.level);
  2564. mutex_unlock(&kvm->lock);
  2565. r = 0;
  2566. }
  2567. break;
  2568. }
  2569. case KVM_GET_IRQCHIP: {
  2570. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2571. struct kvm_irqchip chip;
  2572. r = -EFAULT;
  2573. if (copy_from_user(&chip, argp, sizeof chip))
  2574. goto out;
  2575. r = -ENXIO;
  2576. if (!irqchip_in_kernel(kvm))
  2577. goto out;
  2578. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2579. if (r)
  2580. goto out;
  2581. r = -EFAULT;
  2582. if (copy_to_user(argp, &chip, sizeof chip))
  2583. goto out;
  2584. r = 0;
  2585. break;
  2586. }
  2587. case KVM_SET_IRQCHIP: {
  2588. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2589. struct kvm_irqchip chip;
  2590. r = -EFAULT;
  2591. if (copy_from_user(&chip, argp, sizeof chip))
  2592. goto out;
  2593. r = -ENXIO;
  2594. if (!irqchip_in_kernel(kvm))
  2595. goto out;
  2596. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2597. if (r)
  2598. goto out;
  2599. r = 0;
  2600. break;
  2601. }
  2602. default:
  2603. ;
  2604. }
  2605. out:
  2606. return r;
  2607. }
  2608. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2609. unsigned long address,
  2610. int *type)
  2611. {
  2612. struct kvm *kvm = vma->vm_file->private_data;
  2613. unsigned long pgoff;
  2614. struct page *page;
  2615. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2616. page = gfn_to_page(kvm, pgoff);
  2617. if (is_error_page(page)) {
  2618. kvm_release_page(page);
  2619. return NOPAGE_SIGBUS;
  2620. }
  2621. if (type != NULL)
  2622. *type = VM_FAULT_MINOR;
  2623. return page;
  2624. }
  2625. static struct vm_operations_struct kvm_vm_vm_ops = {
  2626. .nopage = kvm_vm_nopage,
  2627. };
  2628. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2629. {
  2630. vma->vm_ops = &kvm_vm_vm_ops;
  2631. return 0;
  2632. }
  2633. static struct file_operations kvm_vm_fops = {
  2634. .release = kvm_vm_release,
  2635. .unlocked_ioctl = kvm_vm_ioctl,
  2636. .compat_ioctl = kvm_vm_ioctl,
  2637. .mmap = kvm_vm_mmap,
  2638. };
  2639. static int kvm_dev_ioctl_create_vm(void)
  2640. {
  2641. int fd, r;
  2642. struct inode *inode;
  2643. struct file *file;
  2644. struct kvm *kvm;
  2645. kvm = kvm_create_vm();
  2646. if (IS_ERR(kvm))
  2647. return PTR_ERR(kvm);
  2648. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2649. if (r) {
  2650. kvm_destroy_vm(kvm);
  2651. return r;
  2652. }
  2653. kvm->filp = file;
  2654. return fd;
  2655. }
  2656. static long kvm_dev_ioctl(struct file *filp,
  2657. unsigned int ioctl, unsigned long arg)
  2658. {
  2659. void __user *argp = (void __user *)arg;
  2660. long r = -EINVAL;
  2661. switch (ioctl) {
  2662. case KVM_GET_API_VERSION:
  2663. r = -EINVAL;
  2664. if (arg)
  2665. goto out;
  2666. r = KVM_API_VERSION;
  2667. break;
  2668. case KVM_CREATE_VM:
  2669. r = -EINVAL;
  2670. if (arg)
  2671. goto out;
  2672. r = kvm_dev_ioctl_create_vm();
  2673. break;
  2674. case KVM_CHECK_EXTENSION: {
  2675. int ext = (long)argp;
  2676. switch (ext) {
  2677. case KVM_CAP_IRQCHIP:
  2678. case KVM_CAP_HLT:
  2679. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2680. case KVM_CAP_USER_MEMORY:
  2681. r = 1;
  2682. break;
  2683. default:
  2684. r = 0;
  2685. break;
  2686. }
  2687. break;
  2688. }
  2689. case KVM_GET_VCPU_MMAP_SIZE:
  2690. r = -EINVAL;
  2691. if (arg)
  2692. goto out;
  2693. r = 2 * PAGE_SIZE;
  2694. break;
  2695. default:
  2696. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2697. }
  2698. out:
  2699. return r;
  2700. }
  2701. static struct file_operations kvm_chardev_ops = {
  2702. .unlocked_ioctl = kvm_dev_ioctl,
  2703. .compat_ioctl = kvm_dev_ioctl,
  2704. };
  2705. static struct miscdevice kvm_dev = {
  2706. KVM_MINOR,
  2707. "kvm",
  2708. &kvm_chardev_ops,
  2709. };
  2710. /*
  2711. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2712. * cached on it.
  2713. */
  2714. static void decache_vcpus_on_cpu(int cpu)
  2715. {
  2716. struct kvm *vm;
  2717. struct kvm_vcpu *vcpu;
  2718. int i;
  2719. spin_lock(&kvm_lock);
  2720. list_for_each_entry(vm, &vm_list, vm_list)
  2721. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2722. vcpu = vm->vcpus[i];
  2723. if (!vcpu)
  2724. continue;
  2725. /*
  2726. * If the vcpu is locked, then it is running on some
  2727. * other cpu and therefore it is not cached on the
  2728. * cpu in question.
  2729. *
  2730. * If it's not locked, check the last cpu it executed
  2731. * on.
  2732. */
  2733. if (mutex_trylock(&vcpu->mutex)) {
  2734. if (vcpu->cpu == cpu) {
  2735. kvm_x86_ops->vcpu_decache(vcpu);
  2736. vcpu->cpu = -1;
  2737. }
  2738. mutex_unlock(&vcpu->mutex);
  2739. }
  2740. }
  2741. spin_unlock(&kvm_lock);
  2742. }
  2743. static void hardware_enable(void *junk)
  2744. {
  2745. int cpu = raw_smp_processor_id();
  2746. if (cpu_isset(cpu, cpus_hardware_enabled))
  2747. return;
  2748. cpu_set(cpu, cpus_hardware_enabled);
  2749. kvm_x86_ops->hardware_enable(NULL);
  2750. }
  2751. static void hardware_disable(void *junk)
  2752. {
  2753. int cpu = raw_smp_processor_id();
  2754. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2755. return;
  2756. cpu_clear(cpu, cpus_hardware_enabled);
  2757. decache_vcpus_on_cpu(cpu);
  2758. kvm_x86_ops->hardware_disable(NULL);
  2759. }
  2760. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2761. void *v)
  2762. {
  2763. int cpu = (long)v;
  2764. switch (val) {
  2765. case CPU_DYING:
  2766. case CPU_DYING_FROZEN:
  2767. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2768. cpu);
  2769. hardware_disable(NULL);
  2770. break;
  2771. case CPU_UP_CANCELED:
  2772. case CPU_UP_CANCELED_FROZEN:
  2773. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2774. cpu);
  2775. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2776. break;
  2777. case CPU_ONLINE:
  2778. case CPU_ONLINE_FROZEN:
  2779. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2780. cpu);
  2781. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2782. break;
  2783. }
  2784. return NOTIFY_OK;
  2785. }
  2786. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2787. void *v)
  2788. {
  2789. if (val == SYS_RESTART) {
  2790. /*
  2791. * Some (well, at least mine) BIOSes hang on reboot if
  2792. * in vmx root mode.
  2793. */
  2794. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2795. on_each_cpu(hardware_disable, NULL, 0, 1);
  2796. }
  2797. return NOTIFY_OK;
  2798. }
  2799. static struct notifier_block kvm_reboot_notifier = {
  2800. .notifier_call = kvm_reboot,
  2801. .priority = 0,
  2802. };
  2803. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2804. {
  2805. memset(bus, 0, sizeof(*bus));
  2806. }
  2807. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2808. {
  2809. int i;
  2810. for (i = 0; i < bus->dev_count; i++) {
  2811. struct kvm_io_device *pos = bus->devs[i];
  2812. kvm_iodevice_destructor(pos);
  2813. }
  2814. }
  2815. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2816. {
  2817. int i;
  2818. for (i = 0; i < bus->dev_count; i++) {
  2819. struct kvm_io_device *pos = bus->devs[i];
  2820. if (pos->in_range(pos, addr))
  2821. return pos;
  2822. }
  2823. return NULL;
  2824. }
  2825. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2826. {
  2827. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2828. bus->devs[bus->dev_count++] = dev;
  2829. }
  2830. static struct notifier_block kvm_cpu_notifier = {
  2831. .notifier_call = kvm_cpu_hotplug,
  2832. .priority = 20, /* must be > scheduler priority */
  2833. };
  2834. static u64 stat_get(void *_offset)
  2835. {
  2836. unsigned offset = (long)_offset;
  2837. u64 total = 0;
  2838. struct kvm *kvm;
  2839. struct kvm_vcpu *vcpu;
  2840. int i;
  2841. spin_lock(&kvm_lock);
  2842. list_for_each_entry(kvm, &vm_list, vm_list)
  2843. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2844. vcpu = kvm->vcpus[i];
  2845. if (vcpu)
  2846. total += *(u32 *)((void *)vcpu + offset);
  2847. }
  2848. spin_unlock(&kvm_lock);
  2849. return total;
  2850. }
  2851. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2852. static __init void kvm_init_debug(void)
  2853. {
  2854. struct kvm_stats_debugfs_item *p;
  2855. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2856. for (p = debugfs_entries; p->name; ++p)
  2857. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2858. (void *)(long)p->offset,
  2859. &stat_fops);
  2860. }
  2861. static void kvm_exit_debug(void)
  2862. {
  2863. struct kvm_stats_debugfs_item *p;
  2864. for (p = debugfs_entries; p->name; ++p)
  2865. debugfs_remove(p->dentry);
  2866. debugfs_remove(debugfs_dir);
  2867. }
  2868. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2869. {
  2870. hardware_disable(NULL);
  2871. return 0;
  2872. }
  2873. static int kvm_resume(struct sys_device *dev)
  2874. {
  2875. hardware_enable(NULL);
  2876. return 0;
  2877. }
  2878. static struct sysdev_class kvm_sysdev_class = {
  2879. .name = "kvm",
  2880. .suspend = kvm_suspend,
  2881. .resume = kvm_resume,
  2882. };
  2883. static struct sys_device kvm_sysdev = {
  2884. .id = 0,
  2885. .cls = &kvm_sysdev_class,
  2886. };
  2887. struct page *bad_page;
  2888. static inline
  2889. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2890. {
  2891. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2892. }
  2893. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2894. {
  2895. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2896. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2897. }
  2898. static void kvm_sched_out(struct preempt_notifier *pn,
  2899. struct task_struct *next)
  2900. {
  2901. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2902. kvm_x86_ops->vcpu_put(vcpu);
  2903. }
  2904. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2905. struct module *module)
  2906. {
  2907. int r;
  2908. int cpu;
  2909. if (kvm_x86_ops) {
  2910. printk(KERN_ERR "kvm: already loaded the other module\n");
  2911. return -EEXIST;
  2912. }
  2913. if (!ops->cpu_has_kvm_support()) {
  2914. printk(KERN_ERR "kvm: no hardware support\n");
  2915. return -EOPNOTSUPP;
  2916. }
  2917. if (ops->disabled_by_bios()) {
  2918. printk(KERN_ERR "kvm: disabled by bios\n");
  2919. return -EOPNOTSUPP;
  2920. }
  2921. kvm_x86_ops = ops;
  2922. r = kvm_x86_ops->hardware_setup();
  2923. if (r < 0)
  2924. goto out;
  2925. for_each_online_cpu(cpu) {
  2926. smp_call_function_single(cpu,
  2927. kvm_x86_ops->check_processor_compatibility,
  2928. &r, 0, 1);
  2929. if (r < 0)
  2930. goto out_free_0;
  2931. }
  2932. on_each_cpu(hardware_enable, NULL, 0, 1);
  2933. r = register_cpu_notifier(&kvm_cpu_notifier);
  2934. if (r)
  2935. goto out_free_1;
  2936. register_reboot_notifier(&kvm_reboot_notifier);
  2937. r = sysdev_class_register(&kvm_sysdev_class);
  2938. if (r)
  2939. goto out_free_2;
  2940. r = sysdev_register(&kvm_sysdev);
  2941. if (r)
  2942. goto out_free_3;
  2943. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2944. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2945. __alignof__(struct kvm_vcpu), 0, 0);
  2946. if (!kvm_vcpu_cache) {
  2947. r = -ENOMEM;
  2948. goto out_free_4;
  2949. }
  2950. kvm_chardev_ops.owner = module;
  2951. r = misc_register(&kvm_dev);
  2952. if (r) {
  2953. printk(KERN_ERR "kvm: misc device register failed\n");
  2954. goto out_free;
  2955. }
  2956. kvm_preempt_ops.sched_in = kvm_sched_in;
  2957. kvm_preempt_ops.sched_out = kvm_sched_out;
  2958. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2959. return 0;
  2960. out_free:
  2961. kmem_cache_destroy(kvm_vcpu_cache);
  2962. out_free_4:
  2963. sysdev_unregister(&kvm_sysdev);
  2964. out_free_3:
  2965. sysdev_class_unregister(&kvm_sysdev_class);
  2966. out_free_2:
  2967. unregister_reboot_notifier(&kvm_reboot_notifier);
  2968. unregister_cpu_notifier(&kvm_cpu_notifier);
  2969. out_free_1:
  2970. on_each_cpu(hardware_disable, NULL, 0, 1);
  2971. out_free_0:
  2972. kvm_x86_ops->hardware_unsetup();
  2973. out:
  2974. kvm_x86_ops = NULL;
  2975. return r;
  2976. }
  2977. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2978. void kvm_exit_x86(void)
  2979. {
  2980. misc_deregister(&kvm_dev);
  2981. kmem_cache_destroy(kvm_vcpu_cache);
  2982. sysdev_unregister(&kvm_sysdev);
  2983. sysdev_class_unregister(&kvm_sysdev_class);
  2984. unregister_reboot_notifier(&kvm_reboot_notifier);
  2985. unregister_cpu_notifier(&kvm_cpu_notifier);
  2986. on_each_cpu(hardware_disable, NULL, 0, 1);
  2987. kvm_x86_ops->hardware_unsetup();
  2988. kvm_x86_ops = NULL;
  2989. }
  2990. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  2991. static __init int kvm_init(void)
  2992. {
  2993. int r;
  2994. r = kvm_mmu_module_init();
  2995. if (r)
  2996. goto out4;
  2997. kvm_init_debug();
  2998. kvm_arch_init();
  2999. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3000. if (bad_page == NULL) {
  3001. r = -ENOMEM;
  3002. goto out;
  3003. }
  3004. return 0;
  3005. out:
  3006. kvm_exit_debug();
  3007. kvm_mmu_module_exit();
  3008. out4:
  3009. return r;
  3010. }
  3011. static __exit void kvm_exit(void)
  3012. {
  3013. kvm_exit_debug();
  3014. __free_page(bad_page);
  3015. kvm_mmu_module_exit();
  3016. }
  3017. module_init(kvm_init)
  3018. module_exit(kvm_exit)