x86.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <linux/slab.h>
  41. #include <linux/perf_event.h>
  42. #include <trace/events/kvm.h>
  43. #define CREATE_TRACE_POINTS
  44. #include "trace.h"
  45. #include <asm/debugreg.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/msr.h>
  48. #include <asm/desc.h>
  49. #include <asm/mtrr.h>
  50. #include <asm/mce.h>
  51. #define MAX_IO_MSRS 256
  52. #define CR0_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  54. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  55. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  56. #define CR4_RESERVED_BITS \
  57. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  58. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  59. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  60. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  61. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  62. #define KVM_MAX_MCE_BANKS 32
  63. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  64. /* EFER defaults:
  65. * - enable syscall per default because its emulated by KVM
  66. * - enable LME and LMA per default on 64 bit KVM
  67. */
  68. #ifdef CONFIG_X86_64
  69. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  70. #else
  71. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  72. #endif
  73. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  74. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  75. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  76. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  77. struct kvm_cpuid_entry2 __user *entries);
  78. struct kvm_x86_ops *kvm_x86_ops;
  79. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  80. int ignore_msrs = 0;
  81. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  82. #define KVM_NR_SHARED_MSRS 16
  83. struct kvm_shared_msrs_global {
  84. int nr;
  85. u32 msrs[KVM_NR_SHARED_MSRS];
  86. };
  87. struct kvm_shared_msrs {
  88. struct user_return_notifier urn;
  89. bool registered;
  90. struct kvm_shared_msr_values {
  91. u64 host;
  92. u64 curr;
  93. } values[KVM_NR_SHARED_MSRS];
  94. };
  95. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  96. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  97. struct kvm_stats_debugfs_item debugfs_entries[] = {
  98. { "pf_fixed", VCPU_STAT(pf_fixed) },
  99. { "pf_guest", VCPU_STAT(pf_guest) },
  100. { "tlb_flush", VCPU_STAT(tlb_flush) },
  101. { "invlpg", VCPU_STAT(invlpg) },
  102. { "exits", VCPU_STAT(exits) },
  103. { "io_exits", VCPU_STAT(io_exits) },
  104. { "mmio_exits", VCPU_STAT(mmio_exits) },
  105. { "signal_exits", VCPU_STAT(signal_exits) },
  106. { "irq_window", VCPU_STAT(irq_window_exits) },
  107. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  108. { "halt_exits", VCPU_STAT(halt_exits) },
  109. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  110. { "hypercalls", VCPU_STAT(hypercalls) },
  111. { "request_irq", VCPU_STAT(request_irq_exits) },
  112. { "irq_exits", VCPU_STAT(irq_exits) },
  113. { "host_state_reload", VCPU_STAT(host_state_reload) },
  114. { "efer_reload", VCPU_STAT(efer_reload) },
  115. { "fpu_reload", VCPU_STAT(fpu_reload) },
  116. { "insn_emulation", VCPU_STAT(insn_emulation) },
  117. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  118. { "irq_injections", VCPU_STAT(irq_injections) },
  119. { "nmi_injections", VCPU_STAT(nmi_injections) },
  120. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  121. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  122. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  123. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  124. { "mmu_flooded", VM_STAT(mmu_flooded) },
  125. { "mmu_recycled", VM_STAT(mmu_recycled) },
  126. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  127. { "mmu_unsync", VM_STAT(mmu_unsync) },
  128. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  129. { "largepages", VM_STAT(lpages) },
  130. { NULL }
  131. };
  132. static void kvm_on_user_return(struct user_return_notifier *urn)
  133. {
  134. unsigned slot;
  135. struct kvm_shared_msrs *locals
  136. = container_of(urn, struct kvm_shared_msrs, urn);
  137. struct kvm_shared_msr_values *values;
  138. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  139. values = &locals->values[slot];
  140. if (values->host != values->curr) {
  141. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  142. values->curr = values->host;
  143. }
  144. }
  145. locals->registered = false;
  146. user_return_notifier_unregister(urn);
  147. }
  148. static void shared_msr_update(unsigned slot, u32 msr)
  149. {
  150. struct kvm_shared_msrs *smsr;
  151. u64 value;
  152. smsr = &__get_cpu_var(shared_msrs);
  153. /* only read, and nobody should modify it at this time,
  154. * so don't need lock */
  155. if (slot >= shared_msrs_global.nr) {
  156. printk(KERN_ERR "kvm: invalid MSR slot!");
  157. return;
  158. }
  159. rdmsrl_safe(msr, &value);
  160. smsr->values[slot].host = value;
  161. smsr->values[slot].curr = value;
  162. }
  163. void kvm_define_shared_msr(unsigned slot, u32 msr)
  164. {
  165. if (slot >= shared_msrs_global.nr)
  166. shared_msrs_global.nr = slot + 1;
  167. shared_msrs_global.msrs[slot] = msr;
  168. /* we need ensured the shared_msr_global have been updated */
  169. smp_wmb();
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  172. static void kvm_shared_msr_cpu_online(void)
  173. {
  174. unsigned i;
  175. for (i = 0; i < shared_msrs_global.nr; ++i)
  176. shared_msr_update(i, shared_msrs_global.msrs[i]);
  177. }
  178. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  179. {
  180. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  181. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  182. return;
  183. smsr->values[slot].curr = value;
  184. wrmsrl(shared_msrs_global.msrs[slot], value);
  185. if (!smsr->registered) {
  186. smsr->urn.on_user_return = kvm_on_user_return;
  187. user_return_notifier_register(&smsr->urn);
  188. smsr->registered = true;
  189. }
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  192. static void drop_user_return_notifiers(void *ignore)
  193. {
  194. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  195. if (smsr->registered)
  196. kvm_on_user_return(&smsr->urn);
  197. }
  198. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  199. {
  200. if (irqchip_in_kernel(vcpu->kvm))
  201. return vcpu->arch.apic_base;
  202. else
  203. return vcpu->arch.apic_base;
  204. }
  205. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  206. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  207. {
  208. /* TODO: reserve bits check */
  209. if (irqchip_in_kernel(vcpu->kvm))
  210. kvm_lapic_set_base(vcpu, data);
  211. else
  212. vcpu->arch.apic_base = data;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  215. #define EXCPT_BENIGN 0
  216. #define EXCPT_CONTRIBUTORY 1
  217. #define EXCPT_PF 2
  218. static int exception_class(int vector)
  219. {
  220. switch (vector) {
  221. case PF_VECTOR:
  222. return EXCPT_PF;
  223. case DE_VECTOR:
  224. case TS_VECTOR:
  225. case NP_VECTOR:
  226. case SS_VECTOR:
  227. case GP_VECTOR:
  228. return EXCPT_CONTRIBUTORY;
  229. default:
  230. break;
  231. }
  232. return EXCPT_BENIGN;
  233. }
  234. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  235. unsigned nr, bool has_error, u32 error_code)
  236. {
  237. u32 prev_nr;
  238. int class1, class2;
  239. if (!vcpu->arch.exception.pending) {
  240. queue:
  241. vcpu->arch.exception.pending = true;
  242. vcpu->arch.exception.has_error_code = has_error;
  243. vcpu->arch.exception.nr = nr;
  244. vcpu->arch.exception.error_code = error_code;
  245. return;
  246. }
  247. /* to check exception */
  248. prev_nr = vcpu->arch.exception.nr;
  249. if (prev_nr == DF_VECTOR) {
  250. /* triple fault -> shutdown */
  251. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  252. return;
  253. }
  254. class1 = exception_class(prev_nr);
  255. class2 = exception_class(nr);
  256. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  257. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  258. /* generate double fault per SDM Table 5-5 */
  259. vcpu->arch.exception.pending = true;
  260. vcpu->arch.exception.has_error_code = true;
  261. vcpu->arch.exception.nr = DF_VECTOR;
  262. vcpu->arch.exception.error_code = 0;
  263. } else
  264. /* replace previous exception with a new one in a hope
  265. that instruction re-execution will regenerate lost
  266. exception */
  267. goto queue;
  268. }
  269. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  270. {
  271. kvm_multiple_exception(vcpu, nr, false, 0);
  272. }
  273. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  274. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  275. u32 error_code)
  276. {
  277. ++vcpu->stat.pf_guest;
  278. vcpu->arch.cr2 = addr;
  279. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  280. }
  281. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  282. {
  283. vcpu->arch.nmi_pending = 1;
  284. }
  285. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  286. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  287. {
  288. kvm_multiple_exception(vcpu, nr, true, error_code);
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  291. /*
  292. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  293. * a #GP and return false.
  294. */
  295. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  296. {
  297. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  298. return true;
  299. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  300. return false;
  301. }
  302. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  303. /*
  304. * Load the pae pdptrs. Return true is they are all valid.
  305. */
  306. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  307. {
  308. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  309. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  310. int i;
  311. int ret;
  312. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  313. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  314. offset * sizeof(u64), sizeof(pdpte));
  315. if (ret < 0) {
  316. ret = 0;
  317. goto out;
  318. }
  319. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  320. if (is_present_gpte(pdpte[i]) &&
  321. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  322. ret = 0;
  323. goto out;
  324. }
  325. }
  326. ret = 1;
  327. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  328. __set_bit(VCPU_EXREG_PDPTR,
  329. (unsigned long *)&vcpu->arch.regs_avail);
  330. __set_bit(VCPU_EXREG_PDPTR,
  331. (unsigned long *)&vcpu->arch.regs_dirty);
  332. out:
  333. return ret;
  334. }
  335. EXPORT_SYMBOL_GPL(load_pdptrs);
  336. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  337. {
  338. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  339. bool changed = true;
  340. int r;
  341. if (is_long_mode(vcpu) || !is_pae(vcpu))
  342. return false;
  343. if (!test_bit(VCPU_EXREG_PDPTR,
  344. (unsigned long *)&vcpu->arch.regs_avail))
  345. return true;
  346. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  347. if (r < 0)
  348. goto out;
  349. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  350. out:
  351. return changed;
  352. }
  353. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  354. {
  355. cr0 |= X86_CR0_ET;
  356. #ifdef CONFIG_X86_64
  357. if (cr0 & 0xffffffff00000000UL) {
  358. kvm_inject_gp(vcpu, 0);
  359. return;
  360. }
  361. #endif
  362. cr0 &= ~CR0_RESERVED_BITS;
  363. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  364. kvm_inject_gp(vcpu, 0);
  365. return;
  366. }
  367. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  368. kvm_inject_gp(vcpu, 0);
  369. return;
  370. }
  371. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  372. #ifdef CONFIG_X86_64
  373. if ((vcpu->arch.efer & EFER_LME)) {
  374. int cs_db, cs_l;
  375. if (!is_pae(vcpu)) {
  376. kvm_inject_gp(vcpu, 0);
  377. return;
  378. }
  379. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  380. if (cs_l) {
  381. kvm_inject_gp(vcpu, 0);
  382. return;
  383. }
  384. } else
  385. #endif
  386. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  387. kvm_inject_gp(vcpu, 0);
  388. return;
  389. }
  390. }
  391. kvm_x86_ops->set_cr0(vcpu, cr0);
  392. kvm_mmu_reset_context(vcpu);
  393. return;
  394. }
  395. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  396. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  397. {
  398. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
  399. }
  400. EXPORT_SYMBOL_GPL(kvm_lmsw);
  401. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  402. {
  403. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  404. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  405. if (cr4 & CR4_RESERVED_BITS) {
  406. kvm_inject_gp(vcpu, 0);
  407. return;
  408. }
  409. if (is_long_mode(vcpu)) {
  410. if (!(cr4 & X86_CR4_PAE)) {
  411. kvm_inject_gp(vcpu, 0);
  412. return;
  413. }
  414. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  415. && ((cr4 ^ old_cr4) & pdptr_bits)
  416. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  417. kvm_inject_gp(vcpu, 0);
  418. return;
  419. }
  420. if (cr4 & X86_CR4_VMXE) {
  421. kvm_inject_gp(vcpu, 0);
  422. return;
  423. }
  424. kvm_x86_ops->set_cr4(vcpu, cr4);
  425. vcpu->arch.cr4 = cr4;
  426. kvm_mmu_reset_context(vcpu);
  427. }
  428. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  429. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  430. {
  431. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  432. kvm_mmu_sync_roots(vcpu);
  433. kvm_mmu_flush_tlb(vcpu);
  434. return;
  435. }
  436. if (is_long_mode(vcpu)) {
  437. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  438. kvm_inject_gp(vcpu, 0);
  439. return;
  440. }
  441. } else {
  442. if (is_pae(vcpu)) {
  443. if (cr3 & CR3_PAE_RESERVED_BITS) {
  444. kvm_inject_gp(vcpu, 0);
  445. return;
  446. }
  447. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  448. kvm_inject_gp(vcpu, 0);
  449. return;
  450. }
  451. }
  452. /*
  453. * We don't check reserved bits in nonpae mode, because
  454. * this isn't enforced, and VMware depends on this.
  455. */
  456. }
  457. /*
  458. * Does the new cr3 value map to physical memory? (Note, we
  459. * catch an invalid cr3 even in real-mode, because it would
  460. * cause trouble later on when we turn on paging anyway.)
  461. *
  462. * A real CPU would silently accept an invalid cr3 and would
  463. * attempt to use it - with largely undefined (and often hard
  464. * to debug) behavior on the guest side.
  465. */
  466. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  467. kvm_inject_gp(vcpu, 0);
  468. else {
  469. vcpu->arch.cr3 = cr3;
  470. vcpu->arch.mmu.new_cr3(vcpu);
  471. }
  472. }
  473. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  474. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  475. {
  476. if (cr8 & CR8_RESERVED_BITS) {
  477. kvm_inject_gp(vcpu, 0);
  478. return;
  479. }
  480. if (irqchip_in_kernel(vcpu->kvm))
  481. kvm_lapic_set_tpr(vcpu, cr8);
  482. else
  483. vcpu->arch.cr8 = cr8;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  486. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  487. {
  488. if (irqchip_in_kernel(vcpu->kvm))
  489. return kvm_lapic_get_cr8(vcpu);
  490. else
  491. return vcpu->arch.cr8;
  492. }
  493. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  494. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  495. {
  496. switch (dr) {
  497. case 0 ... 3:
  498. vcpu->arch.db[dr] = val;
  499. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  500. vcpu->arch.eff_db[dr] = val;
  501. break;
  502. case 4:
  503. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  504. kvm_queue_exception(vcpu, UD_VECTOR);
  505. return 1;
  506. }
  507. /* fall through */
  508. case 6:
  509. if (val & 0xffffffff00000000ULL) {
  510. kvm_inject_gp(vcpu, 0);
  511. return 1;
  512. }
  513. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  514. break;
  515. case 5:
  516. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  517. kvm_queue_exception(vcpu, UD_VECTOR);
  518. return 1;
  519. }
  520. /* fall through */
  521. default: /* 7 */
  522. if (val & 0xffffffff00000000ULL) {
  523. kvm_inject_gp(vcpu, 0);
  524. return 1;
  525. }
  526. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  527. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  528. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  529. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  530. }
  531. break;
  532. }
  533. return 0;
  534. }
  535. EXPORT_SYMBOL_GPL(kvm_set_dr);
  536. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  537. {
  538. switch (dr) {
  539. case 0 ... 3:
  540. *val = vcpu->arch.db[dr];
  541. break;
  542. case 4:
  543. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  544. kvm_queue_exception(vcpu, UD_VECTOR);
  545. return 1;
  546. }
  547. /* fall through */
  548. case 6:
  549. *val = vcpu->arch.dr6;
  550. break;
  551. case 5:
  552. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  553. kvm_queue_exception(vcpu, UD_VECTOR);
  554. return 1;
  555. }
  556. /* fall through */
  557. default: /* 7 */
  558. *val = vcpu->arch.dr7;
  559. break;
  560. }
  561. return 0;
  562. }
  563. EXPORT_SYMBOL_GPL(kvm_get_dr);
  564. static inline u32 bit(int bitno)
  565. {
  566. return 1 << (bitno & 31);
  567. }
  568. /*
  569. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  570. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  571. *
  572. * This list is modified at module load time to reflect the
  573. * capabilities of the host cpu. This capabilities test skips MSRs that are
  574. * kvm-specific. Those are put in the beginning of the list.
  575. */
  576. #define KVM_SAVE_MSRS_BEGIN 5
  577. static u32 msrs_to_save[] = {
  578. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  579. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  580. HV_X64_MSR_APIC_ASSIST_PAGE,
  581. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  582. MSR_K6_STAR,
  583. #ifdef CONFIG_X86_64
  584. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  585. #endif
  586. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  587. };
  588. static unsigned num_msrs_to_save;
  589. static u32 emulated_msrs[] = {
  590. MSR_IA32_MISC_ENABLE,
  591. };
  592. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  593. {
  594. if (efer & efer_reserved_bits) {
  595. kvm_inject_gp(vcpu, 0);
  596. return;
  597. }
  598. if (is_paging(vcpu)
  599. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
  600. kvm_inject_gp(vcpu, 0);
  601. return;
  602. }
  603. if (efer & EFER_FFXSR) {
  604. struct kvm_cpuid_entry2 *feat;
  605. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  606. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  607. kvm_inject_gp(vcpu, 0);
  608. return;
  609. }
  610. }
  611. if (efer & EFER_SVME) {
  612. struct kvm_cpuid_entry2 *feat;
  613. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  614. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  615. kvm_inject_gp(vcpu, 0);
  616. return;
  617. }
  618. }
  619. kvm_x86_ops->set_efer(vcpu, efer);
  620. efer &= ~EFER_LMA;
  621. efer |= vcpu->arch.efer & EFER_LMA;
  622. vcpu->arch.efer = efer;
  623. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  624. kvm_mmu_reset_context(vcpu);
  625. }
  626. void kvm_enable_efer_bits(u64 mask)
  627. {
  628. efer_reserved_bits &= ~mask;
  629. }
  630. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  631. /*
  632. * Writes msr value into into the appropriate "register".
  633. * Returns 0 on success, non-0 otherwise.
  634. * Assumes vcpu_load() was already called.
  635. */
  636. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  637. {
  638. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  639. }
  640. /*
  641. * Adapt set_msr() to msr_io()'s calling convention
  642. */
  643. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  644. {
  645. return kvm_set_msr(vcpu, index, *data);
  646. }
  647. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  648. {
  649. static int version;
  650. struct pvclock_wall_clock wc;
  651. struct timespec boot;
  652. if (!wall_clock)
  653. return;
  654. version++;
  655. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  656. /*
  657. * The guest calculates current wall clock time by adding
  658. * system time (updated by kvm_write_guest_time below) to the
  659. * wall clock specified here. guest system time equals host
  660. * system time for us, thus we must fill in host boot time here.
  661. */
  662. getboottime(&boot);
  663. wc.sec = boot.tv_sec;
  664. wc.nsec = boot.tv_nsec;
  665. wc.version = version;
  666. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  667. version++;
  668. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  669. }
  670. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  671. {
  672. uint32_t quotient, remainder;
  673. /* Don't try to replace with do_div(), this one calculates
  674. * "(dividend << 32) / divisor" */
  675. __asm__ ( "divl %4"
  676. : "=a" (quotient), "=d" (remainder)
  677. : "0" (0), "1" (dividend), "r" (divisor) );
  678. return quotient;
  679. }
  680. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  681. {
  682. uint64_t nsecs = 1000000000LL;
  683. int32_t shift = 0;
  684. uint64_t tps64;
  685. uint32_t tps32;
  686. tps64 = tsc_khz * 1000LL;
  687. while (tps64 > nsecs*2) {
  688. tps64 >>= 1;
  689. shift--;
  690. }
  691. tps32 = (uint32_t)tps64;
  692. while (tps32 <= (uint32_t)nsecs) {
  693. tps32 <<= 1;
  694. shift++;
  695. }
  696. hv_clock->tsc_shift = shift;
  697. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  698. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  699. __func__, tsc_khz, hv_clock->tsc_shift,
  700. hv_clock->tsc_to_system_mul);
  701. }
  702. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  703. static void kvm_write_guest_time(struct kvm_vcpu *v)
  704. {
  705. struct timespec ts;
  706. unsigned long flags;
  707. struct kvm_vcpu_arch *vcpu = &v->arch;
  708. void *shared_kaddr;
  709. unsigned long this_tsc_khz;
  710. if ((!vcpu->time_page))
  711. return;
  712. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  713. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  714. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  715. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  716. }
  717. put_cpu_var(cpu_tsc_khz);
  718. /* Keep irq disabled to prevent changes to the clock */
  719. local_irq_save(flags);
  720. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  721. ktime_get_ts(&ts);
  722. monotonic_to_bootbased(&ts);
  723. local_irq_restore(flags);
  724. /* With all the info we got, fill in the values */
  725. vcpu->hv_clock.system_time = ts.tv_nsec +
  726. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  727. /*
  728. * The interface expects us to write an even number signaling that the
  729. * update is finished. Since the guest won't see the intermediate
  730. * state, we just increase by 2 at the end.
  731. */
  732. vcpu->hv_clock.version += 2;
  733. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  734. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  735. sizeof(vcpu->hv_clock));
  736. kunmap_atomic(shared_kaddr, KM_USER0);
  737. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  738. }
  739. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  740. {
  741. struct kvm_vcpu_arch *vcpu = &v->arch;
  742. if (!vcpu->time_page)
  743. return 0;
  744. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  745. return 1;
  746. }
  747. static bool msr_mtrr_valid(unsigned msr)
  748. {
  749. switch (msr) {
  750. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  751. case MSR_MTRRfix64K_00000:
  752. case MSR_MTRRfix16K_80000:
  753. case MSR_MTRRfix16K_A0000:
  754. case MSR_MTRRfix4K_C0000:
  755. case MSR_MTRRfix4K_C8000:
  756. case MSR_MTRRfix4K_D0000:
  757. case MSR_MTRRfix4K_D8000:
  758. case MSR_MTRRfix4K_E0000:
  759. case MSR_MTRRfix4K_E8000:
  760. case MSR_MTRRfix4K_F0000:
  761. case MSR_MTRRfix4K_F8000:
  762. case MSR_MTRRdefType:
  763. case MSR_IA32_CR_PAT:
  764. return true;
  765. case 0x2f8:
  766. return true;
  767. }
  768. return false;
  769. }
  770. static bool valid_pat_type(unsigned t)
  771. {
  772. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  773. }
  774. static bool valid_mtrr_type(unsigned t)
  775. {
  776. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  777. }
  778. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  779. {
  780. int i;
  781. if (!msr_mtrr_valid(msr))
  782. return false;
  783. if (msr == MSR_IA32_CR_PAT) {
  784. for (i = 0; i < 8; i++)
  785. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  786. return false;
  787. return true;
  788. } else if (msr == MSR_MTRRdefType) {
  789. if (data & ~0xcff)
  790. return false;
  791. return valid_mtrr_type(data & 0xff);
  792. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  793. for (i = 0; i < 8 ; i++)
  794. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  795. return false;
  796. return true;
  797. }
  798. /* variable MTRRs */
  799. return valid_mtrr_type(data & 0xff);
  800. }
  801. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  802. {
  803. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  804. if (!mtrr_valid(vcpu, msr, data))
  805. return 1;
  806. if (msr == MSR_MTRRdefType) {
  807. vcpu->arch.mtrr_state.def_type = data;
  808. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  809. } else if (msr == MSR_MTRRfix64K_00000)
  810. p[0] = data;
  811. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  812. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  813. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  814. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  815. else if (msr == MSR_IA32_CR_PAT)
  816. vcpu->arch.pat = data;
  817. else { /* Variable MTRRs */
  818. int idx, is_mtrr_mask;
  819. u64 *pt;
  820. idx = (msr - 0x200) / 2;
  821. is_mtrr_mask = msr - 0x200 - 2 * idx;
  822. if (!is_mtrr_mask)
  823. pt =
  824. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  825. else
  826. pt =
  827. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  828. *pt = data;
  829. }
  830. kvm_mmu_reset_context(vcpu);
  831. return 0;
  832. }
  833. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  834. {
  835. u64 mcg_cap = vcpu->arch.mcg_cap;
  836. unsigned bank_num = mcg_cap & 0xff;
  837. switch (msr) {
  838. case MSR_IA32_MCG_STATUS:
  839. vcpu->arch.mcg_status = data;
  840. break;
  841. case MSR_IA32_MCG_CTL:
  842. if (!(mcg_cap & MCG_CTL_P))
  843. return 1;
  844. if (data != 0 && data != ~(u64)0)
  845. return -1;
  846. vcpu->arch.mcg_ctl = data;
  847. break;
  848. default:
  849. if (msr >= MSR_IA32_MC0_CTL &&
  850. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  851. u32 offset = msr - MSR_IA32_MC0_CTL;
  852. /* only 0 or all 1s can be written to IA32_MCi_CTL
  853. * some Linux kernels though clear bit 10 in bank 4 to
  854. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  855. * this to avoid an uncatched #GP in the guest
  856. */
  857. if ((offset & 0x3) == 0 &&
  858. data != 0 && (data | (1 << 10)) != ~(u64)0)
  859. return -1;
  860. vcpu->arch.mce_banks[offset] = data;
  861. break;
  862. }
  863. return 1;
  864. }
  865. return 0;
  866. }
  867. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  868. {
  869. struct kvm *kvm = vcpu->kvm;
  870. int lm = is_long_mode(vcpu);
  871. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  872. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  873. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  874. : kvm->arch.xen_hvm_config.blob_size_32;
  875. u32 page_num = data & ~PAGE_MASK;
  876. u64 page_addr = data & PAGE_MASK;
  877. u8 *page;
  878. int r;
  879. r = -E2BIG;
  880. if (page_num >= blob_size)
  881. goto out;
  882. r = -ENOMEM;
  883. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  884. if (!page)
  885. goto out;
  886. r = -EFAULT;
  887. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  888. goto out_free;
  889. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  890. goto out_free;
  891. r = 0;
  892. out_free:
  893. kfree(page);
  894. out:
  895. return r;
  896. }
  897. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  898. {
  899. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  900. }
  901. static bool kvm_hv_msr_partition_wide(u32 msr)
  902. {
  903. bool r = false;
  904. switch (msr) {
  905. case HV_X64_MSR_GUEST_OS_ID:
  906. case HV_X64_MSR_HYPERCALL:
  907. r = true;
  908. break;
  909. }
  910. return r;
  911. }
  912. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  913. {
  914. struct kvm *kvm = vcpu->kvm;
  915. switch (msr) {
  916. case HV_X64_MSR_GUEST_OS_ID:
  917. kvm->arch.hv_guest_os_id = data;
  918. /* setting guest os id to zero disables hypercall page */
  919. if (!kvm->arch.hv_guest_os_id)
  920. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  921. break;
  922. case HV_X64_MSR_HYPERCALL: {
  923. u64 gfn;
  924. unsigned long addr;
  925. u8 instructions[4];
  926. /* if guest os id is not set hypercall should remain disabled */
  927. if (!kvm->arch.hv_guest_os_id)
  928. break;
  929. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  930. kvm->arch.hv_hypercall = data;
  931. break;
  932. }
  933. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  934. addr = gfn_to_hva(kvm, gfn);
  935. if (kvm_is_error_hva(addr))
  936. return 1;
  937. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  938. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  939. if (copy_to_user((void __user *)addr, instructions, 4))
  940. return 1;
  941. kvm->arch.hv_hypercall = data;
  942. break;
  943. }
  944. default:
  945. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  946. "data 0x%llx\n", msr, data);
  947. return 1;
  948. }
  949. return 0;
  950. }
  951. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  952. {
  953. switch (msr) {
  954. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  955. unsigned long addr;
  956. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  957. vcpu->arch.hv_vapic = data;
  958. break;
  959. }
  960. addr = gfn_to_hva(vcpu->kvm, data >>
  961. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  962. if (kvm_is_error_hva(addr))
  963. return 1;
  964. if (clear_user((void __user *)addr, PAGE_SIZE))
  965. return 1;
  966. vcpu->arch.hv_vapic = data;
  967. break;
  968. }
  969. case HV_X64_MSR_EOI:
  970. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  971. case HV_X64_MSR_ICR:
  972. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  973. case HV_X64_MSR_TPR:
  974. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  975. default:
  976. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  977. "data 0x%llx\n", msr, data);
  978. return 1;
  979. }
  980. return 0;
  981. }
  982. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  983. {
  984. switch (msr) {
  985. case MSR_EFER:
  986. set_efer(vcpu, data);
  987. break;
  988. case MSR_K7_HWCR:
  989. data &= ~(u64)0x40; /* ignore flush filter disable */
  990. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  991. if (data != 0) {
  992. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  993. data);
  994. return 1;
  995. }
  996. break;
  997. case MSR_FAM10H_MMIO_CONF_BASE:
  998. if (data != 0) {
  999. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1000. "0x%llx\n", data);
  1001. return 1;
  1002. }
  1003. break;
  1004. case MSR_AMD64_NB_CFG:
  1005. break;
  1006. case MSR_IA32_DEBUGCTLMSR:
  1007. if (!data) {
  1008. /* We support the non-activated case already */
  1009. break;
  1010. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1011. /* Values other than LBR and BTF are vendor-specific,
  1012. thus reserved and should throw a #GP */
  1013. return 1;
  1014. }
  1015. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1016. __func__, data);
  1017. break;
  1018. case MSR_IA32_UCODE_REV:
  1019. case MSR_IA32_UCODE_WRITE:
  1020. case MSR_VM_HSAVE_PA:
  1021. case MSR_AMD64_PATCH_LOADER:
  1022. break;
  1023. case 0x200 ... 0x2ff:
  1024. return set_msr_mtrr(vcpu, msr, data);
  1025. case MSR_IA32_APICBASE:
  1026. kvm_set_apic_base(vcpu, data);
  1027. break;
  1028. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1029. return kvm_x2apic_msr_write(vcpu, msr, data);
  1030. case MSR_IA32_MISC_ENABLE:
  1031. vcpu->arch.ia32_misc_enable_msr = data;
  1032. break;
  1033. case MSR_KVM_WALL_CLOCK:
  1034. vcpu->kvm->arch.wall_clock = data;
  1035. kvm_write_wall_clock(vcpu->kvm, data);
  1036. break;
  1037. case MSR_KVM_SYSTEM_TIME: {
  1038. if (vcpu->arch.time_page) {
  1039. kvm_release_page_dirty(vcpu->arch.time_page);
  1040. vcpu->arch.time_page = NULL;
  1041. }
  1042. vcpu->arch.time = data;
  1043. /* we verify if the enable bit is set... */
  1044. if (!(data & 1))
  1045. break;
  1046. /* ...but clean it before doing the actual write */
  1047. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1048. vcpu->arch.time_page =
  1049. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1050. if (is_error_page(vcpu->arch.time_page)) {
  1051. kvm_release_page_clean(vcpu->arch.time_page);
  1052. vcpu->arch.time_page = NULL;
  1053. }
  1054. kvm_request_guest_time_update(vcpu);
  1055. break;
  1056. }
  1057. case MSR_IA32_MCG_CTL:
  1058. case MSR_IA32_MCG_STATUS:
  1059. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1060. return set_msr_mce(vcpu, msr, data);
  1061. /* Performance counters are not protected by a CPUID bit,
  1062. * so we should check all of them in the generic path for the sake of
  1063. * cross vendor migration.
  1064. * Writing a zero into the event select MSRs disables them,
  1065. * which we perfectly emulate ;-). Any other value should be at least
  1066. * reported, some guests depend on them.
  1067. */
  1068. case MSR_P6_EVNTSEL0:
  1069. case MSR_P6_EVNTSEL1:
  1070. case MSR_K7_EVNTSEL0:
  1071. case MSR_K7_EVNTSEL1:
  1072. case MSR_K7_EVNTSEL2:
  1073. case MSR_K7_EVNTSEL3:
  1074. if (data != 0)
  1075. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1076. "0x%x data 0x%llx\n", msr, data);
  1077. break;
  1078. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1079. * so we ignore writes to make it happy.
  1080. */
  1081. case MSR_P6_PERFCTR0:
  1082. case MSR_P6_PERFCTR1:
  1083. case MSR_K7_PERFCTR0:
  1084. case MSR_K7_PERFCTR1:
  1085. case MSR_K7_PERFCTR2:
  1086. case MSR_K7_PERFCTR3:
  1087. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1088. "0x%x data 0x%llx\n", msr, data);
  1089. break;
  1090. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1091. if (kvm_hv_msr_partition_wide(msr)) {
  1092. int r;
  1093. mutex_lock(&vcpu->kvm->lock);
  1094. r = set_msr_hyperv_pw(vcpu, msr, data);
  1095. mutex_unlock(&vcpu->kvm->lock);
  1096. return r;
  1097. } else
  1098. return set_msr_hyperv(vcpu, msr, data);
  1099. break;
  1100. default:
  1101. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1102. return xen_hvm_config(vcpu, data);
  1103. if (!ignore_msrs) {
  1104. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1105. msr, data);
  1106. return 1;
  1107. } else {
  1108. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1109. msr, data);
  1110. break;
  1111. }
  1112. }
  1113. return 0;
  1114. }
  1115. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1116. /*
  1117. * Reads an msr value (of 'msr_index') into 'pdata'.
  1118. * Returns 0 on success, non-0 otherwise.
  1119. * Assumes vcpu_load() was already called.
  1120. */
  1121. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1122. {
  1123. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1124. }
  1125. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1126. {
  1127. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1128. if (!msr_mtrr_valid(msr))
  1129. return 1;
  1130. if (msr == MSR_MTRRdefType)
  1131. *pdata = vcpu->arch.mtrr_state.def_type +
  1132. (vcpu->arch.mtrr_state.enabled << 10);
  1133. else if (msr == MSR_MTRRfix64K_00000)
  1134. *pdata = p[0];
  1135. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1136. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1137. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1138. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1139. else if (msr == MSR_IA32_CR_PAT)
  1140. *pdata = vcpu->arch.pat;
  1141. else { /* Variable MTRRs */
  1142. int idx, is_mtrr_mask;
  1143. u64 *pt;
  1144. idx = (msr - 0x200) / 2;
  1145. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1146. if (!is_mtrr_mask)
  1147. pt =
  1148. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1149. else
  1150. pt =
  1151. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1152. *pdata = *pt;
  1153. }
  1154. return 0;
  1155. }
  1156. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1157. {
  1158. u64 data;
  1159. u64 mcg_cap = vcpu->arch.mcg_cap;
  1160. unsigned bank_num = mcg_cap & 0xff;
  1161. switch (msr) {
  1162. case MSR_IA32_P5_MC_ADDR:
  1163. case MSR_IA32_P5_MC_TYPE:
  1164. data = 0;
  1165. break;
  1166. case MSR_IA32_MCG_CAP:
  1167. data = vcpu->arch.mcg_cap;
  1168. break;
  1169. case MSR_IA32_MCG_CTL:
  1170. if (!(mcg_cap & MCG_CTL_P))
  1171. return 1;
  1172. data = vcpu->arch.mcg_ctl;
  1173. break;
  1174. case MSR_IA32_MCG_STATUS:
  1175. data = vcpu->arch.mcg_status;
  1176. break;
  1177. default:
  1178. if (msr >= MSR_IA32_MC0_CTL &&
  1179. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1180. u32 offset = msr - MSR_IA32_MC0_CTL;
  1181. data = vcpu->arch.mce_banks[offset];
  1182. break;
  1183. }
  1184. return 1;
  1185. }
  1186. *pdata = data;
  1187. return 0;
  1188. }
  1189. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1190. {
  1191. u64 data = 0;
  1192. struct kvm *kvm = vcpu->kvm;
  1193. switch (msr) {
  1194. case HV_X64_MSR_GUEST_OS_ID:
  1195. data = kvm->arch.hv_guest_os_id;
  1196. break;
  1197. case HV_X64_MSR_HYPERCALL:
  1198. data = kvm->arch.hv_hypercall;
  1199. break;
  1200. default:
  1201. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1202. return 1;
  1203. }
  1204. *pdata = data;
  1205. return 0;
  1206. }
  1207. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1208. {
  1209. u64 data = 0;
  1210. switch (msr) {
  1211. case HV_X64_MSR_VP_INDEX: {
  1212. int r;
  1213. struct kvm_vcpu *v;
  1214. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1215. if (v == vcpu)
  1216. data = r;
  1217. break;
  1218. }
  1219. case HV_X64_MSR_EOI:
  1220. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1221. case HV_X64_MSR_ICR:
  1222. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1223. case HV_X64_MSR_TPR:
  1224. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1225. default:
  1226. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1227. return 1;
  1228. }
  1229. *pdata = data;
  1230. return 0;
  1231. }
  1232. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1233. {
  1234. u64 data;
  1235. switch (msr) {
  1236. case MSR_IA32_PLATFORM_ID:
  1237. case MSR_IA32_UCODE_REV:
  1238. case MSR_IA32_EBL_CR_POWERON:
  1239. case MSR_IA32_DEBUGCTLMSR:
  1240. case MSR_IA32_LASTBRANCHFROMIP:
  1241. case MSR_IA32_LASTBRANCHTOIP:
  1242. case MSR_IA32_LASTINTFROMIP:
  1243. case MSR_IA32_LASTINTTOIP:
  1244. case MSR_K8_SYSCFG:
  1245. case MSR_K7_HWCR:
  1246. case MSR_VM_HSAVE_PA:
  1247. case MSR_P6_PERFCTR0:
  1248. case MSR_P6_PERFCTR1:
  1249. case MSR_P6_EVNTSEL0:
  1250. case MSR_P6_EVNTSEL1:
  1251. case MSR_K7_EVNTSEL0:
  1252. case MSR_K7_PERFCTR0:
  1253. case MSR_K8_INT_PENDING_MSG:
  1254. case MSR_AMD64_NB_CFG:
  1255. case MSR_FAM10H_MMIO_CONF_BASE:
  1256. data = 0;
  1257. break;
  1258. case MSR_MTRRcap:
  1259. data = 0x500 | KVM_NR_VAR_MTRR;
  1260. break;
  1261. case 0x200 ... 0x2ff:
  1262. return get_msr_mtrr(vcpu, msr, pdata);
  1263. case 0xcd: /* fsb frequency */
  1264. data = 3;
  1265. break;
  1266. case MSR_IA32_APICBASE:
  1267. data = kvm_get_apic_base(vcpu);
  1268. break;
  1269. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1270. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1271. break;
  1272. case MSR_IA32_MISC_ENABLE:
  1273. data = vcpu->arch.ia32_misc_enable_msr;
  1274. break;
  1275. case MSR_IA32_PERF_STATUS:
  1276. /* TSC increment by tick */
  1277. data = 1000ULL;
  1278. /* CPU multiplier */
  1279. data |= (((uint64_t)4ULL) << 40);
  1280. break;
  1281. case MSR_EFER:
  1282. data = vcpu->arch.efer;
  1283. break;
  1284. case MSR_KVM_WALL_CLOCK:
  1285. data = vcpu->kvm->arch.wall_clock;
  1286. break;
  1287. case MSR_KVM_SYSTEM_TIME:
  1288. data = vcpu->arch.time;
  1289. break;
  1290. case MSR_IA32_P5_MC_ADDR:
  1291. case MSR_IA32_P5_MC_TYPE:
  1292. case MSR_IA32_MCG_CAP:
  1293. case MSR_IA32_MCG_CTL:
  1294. case MSR_IA32_MCG_STATUS:
  1295. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1296. return get_msr_mce(vcpu, msr, pdata);
  1297. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1298. if (kvm_hv_msr_partition_wide(msr)) {
  1299. int r;
  1300. mutex_lock(&vcpu->kvm->lock);
  1301. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1302. mutex_unlock(&vcpu->kvm->lock);
  1303. return r;
  1304. } else
  1305. return get_msr_hyperv(vcpu, msr, pdata);
  1306. break;
  1307. default:
  1308. if (!ignore_msrs) {
  1309. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1310. return 1;
  1311. } else {
  1312. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1313. data = 0;
  1314. }
  1315. break;
  1316. }
  1317. *pdata = data;
  1318. return 0;
  1319. }
  1320. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1321. /*
  1322. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1323. *
  1324. * @return number of msrs set successfully.
  1325. */
  1326. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1327. struct kvm_msr_entry *entries,
  1328. int (*do_msr)(struct kvm_vcpu *vcpu,
  1329. unsigned index, u64 *data))
  1330. {
  1331. int i, idx;
  1332. vcpu_load(vcpu);
  1333. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1334. for (i = 0; i < msrs->nmsrs; ++i)
  1335. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1336. break;
  1337. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1338. vcpu_put(vcpu);
  1339. return i;
  1340. }
  1341. /*
  1342. * Read or write a bunch of msrs. Parameters are user addresses.
  1343. *
  1344. * @return number of msrs set successfully.
  1345. */
  1346. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1347. int (*do_msr)(struct kvm_vcpu *vcpu,
  1348. unsigned index, u64 *data),
  1349. int writeback)
  1350. {
  1351. struct kvm_msrs msrs;
  1352. struct kvm_msr_entry *entries;
  1353. int r, n;
  1354. unsigned size;
  1355. r = -EFAULT;
  1356. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1357. goto out;
  1358. r = -E2BIG;
  1359. if (msrs.nmsrs >= MAX_IO_MSRS)
  1360. goto out;
  1361. r = -ENOMEM;
  1362. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1363. entries = vmalloc(size);
  1364. if (!entries)
  1365. goto out;
  1366. r = -EFAULT;
  1367. if (copy_from_user(entries, user_msrs->entries, size))
  1368. goto out_free;
  1369. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1370. if (r < 0)
  1371. goto out_free;
  1372. r = -EFAULT;
  1373. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1374. goto out_free;
  1375. r = n;
  1376. out_free:
  1377. vfree(entries);
  1378. out:
  1379. return r;
  1380. }
  1381. int kvm_dev_ioctl_check_extension(long ext)
  1382. {
  1383. int r;
  1384. switch (ext) {
  1385. case KVM_CAP_IRQCHIP:
  1386. case KVM_CAP_HLT:
  1387. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1388. case KVM_CAP_SET_TSS_ADDR:
  1389. case KVM_CAP_EXT_CPUID:
  1390. case KVM_CAP_CLOCKSOURCE:
  1391. case KVM_CAP_PIT:
  1392. case KVM_CAP_NOP_IO_DELAY:
  1393. case KVM_CAP_MP_STATE:
  1394. case KVM_CAP_SYNC_MMU:
  1395. case KVM_CAP_REINJECT_CONTROL:
  1396. case KVM_CAP_IRQ_INJECT_STATUS:
  1397. case KVM_CAP_ASSIGN_DEV_IRQ:
  1398. case KVM_CAP_IRQFD:
  1399. case KVM_CAP_IOEVENTFD:
  1400. case KVM_CAP_PIT2:
  1401. case KVM_CAP_PIT_STATE2:
  1402. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1403. case KVM_CAP_XEN_HVM:
  1404. case KVM_CAP_ADJUST_CLOCK:
  1405. case KVM_CAP_VCPU_EVENTS:
  1406. case KVM_CAP_HYPERV:
  1407. case KVM_CAP_HYPERV_VAPIC:
  1408. case KVM_CAP_HYPERV_SPIN:
  1409. case KVM_CAP_PCI_SEGMENT:
  1410. case KVM_CAP_DEBUGREGS:
  1411. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1412. r = 1;
  1413. break;
  1414. case KVM_CAP_COALESCED_MMIO:
  1415. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1416. break;
  1417. case KVM_CAP_VAPIC:
  1418. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1419. break;
  1420. case KVM_CAP_NR_VCPUS:
  1421. r = KVM_MAX_VCPUS;
  1422. break;
  1423. case KVM_CAP_NR_MEMSLOTS:
  1424. r = KVM_MEMORY_SLOTS;
  1425. break;
  1426. case KVM_CAP_PV_MMU: /* obsolete */
  1427. r = 0;
  1428. break;
  1429. case KVM_CAP_IOMMU:
  1430. r = iommu_found();
  1431. break;
  1432. case KVM_CAP_MCE:
  1433. r = KVM_MAX_MCE_BANKS;
  1434. break;
  1435. default:
  1436. r = 0;
  1437. break;
  1438. }
  1439. return r;
  1440. }
  1441. long kvm_arch_dev_ioctl(struct file *filp,
  1442. unsigned int ioctl, unsigned long arg)
  1443. {
  1444. void __user *argp = (void __user *)arg;
  1445. long r;
  1446. switch (ioctl) {
  1447. case KVM_GET_MSR_INDEX_LIST: {
  1448. struct kvm_msr_list __user *user_msr_list = argp;
  1449. struct kvm_msr_list msr_list;
  1450. unsigned n;
  1451. r = -EFAULT;
  1452. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1453. goto out;
  1454. n = msr_list.nmsrs;
  1455. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1456. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1457. goto out;
  1458. r = -E2BIG;
  1459. if (n < msr_list.nmsrs)
  1460. goto out;
  1461. r = -EFAULT;
  1462. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1463. num_msrs_to_save * sizeof(u32)))
  1464. goto out;
  1465. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1466. &emulated_msrs,
  1467. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1468. goto out;
  1469. r = 0;
  1470. break;
  1471. }
  1472. case KVM_GET_SUPPORTED_CPUID: {
  1473. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1474. struct kvm_cpuid2 cpuid;
  1475. r = -EFAULT;
  1476. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1477. goto out;
  1478. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1479. cpuid_arg->entries);
  1480. if (r)
  1481. goto out;
  1482. r = -EFAULT;
  1483. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1484. goto out;
  1485. r = 0;
  1486. break;
  1487. }
  1488. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1489. u64 mce_cap;
  1490. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1491. r = -EFAULT;
  1492. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1493. goto out;
  1494. r = 0;
  1495. break;
  1496. }
  1497. default:
  1498. r = -EINVAL;
  1499. }
  1500. out:
  1501. return r;
  1502. }
  1503. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1504. {
  1505. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1506. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1507. unsigned long khz = cpufreq_quick_get(cpu);
  1508. if (!khz)
  1509. khz = tsc_khz;
  1510. per_cpu(cpu_tsc_khz, cpu) = khz;
  1511. }
  1512. kvm_request_guest_time_update(vcpu);
  1513. }
  1514. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1515. {
  1516. kvm_put_guest_fpu(vcpu);
  1517. kvm_x86_ops->vcpu_put(vcpu);
  1518. }
  1519. static int is_efer_nx(void)
  1520. {
  1521. unsigned long long efer = 0;
  1522. rdmsrl_safe(MSR_EFER, &efer);
  1523. return efer & EFER_NX;
  1524. }
  1525. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1526. {
  1527. int i;
  1528. struct kvm_cpuid_entry2 *e, *entry;
  1529. entry = NULL;
  1530. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1531. e = &vcpu->arch.cpuid_entries[i];
  1532. if (e->function == 0x80000001) {
  1533. entry = e;
  1534. break;
  1535. }
  1536. }
  1537. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1538. entry->edx &= ~(1 << 20);
  1539. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1540. }
  1541. }
  1542. /* when an old userspace process fills a new kernel module */
  1543. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1544. struct kvm_cpuid *cpuid,
  1545. struct kvm_cpuid_entry __user *entries)
  1546. {
  1547. int r, i;
  1548. struct kvm_cpuid_entry *cpuid_entries;
  1549. r = -E2BIG;
  1550. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1551. goto out;
  1552. r = -ENOMEM;
  1553. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1554. if (!cpuid_entries)
  1555. goto out;
  1556. r = -EFAULT;
  1557. if (copy_from_user(cpuid_entries, entries,
  1558. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1559. goto out_free;
  1560. for (i = 0; i < cpuid->nent; i++) {
  1561. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1562. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1563. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1564. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1565. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1566. vcpu->arch.cpuid_entries[i].index = 0;
  1567. vcpu->arch.cpuid_entries[i].flags = 0;
  1568. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1569. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1570. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1571. }
  1572. vcpu->arch.cpuid_nent = cpuid->nent;
  1573. cpuid_fix_nx_cap(vcpu);
  1574. r = 0;
  1575. kvm_apic_set_version(vcpu);
  1576. kvm_x86_ops->cpuid_update(vcpu);
  1577. out_free:
  1578. vfree(cpuid_entries);
  1579. out:
  1580. return r;
  1581. }
  1582. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1583. struct kvm_cpuid2 *cpuid,
  1584. struct kvm_cpuid_entry2 __user *entries)
  1585. {
  1586. int r;
  1587. r = -E2BIG;
  1588. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1589. goto out;
  1590. r = -EFAULT;
  1591. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1592. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1593. goto out;
  1594. vcpu->arch.cpuid_nent = cpuid->nent;
  1595. kvm_apic_set_version(vcpu);
  1596. kvm_x86_ops->cpuid_update(vcpu);
  1597. return 0;
  1598. out:
  1599. return r;
  1600. }
  1601. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1602. struct kvm_cpuid2 *cpuid,
  1603. struct kvm_cpuid_entry2 __user *entries)
  1604. {
  1605. int r;
  1606. r = -E2BIG;
  1607. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1608. goto out;
  1609. r = -EFAULT;
  1610. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1611. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1612. goto out;
  1613. return 0;
  1614. out:
  1615. cpuid->nent = vcpu->arch.cpuid_nent;
  1616. return r;
  1617. }
  1618. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1619. u32 index)
  1620. {
  1621. entry->function = function;
  1622. entry->index = index;
  1623. cpuid_count(entry->function, entry->index,
  1624. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1625. entry->flags = 0;
  1626. }
  1627. #define F(x) bit(X86_FEATURE_##x)
  1628. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1629. u32 index, int *nent, int maxnent)
  1630. {
  1631. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1632. #ifdef CONFIG_X86_64
  1633. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1634. ? F(GBPAGES) : 0;
  1635. unsigned f_lm = F(LM);
  1636. #else
  1637. unsigned f_gbpages = 0;
  1638. unsigned f_lm = 0;
  1639. #endif
  1640. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1641. /* cpuid 1.edx */
  1642. const u32 kvm_supported_word0_x86_features =
  1643. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1644. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1645. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1646. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1647. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1648. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1649. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1650. 0 /* HTT, TM, Reserved, PBE */;
  1651. /* cpuid 0x80000001.edx */
  1652. const u32 kvm_supported_word1_x86_features =
  1653. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1654. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1655. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1656. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1657. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1658. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1659. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1660. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1661. /* cpuid 1.ecx */
  1662. const u32 kvm_supported_word4_x86_features =
  1663. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1664. 0 /* DS-CPL, VMX, SMX, EST */ |
  1665. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1666. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1667. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1668. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1669. 0 /* Reserved, XSAVE, OSXSAVE */;
  1670. /* cpuid 0x80000001.ecx */
  1671. const u32 kvm_supported_word6_x86_features =
  1672. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1673. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1674. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1675. 0 /* SKINIT */ | 0 /* WDT */;
  1676. /* all calls to cpuid_count() should be made on the same cpu */
  1677. get_cpu();
  1678. do_cpuid_1_ent(entry, function, index);
  1679. ++*nent;
  1680. switch (function) {
  1681. case 0:
  1682. entry->eax = min(entry->eax, (u32)0xb);
  1683. break;
  1684. case 1:
  1685. entry->edx &= kvm_supported_word0_x86_features;
  1686. entry->ecx &= kvm_supported_word4_x86_features;
  1687. /* we support x2apic emulation even if host does not support
  1688. * it since we emulate x2apic in software */
  1689. entry->ecx |= F(X2APIC);
  1690. break;
  1691. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1692. * may return different values. This forces us to get_cpu() before
  1693. * issuing the first command, and also to emulate this annoying behavior
  1694. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1695. case 2: {
  1696. int t, times = entry->eax & 0xff;
  1697. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1698. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1699. for (t = 1; t < times && *nent < maxnent; ++t) {
  1700. do_cpuid_1_ent(&entry[t], function, 0);
  1701. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1702. ++*nent;
  1703. }
  1704. break;
  1705. }
  1706. /* function 4 and 0xb have additional index. */
  1707. case 4: {
  1708. int i, cache_type;
  1709. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1710. /* read more entries until cache_type is zero */
  1711. for (i = 1; *nent < maxnent; ++i) {
  1712. cache_type = entry[i - 1].eax & 0x1f;
  1713. if (!cache_type)
  1714. break;
  1715. do_cpuid_1_ent(&entry[i], function, i);
  1716. entry[i].flags |=
  1717. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1718. ++*nent;
  1719. }
  1720. break;
  1721. }
  1722. case 0xb: {
  1723. int i, level_type;
  1724. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1725. /* read more entries until level_type is zero */
  1726. for (i = 1; *nent < maxnent; ++i) {
  1727. level_type = entry[i - 1].ecx & 0xff00;
  1728. if (!level_type)
  1729. break;
  1730. do_cpuid_1_ent(&entry[i], function, i);
  1731. entry[i].flags |=
  1732. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1733. ++*nent;
  1734. }
  1735. break;
  1736. }
  1737. case 0x80000000:
  1738. entry->eax = min(entry->eax, 0x8000001a);
  1739. break;
  1740. case 0x80000001:
  1741. entry->edx &= kvm_supported_word1_x86_features;
  1742. entry->ecx &= kvm_supported_word6_x86_features;
  1743. break;
  1744. }
  1745. put_cpu();
  1746. }
  1747. #undef F
  1748. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1749. struct kvm_cpuid_entry2 __user *entries)
  1750. {
  1751. struct kvm_cpuid_entry2 *cpuid_entries;
  1752. int limit, nent = 0, r = -E2BIG;
  1753. u32 func;
  1754. if (cpuid->nent < 1)
  1755. goto out;
  1756. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1757. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1758. r = -ENOMEM;
  1759. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1760. if (!cpuid_entries)
  1761. goto out;
  1762. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1763. limit = cpuid_entries[0].eax;
  1764. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1765. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1766. &nent, cpuid->nent);
  1767. r = -E2BIG;
  1768. if (nent >= cpuid->nent)
  1769. goto out_free;
  1770. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1771. limit = cpuid_entries[nent - 1].eax;
  1772. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1773. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1774. &nent, cpuid->nent);
  1775. r = -E2BIG;
  1776. if (nent >= cpuid->nent)
  1777. goto out_free;
  1778. r = -EFAULT;
  1779. if (copy_to_user(entries, cpuid_entries,
  1780. nent * sizeof(struct kvm_cpuid_entry2)))
  1781. goto out_free;
  1782. cpuid->nent = nent;
  1783. r = 0;
  1784. out_free:
  1785. vfree(cpuid_entries);
  1786. out:
  1787. return r;
  1788. }
  1789. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1790. struct kvm_lapic_state *s)
  1791. {
  1792. vcpu_load(vcpu);
  1793. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1794. vcpu_put(vcpu);
  1795. return 0;
  1796. }
  1797. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1798. struct kvm_lapic_state *s)
  1799. {
  1800. vcpu_load(vcpu);
  1801. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1802. kvm_apic_post_state_restore(vcpu);
  1803. update_cr8_intercept(vcpu);
  1804. vcpu_put(vcpu);
  1805. return 0;
  1806. }
  1807. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1808. struct kvm_interrupt *irq)
  1809. {
  1810. if (irq->irq < 0 || irq->irq >= 256)
  1811. return -EINVAL;
  1812. if (irqchip_in_kernel(vcpu->kvm))
  1813. return -ENXIO;
  1814. vcpu_load(vcpu);
  1815. kvm_queue_interrupt(vcpu, irq->irq, false);
  1816. vcpu_put(vcpu);
  1817. return 0;
  1818. }
  1819. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1820. {
  1821. vcpu_load(vcpu);
  1822. kvm_inject_nmi(vcpu);
  1823. vcpu_put(vcpu);
  1824. return 0;
  1825. }
  1826. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1827. struct kvm_tpr_access_ctl *tac)
  1828. {
  1829. if (tac->flags)
  1830. return -EINVAL;
  1831. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1832. return 0;
  1833. }
  1834. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1835. u64 mcg_cap)
  1836. {
  1837. int r;
  1838. unsigned bank_num = mcg_cap & 0xff, bank;
  1839. r = -EINVAL;
  1840. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1841. goto out;
  1842. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1843. goto out;
  1844. r = 0;
  1845. vcpu->arch.mcg_cap = mcg_cap;
  1846. /* Init IA32_MCG_CTL to all 1s */
  1847. if (mcg_cap & MCG_CTL_P)
  1848. vcpu->arch.mcg_ctl = ~(u64)0;
  1849. /* Init IA32_MCi_CTL to all 1s */
  1850. for (bank = 0; bank < bank_num; bank++)
  1851. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1852. out:
  1853. return r;
  1854. }
  1855. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1856. struct kvm_x86_mce *mce)
  1857. {
  1858. u64 mcg_cap = vcpu->arch.mcg_cap;
  1859. unsigned bank_num = mcg_cap & 0xff;
  1860. u64 *banks = vcpu->arch.mce_banks;
  1861. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1862. return -EINVAL;
  1863. /*
  1864. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1865. * reporting is disabled
  1866. */
  1867. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1868. vcpu->arch.mcg_ctl != ~(u64)0)
  1869. return 0;
  1870. banks += 4 * mce->bank;
  1871. /*
  1872. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1873. * reporting is disabled for the bank
  1874. */
  1875. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1876. return 0;
  1877. if (mce->status & MCI_STATUS_UC) {
  1878. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1879. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1880. printk(KERN_DEBUG "kvm: set_mce: "
  1881. "injects mce exception while "
  1882. "previous one is in progress!\n");
  1883. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1884. return 0;
  1885. }
  1886. if (banks[1] & MCI_STATUS_VAL)
  1887. mce->status |= MCI_STATUS_OVER;
  1888. banks[2] = mce->addr;
  1889. banks[3] = mce->misc;
  1890. vcpu->arch.mcg_status = mce->mcg_status;
  1891. banks[1] = mce->status;
  1892. kvm_queue_exception(vcpu, MC_VECTOR);
  1893. } else if (!(banks[1] & MCI_STATUS_VAL)
  1894. || !(banks[1] & MCI_STATUS_UC)) {
  1895. if (banks[1] & MCI_STATUS_VAL)
  1896. mce->status |= MCI_STATUS_OVER;
  1897. banks[2] = mce->addr;
  1898. banks[3] = mce->misc;
  1899. banks[1] = mce->status;
  1900. } else
  1901. banks[1] |= MCI_STATUS_OVER;
  1902. return 0;
  1903. }
  1904. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1905. struct kvm_vcpu_events *events)
  1906. {
  1907. vcpu_load(vcpu);
  1908. events->exception.injected =
  1909. vcpu->arch.exception.pending &&
  1910. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  1911. events->exception.nr = vcpu->arch.exception.nr;
  1912. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1913. events->exception.error_code = vcpu->arch.exception.error_code;
  1914. events->interrupt.injected =
  1915. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  1916. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1917. events->interrupt.soft = 0;
  1918. events->interrupt.shadow =
  1919. kvm_x86_ops->get_interrupt_shadow(vcpu,
  1920. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  1921. events->nmi.injected = vcpu->arch.nmi_injected;
  1922. events->nmi.pending = vcpu->arch.nmi_pending;
  1923. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1924. events->sipi_vector = vcpu->arch.sipi_vector;
  1925. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1926. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1927. | KVM_VCPUEVENT_VALID_SHADOW);
  1928. vcpu_put(vcpu);
  1929. }
  1930. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1931. struct kvm_vcpu_events *events)
  1932. {
  1933. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1934. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1935. | KVM_VCPUEVENT_VALID_SHADOW))
  1936. return -EINVAL;
  1937. vcpu_load(vcpu);
  1938. vcpu->arch.exception.pending = events->exception.injected;
  1939. vcpu->arch.exception.nr = events->exception.nr;
  1940. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1941. vcpu->arch.exception.error_code = events->exception.error_code;
  1942. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1943. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1944. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1945. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1946. kvm_pic_clear_isr_ack(vcpu->kvm);
  1947. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  1948. kvm_x86_ops->set_interrupt_shadow(vcpu,
  1949. events->interrupt.shadow);
  1950. vcpu->arch.nmi_injected = events->nmi.injected;
  1951. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1952. vcpu->arch.nmi_pending = events->nmi.pending;
  1953. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1954. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1955. vcpu->arch.sipi_vector = events->sipi_vector;
  1956. vcpu_put(vcpu);
  1957. return 0;
  1958. }
  1959. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  1960. struct kvm_debugregs *dbgregs)
  1961. {
  1962. vcpu_load(vcpu);
  1963. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  1964. dbgregs->dr6 = vcpu->arch.dr6;
  1965. dbgregs->dr7 = vcpu->arch.dr7;
  1966. dbgregs->flags = 0;
  1967. vcpu_put(vcpu);
  1968. }
  1969. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  1970. struct kvm_debugregs *dbgregs)
  1971. {
  1972. if (dbgregs->flags)
  1973. return -EINVAL;
  1974. vcpu_load(vcpu);
  1975. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  1976. vcpu->arch.dr6 = dbgregs->dr6;
  1977. vcpu->arch.dr7 = dbgregs->dr7;
  1978. vcpu_put(vcpu);
  1979. return 0;
  1980. }
  1981. long kvm_arch_vcpu_ioctl(struct file *filp,
  1982. unsigned int ioctl, unsigned long arg)
  1983. {
  1984. struct kvm_vcpu *vcpu = filp->private_data;
  1985. void __user *argp = (void __user *)arg;
  1986. int r;
  1987. struct kvm_lapic_state *lapic = NULL;
  1988. switch (ioctl) {
  1989. case KVM_GET_LAPIC: {
  1990. r = -EINVAL;
  1991. if (!vcpu->arch.apic)
  1992. goto out;
  1993. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1994. r = -ENOMEM;
  1995. if (!lapic)
  1996. goto out;
  1997. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1998. if (r)
  1999. goto out;
  2000. r = -EFAULT;
  2001. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  2002. goto out;
  2003. r = 0;
  2004. break;
  2005. }
  2006. case KVM_SET_LAPIC: {
  2007. r = -EINVAL;
  2008. if (!vcpu->arch.apic)
  2009. goto out;
  2010. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2011. r = -ENOMEM;
  2012. if (!lapic)
  2013. goto out;
  2014. r = -EFAULT;
  2015. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  2016. goto out;
  2017. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  2018. if (r)
  2019. goto out;
  2020. r = 0;
  2021. break;
  2022. }
  2023. case KVM_INTERRUPT: {
  2024. struct kvm_interrupt irq;
  2025. r = -EFAULT;
  2026. if (copy_from_user(&irq, argp, sizeof irq))
  2027. goto out;
  2028. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2029. if (r)
  2030. goto out;
  2031. r = 0;
  2032. break;
  2033. }
  2034. case KVM_NMI: {
  2035. r = kvm_vcpu_ioctl_nmi(vcpu);
  2036. if (r)
  2037. goto out;
  2038. r = 0;
  2039. break;
  2040. }
  2041. case KVM_SET_CPUID: {
  2042. struct kvm_cpuid __user *cpuid_arg = argp;
  2043. struct kvm_cpuid cpuid;
  2044. r = -EFAULT;
  2045. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2046. goto out;
  2047. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2048. if (r)
  2049. goto out;
  2050. break;
  2051. }
  2052. case KVM_SET_CPUID2: {
  2053. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2054. struct kvm_cpuid2 cpuid;
  2055. r = -EFAULT;
  2056. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2057. goto out;
  2058. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2059. cpuid_arg->entries);
  2060. if (r)
  2061. goto out;
  2062. break;
  2063. }
  2064. case KVM_GET_CPUID2: {
  2065. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2066. struct kvm_cpuid2 cpuid;
  2067. r = -EFAULT;
  2068. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2069. goto out;
  2070. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2071. cpuid_arg->entries);
  2072. if (r)
  2073. goto out;
  2074. r = -EFAULT;
  2075. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2076. goto out;
  2077. r = 0;
  2078. break;
  2079. }
  2080. case KVM_GET_MSRS:
  2081. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2082. break;
  2083. case KVM_SET_MSRS:
  2084. r = msr_io(vcpu, argp, do_set_msr, 0);
  2085. break;
  2086. case KVM_TPR_ACCESS_REPORTING: {
  2087. struct kvm_tpr_access_ctl tac;
  2088. r = -EFAULT;
  2089. if (copy_from_user(&tac, argp, sizeof tac))
  2090. goto out;
  2091. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2092. if (r)
  2093. goto out;
  2094. r = -EFAULT;
  2095. if (copy_to_user(argp, &tac, sizeof tac))
  2096. goto out;
  2097. r = 0;
  2098. break;
  2099. };
  2100. case KVM_SET_VAPIC_ADDR: {
  2101. struct kvm_vapic_addr va;
  2102. r = -EINVAL;
  2103. if (!irqchip_in_kernel(vcpu->kvm))
  2104. goto out;
  2105. r = -EFAULT;
  2106. if (copy_from_user(&va, argp, sizeof va))
  2107. goto out;
  2108. r = 0;
  2109. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2110. break;
  2111. }
  2112. case KVM_X86_SETUP_MCE: {
  2113. u64 mcg_cap;
  2114. r = -EFAULT;
  2115. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2116. goto out;
  2117. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2118. break;
  2119. }
  2120. case KVM_X86_SET_MCE: {
  2121. struct kvm_x86_mce mce;
  2122. r = -EFAULT;
  2123. if (copy_from_user(&mce, argp, sizeof mce))
  2124. goto out;
  2125. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2126. break;
  2127. }
  2128. case KVM_GET_VCPU_EVENTS: {
  2129. struct kvm_vcpu_events events;
  2130. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2131. r = -EFAULT;
  2132. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2133. break;
  2134. r = 0;
  2135. break;
  2136. }
  2137. case KVM_SET_VCPU_EVENTS: {
  2138. struct kvm_vcpu_events events;
  2139. r = -EFAULT;
  2140. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2141. break;
  2142. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2143. break;
  2144. }
  2145. case KVM_GET_DEBUGREGS: {
  2146. struct kvm_debugregs dbgregs;
  2147. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2148. r = -EFAULT;
  2149. if (copy_to_user(argp, &dbgregs,
  2150. sizeof(struct kvm_debugregs)))
  2151. break;
  2152. r = 0;
  2153. break;
  2154. }
  2155. case KVM_SET_DEBUGREGS: {
  2156. struct kvm_debugregs dbgregs;
  2157. r = -EFAULT;
  2158. if (copy_from_user(&dbgregs, argp,
  2159. sizeof(struct kvm_debugregs)))
  2160. break;
  2161. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2162. break;
  2163. }
  2164. default:
  2165. r = -EINVAL;
  2166. }
  2167. out:
  2168. kfree(lapic);
  2169. return r;
  2170. }
  2171. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2172. {
  2173. int ret;
  2174. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2175. return -1;
  2176. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2177. return ret;
  2178. }
  2179. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2180. u64 ident_addr)
  2181. {
  2182. kvm->arch.ept_identity_map_addr = ident_addr;
  2183. return 0;
  2184. }
  2185. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2186. u32 kvm_nr_mmu_pages)
  2187. {
  2188. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2189. return -EINVAL;
  2190. mutex_lock(&kvm->slots_lock);
  2191. spin_lock(&kvm->mmu_lock);
  2192. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2193. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2194. spin_unlock(&kvm->mmu_lock);
  2195. mutex_unlock(&kvm->slots_lock);
  2196. return 0;
  2197. }
  2198. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2199. {
  2200. return kvm->arch.n_alloc_mmu_pages;
  2201. }
  2202. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2203. {
  2204. int i;
  2205. struct kvm_mem_alias *alias;
  2206. struct kvm_mem_aliases *aliases;
  2207. aliases = kvm_aliases(kvm);
  2208. for (i = 0; i < aliases->naliases; ++i) {
  2209. alias = &aliases->aliases[i];
  2210. if (alias->flags & KVM_ALIAS_INVALID)
  2211. continue;
  2212. if (gfn >= alias->base_gfn
  2213. && gfn < alias->base_gfn + alias->npages)
  2214. return alias->target_gfn + gfn - alias->base_gfn;
  2215. }
  2216. return gfn;
  2217. }
  2218. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2219. {
  2220. int i;
  2221. struct kvm_mem_alias *alias;
  2222. struct kvm_mem_aliases *aliases;
  2223. aliases = kvm_aliases(kvm);
  2224. for (i = 0; i < aliases->naliases; ++i) {
  2225. alias = &aliases->aliases[i];
  2226. if (gfn >= alias->base_gfn
  2227. && gfn < alias->base_gfn + alias->npages)
  2228. return alias->target_gfn + gfn - alias->base_gfn;
  2229. }
  2230. return gfn;
  2231. }
  2232. /*
  2233. * Set a new alias region. Aliases map a portion of physical memory into
  2234. * another portion. This is useful for memory windows, for example the PC
  2235. * VGA region.
  2236. */
  2237. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2238. struct kvm_memory_alias *alias)
  2239. {
  2240. int r, n;
  2241. struct kvm_mem_alias *p;
  2242. struct kvm_mem_aliases *aliases, *old_aliases;
  2243. r = -EINVAL;
  2244. /* General sanity checks */
  2245. if (alias->memory_size & (PAGE_SIZE - 1))
  2246. goto out;
  2247. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2248. goto out;
  2249. if (alias->slot >= KVM_ALIAS_SLOTS)
  2250. goto out;
  2251. if (alias->guest_phys_addr + alias->memory_size
  2252. < alias->guest_phys_addr)
  2253. goto out;
  2254. if (alias->target_phys_addr + alias->memory_size
  2255. < alias->target_phys_addr)
  2256. goto out;
  2257. r = -ENOMEM;
  2258. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2259. if (!aliases)
  2260. goto out;
  2261. mutex_lock(&kvm->slots_lock);
  2262. /* invalidate any gfn reference in case of deletion/shrinking */
  2263. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2264. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2265. old_aliases = kvm->arch.aliases;
  2266. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2267. synchronize_srcu_expedited(&kvm->srcu);
  2268. kvm_mmu_zap_all(kvm);
  2269. kfree(old_aliases);
  2270. r = -ENOMEM;
  2271. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2272. if (!aliases)
  2273. goto out_unlock;
  2274. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2275. p = &aliases->aliases[alias->slot];
  2276. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2277. p->npages = alias->memory_size >> PAGE_SHIFT;
  2278. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2279. p->flags &= ~(KVM_ALIAS_INVALID);
  2280. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2281. if (aliases->aliases[n - 1].npages)
  2282. break;
  2283. aliases->naliases = n;
  2284. old_aliases = kvm->arch.aliases;
  2285. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2286. synchronize_srcu_expedited(&kvm->srcu);
  2287. kfree(old_aliases);
  2288. r = 0;
  2289. out_unlock:
  2290. mutex_unlock(&kvm->slots_lock);
  2291. out:
  2292. return r;
  2293. }
  2294. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2295. {
  2296. int r;
  2297. r = 0;
  2298. switch (chip->chip_id) {
  2299. case KVM_IRQCHIP_PIC_MASTER:
  2300. memcpy(&chip->chip.pic,
  2301. &pic_irqchip(kvm)->pics[0],
  2302. sizeof(struct kvm_pic_state));
  2303. break;
  2304. case KVM_IRQCHIP_PIC_SLAVE:
  2305. memcpy(&chip->chip.pic,
  2306. &pic_irqchip(kvm)->pics[1],
  2307. sizeof(struct kvm_pic_state));
  2308. break;
  2309. case KVM_IRQCHIP_IOAPIC:
  2310. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2311. break;
  2312. default:
  2313. r = -EINVAL;
  2314. break;
  2315. }
  2316. return r;
  2317. }
  2318. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2319. {
  2320. int r;
  2321. r = 0;
  2322. switch (chip->chip_id) {
  2323. case KVM_IRQCHIP_PIC_MASTER:
  2324. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2325. memcpy(&pic_irqchip(kvm)->pics[0],
  2326. &chip->chip.pic,
  2327. sizeof(struct kvm_pic_state));
  2328. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2329. break;
  2330. case KVM_IRQCHIP_PIC_SLAVE:
  2331. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2332. memcpy(&pic_irqchip(kvm)->pics[1],
  2333. &chip->chip.pic,
  2334. sizeof(struct kvm_pic_state));
  2335. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2336. break;
  2337. case KVM_IRQCHIP_IOAPIC:
  2338. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2339. break;
  2340. default:
  2341. r = -EINVAL;
  2342. break;
  2343. }
  2344. kvm_pic_update_irq(pic_irqchip(kvm));
  2345. return r;
  2346. }
  2347. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2348. {
  2349. int r = 0;
  2350. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2351. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2352. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2353. return r;
  2354. }
  2355. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2356. {
  2357. int r = 0;
  2358. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2359. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2360. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2361. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2362. return r;
  2363. }
  2364. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2365. {
  2366. int r = 0;
  2367. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2368. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2369. sizeof(ps->channels));
  2370. ps->flags = kvm->arch.vpit->pit_state.flags;
  2371. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2372. return r;
  2373. }
  2374. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2375. {
  2376. int r = 0, start = 0;
  2377. u32 prev_legacy, cur_legacy;
  2378. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2379. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2380. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2381. if (!prev_legacy && cur_legacy)
  2382. start = 1;
  2383. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2384. sizeof(kvm->arch.vpit->pit_state.channels));
  2385. kvm->arch.vpit->pit_state.flags = ps->flags;
  2386. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2387. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2388. return r;
  2389. }
  2390. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2391. struct kvm_reinject_control *control)
  2392. {
  2393. if (!kvm->arch.vpit)
  2394. return -ENXIO;
  2395. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2396. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2397. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2398. return 0;
  2399. }
  2400. /*
  2401. * Get (and clear) the dirty memory log for a memory slot.
  2402. */
  2403. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2404. struct kvm_dirty_log *log)
  2405. {
  2406. int r, i;
  2407. struct kvm_memory_slot *memslot;
  2408. unsigned long n;
  2409. unsigned long is_dirty = 0;
  2410. unsigned long *dirty_bitmap = NULL;
  2411. mutex_lock(&kvm->slots_lock);
  2412. r = -EINVAL;
  2413. if (log->slot >= KVM_MEMORY_SLOTS)
  2414. goto out;
  2415. memslot = &kvm->memslots->memslots[log->slot];
  2416. r = -ENOENT;
  2417. if (!memslot->dirty_bitmap)
  2418. goto out;
  2419. n = kvm_dirty_bitmap_bytes(memslot);
  2420. r = -ENOMEM;
  2421. dirty_bitmap = vmalloc(n);
  2422. if (!dirty_bitmap)
  2423. goto out;
  2424. memset(dirty_bitmap, 0, n);
  2425. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2426. is_dirty = memslot->dirty_bitmap[i];
  2427. /* If nothing is dirty, don't bother messing with page tables. */
  2428. if (is_dirty) {
  2429. struct kvm_memslots *slots, *old_slots;
  2430. spin_lock(&kvm->mmu_lock);
  2431. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2432. spin_unlock(&kvm->mmu_lock);
  2433. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2434. if (!slots)
  2435. goto out_free;
  2436. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2437. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2438. old_slots = kvm->memslots;
  2439. rcu_assign_pointer(kvm->memslots, slots);
  2440. synchronize_srcu_expedited(&kvm->srcu);
  2441. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2442. kfree(old_slots);
  2443. }
  2444. r = 0;
  2445. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2446. r = -EFAULT;
  2447. out_free:
  2448. vfree(dirty_bitmap);
  2449. out:
  2450. mutex_unlock(&kvm->slots_lock);
  2451. return r;
  2452. }
  2453. long kvm_arch_vm_ioctl(struct file *filp,
  2454. unsigned int ioctl, unsigned long arg)
  2455. {
  2456. struct kvm *kvm = filp->private_data;
  2457. void __user *argp = (void __user *)arg;
  2458. int r = -ENOTTY;
  2459. /*
  2460. * This union makes it completely explicit to gcc-3.x
  2461. * that these two variables' stack usage should be
  2462. * combined, not added together.
  2463. */
  2464. union {
  2465. struct kvm_pit_state ps;
  2466. struct kvm_pit_state2 ps2;
  2467. struct kvm_memory_alias alias;
  2468. struct kvm_pit_config pit_config;
  2469. } u;
  2470. switch (ioctl) {
  2471. case KVM_SET_TSS_ADDR:
  2472. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2473. if (r < 0)
  2474. goto out;
  2475. break;
  2476. case KVM_SET_IDENTITY_MAP_ADDR: {
  2477. u64 ident_addr;
  2478. r = -EFAULT;
  2479. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2480. goto out;
  2481. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2482. if (r < 0)
  2483. goto out;
  2484. break;
  2485. }
  2486. case KVM_SET_MEMORY_REGION: {
  2487. struct kvm_memory_region kvm_mem;
  2488. struct kvm_userspace_memory_region kvm_userspace_mem;
  2489. r = -EFAULT;
  2490. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2491. goto out;
  2492. kvm_userspace_mem.slot = kvm_mem.slot;
  2493. kvm_userspace_mem.flags = kvm_mem.flags;
  2494. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2495. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2496. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2497. if (r)
  2498. goto out;
  2499. break;
  2500. }
  2501. case KVM_SET_NR_MMU_PAGES:
  2502. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2503. if (r)
  2504. goto out;
  2505. break;
  2506. case KVM_GET_NR_MMU_PAGES:
  2507. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2508. break;
  2509. case KVM_SET_MEMORY_ALIAS:
  2510. r = -EFAULT;
  2511. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2512. goto out;
  2513. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2514. if (r)
  2515. goto out;
  2516. break;
  2517. case KVM_CREATE_IRQCHIP: {
  2518. struct kvm_pic *vpic;
  2519. mutex_lock(&kvm->lock);
  2520. r = -EEXIST;
  2521. if (kvm->arch.vpic)
  2522. goto create_irqchip_unlock;
  2523. r = -ENOMEM;
  2524. vpic = kvm_create_pic(kvm);
  2525. if (vpic) {
  2526. r = kvm_ioapic_init(kvm);
  2527. if (r) {
  2528. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2529. &vpic->dev);
  2530. kfree(vpic);
  2531. goto create_irqchip_unlock;
  2532. }
  2533. } else
  2534. goto create_irqchip_unlock;
  2535. smp_wmb();
  2536. kvm->arch.vpic = vpic;
  2537. smp_wmb();
  2538. r = kvm_setup_default_irq_routing(kvm);
  2539. if (r) {
  2540. mutex_lock(&kvm->irq_lock);
  2541. kvm_ioapic_destroy(kvm);
  2542. kvm_destroy_pic(kvm);
  2543. mutex_unlock(&kvm->irq_lock);
  2544. }
  2545. create_irqchip_unlock:
  2546. mutex_unlock(&kvm->lock);
  2547. break;
  2548. }
  2549. case KVM_CREATE_PIT:
  2550. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2551. goto create_pit;
  2552. case KVM_CREATE_PIT2:
  2553. r = -EFAULT;
  2554. if (copy_from_user(&u.pit_config, argp,
  2555. sizeof(struct kvm_pit_config)))
  2556. goto out;
  2557. create_pit:
  2558. mutex_lock(&kvm->slots_lock);
  2559. r = -EEXIST;
  2560. if (kvm->arch.vpit)
  2561. goto create_pit_unlock;
  2562. r = -ENOMEM;
  2563. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2564. if (kvm->arch.vpit)
  2565. r = 0;
  2566. create_pit_unlock:
  2567. mutex_unlock(&kvm->slots_lock);
  2568. break;
  2569. case KVM_IRQ_LINE_STATUS:
  2570. case KVM_IRQ_LINE: {
  2571. struct kvm_irq_level irq_event;
  2572. r = -EFAULT;
  2573. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2574. goto out;
  2575. r = -ENXIO;
  2576. if (irqchip_in_kernel(kvm)) {
  2577. __s32 status;
  2578. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2579. irq_event.irq, irq_event.level);
  2580. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2581. r = -EFAULT;
  2582. irq_event.status = status;
  2583. if (copy_to_user(argp, &irq_event,
  2584. sizeof irq_event))
  2585. goto out;
  2586. }
  2587. r = 0;
  2588. }
  2589. break;
  2590. }
  2591. case KVM_GET_IRQCHIP: {
  2592. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2593. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2594. r = -ENOMEM;
  2595. if (!chip)
  2596. goto out;
  2597. r = -EFAULT;
  2598. if (copy_from_user(chip, argp, sizeof *chip))
  2599. goto get_irqchip_out;
  2600. r = -ENXIO;
  2601. if (!irqchip_in_kernel(kvm))
  2602. goto get_irqchip_out;
  2603. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2604. if (r)
  2605. goto get_irqchip_out;
  2606. r = -EFAULT;
  2607. if (copy_to_user(argp, chip, sizeof *chip))
  2608. goto get_irqchip_out;
  2609. r = 0;
  2610. get_irqchip_out:
  2611. kfree(chip);
  2612. if (r)
  2613. goto out;
  2614. break;
  2615. }
  2616. case KVM_SET_IRQCHIP: {
  2617. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2618. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2619. r = -ENOMEM;
  2620. if (!chip)
  2621. goto out;
  2622. r = -EFAULT;
  2623. if (copy_from_user(chip, argp, sizeof *chip))
  2624. goto set_irqchip_out;
  2625. r = -ENXIO;
  2626. if (!irqchip_in_kernel(kvm))
  2627. goto set_irqchip_out;
  2628. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2629. if (r)
  2630. goto set_irqchip_out;
  2631. r = 0;
  2632. set_irqchip_out:
  2633. kfree(chip);
  2634. if (r)
  2635. goto out;
  2636. break;
  2637. }
  2638. case KVM_GET_PIT: {
  2639. r = -EFAULT;
  2640. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2641. goto out;
  2642. r = -ENXIO;
  2643. if (!kvm->arch.vpit)
  2644. goto out;
  2645. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2646. if (r)
  2647. goto out;
  2648. r = -EFAULT;
  2649. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2650. goto out;
  2651. r = 0;
  2652. break;
  2653. }
  2654. case KVM_SET_PIT: {
  2655. r = -EFAULT;
  2656. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2657. goto out;
  2658. r = -ENXIO;
  2659. if (!kvm->arch.vpit)
  2660. goto out;
  2661. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2662. if (r)
  2663. goto out;
  2664. r = 0;
  2665. break;
  2666. }
  2667. case KVM_GET_PIT2: {
  2668. r = -ENXIO;
  2669. if (!kvm->arch.vpit)
  2670. goto out;
  2671. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2672. if (r)
  2673. goto out;
  2674. r = -EFAULT;
  2675. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2676. goto out;
  2677. r = 0;
  2678. break;
  2679. }
  2680. case KVM_SET_PIT2: {
  2681. r = -EFAULT;
  2682. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2683. goto out;
  2684. r = -ENXIO;
  2685. if (!kvm->arch.vpit)
  2686. goto out;
  2687. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2688. if (r)
  2689. goto out;
  2690. r = 0;
  2691. break;
  2692. }
  2693. case KVM_REINJECT_CONTROL: {
  2694. struct kvm_reinject_control control;
  2695. r = -EFAULT;
  2696. if (copy_from_user(&control, argp, sizeof(control)))
  2697. goto out;
  2698. r = kvm_vm_ioctl_reinject(kvm, &control);
  2699. if (r)
  2700. goto out;
  2701. r = 0;
  2702. break;
  2703. }
  2704. case KVM_XEN_HVM_CONFIG: {
  2705. r = -EFAULT;
  2706. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2707. sizeof(struct kvm_xen_hvm_config)))
  2708. goto out;
  2709. r = -EINVAL;
  2710. if (kvm->arch.xen_hvm_config.flags)
  2711. goto out;
  2712. r = 0;
  2713. break;
  2714. }
  2715. case KVM_SET_CLOCK: {
  2716. struct timespec now;
  2717. struct kvm_clock_data user_ns;
  2718. u64 now_ns;
  2719. s64 delta;
  2720. r = -EFAULT;
  2721. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2722. goto out;
  2723. r = -EINVAL;
  2724. if (user_ns.flags)
  2725. goto out;
  2726. r = 0;
  2727. ktime_get_ts(&now);
  2728. now_ns = timespec_to_ns(&now);
  2729. delta = user_ns.clock - now_ns;
  2730. kvm->arch.kvmclock_offset = delta;
  2731. break;
  2732. }
  2733. case KVM_GET_CLOCK: {
  2734. struct timespec now;
  2735. struct kvm_clock_data user_ns;
  2736. u64 now_ns;
  2737. ktime_get_ts(&now);
  2738. now_ns = timespec_to_ns(&now);
  2739. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2740. user_ns.flags = 0;
  2741. r = -EFAULT;
  2742. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2743. goto out;
  2744. r = 0;
  2745. break;
  2746. }
  2747. default:
  2748. ;
  2749. }
  2750. out:
  2751. return r;
  2752. }
  2753. static void kvm_init_msr_list(void)
  2754. {
  2755. u32 dummy[2];
  2756. unsigned i, j;
  2757. /* skip the first msrs in the list. KVM-specific */
  2758. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2759. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2760. continue;
  2761. if (j < i)
  2762. msrs_to_save[j] = msrs_to_save[i];
  2763. j++;
  2764. }
  2765. num_msrs_to_save = j;
  2766. }
  2767. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2768. const void *v)
  2769. {
  2770. if (vcpu->arch.apic &&
  2771. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2772. return 0;
  2773. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2774. }
  2775. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2776. {
  2777. if (vcpu->arch.apic &&
  2778. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2779. return 0;
  2780. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2781. }
  2782. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2783. struct kvm_segment *var, int seg)
  2784. {
  2785. kvm_x86_ops->set_segment(vcpu, var, seg);
  2786. }
  2787. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2788. struct kvm_segment *var, int seg)
  2789. {
  2790. kvm_x86_ops->get_segment(vcpu, var, seg);
  2791. }
  2792. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2793. {
  2794. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2795. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2796. }
  2797. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2798. {
  2799. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2800. access |= PFERR_FETCH_MASK;
  2801. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2802. }
  2803. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2804. {
  2805. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2806. access |= PFERR_WRITE_MASK;
  2807. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2808. }
  2809. /* uses this to access any guest's mapped memory without checking CPL */
  2810. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2811. {
  2812. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2813. }
  2814. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2815. struct kvm_vcpu *vcpu, u32 access,
  2816. u32 *error)
  2817. {
  2818. void *data = val;
  2819. int r = X86EMUL_CONTINUE;
  2820. while (bytes) {
  2821. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2822. unsigned offset = addr & (PAGE_SIZE-1);
  2823. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2824. int ret;
  2825. if (gpa == UNMAPPED_GVA) {
  2826. r = X86EMUL_PROPAGATE_FAULT;
  2827. goto out;
  2828. }
  2829. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2830. if (ret < 0) {
  2831. r = X86EMUL_UNHANDLEABLE;
  2832. goto out;
  2833. }
  2834. bytes -= toread;
  2835. data += toread;
  2836. addr += toread;
  2837. }
  2838. out:
  2839. return r;
  2840. }
  2841. /* used for instruction fetching */
  2842. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2843. struct kvm_vcpu *vcpu, u32 *error)
  2844. {
  2845. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2846. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2847. access | PFERR_FETCH_MASK, error);
  2848. }
  2849. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2850. struct kvm_vcpu *vcpu, u32 *error)
  2851. {
  2852. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2853. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2854. error);
  2855. }
  2856. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2857. struct kvm_vcpu *vcpu, u32 *error)
  2858. {
  2859. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2860. }
  2861. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  2862. unsigned int bytes,
  2863. struct kvm_vcpu *vcpu,
  2864. u32 *error)
  2865. {
  2866. void *data = val;
  2867. int r = X86EMUL_CONTINUE;
  2868. while (bytes) {
  2869. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  2870. PFERR_WRITE_MASK, error);
  2871. unsigned offset = addr & (PAGE_SIZE-1);
  2872. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2873. int ret;
  2874. if (gpa == UNMAPPED_GVA) {
  2875. r = X86EMUL_PROPAGATE_FAULT;
  2876. goto out;
  2877. }
  2878. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2879. if (ret < 0) {
  2880. r = X86EMUL_UNHANDLEABLE;
  2881. goto out;
  2882. }
  2883. bytes -= towrite;
  2884. data += towrite;
  2885. addr += towrite;
  2886. }
  2887. out:
  2888. return r;
  2889. }
  2890. static int emulator_read_emulated(unsigned long addr,
  2891. void *val,
  2892. unsigned int bytes,
  2893. struct kvm_vcpu *vcpu)
  2894. {
  2895. gpa_t gpa;
  2896. u32 error_code;
  2897. if (vcpu->mmio_read_completed) {
  2898. memcpy(val, vcpu->mmio_data, bytes);
  2899. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2900. vcpu->mmio_phys_addr, *(u64 *)val);
  2901. vcpu->mmio_read_completed = 0;
  2902. return X86EMUL_CONTINUE;
  2903. }
  2904. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
  2905. if (gpa == UNMAPPED_GVA) {
  2906. kvm_inject_page_fault(vcpu, addr, error_code);
  2907. return X86EMUL_PROPAGATE_FAULT;
  2908. }
  2909. /* For APIC access vmexit */
  2910. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2911. goto mmio;
  2912. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  2913. == X86EMUL_CONTINUE)
  2914. return X86EMUL_CONTINUE;
  2915. mmio:
  2916. /*
  2917. * Is this MMIO handled locally?
  2918. */
  2919. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2920. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2921. return X86EMUL_CONTINUE;
  2922. }
  2923. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2924. vcpu->mmio_needed = 1;
  2925. vcpu->mmio_phys_addr = gpa;
  2926. vcpu->mmio_size = bytes;
  2927. vcpu->mmio_is_write = 0;
  2928. return X86EMUL_UNHANDLEABLE;
  2929. }
  2930. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2931. const void *val, int bytes)
  2932. {
  2933. int ret;
  2934. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2935. if (ret < 0)
  2936. return 0;
  2937. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2938. return 1;
  2939. }
  2940. static int emulator_write_emulated_onepage(unsigned long addr,
  2941. const void *val,
  2942. unsigned int bytes,
  2943. struct kvm_vcpu *vcpu)
  2944. {
  2945. gpa_t gpa;
  2946. u32 error_code;
  2947. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
  2948. if (gpa == UNMAPPED_GVA) {
  2949. kvm_inject_page_fault(vcpu, addr, error_code);
  2950. return X86EMUL_PROPAGATE_FAULT;
  2951. }
  2952. /* For APIC access vmexit */
  2953. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2954. goto mmio;
  2955. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2956. return X86EMUL_CONTINUE;
  2957. mmio:
  2958. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2959. /*
  2960. * Is this MMIO handled locally?
  2961. */
  2962. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2963. return X86EMUL_CONTINUE;
  2964. vcpu->mmio_needed = 1;
  2965. vcpu->mmio_phys_addr = gpa;
  2966. vcpu->mmio_size = bytes;
  2967. vcpu->mmio_is_write = 1;
  2968. memcpy(vcpu->mmio_data, val, bytes);
  2969. return X86EMUL_CONTINUE;
  2970. }
  2971. int emulator_write_emulated(unsigned long addr,
  2972. const void *val,
  2973. unsigned int bytes,
  2974. struct kvm_vcpu *vcpu)
  2975. {
  2976. /* Crossing a page boundary? */
  2977. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2978. int rc, now;
  2979. now = -addr & ~PAGE_MASK;
  2980. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2981. if (rc != X86EMUL_CONTINUE)
  2982. return rc;
  2983. addr += now;
  2984. val += now;
  2985. bytes -= now;
  2986. }
  2987. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2988. }
  2989. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2990. #define CMPXCHG_TYPE(t, ptr, old, new) \
  2991. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  2992. #ifdef CONFIG_X86_64
  2993. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  2994. #else
  2995. # define CMPXCHG64(ptr, old, new) \
  2996. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  2997. #endif
  2998. static int emulator_cmpxchg_emulated(unsigned long addr,
  2999. const void *old,
  3000. const void *new,
  3001. unsigned int bytes,
  3002. struct kvm_vcpu *vcpu)
  3003. {
  3004. gpa_t gpa;
  3005. struct page *page;
  3006. char *kaddr;
  3007. bool exchanged;
  3008. /* guests cmpxchg8b have to be emulated atomically */
  3009. if (bytes > 8 || (bytes & (bytes - 1)))
  3010. goto emul_write;
  3011. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3012. if (gpa == UNMAPPED_GVA ||
  3013. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3014. goto emul_write;
  3015. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3016. goto emul_write;
  3017. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3018. kaddr = kmap_atomic(page, KM_USER0);
  3019. kaddr += offset_in_page(gpa);
  3020. switch (bytes) {
  3021. case 1:
  3022. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3023. break;
  3024. case 2:
  3025. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3026. break;
  3027. case 4:
  3028. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3029. break;
  3030. case 8:
  3031. exchanged = CMPXCHG64(kaddr, old, new);
  3032. break;
  3033. default:
  3034. BUG();
  3035. }
  3036. kunmap_atomic(kaddr, KM_USER0);
  3037. kvm_release_page_dirty(page);
  3038. if (!exchanged)
  3039. return X86EMUL_CMPXCHG_FAILED;
  3040. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3041. return X86EMUL_CONTINUE;
  3042. emul_write:
  3043. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3044. return emulator_write_emulated(addr, new, bytes, vcpu);
  3045. }
  3046. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3047. {
  3048. /* TODO: String I/O for in kernel device */
  3049. int r;
  3050. if (vcpu->arch.pio.in)
  3051. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3052. vcpu->arch.pio.size, pd);
  3053. else
  3054. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3055. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3056. pd);
  3057. return r;
  3058. }
  3059. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3060. unsigned int count, struct kvm_vcpu *vcpu)
  3061. {
  3062. if (vcpu->arch.pio.count)
  3063. goto data_avail;
  3064. trace_kvm_pio(1, port, size, 1);
  3065. vcpu->arch.pio.port = port;
  3066. vcpu->arch.pio.in = 1;
  3067. vcpu->arch.pio.count = count;
  3068. vcpu->arch.pio.size = size;
  3069. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3070. data_avail:
  3071. memcpy(val, vcpu->arch.pio_data, size * count);
  3072. vcpu->arch.pio.count = 0;
  3073. return 1;
  3074. }
  3075. vcpu->run->exit_reason = KVM_EXIT_IO;
  3076. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3077. vcpu->run->io.size = size;
  3078. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3079. vcpu->run->io.count = count;
  3080. vcpu->run->io.port = port;
  3081. return 0;
  3082. }
  3083. static int emulator_pio_out_emulated(int size, unsigned short port,
  3084. const void *val, unsigned int count,
  3085. struct kvm_vcpu *vcpu)
  3086. {
  3087. trace_kvm_pio(0, port, size, 1);
  3088. vcpu->arch.pio.port = port;
  3089. vcpu->arch.pio.in = 0;
  3090. vcpu->arch.pio.count = count;
  3091. vcpu->arch.pio.size = size;
  3092. memcpy(vcpu->arch.pio_data, val, size * count);
  3093. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3094. vcpu->arch.pio.count = 0;
  3095. return 1;
  3096. }
  3097. vcpu->run->exit_reason = KVM_EXIT_IO;
  3098. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3099. vcpu->run->io.size = size;
  3100. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3101. vcpu->run->io.count = count;
  3102. vcpu->run->io.port = port;
  3103. return 0;
  3104. }
  3105. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3106. {
  3107. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3108. }
  3109. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3110. {
  3111. kvm_mmu_invlpg(vcpu, address);
  3112. return X86EMUL_CONTINUE;
  3113. }
  3114. int emulate_clts(struct kvm_vcpu *vcpu)
  3115. {
  3116. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3117. kvm_x86_ops->fpu_activate(vcpu);
  3118. return X86EMUL_CONTINUE;
  3119. }
  3120. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3121. {
  3122. return kvm_get_dr(ctxt->vcpu, dr, dest);
  3123. }
  3124. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3125. {
  3126. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  3127. return kvm_set_dr(ctxt->vcpu, dr, value & mask);
  3128. }
  3129. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  3130. {
  3131. u8 opcodes[4];
  3132. unsigned long rip = kvm_rip_read(vcpu);
  3133. unsigned long rip_linear;
  3134. if (!printk_ratelimit())
  3135. return;
  3136. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  3137. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
  3138. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  3139. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  3140. }
  3141. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  3142. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3143. {
  3144. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3145. }
  3146. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3147. {
  3148. unsigned long value;
  3149. switch (cr) {
  3150. case 0:
  3151. value = kvm_read_cr0(vcpu);
  3152. break;
  3153. case 2:
  3154. value = vcpu->arch.cr2;
  3155. break;
  3156. case 3:
  3157. value = vcpu->arch.cr3;
  3158. break;
  3159. case 4:
  3160. value = kvm_read_cr4(vcpu);
  3161. break;
  3162. case 8:
  3163. value = kvm_get_cr8(vcpu);
  3164. break;
  3165. default:
  3166. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3167. return 0;
  3168. }
  3169. return value;
  3170. }
  3171. static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3172. {
  3173. switch (cr) {
  3174. case 0:
  3175. kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3176. break;
  3177. case 2:
  3178. vcpu->arch.cr2 = val;
  3179. break;
  3180. case 3:
  3181. kvm_set_cr3(vcpu, val);
  3182. break;
  3183. case 4:
  3184. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3185. break;
  3186. case 8:
  3187. kvm_set_cr8(vcpu, val & 0xfUL);
  3188. break;
  3189. default:
  3190. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3191. }
  3192. }
  3193. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3194. {
  3195. return kvm_x86_ops->get_cpl(vcpu);
  3196. }
  3197. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3198. {
  3199. kvm_x86_ops->get_gdt(vcpu, dt);
  3200. }
  3201. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3202. struct kvm_vcpu *vcpu)
  3203. {
  3204. struct kvm_segment var;
  3205. kvm_get_segment(vcpu, &var, seg);
  3206. if (var.unusable)
  3207. return false;
  3208. if (var.g)
  3209. var.limit >>= 12;
  3210. set_desc_limit(desc, var.limit);
  3211. set_desc_base(desc, (unsigned long)var.base);
  3212. desc->type = var.type;
  3213. desc->s = var.s;
  3214. desc->dpl = var.dpl;
  3215. desc->p = var.present;
  3216. desc->avl = var.avl;
  3217. desc->l = var.l;
  3218. desc->d = var.db;
  3219. desc->g = var.g;
  3220. return true;
  3221. }
  3222. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3223. struct kvm_vcpu *vcpu)
  3224. {
  3225. struct kvm_segment var;
  3226. /* needed to preserve selector */
  3227. kvm_get_segment(vcpu, &var, seg);
  3228. var.base = get_desc_base(desc);
  3229. var.limit = get_desc_limit(desc);
  3230. if (desc->g)
  3231. var.limit = (var.limit << 12) | 0xfff;
  3232. var.type = desc->type;
  3233. var.present = desc->p;
  3234. var.dpl = desc->dpl;
  3235. var.db = desc->d;
  3236. var.s = desc->s;
  3237. var.l = desc->l;
  3238. var.g = desc->g;
  3239. var.avl = desc->avl;
  3240. var.present = desc->p;
  3241. var.unusable = !var.present;
  3242. var.padding = 0;
  3243. kvm_set_segment(vcpu, &var, seg);
  3244. return;
  3245. }
  3246. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3247. {
  3248. struct kvm_segment kvm_seg;
  3249. kvm_get_segment(vcpu, &kvm_seg, seg);
  3250. return kvm_seg.selector;
  3251. }
  3252. static void emulator_set_segment_selector(u16 sel, int seg,
  3253. struct kvm_vcpu *vcpu)
  3254. {
  3255. struct kvm_segment kvm_seg;
  3256. kvm_get_segment(vcpu, &kvm_seg, seg);
  3257. kvm_seg.selector = sel;
  3258. kvm_set_segment(vcpu, &kvm_seg, seg);
  3259. }
  3260. static void emulator_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  3261. {
  3262. kvm_x86_ops->set_rflags(vcpu, rflags);
  3263. }
  3264. static struct x86_emulate_ops emulate_ops = {
  3265. .read_std = kvm_read_guest_virt_system,
  3266. .write_std = kvm_write_guest_virt_system,
  3267. .fetch = kvm_fetch_guest_virt,
  3268. .read_emulated = emulator_read_emulated,
  3269. .write_emulated = emulator_write_emulated,
  3270. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3271. .pio_in_emulated = emulator_pio_in_emulated,
  3272. .pio_out_emulated = emulator_pio_out_emulated,
  3273. .get_cached_descriptor = emulator_get_cached_descriptor,
  3274. .set_cached_descriptor = emulator_set_cached_descriptor,
  3275. .get_segment_selector = emulator_get_segment_selector,
  3276. .set_segment_selector = emulator_set_segment_selector,
  3277. .get_gdt = emulator_get_gdt,
  3278. .get_cr = emulator_get_cr,
  3279. .set_cr = emulator_set_cr,
  3280. .cpl = emulator_get_cpl,
  3281. .set_rflags = emulator_set_rflags,
  3282. };
  3283. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3284. {
  3285. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3286. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3287. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3288. vcpu->arch.regs_dirty = ~0;
  3289. }
  3290. int emulate_instruction(struct kvm_vcpu *vcpu,
  3291. unsigned long cr2,
  3292. u16 error_code,
  3293. int emulation_type)
  3294. {
  3295. int r, shadow_mask;
  3296. struct decode_cache *c;
  3297. struct kvm_run *run = vcpu->run;
  3298. kvm_clear_exception_queue(vcpu);
  3299. vcpu->arch.mmio_fault_cr2 = cr2;
  3300. /*
  3301. * TODO: fix emulate.c to use guest_read/write_register
  3302. * instead of direct ->regs accesses, can save hundred cycles
  3303. * on Intel for instructions that don't read/change RSP, for
  3304. * for example.
  3305. */
  3306. cache_all_regs(vcpu);
  3307. vcpu->mmio_is_write = 0;
  3308. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3309. int cs_db, cs_l;
  3310. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3311. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3312. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3313. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3314. vcpu->arch.emulate_ctxt.mode =
  3315. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3316. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3317. ? X86EMUL_MODE_VM86 : cs_l
  3318. ? X86EMUL_MODE_PROT64 : cs_db
  3319. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3320. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3321. trace_kvm_emulate_insn_start(vcpu);
  3322. /* Only allow emulation of specific instructions on #UD
  3323. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3324. c = &vcpu->arch.emulate_ctxt.decode;
  3325. if (emulation_type & EMULTYPE_TRAP_UD) {
  3326. if (!c->twobyte)
  3327. return EMULATE_FAIL;
  3328. switch (c->b) {
  3329. case 0x01: /* VMMCALL */
  3330. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3331. return EMULATE_FAIL;
  3332. break;
  3333. case 0x34: /* sysenter */
  3334. case 0x35: /* sysexit */
  3335. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3336. return EMULATE_FAIL;
  3337. break;
  3338. case 0x05: /* syscall */
  3339. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3340. return EMULATE_FAIL;
  3341. break;
  3342. default:
  3343. return EMULATE_FAIL;
  3344. }
  3345. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3346. return EMULATE_FAIL;
  3347. }
  3348. ++vcpu->stat.insn_emulation;
  3349. if (r) {
  3350. ++vcpu->stat.insn_emulation_fail;
  3351. trace_kvm_emulate_insn_failed(vcpu);
  3352. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3353. return EMULATE_DONE;
  3354. return EMULATE_FAIL;
  3355. }
  3356. }
  3357. if (emulation_type & EMULTYPE_SKIP) {
  3358. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3359. return EMULATE_DONE;
  3360. }
  3361. restart:
  3362. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3363. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  3364. if (r == 0)
  3365. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  3366. if (vcpu->arch.pio.count) {
  3367. if (!vcpu->arch.pio.in)
  3368. vcpu->arch.pio.count = 0;
  3369. return EMULATE_DO_MMIO;
  3370. }
  3371. if (r || vcpu->mmio_is_write) {
  3372. run->exit_reason = KVM_EXIT_MMIO;
  3373. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  3374. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  3375. run->mmio.len = vcpu->mmio_size;
  3376. run->mmio.is_write = vcpu->mmio_is_write;
  3377. }
  3378. if (r) {
  3379. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3380. goto done;
  3381. if (!vcpu->mmio_needed) {
  3382. ++vcpu->stat.insn_emulation_fail;
  3383. trace_kvm_emulate_insn_failed(vcpu);
  3384. kvm_report_emulation_failure(vcpu, "mmio");
  3385. return EMULATE_FAIL;
  3386. }
  3387. return EMULATE_DO_MMIO;
  3388. }
  3389. if (vcpu->mmio_is_write) {
  3390. vcpu->mmio_needed = 0;
  3391. return EMULATE_DO_MMIO;
  3392. }
  3393. done:
  3394. if (vcpu->arch.exception.pending)
  3395. vcpu->arch.emulate_ctxt.restart = false;
  3396. if (vcpu->arch.emulate_ctxt.restart)
  3397. goto restart;
  3398. return EMULATE_DONE;
  3399. }
  3400. EXPORT_SYMBOL_GPL(emulate_instruction);
  3401. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3402. {
  3403. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3404. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3405. /* do not return to emulator after return from userspace */
  3406. vcpu->arch.pio.count = 0;
  3407. return ret;
  3408. }
  3409. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3410. static void bounce_off(void *info)
  3411. {
  3412. /* nothing */
  3413. }
  3414. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3415. void *data)
  3416. {
  3417. struct cpufreq_freqs *freq = data;
  3418. struct kvm *kvm;
  3419. struct kvm_vcpu *vcpu;
  3420. int i, send_ipi = 0;
  3421. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3422. return 0;
  3423. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3424. return 0;
  3425. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3426. spin_lock(&kvm_lock);
  3427. list_for_each_entry(kvm, &vm_list, vm_list) {
  3428. kvm_for_each_vcpu(i, vcpu, kvm) {
  3429. if (vcpu->cpu != freq->cpu)
  3430. continue;
  3431. if (!kvm_request_guest_time_update(vcpu))
  3432. continue;
  3433. if (vcpu->cpu != smp_processor_id())
  3434. send_ipi++;
  3435. }
  3436. }
  3437. spin_unlock(&kvm_lock);
  3438. if (freq->old < freq->new && send_ipi) {
  3439. /*
  3440. * We upscale the frequency. Must make the guest
  3441. * doesn't see old kvmclock values while running with
  3442. * the new frequency, otherwise we risk the guest sees
  3443. * time go backwards.
  3444. *
  3445. * In case we update the frequency for another cpu
  3446. * (which might be in guest context) send an interrupt
  3447. * to kick the cpu out of guest context. Next time
  3448. * guest context is entered kvmclock will be updated,
  3449. * so the guest will not see stale values.
  3450. */
  3451. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3452. }
  3453. return 0;
  3454. }
  3455. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3456. .notifier_call = kvmclock_cpufreq_notifier
  3457. };
  3458. static void kvm_timer_init(void)
  3459. {
  3460. int cpu;
  3461. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3462. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3463. CPUFREQ_TRANSITION_NOTIFIER);
  3464. for_each_online_cpu(cpu) {
  3465. unsigned long khz = cpufreq_get(cpu);
  3466. if (!khz)
  3467. khz = tsc_khz;
  3468. per_cpu(cpu_tsc_khz, cpu) = khz;
  3469. }
  3470. } else {
  3471. for_each_possible_cpu(cpu)
  3472. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3473. }
  3474. }
  3475. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3476. static int kvm_is_in_guest(void)
  3477. {
  3478. return percpu_read(current_vcpu) != NULL;
  3479. }
  3480. static int kvm_is_user_mode(void)
  3481. {
  3482. int user_mode = 3;
  3483. if (percpu_read(current_vcpu))
  3484. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3485. return user_mode != 0;
  3486. }
  3487. static unsigned long kvm_get_guest_ip(void)
  3488. {
  3489. unsigned long ip = 0;
  3490. if (percpu_read(current_vcpu))
  3491. ip = kvm_rip_read(percpu_read(current_vcpu));
  3492. return ip;
  3493. }
  3494. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3495. .is_in_guest = kvm_is_in_guest,
  3496. .is_user_mode = kvm_is_user_mode,
  3497. .get_guest_ip = kvm_get_guest_ip,
  3498. };
  3499. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3500. {
  3501. percpu_write(current_vcpu, vcpu);
  3502. }
  3503. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3504. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3505. {
  3506. percpu_write(current_vcpu, NULL);
  3507. }
  3508. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3509. int kvm_arch_init(void *opaque)
  3510. {
  3511. int r;
  3512. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3513. if (kvm_x86_ops) {
  3514. printk(KERN_ERR "kvm: already loaded the other module\n");
  3515. r = -EEXIST;
  3516. goto out;
  3517. }
  3518. if (!ops->cpu_has_kvm_support()) {
  3519. printk(KERN_ERR "kvm: no hardware support\n");
  3520. r = -EOPNOTSUPP;
  3521. goto out;
  3522. }
  3523. if (ops->disabled_by_bios()) {
  3524. printk(KERN_ERR "kvm: disabled by bios\n");
  3525. r = -EOPNOTSUPP;
  3526. goto out;
  3527. }
  3528. r = kvm_mmu_module_init();
  3529. if (r)
  3530. goto out;
  3531. kvm_init_msr_list();
  3532. kvm_x86_ops = ops;
  3533. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3534. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3535. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3536. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3537. kvm_timer_init();
  3538. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3539. return 0;
  3540. out:
  3541. return r;
  3542. }
  3543. void kvm_arch_exit(void)
  3544. {
  3545. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3546. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3547. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3548. CPUFREQ_TRANSITION_NOTIFIER);
  3549. kvm_x86_ops = NULL;
  3550. kvm_mmu_module_exit();
  3551. }
  3552. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3553. {
  3554. ++vcpu->stat.halt_exits;
  3555. if (irqchip_in_kernel(vcpu->kvm)) {
  3556. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3557. return 1;
  3558. } else {
  3559. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3560. return 0;
  3561. }
  3562. }
  3563. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3564. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3565. unsigned long a1)
  3566. {
  3567. if (is_long_mode(vcpu))
  3568. return a0;
  3569. else
  3570. return a0 | ((gpa_t)a1 << 32);
  3571. }
  3572. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3573. {
  3574. u64 param, ingpa, outgpa, ret;
  3575. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3576. bool fast, longmode;
  3577. int cs_db, cs_l;
  3578. /*
  3579. * hypercall generates UD from non zero cpl and real mode
  3580. * per HYPER-V spec
  3581. */
  3582. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3583. kvm_queue_exception(vcpu, UD_VECTOR);
  3584. return 0;
  3585. }
  3586. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3587. longmode = is_long_mode(vcpu) && cs_l == 1;
  3588. if (!longmode) {
  3589. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3590. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3591. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3592. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3593. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3594. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3595. }
  3596. #ifdef CONFIG_X86_64
  3597. else {
  3598. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3599. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3600. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3601. }
  3602. #endif
  3603. code = param & 0xffff;
  3604. fast = (param >> 16) & 0x1;
  3605. rep_cnt = (param >> 32) & 0xfff;
  3606. rep_idx = (param >> 48) & 0xfff;
  3607. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3608. switch (code) {
  3609. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3610. kvm_vcpu_on_spin(vcpu);
  3611. break;
  3612. default:
  3613. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3614. break;
  3615. }
  3616. ret = res | (((u64)rep_done & 0xfff) << 32);
  3617. if (longmode) {
  3618. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3619. } else {
  3620. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3621. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3622. }
  3623. return 1;
  3624. }
  3625. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3626. {
  3627. unsigned long nr, a0, a1, a2, a3, ret;
  3628. int r = 1;
  3629. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3630. return kvm_hv_hypercall(vcpu);
  3631. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3632. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3633. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3634. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3635. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3636. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3637. if (!is_long_mode(vcpu)) {
  3638. nr &= 0xFFFFFFFF;
  3639. a0 &= 0xFFFFFFFF;
  3640. a1 &= 0xFFFFFFFF;
  3641. a2 &= 0xFFFFFFFF;
  3642. a3 &= 0xFFFFFFFF;
  3643. }
  3644. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3645. ret = -KVM_EPERM;
  3646. goto out;
  3647. }
  3648. switch (nr) {
  3649. case KVM_HC_VAPIC_POLL_IRQ:
  3650. ret = 0;
  3651. break;
  3652. case KVM_HC_MMU_OP:
  3653. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3654. break;
  3655. default:
  3656. ret = -KVM_ENOSYS;
  3657. break;
  3658. }
  3659. out:
  3660. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3661. ++vcpu->stat.hypercalls;
  3662. return r;
  3663. }
  3664. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3665. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3666. {
  3667. char instruction[3];
  3668. unsigned long rip = kvm_rip_read(vcpu);
  3669. /*
  3670. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3671. * to ensure that the updated hypercall appears atomically across all
  3672. * VCPUs.
  3673. */
  3674. kvm_mmu_zap_all(vcpu->kvm);
  3675. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3676. return emulator_write_emulated(rip, instruction, 3, vcpu);
  3677. }
  3678. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3679. {
  3680. struct desc_ptr dt = { limit, base };
  3681. kvm_x86_ops->set_gdt(vcpu, &dt);
  3682. }
  3683. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3684. {
  3685. struct desc_ptr dt = { limit, base };
  3686. kvm_x86_ops->set_idt(vcpu, &dt);
  3687. }
  3688. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3689. {
  3690. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3691. int j, nent = vcpu->arch.cpuid_nent;
  3692. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3693. /* when no next entry is found, the current entry[i] is reselected */
  3694. for (j = i + 1; ; j = (j + 1) % nent) {
  3695. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3696. if (ej->function == e->function) {
  3697. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3698. return j;
  3699. }
  3700. }
  3701. return 0; /* silence gcc, even though control never reaches here */
  3702. }
  3703. /* find an entry with matching function, matching index (if needed), and that
  3704. * should be read next (if it's stateful) */
  3705. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3706. u32 function, u32 index)
  3707. {
  3708. if (e->function != function)
  3709. return 0;
  3710. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3711. return 0;
  3712. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3713. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3714. return 0;
  3715. return 1;
  3716. }
  3717. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3718. u32 function, u32 index)
  3719. {
  3720. int i;
  3721. struct kvm_cpuid_entry2 *best = NULL;
  3722. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3723. struct kvm_cpuid_entry2 *e;
  3724. e = &vcpu->arch.cpuid_entries[i];
  3725. if (is_matching_cpuid_entry(e, function, index)) {
  3726. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3727. move_to_next_stateful_cpuid_entry(vcpu, i);
  3728. best = e;
  3729. break;
  3730. }
  3731. /*
  3732. * Both basic or both extended?
  3733. */
  3734. if (((e->function ^ function) & 0x80000000) == 0)
  3735. if (!best || e->function > best->function)
  3736. best = e;
  3737. }
  3738. return best;
  3739. }
  3740. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3741. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3742. {
  3743. struct kvm_cpuid_entry2 *best;
  3744. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  3745. if (!best || best->eax < 0x80000008)
  3746. goto not_found;
  3747. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3748. if (best)
  3749. return best->eax & 0xff;
  3750. not_found:
  3751. return 36;
  3752. }
  3753. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3754. {
  3755. u32 function, index;
  3756. struct kvm_cpuid_entry2 *best;
  3757. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3758. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3759. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3760. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3761. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3762. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3763. best = kvm_find_cpuid_entry(vcpu, function, index);
  3764. if (best) {
  3765. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3766. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3767. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3768. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3769. }
  3770. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3771. trace_kvm_cpuid(function,
  3772. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3773. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3774. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3775. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3776. }
  3777. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3778. /*
  3779. * Check if userspace requested an interrupt window, and that the
  3780. * interrupt window is open.
  3781. *
  3782. * No need to exit to userspace if we already have an interrupt queued.
  3783. */
  3784. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3785. {
  3786. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3787. vcpu->run->request_interrupt_window &&
  3788. kvm_arch_interrupt_allowed(vcpu));
  3789. }
  3790. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3791. {
  3792. struct kvm_run *kvm_run = vcpu->run;
  3793. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3794. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3795. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3796. if (irqchip_in_kernel(vcpu->kvm))
  3797. kvm_run->ready_for_interrupt_injection = 1;
  3798. else
  3799. kvm_run->ready_for_interrupt_injection =
  3800. kvm_arch_interrupt_allowed(vcpu) &&
  3801. !kvm_cpu_has_interrupt(vcpu) &&
  3802. !kvm_event_needs_reinjection(vcpu);
  3803. }
  3804. static void vapic_enter(struct kvm_vcpu *vcpu)
  3805. {
  3806. struct kvm_lapic *apic = vcpu->arch.apic;
  3807. struct page *page;
  3808. if (!apic || !apic->vapic_addr)
  3809. return;
  3810. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3811. vcpu->arch.apic->vapic_page = page;
  3812. }
  3813. static void vapic_exit(struct kvm_vcpu *vcpu)
  3814. {
  3815. struct kvm_lapic *apic = vcpu->arch.apic;
  3816. int idx;
  3817. if (!apic || !apic->vapic_addr)
  3818. return;
  3819. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3820. kvm_release_page_dirty(apic->vapic_page);
  3821. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3822. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3823. }
  3824. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3825. {
  3826. int max_irr, tpr;
  3827. if (!kvm_x86_ops->update_cr8_intercept)
  3828. return;
  3829. if (!vcpu->arch.apic)
  3830. return;
  3831. if (!vcpu->arch.apic->vapic_addr)
  3832. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3833. else
  3834. max_irr = -1;
  3835. if (max_irr != -1)
  3836. max_irr >>= 4;
  3837. tpr = kvm_lapic_get_cr8(vcpu);
  3838. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3839. }
  3840. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3841. {
  3842. /* try to reinject previous events if any */
  3843. if (vcpu->arch.exception.pending) {
  3844. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  3845. vcpu->arch.exception.has_error_code,
  3846. vcpu->arch.exception.error_code);
  3847. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3848. vcpu->arch.exception.has_error_code,
  3849. vcpu->arch.exception.error_code);
  3850. return;
  3851. }
  3852. if (vcpu->arch.nmi_injected) {
  3853. kvm_x86_ops->set_nmi(vcpu);
  3854. return;
  3855. }
  3856. if (vcpu->arch.interrupt.pending) {
  3857. kvm_x86_ops->set_irq(vcpu);
  3858. return;
  3859. }
  3860. /* try to inject new event if pending */
  3861. if (vcpu->arch.nmi_pending) {
  3862. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3863. vcpu->arch.nmi_pending = false;
  3864. vcpu->arch.nmi_injected = true;
  3865. kvm_x86_ops->set_nmi(vcpu);
  3866. }
  3867. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3868. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3869. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3870. false);
  3871. kvm_x86_ops->set_irq(vcpu);
  3872. }
  3873. }
  3874. }
  3875. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3876. {
  3877. int r;
  3878. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3879. vcpu->run->request_interrupt_window;
  3880. if (vcpu->requests)
  3881. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3882. kvm_mmu_unload(vcpu);
  3883. r = kvm_mmu_reload(vcpu);
  3884. if (unlikely(r))
  3885. goto out;
  3886. if (vcpu->requests) {
  3887. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3888. __kvm_migrate_timers(vcpu);
  3889. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3890. kvm_write_guest_time(vcpu);
  3891. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3892. kvm_mmu_sync_roots(vcpu);
  3893. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3894. kvm_x86_ops->tlb_flush(vcpu);
  3895. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3896. &vcpu->requests)) {
  3897. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3898. r = 0;
  3899. goto out;
  3900. }
  3901. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3902. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3903. r = 0;
  3904. goto out;
  3905. }
  3906. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3907. vcpu->fpu_active = 0;
  3908. kvm_x86_ops->fpu_deactivate(vcpu);
  3909. }
  3910. }
  3911. preempt_disable();
  3912. kvm_x86_ops->prepare_guest_switch(vcpu);
  3913. if (vcpu->fpu_active)
  3914. kvm_load_guest_fpu(vcpu);
  3915. local_irq_disable();
  3916. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3917. smp_mb__after_clear_bit();
  3918. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3919. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3920. local_irq_enable();
  3921. preempt_enable();
  3922. r = 1;
  3923. goto out;
  3924. }
  3925. inject_pending_event(vcpu);
  3926. /* enable NMI/IRQ window open exits if needed */
  3927. if (vcpu->arch.nmi_pending)
  3928. kvm_x86_ops->enable_nmi_window(vcpu);
  3929. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3930. kvm_x86_ops->enable_irq_window(vcpu);
  3931. if (kvm_lapic_enabled(vcpu)) {
  3932. update_cr8_intercept(vcpu);
  3933. kvm_lapic_sync_to_vapic(vcpu);
  3934. }
  3935. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3936. kvm_guest_enter();
  3937. if (unlikely(vcpu->arch.switch_db_regs)) {
  3938. set_debugreg(0, 7);
  3939. set_debugreg(vcpu->arch.eff_db[0], 0);
  3940. set_debugreg(vcpu->arch.eff_db[1], 1);
  3941. set_debugreg(vcpu->arch.eff_db[2], 2);
  3942. set_debugreg(vcpu->arch.eff_db[3], 3);
  3943. }
  3944. trace_kvm_entry(vcpu->vcpu_id);
  3945. kvm_x86_ops->run(vcpu);
  3946. /*
  3947. * If the guest has used debug registers, at least dr7
  3948. * will be disabled while returning to the host.
  3949. * If we don't have active breakpoints in the host, we don't
  3950. * care about the messed up debug address registers. But if
  3951. * we have some of them active, restore the old state.
  3952. */
  3953. if (hw_breakpoint_active())
  3954. hw_breakpoint_restore();
  3955. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3956. local_irq_enable();
  3957. ++vcpu->stat.exits;
  3958. /*
  3959. * We must have an instruction between local_irq_enable() and
  3960. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3961. * the interrupt shadow. The stat.exits increment will do nicely.
  3962. * But we need to prevent reordering, hence this barrier():
  3963. */
  3964. barrier();
  3965. kvm_guest_exit();
  3966. preempt_enable();
  3967. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3968. /*
  3969. * Profile KVM exit RIPs:
  3970. */
  3971. if (unlikely(prof_on == KVM_PROFILING)) {
  3972. unsigned long rip = kvm_rip_read(vcpu);
  3973. profile_hit(KVM_PROFILING, (void *)rip);
  3974. }
  3975. kvm_lapic_sync_from_vapic(vcpu);
  3976. r = kvm_x86_ops->handle_exit(vcpu);
  3977. out:
  3978. return r;
  3979. }
  3980. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3981. {
  3982. int r;
  3983. struct kvm *kvm = vcpu->kvm;
  3984. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3985. pr_debug("vcpu %d received sipi with vector # %x\n",
  3986. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3987. kvm_lapic_reset(vcpu);
  3988. r = kvm_arch_vcpu_reset(vcpu);
  3989. if (r)
  3990. return r;
  3991. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3992. }
  3993. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3994. vapic_enter(vcpu);
  3995. r = 1;
  3996. while (r > 0) {
  3997. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3998. r = vcpu_enter_guest(vcpu);
  3999. else {
  4000. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4001. kvm_vcpu_block(vcpu);
  4002. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4003. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  4004. {
  4005. switch(vcpu->arch.mp_state) {
  4006. case KVM_MP_STATE_HALTED:
  4007. vcpu->arch.mp_state =
  4008. KVM_MP_STATE_RUNNABLE;
  4009. case KVM_MP_STATE_RUNNABLE:
  4010. break;
  4011. case KVM_MP_STATE_SIPI_RECEIVED:
  4012. default:
  4013. r = -EINTR;
  4014. break;
  4015. }
  4016. }
  4017. }
  4018. if (r <= 0)
  4019. break;
  4020. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4021. if (kvm_cpu_has_pending_timer(vcpu))
  4022. kvm_inject_pending_timer_irqs(vcpu);
  4023. if (dm_request_for_irq_injection(vcpu)) {
  4024. r = -EINTR;
  4025. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4026. ++vcpu->stat.request_irq_exits;
  4027. }
  4028. if (signal_pending(current)) {
  4029. r = -EINTR;
  4030. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4031. ++vcpu->stat.signal_exits;
  4032. }
  4033. if (need_resched()) {
  4034. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4035. kvm_resched(vcpu);
  4036. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4037. }
  4038. }
  4039. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4040. post_kvm_run_save(vcpu);
  4041. vapic_exit(vcpu);
  4042. return r;
  4043. }
  4044. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4045. {
  4046. int r;
  4047. sigset_t sigsaved;
  4048. vcpu_load(vcpu);
  4049. if (vcpu->sigset_active)
  4050. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4051. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4052. kvm_vcpu_block(vcpu);
  4053. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4054. r = -EAGAIN;
  4055. goto out;
  4056. }
  4057. /* re-sync apic's tpr */
  4058. if (!irqchip_in_kernel(vcpu->kvm))
  4059. kvm_set_cr8(vcpu, kvm_run->cr8);
  4060. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4061. vcpu->arch.emulate_ctxt.restart) {
  4062. if (vcpu->mmio_needed) {
  4063. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4064. vcpu->mmio_read_completed = 1;
  4065. vcpu->mmio_needed = 0;
  4066. }
  4067. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4068. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4069. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4070. if (r == EMULATE_DO_MMIO) {
  4071. r = 0;
  4072. goto out;
  4073. }
  4074. }
  4075. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4076. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4077. kvm_run->hypercall.ret);
  4078. r = __vcpu_run(vcpu);
  4079. out:
  4080. if (vcpu->sigset_active)
  4081. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4082. vcpu_put(vcpu);
  4083. return r;
  4084. }
  4085. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4086. {
  4087. vcpu_load(vcpu);
  4088. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4089. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4090. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4091. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4092. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4093. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4094. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4095. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4096. #ifdef CONFIG_X86_64
  4097. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4098. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4099. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4100. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4101. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4102. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4103. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4104. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4105. #endif
  4106. regs->rip = kvm_rip_read(vcpu);
  4107. regs->rflags = kvm_get_rflags(vcpu);
  4108. vcpu_put(vcpu);
  4109. return 0;
  4110. }
  4111. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4112. {
  4113. vcpu_load(vcpu);
  4114. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4115. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4116. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4117. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4118. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4119. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4120. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4121. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4122. #ifdef CONFIG_X86_64
  4123. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4124. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4125. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4126. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4127. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4128. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4129. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4130. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4131. #endif
  4132. kvm_rip_write(vcpu, regs->rip);
  4133. kvm_set_rflags(vcpu, regs->rflags);
  4134. vcpu->arch.exception.pending = false;
  4135. vcpu_put(vcpu);
  4136. return 0;
  4137. }
  4138. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4139. {
  4140. struct kvm_segment cs;
  4141. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4142. *db = cs.db;
  4143. *l = cs.l;
  4144. }
  4145. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4146. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4147. struct kvm_sregs *sregs)
  4148. {
  4149. struct desc_ptr dt;
  4150. vcpu_load(vcpu);
  4151. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4152. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4153. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4154. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4155. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4156. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4157. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4158. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4159. kvm_x86_ops->get_idt(vcpu, &dt);
  4160. sregs->idt.limit = dt.size;
  4161. sregs->idt.base = dt.address;
  4162. kvm_x86_ops->get_gdt(vcpu, &dt);
  4163. sregs->gdt.limit = dt.size;
  4164. sregs->gdt.base = dt.address;
  4165. sregs->cr0 = kvm_read_cr0(vcpu);
  4166. sregs->cr2 = vcpu->arch.cr2;
  4167. sregs->cr3 = vcpu->arch.cr3;
  4168. sregs->cr4 = kvm_read_cr4(vcpu);
  4169. sregs->cr8 = kvm_get_cr8(vcpu);
  4170. sregs->efer = vcpu->arch.efer;
  4171. sregs->apic_base = kvm_get_apic_base(vcpu);
  4172. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4173. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4174. set_bit(vcpu->arch.interrupt.nr,
  4175. (unsigned long *)sregs->interrupt_bitmap);
  4176. vcpu_put(vcpu);
  4177. return 0;
  4178. }
  4179. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4180. struct kvm_mp_state *mp_state)
  4181. {
  4182. vcpu_load(vcpu);
  4183. mp_state->mp_state = vcpu->arch.mp_state;
  4184. vcpu_put(vcpu);
  4185. return 0;
  4186. }
  4187. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4188. struct kvm_mp_state *mp_state)
  4189. {
  4190. vcpu_load(vcpu);
  4191. vcpu->arch.mp_state = mp_state->mp_state;
  4192. vcpu_put(vcpu);
  4193. return 0;
  4194. }
  4195. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4196. bool has_error_code, u32 error_code)
  4197. {
  4198. int cs_db, cs_l, ret;
  4199. cache_all_regs(vcpu);
  4200. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4201. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  4202. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  4203. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  4204. vcpu->arch.emulate_ctxt.mode =
  4205. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4206. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  4207. ? X86EMUL_MODE_VM86 : cs_l
  4208. ? X86EMUL_MODE_PROT64 : cs_db
  4209. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  4210. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
  4211. tss_selector, reason, has_error_code,
  4212. error_code);
  4213. if (ret)
  4214. return EMULATE_FAIL;
  4215. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4216. return EMULATE_DONE;
  4217. }
  4218. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4219. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4220. struct kvm_sregs *sregs)
  4221. {
  4222. int mmu_reset_needed = 0;
  4223. int pending_vec, max_bits;
  4224. struct desc_ptr dt;
  4225. vcpu_load(vcpu);
  4226. dt.size = sregs->idt.limit;
  4227. dt.address = sregs->idt.base;
  4228. kvm_x86_ops->set_idt(vcpu, &dt);
  4229. dt.size = sregs->gdt.limit;
  4230. dt.address = sregs->gdt.base;
  4231. kvm_x86_ops->set_gdt(vcpu, &dt);
  4232. vcpu->arch.cr2 = sregs->cr2;
  4233. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4234. vcpu->arch.cr3 = sregs->cr3;
  4235. kvm_set_cr8(vcpu, sregs->cr8);
  4236. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4237. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4238. kvm_set_apic_base(vcpu, sregs->apic_base);
  4239. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4240. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4241. vcpu->arch.cr0 = sregs->cr0;
  4242. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4243. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4244. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4245. load_pdptrs(vcpu, vcpu->arch.cr3);
  4246. mmu_reset_needed = 1;
  4247. }
  4248. if (mmu_reset_needed)
  4249. kvm_mmu_reset_context(vcpu);
  4250. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4251. pending_vec = find_first_bit(
  4252. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4253. if (pending_vec < max_bits) {
  4254. kvm_queue_interrupt(vcpu, pending_vec, false);
  4255. pr_debug("Set back pending irq %d\n", pending_vec);
  4256. if (irqchip_in_kernel(vcpu->kvm))
  4257. kvm_pic_clear_isr_ack(vcpu->kvm);
  4258. }
  4259. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4260. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4261. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4262. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4263. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4264. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4265. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4266. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4267. update_cr8_intercept(vcpu);
  4268. /* Older userspace won't unhalt the vcpu on reset. */
  4269. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4270. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4271. !is_protmode(vcpu))
  4272. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4273. vcpu_put(vcpu);
  4274. return 0;
  4275. }
  4276. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4277. struct kvm_guest_debug *dbg)
  4278. {
  4279. unsigned long rflags;
  4280. int i, r;
  4281. vcpu_load(vcpu);
  4282. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4283. r = -EBUSY;
  4284. if (vcpu->arch.exception.pending)
  4285. goto unlock_out;
  4286. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4287. kvm_queue_exception(vcpu, DB_VECTOR);
  4288. else
  4289. kvm_queue_exception(vcpu, BP_VECTOR);
  4290. }
  4291. /*
  4292. * Read rflags as long as potentially injected trace flags are still
  4293. * filtered out.
  4294. */
  4295. rflags = kvm_get_rflags(vcpu);
  4296. vcpu->guest_debug = dbg->control;
  4297. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4298. vcpu->guest_debug = 0;
  4299. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4300. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4301. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4302. vcpu->arch.switch_db_regs =
  4303. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4304. } else {
  4305. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4306. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4307. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4308. }
  4309. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4310. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4311. get_segment_base(vcpu, VCPU_SREG_CS);
  4312. /*
  4313. * Trigger an rflags update that will inject or remove the trace
  4314. * flags.
  4315. */
  4316. kvm_set_rflags(vcpu, rflags);
  4317. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4318. r = 0;
  4319. unlock_out:
  4320. vcpu_put(vcpu);
  4321. return r;
  4322. }
  4323. /*
  4324. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4325. * we have asm/x86/processor.h
  4326. */
  4327. struct fxsave {
  4328. u16 cwd;
  4329. u16 swd;
  4330. u16 twd;
  4331. u16 fop;
  4332. u64 rip;
  4333. u64 rdp;
  4334. u32 mxcsr;
  4335. u32 mxcsr_mask;
  4336. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4337. #ifdef CONFIG_X86_64
  4338. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4339. #else
  4340. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4341. #endif
  4342. };
  4343. /*
  4344. * Translate a guest virtual address to a guest physical address.
  4345. */
  4346. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4347. struct kvm_translation *tr)
  4348. {
  4349. unsigned long vaddr = tr->linear_address;
  4350. gpa_t gpa;
  4351. int idx;
  4352. vcpu_load(vcpu);
  4353. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4354. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4355. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4356. tr->physical_address = gpa;
  4357. tr->valid = gpa != UNMAPPED_GVA;
  4358. tr->writeable = 1;
  4359. tr->usermode = 0;
  4360. vcpu_put(vcpu);
  4361. return 0;
  4362. }
  4363. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4364. {
  4365. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4366. vcpu_load(vcpu);
  4367. memcpy(fpu->fpr, fxsave->st_space, 128);
  4368. fpu->fcw = fxsave->cwd;
  4369. fpu->fsw = fxsave->swd;
  4370. fpu->ftwx = fxsave->twd;
  4371. fpu->last_opcode = fxsave->fop;
  4372. fpu->last_ip = fxsave->rip;
  4373. fpu->last_dp = fxsave->rdp;
  4374. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4375. vcpu_put(vcpu);
  4376. return 0;
  4377. }
  4378. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4379. {
  4380. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4381. vcpu_load(vcpu);
  4382. memcpy(fxsave->st_space, fpu->fpr, 128);
  4383. fxsave->cwd = fpu->fcw;
  4384. fxsave->swd = fpu->fsw;
  4385. fxsave->twd = fpu->ftwx;
  4386. fxsave->fop = fpu->last_opcode;
  4387. fxsave->rip = fpu->last_ip;
  4388. fxsave->rdp = fpu->last_dp;
  4389. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4390. vcpu_put(vcpu);
  4391. return 0;
  4392. }
  4393. void fx_init(struct kvm_vcpu *vcpu)
  4394. {
  4395. unsigned after_mxcsr_mask;
  4396. /*
  4397. * Touch the fpu the first time in non atomic context as if
  4398. * this is the first fpu instruction the exception handler
  4399. * will fire before the instruction returns and it'll have to
  4400. * allocate ram with GFP_KERNEL.
  4401. */
  4402. if (!used_math())
  4403. kvm_fx_save(&vcpu->arch.host_fx_image);
  4404. /* Initialize guest FPU by resetting ours and saving into guest's */
  4405. preempt_disable();
  4406. kvm_fx_save(&vcpu->arch.host_fx_image);
  4407. kvm_fx_finit();
  4408. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4409. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4410. preempt_enable();
  4411. vcpu->arch.cr0 |= X86_CR0_ET;
  4412. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4413. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4414. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4415. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4416. }
  4417. EXPORT_SYMBOL_GPL(fx_init);
  4418. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4419. {
  4420. if (vcpu->guest_fpu_loaded)
  4421. return;
  4422. vcpu->guest_fpu_loaded = 1;
  4423. kvm_fx_save(&vcpu->arch.host_fx_image);
  4424. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4425. trace_kvm_fpu(1);
  4426. }
  4427. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4428. {
  4429. if (!vcpu->guest_fpu_loaded)
  4430. return;
  4431. vcpu->guest_fpu_loaded = 0;
  4432. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4433. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4434. ++vcpu->stat.fpu_reload;
  4435. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4436. trace_kvm_fpu(0);
  4437. }
  4438. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4439. {
  4440. if (vcpu->arch.time_page) {
  4441. kvm_release_page_dirty(vcpu->arch.time_page);
  4442. vcpu->arch.time_page = NULL;
  4443. }
  4444. kvm_x86_ops->vcpu_free(vcpu);
  4445. }
  4446. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4447. unsigned int id)
  4448. {
  4449. return kvm_x86_ops->vcpu_create(kvm, id);
  4450. }
  4451. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4452. {
  4453. int r;
  4454. /* We do fxsave: this must be aligned. */
  4455. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4456. vcpu->arch.mtrr_state.have_fixed = 1;
  4457. vcpu_load(vcpu);
  4458. r = kvm_arch_vcpu_reset(vcpu);
  4459. if (r == 0)
  4460. r = kvm_mmu_setup(vcpu);
  4461. vcpu_put(vcpu);
  4462. if (r < 0)
  4463. goto free_vcpu;
  4464. return 0;
  4465. free_vcpu:
  4466. kvm_x86_ops->vcpu_free(vcpu);
  4467. return r;
  4468. }
  4469. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4470. {
  4471. vcpu_load(vcpu);
  4472. kvm_mmu_unload(vcpu);
  4473. vcpu_put(vcpu);
  4474. kvm_x86_ops->vcpu_free(vcpu);
  4475. }
  4476. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4477. {
  4478. vcpu->arch.nmi_pending = false;
  4479. vcpu->arch.nmi_injected = false;
  4480. vcpu->arch.switch_db_regs = 0;
  4481. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4482. vcpu->arch.dr6 = DR6_FIXED_1;
  4483. vcpu->arch.dr7 = DR7_FIXED_1;
  4484. return kvm_x86_ops->vcpu_reset(vcpu);
  4485. }
  4486. int kvm_arch_hardware_enable(void *garbage)
  4487. {
  4488. /*
  4489. * Since this may be called from a hotplug notifcation,
  4490. * we can't get the CPU frequency directly.
  4491. */
  4492. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4493. int cpu = raw_smp_processor_id();
  4494. per_cpu(cpu_tsc_khz, cpu) = 0;
  4495. }
  4496. kvm_shared_msr_cpu_online();
  4497. return kvm_x86_ops->hardware_enable(garbage);
  4498. }
  4499. void kvm_arch_hardware_disable(void *garbage)
  4500. {
  4501. kvm_x86_ops->hardware_disable(garbage);
  4502. drop_user_return_notifiers(garbage);
  4503. }
  4504. int kvm_arch_hardware_setup(void)
  4505. {
  4506. return kvm_x86_ops->hardware_setup();
  4507. }
  4508. void kvm_arch_hardware_unsetup(void)
  4509. {
  4510. kvm_x86_ops->hardware_unsetup();
  4511. }
  4512. void kvm_arch_check_processor_compat(void *rtn)
  4513. {
  4514. kvm_x86_ops->check_processor_compatibility(rtn);
  4515. }
  4516. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4517. {
  4518. struct page *page;
  4519. struct kvm *kvm;
  4520. int r;
  4521. BUG_ON(vcpu->kvm == NULL);
  4522. kvm = vcpu->kvm;
  4523. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4524. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4525. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4526. else
  4527. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4528. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4529. if (!page) {
  4530. r = -ENOMEM;
  4531. goto fail;
  4532. }
  4533. vcpu->arch.pio_data = page_address(page);
  4534. r = kvm_mmu_create(vcpu);
  4535. if (r < 0)
  4536. goto fail_free_pio_data;
  4537. if (irqchip_in_kernel(kvm)) {
  4538. r = kvm_create_lapic(vcpu);
  4539. if (r < 0)
  4540. goto fail_mmu_destroy;
  4541. }
  4542. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4543. GFP_KERNEL);
  4544. if (!vcpu->arch.mce_banks) {
  4545. r = -ENOMEM;
  4546. goto fail_free_lapic;
  4547. }
  4548. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4549. return 0;
  4550. fail_free_lapic:
  4551. kvm_free_lapic(vcpu);
  4552. fail_mmu_destroy:
  4553. kvm_mmu_destroy(vcpu);
  4554. fail_free_pio_data:
  4555. free_page((unsigned long)vcpu->arch.pio_data);
  4556. fail:
  4557. return r;
  4558. }
  4559. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4560. {
  4561. int idx;
  4562. kfree(vcpu->arch.mce_banks);
  4563. kvm_free_lapic(vcpu);
  4564. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4565. kvm_mmu_destroy(vcpu);
  4566. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4567. free_page((unsigned long)vcpu->arch.pio_data);
  4568. }
  4569. struct kvm *kvm_arch_create_vm(void)
  4570. {
  4571. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4572. if (!kvm)
  4573. return ERR_PTR(-ENOMEM);
  4574. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4575. if (!kvm->arch.aliases) {
  4576. kfree(kvm);
  4577. return ERR_PTR(-ENOMEM);
  4578. }
  4579. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4580. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4581. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4582. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4583. rdtscll(kvm->arch.vm_init_tsc);
  4584. return kvm;
  4585. }
  4586. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4587. {
  4588. vcpu_load(vcpu);
  4589. kvm_mmu_unload(vcpu);
  4590. vcpu_put(vcpu);
  4591. }
  4592. static void kvm_free_vcpus(struct kvm *kvm)
  4593. {
  4594. unsigned int i;
  4595. struct kvm_vcpu *vcpu;
  4596. /*
  4597. * Unpin any mmu pages first.
  4598. */
  4599. kvm_for_each_vcpu(i, vcpu, kvm)
  4600. kvm_unload_vcpu_mmu(vcpu);
  4601. kvm_for_each_vcpu(i, vcpu, kvm)
  4602. kvm_arch_vcpu_free(vcpu);
  4603. mutex_lock(&kvm->lock);
  4604. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4605. kvm->vcpus[i] = NULL;
  4606. atomic_set(&kvm->online_vcpus, 0);
  4607. mutex_unlock(&kvm->lock);
  4608. }
  4609. void kvm_arch_sync_events(struct kvm *kvm)
  4610. {
  4611. kvm_free_all_assigned_devices(kvm);
  4612. }
  4613. void kvm_arch_destroy_vm(struct kvm *kvm)
  4614. {
  4615. kvm_iommu_unmap_guest(kvm);
  4616. kvm_free_pit(kvm);
  4617. kfree(kvm->arch.vpic);
  4618. kfree(kvm->arch.vioapic);
  4619. kvm_free_vcpus(kvm);
  4620. kvm_free_physmem(kvm);
  4621. if (kvm->arch.apic_access_page)
  4622. put_page(kvm->arch.apic_access_page);
  4623. if (kvm->arch.ept_identity_pagetable)
  4624. put_page(kvm->arch.ept_identity_pagetable);
  4625. cleanup_srcu_struct(&kvm->srcu);
  4626. kfree(kvm->arch.aliases);
  4627. kfree(kvm);
  4628. }
  4629. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4630. struct kvm_memory_slot *memslot,
  4631. struct kvm_memory_slot old,
  4632. struct kvm_userspace_memory_region *mem,
  4633. int user_alloc)
  4634. {
  4635. int npages = memslot->npages;
  4636. /*To keep backward compatibility with older userspace,
  4637. *x86 needs to hanlde !user_alloc case.
  4638. */
  4639. if (!user_alloc) {
  4640. if (npages && !old.rmap) {
  4641. unsigned long userspace_addr;
  4642. down_write(&current->mm->mmap_sem);
  4643. userspace_addr = do_mmap(NULL, 0,
  4644. npages * PAGE_SIZE,
  4645. PROT_READ | PROT_WRITE,
  4646. MAP_PRIVATE | MAP_ANONYMOUS,
  4647. 0);
  4648. up_write(&current->mm->mmap_sem);
  4649. if (IS_ERR((void *)userspace_addr))
  4650. return PTR_ERR((void *)userspace_addr);
  4651. memslot->userspace_addr = userspace_addr;
  4652. }
  4653. }
  4654. return 0;
  4655. }
  4656. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4657. struct kvm_userspace_memory_region *mem,
  4658. struct kvm_memory_slot old,
  4659. int user_alloc)
  4660. {
  4661. int npages = mem->memory_size >> PAGE_SHIFT;
  4662. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4663. int ret;
  4664. down_write(&current->mm->mmap_sem);
  4665. ret = do_munmap(current->mm, old.userspace_addr,
  4666. old.npages * PAGE_SIZE);
  4667. up_write(&current->mm->mmap_sem);
  4668. if (ret < 0)
  4669. printk(KERN_WARNING
  4670. "kvm_vm_ioctl_set_memory_region: "
  4671. "failed to munmap memory\n");
  4672. }
  4673. spin_lock(&kvm->mmu_lock);
  4674. if (!kvm->arch.n_requested_mmu_pages) {
  4675. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4676. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4677. }
  4678. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4679. spin_unlock(&kvm->mmu_lock);
  4680. }
  4681. void kvm_arch_flush_shadow(struct kvm *kvm)
  4682. {
  4683. kvm_mmu_zap_all(kvm);
  4684. kvm_reload_remote_mmus(kvm);
  4685. }
  4686. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4687. {
  4688. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4689. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4690. || vcpu->arch.nmi_pending ||
  4691. (kvm_arch_interrupt_allowed(vcpu) &&
  4692. kvm_cpu_has_interrupt(vcpu));
  4693. }
  4694. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4695. {
  4696. int me;
  4697. int cpu = vcpu->cpu;
  4698. if (waitqueue_active(&vcpu->wq)) {
  4699. wake_up_interruptible(&vcpu->wq);
  4700. ++vcpu->stat.halt_wakeup;
  4701. }
  4702. me = get_cpu();
  4703. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4704. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4705. smp_send_reschedule(cpu);
  4706. put_cpu();
  4707. }
  4708. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4709. {
  4710. return kvm_x86_ops->interrupt_allowed(vcpu);
  4711. }
  4712. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  4713. {
  4714. unsigned long current_rip = kvm_rip_read(vcpu) +
  4715. get_segment_base(vcpu, VCPU_SREG_CS);
  4716. return current_rip == linear_rip;
  4717. }
  4718. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  4719. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4720. {
  4721. unsigned long rflags;
  4722. rflags = kvm_x86_ops->get_rflags(vcpu);
  4723. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4724. rflags &= ~X86_EFLAGS_TF;
  4725. return rflags;
  4726. }
  4727. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4728. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4729. {
  4730. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4731. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  4732. rflags |= X86_EFLAGS_TF;
  4733. kvm_x86_ops->set_rflags(vcpu, rflags);
  4734. }
  4735. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4736. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4737. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4738. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4739. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4740. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4741. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4742. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4743. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4744. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4745. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4746. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  4747. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);