cfq-iosched.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk-cgroup.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  33. static const int cfq_hist_divisor = 4;
  34. /*
  35. * offset from end of service tree
  36. */
  37. #define CFQ_IDLE_DELAY (HZ / 5)
  38. /*
  39. * below this threshold, we consider thinktime immediate
  40. */
  41. #define CFQ_MIN_TT (2)
  42. #define CFQ_SLICE_SCALE (5)
  43. #define CFQ_HW_QUEUE_MIN (5)
  44. #define CFQ_SERVICE_SHIFT 12
  45. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  46. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  47. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  48. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  49. #define RQ_CIC(rq) \
  50. ((struct cfq_io_context *) (rq)->elevator_private)
  51. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  52. static struct kmem_cache *cfq_pool;
  53. static struct kmem_cache *cfq_ioc_pool;
  54. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  55. static struct completion *ioc_gone;
  56. static DEFINE_SPINLOCK(ioc_gone_lock);
  57. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  58. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  59. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  60. #define sample_valid(samples) ((samples) > 80)
  61. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  62. /*
  63. * Most of our rbtree usage is for sorting with min extraction, so
  64. * if we cache the leftmost node we don't have to walk down the tree
  65. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  66. * move this into the elevator for the rq sorting as well.
  67. */
  68. struct cfq_rb_root {
  69. struct rb_root rb;
  70. struct rb_node *left;
  71. unsigned count;
  72. unsigned total_weight;
  73. u64 min_vdisktime;
  74. struct rb_node *active;
  75. };
  76. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  77. .count = 0, .min_vdisktime = 0, }
  78. /*
  79. * Per process-grouping structure
  80. */
  81. struct cfq_queue {
  82. /* reference count */
  83. atomic_t ref;
  84. /* various state flags, see below */
  85. unsigned int flags;
  86. /* parent cfq_data */
  87. struct cfq_data *cfqd;
  88. /* service_tree member */
  89. struct rb_node rb_node;
  90. /* service_tree key */
  91. unsigned long rb_key;
  92. /* prio tree member */
  93. struct rb_node p_node;
  94. /* prio tree root we belong to, if any */
  95. struct rb_root *p_root;
  96. /* sorted list of pending requests */
  97. struct rb_root sort_list;
  98. /* if fifo isn't expired, next request to serve */
  99. struct request *next_rq;
  100. /* requests queued in sort_list */
  101. int queued[2];
  102. /* currently allocated requests */
  103. int allocated[2];
  104. /* fifo list of requests in sort_list */
  105. struct list_head fifo;
  106. /* time when queue got scheduled in to dispatch first request. */
  107. unsigned long dispatch_start;
  108. unsigned int allocated_slice;
  109. unsigned int slice_dispatch;
  110. /* time when first request from queue completed and slice started. */
  111. unsigned long slice_start;
  112. unsigned long slice_end;
  113. long slice_resid;
  114. /* pending metadata requests */
  115. int meta_pending;
  116. /* number of requests that are on the dispatch list or inside driver */
  117. int dispatched;
  118. /* io prio of this group */
  119. unsigned short ioprio, org_ioprio;
  120. unsigned short ioprio_class, org_ioprio_class;
  121. pid_t pid;
  122. u32 seek_history;
  123. sector_t last_request_pos;
  124. struct cfq_rb_root *service_tree;
  125. struct cfq_queue *new_cfqq;
  126. struct cfq_group *cfqg;
  127. struct cfq_group *orig_cfqg;
  128. };
  129. /*
  130. * First index in the service_trees.
  131. * IDLE is handled separately, so it has negative index
  132. */
  133. enum wl_prio_t {
  134. BE_WORKLOAD = 0,
  135. RT_WORKLOAD = 1,
  136. IDLE_WORKLOAD = 2,
  137. };
  138. /*
  139. * Second index in the service_trees.
  140. */
  141. enum wl_type_t {
  142. ASYNC_WORKLOAD = 0,
  143. SYNC_NOIDLE_WORKLOAD = 1,
  144. SYNC_WORKLOAD = 2
  145. };
  146. /* This is per cgroup per device grouping structure */
  147. struct cfq_group {
  148. /* group service_tree member */
  149. struct rb_node rb_node;
  150. /* group service_tree key */
  151. u64 vdisktime;
  152. unsigned int weight;
  153. bool on_st;
  154. /* number of cfqq currently on this group */
  155. int nr_cfqq;
  156. /* Per group busy queus average. Useful for workload slice calc. */
  157. unsigned int busy_queues_avg[2];
  158. /*
  159. * rr lists of queues with requests, onle rr for each priority class.
  160. * Counts are embedded in the cfq_rb_root
  161. */
  162. struct cfq_rb_root service_trees[2][3];
  163. struct cfq_rb_root service_tree_idle;
  164. unsigned long saved_workload_slice;
  165. enum wl_type_t saved_workload;
  166. enum wl_prio_t saved_serving_prio;
  167. struct blkio_group blkg;
  168. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  169. struct hlist_node cfqd_node;
  170. atomic_t ref;
  171. #endif
  172. };
  173. /*
  174. * Per block device queue structure
  175. */
  176. struct cfq_data {
  177. struct request_queue *queue;
  178. /* Root service tree for cfq_groups */
  179. struct cfq_rb_root grp_service_tree;
  180. struct cfq_group root_group;
  181. /*
  182. * The priority currently being served
  183. */
  184. enum wl_prio_t serving_prio;
  185. enum wl_type_t serving_type;
  186. unsigned long workload_expires;
  187. struct cfq_group *serving_group;
  188. bool noidle_tree_requires_idle;
  189. /*
  190. * Each priority tree is sorted by next_request position. These
  191. * trees are used when determining if two or more queues are
  192. * interleaving requests (see cfq_close_cooperator).
  193. */
  194. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  195. unsigned int busy_queues;
  196. int rq_in_driver;
  197. int rq_in_flight[2];
  198. /*
  199. * queue-depth detection
  200. */
  201. int rq_queued;
  202. int hw_tag;
  203. /*
  204. * hw_tag can be
  205. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  206. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  207. * 0 => no NCQ
  208. */
  209. int hw_tag_est_depth;
  210. unsigned int hw_tag_samples;
  211. /*
  212. * idle window management
  213. */
  214. struct timer_list idle_slice_timer;
  215. struct work_struct unplug_work;
  216. struct cfq_queue *active_queue;
  217. struct cfq_io_context *active_cic;
  218. /*
  219. * async queue for each priority case
  220. */
  221. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  222. struct cfq_queue *async_idle_cfqq;
  223. sector_t last_position;
  224. /*
  225. * tunables, see top of file
  226. */
  227. unsigned int cfq_quantum;
  228. unsigned int cfq_fifo_expire[2];
  229. unsigned int cfq_back_penalty;
  230. unsigned int cfq_back_max;
  231. unsigned int cfq_slice[2];
  232. unsigned int cfq_slice_async_rq;
  233. unsigned int cfq_slice_idle;
  234. unsigned int cfq_latency;
  235. unsigned int cfq_group_isolation;
  236. struct list_head cic_list;
  237. /*
  238. * Fallback dummy cfqq for extreme OOM conditions
  239. */
  240. struct cfq_queue oom_cfqq;
  241. unsigned long last_delayed_sync;
  242. /* List of cfq groups being managed on this device*/
  243. struct hlist_head cfqg_list;
  244. struct rcu_head rcu;
  245. };
  246. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  247. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  248. enum wl_prio_t prio,
  249. enum wl_type_t type)
  250. {
  251. if (!cfqg)
  252. return NULL;
  253. if (prio == IDLE_WORKLOAD)
  254. return &cfqg->service_tree_idle;
  255. return &cfqg->service_trees[prio][type];
  256. }
  257. enum cfqq_state_flags {
  258. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  259. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  260. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  261. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  262. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  263. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  264. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  265. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  266. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  267. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  268. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  269. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  270. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  271. };
  272. #define CFQ_CFQQ_FNS(name) \
  273. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  274. { \
  275. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  276. } \
  277. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  278. { \
  279. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  280. } \
  281. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  282. { \
  283. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  284. }
  285. CFQ_CFQQ_FNS(on_rr);
  286. CFQ_CFQQ_FNS(wait_request);
  287. CFQ_CFQQ_FNS(must_dispatch);
  288. CFQ_CFQQ_FNS(must_alloc_slice);
  289. CFQ_CFQQ_FNS(fifo_expire);
  290. CFQ_CFQQ_FNS(idle_window);
  291. CFQ_CFQQ_FNS(prio_changed);
  292. CFQ_CFQQ_FNS(slice_new);
  293. CFQ_CFQQ_FNS(sync);
  294. CFQ_CFQQ_FNS(coop);
  295. CFQ_CFQQ_FNS(split_coop);
  296. CFQ_CFQQ_FNS(deep);
  297. CFQ_CFQQ_FNS(wait_busy);
  298. #undef CFQ_CFQQ_FNS
  299. #ifdef CONFIG_DEBUG_CFQ_IOSCHED
  300. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  301. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  302. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  303. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  304. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  305. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  306. blkg_path(&(cfqg)->blkg), ##args); \
  307. #else
  308. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  309. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  310. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  311. #endif
  312. #define cfq_log(cfqd, fmt, args...) \
  313. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  314. /* Traverses through cfq group service trees */
  315. #define for_each_cfqg_st(cfqg, i, j, st) \
  316. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  317. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  318. : &cfqg->service_tree_idle; \
  319. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  320. (i == IDLE_WORKLOAD && j == 0); \
  321. j++, st = i < IDLE_WORKLOAD ? \
  322. &cfqg->service_trees[i][j]: NULL) \
  323. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  324. {
  325. if (cfq_class_idle(cfqq))
  326. return IDLE_WORKLOAD;
  327. if (cfq_class_rt(cfqq))
  328. return RT_WORKLOAD;
  329. return BE_WORKLOAD;
  330. }
  331. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  332. {
  333. if (!cfq_cfqq_sync(cfqq))
  334. return ASYNC_WORKLOAD;
  335. if (!cfq_cfqq_idle_window(cfqq))
  336. return SYNC_NOIDLE_WORKLOAD;
  337. return SYNC_WORKLOAD;
  338. }
  339. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  340. struct cfq_data *cfqd,
  341. struct cfq_group *cfqg)
  342. {
  343. if (wl == IDLE_WORKLOAD)
  344. return cfqg->service_tree_idle.count;
  345. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  346. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  347. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  348. }
  349. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  350. struct cfq_group *cfqg)
  351. {
  352. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  353. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  354. }
  355. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  356. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  357. struct io_context *, gfp_t);
  358. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  359. struct io_context *);
  360. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  361. bool is_sync)
  362. {
  363. return cic->cfqq[is_sync];
  364. }
  365. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  366. struct cfq_queue *cfqq, bool is_sync)
  367. {
  368. cic->cfqq[is_sync] = cfqq;
  369. }
  370. /*
  371. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  372. * set (in which case it could also be direct WRITE).
  373. */
  374. static inline bool cfq_bio_sync(struct bio *bio)
  375. {
  376. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  377. }
  378. /*
  379. * scheduler run of queue, if there are requests pending and no one in the
  380. * driver that will restart queueing
  381. */
  382. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  383. {
  384. if (cfqd->busy_queues) {
  385. cfq_log(cfqd, "schedule dispatch");
  386. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  387. }
  388. }
  389. static int cfq_queue_empty(struct request_queue *q)
  390. {
  391. struct cfq_data *cfqd = q->elevator->elevator_data;
  392. return !cfqd->rq_queued;
  393. }
  394. /*
  395. * Scale schedule slice based on io priority. Use the sync time slice only
  396. * if a queue is marked sync and has sync io queued. A sync queue with async
  397. * io only, should not get full sync slice length.
  398. */
  399. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  400. unsigned short prio)
  401. {
  402. const int base_slice = cfqd->cfq_slice[sync];
  403. WARN_ON(prio >= IOPRIO_BE_NR);
  404. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  405. }
  406. static inline int
  407. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  408. {
  409. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  410. }
  411. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  412. {
  413. u64 d = delta << CFQ_SERVICE_SHIFT;
  414. d = d * BLKIO_WEIGHT_DEFAULT;
  415. do_div(d, cfqg->weight);
  416. return d;
  417. }
  418. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  419. {
  420. s64 delta = (s64)(vdisktime - min_vdisktime);
  421. if (delta > 0)
  422. min_vdisktime = vdisktime;
  423. return min_vdisktime;
  424. }
  425. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  426. {
  427. s64 delta = (s64)(vdisktime - min_vdisktime);
  428. if (delta < 0)
  429. min_vdisktime = vdisktime;
  430. return min_vdisktime;
  431. }
  432. static void update_min_vdisktime(struct cfq_rb_root *st)
  433. {
  434. u64 vdisktime = st->min_vdisktime;
  435. struct cfq_group *cfqg;
  436. if (st->active) {
  437. cfqg = rb_entry_cfqg(st->active);
  438. vdisktime = cfqg->vdisktime;
  439. }
  440. if (st->left) {
  441. cfqg = rb_entry_cfqg(st->left);
  442. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  443. }
  444. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  445. }
  446. /*
  447. * get averaged number of queues of RT/BE priority.
  448. * average is updated, with a formula that gives more weight to higher numbers,
  449. * to quickly follows sudden increases and decrease slowly
  450. */
  451. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  452. struct cfq_group *cfqg, bool rt)
  453. {
  454. unsigned min_q, max_q;
  455. unsigned mult = cfq_hist_divisor - 1;
  456. unsigned round = cfq_hist_divisor / 2;
  457. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  458. min_q = min(cfqg->busy_queues_avg[rt], busy);
  459. max_q = max(cfqg->busy_queues_avg[rt], busy);
  460. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  461. cfq_hist_divisor;
  462. return cfqg->busy_queues_avg[rt];
  463. }
  464. static inline unsigned
  465. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  466. {
  467. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  468. return cfq_target_latency * cfqg->weight / st->total_weight;
  469. }
  470. static inline void
  471. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  472. {
  473. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  474. if (cfqd->cfq_latency) {
  475. /*
  476. * interested queues (we consider only the ones with the same
  477. * priority class in the cfq group)
  478. */
  479. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  480. cfq_class_rt(cfqq));
  481. unsigned sync_slice = cfqd->cfq_slice[1];
  482. unsigned expect_latency = sync_slice * iq;
  483. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  484. if (expect_latency > group_slice) {
  485. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  486. /* scale low_slice according to IO priority
  487. * and sync vs async */
  488. unsigned low_slice =
  489. min(slice, base_low_slice * slice / sync_slice);
  490. /* the adapted slice value is scaled to fit all iqs
  491. * into the target latency */
  492. slice = max(slice * group_slice / expect_latency,
  493. low_slice);
  494. }
  495. }
  496. cfqq->slice_start = jiffies;
  497. cfqq->slice_end = jiffies + slice;
  498. cfqq->allocated_slice = slice;
  499. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  500. }
  501. /*
  502. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  503. * isn't valid until the first request from the dispatch is activated
  504. * and the slice time set.
  505. */
  506. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  507. {
  508. if (cfq_cfqq_slice_new(cfqq))
  509. return 0;
  510. if (time_before(jiffies, cfqq->slice_end))
  511. return 0;
  512. return 1;
  513. }
  514. /*
  515. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  516. * We choose the request that is closest to the head right now. Distance
  517. * behind the head is penalized and only allowed to a certain extent.
  518. */
  519. static struct request *
  520. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  521. {
  522. sector_t s1, s2, d1 = 0, d2 = 0;
  523. unsigned long back_max;
  524. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  525. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  526. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  527. if (rq1 == NULL || rq1 == rq2)
  528. return rq2;
  529. if (rq2 == NULL)
  530. return rq1;
  531. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  532. return rq1;
  533. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  534. return rq2;
  535. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  536. return rq1;
  537. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  538. return rq2;
  539. s1 = blk_rq_pos(rq1);
  540. s2 = blk_rq_pos(rq2);
  541. /*
  542. * by definition, 1KiB is 2 sectors
  543. */
  544. back_max = cfqd->cfq_back_max * 2;
  545. /*
  546. * Strict one way elevator _except_ in the case where we allow
  547. * short backward seeks which are biased as twice the cost of a
  548. * similar forward seek.
  549. */
  550. if (s1 >= last)
  551. d1 = s1 - last;
  552. else if (s1 + back_max >= last)
  553. d1 = (last - s1) * cfqd->cfq_back_penalty;
  554. else
  555. wrap |= CFQ_RQ1_WRAP;
  556. if (s2 >= last)
  557. d2 = s2 - last;
  558. else if (s2 + back_max >= last)
  559. d2 = (last - s2) * cfqd->cfq_back_penalty;
  560. else
  561. wrap |= CFQ_RQ2_WRAP;
  562. /* Found required data */
  563. /*
  564. * By doing switch() on the bit mask "wrap" we avoid having to
  565. * check two variables for all permutations: --> faster!
  566. */
  567. switch (wrap) {
  568. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  569. if (d1 < d2)
  570. return rq1;
  571. else if (d2 < d1)
  572. return rq2;
  573. else {
  574. if (s1 >= s2)
  575. return rq1;
  576. else
  577. return rq2;
  578. }
  579. case CFQ_RQ2_WRAP:
  580. return rq1;
  581. case CFQ_RQ1_WRAP:
  582. return rq2;
  583. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  584. default:
  585. /*
  586. * Since both rqs are wrapped,
  587. * start with the one that's further behind head
  588. * (--> only *one* back seek required),
  589. * since back seek takes more time than forward.
  590. */
  591. if (s1 <= s2)
  592. return rq1;
  593. else
  594. return rq2;
  595. }
  596. }
  597. /*
  598. * The below is leftmost cache rbtree addon
  599. */
  600. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  601. {
  602. /* Service tree is empty */
  603. if (!root->count)
  604. return NULL;
  605. if (!root->left)
  606. root->left = rb_first(&root->rb);
  607. if (root->left)
  608. return rb_entry(root->left, struct cfq_queue, rb_node);
  609. return NULL;
  610. }
  611. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  612. {
  613. if (!root->left)
  614. root->left = rb_first(&root->rb);
  615. if (root->left)
  616. return rb_entry_cfqg(root->left);
  617. return NULL;
  618. }
  619. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  620. {
  621. rb_erase(n, root);
  622. RB_CLEAR_NODE(n);
  623. }
  624. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  625. {
  626. if (root->left == n)
  627. root->left = NULL;
  628. rb_erase_init(n, &root->rb);
  629. --root->count;
  630. }
  631. /*
  632. * would be nice to take fifo expire time into account as well
  633. */
  634. static struct request *
  635. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  636. struct request *last)
  637. {
  638. struct rb_node *rbnext = rb_next(&last->rb_node);
  639. struct rb_node *rbprev = rb_prev(&last->rb_node);
  640. struct request *next = NULL, *prev = NULL;
  641. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  642. if (rbprev)
  643. prev = rb_entry_rq(rbprev);
  644. if (rbnext)
  645. next = rb_entry_rq(rbnext);
  646. else {
  647. rbnext = rb_first(&cfqq->sort_list);
  648. if (rbnext && rbnext != &last->rb_node)
  649. next = rb_entry_rq(rbnext);
  650. }
  651. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  652. }
  653. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  654. struct cfq_queue *cfqq)
  655. {
  656. /*
  657. * just an approximation, should be ok.
  658. */
  659. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  660. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  661. }
  662. static inline s64
  663. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  664. {
  665. return cfqg->vdisktime - st->min_vdisktime;
  666. }
  667. static void
  668. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  669. {
  670. struct rb_node **node = &st->rb.rb_node;
  671. struct rb_node *parent = NULL;
  672. struct cfq_group *__cfqg;
  673. s64 key = cfqg_key(st, cfqg);
  674. int left = 1;
  675. while (*node != NULL) {
  676. parent = *node;
  677. __cfqg = rb_entry_cfqg(parent);
  678. if (key < cfqg_key(st, __cfqg))
  679. node = &parent->rb_left;
  680. else {
  681. node = &parent->rb_right;
  682. left = 0;
  683. }
  684. }
  685. if (left)
  686. st->left = &cfqg->rb_node;
  687. rb_link_node(&cfqg->rb_node, parent, node);
  688. rb_insert_color(&cfqg->rb_node, &st->rb);
  689. }
  690. static void
  691. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  692. {
  693. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  694. struct cfq_group *__cfqg;
  695. struct rb_node *n;
  696. cfqg->nr_cfqq++;
  697. if (cfqg->on_st)
  698. return;
  699. /*
  700. * Currently put the group at the end. Later implement something
  701. * so that groups get lesser vtime based on their weights, so that
  702. * if group does not loose all if it was not continously backlogged.
  703. */
  704. n = rb_last(&st->rb);
  705. if (n) {
  706. __cfqg = rb_entry_cfqg(n);
  707. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  708. } else
  709. cfqg->vdisktime = st->min_vdisktime;
  710. __cfq_group_service_tree_add(st, cfqg);
  711. cfqg->on_st = true;
  712. st->total_weight += cfqg->weight;
  713. }
  714. static void
  715. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  716. {
  717. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  718. if (st->active == &cfqg->rb_node)
  719. st->active = NULL;
  720. BUG_ON(cfqg->nr_cfqq < 1);
  721. cfqg->nr_cfqq--;
  722. /* If there are other cfq queues under this group, don't delete it */
  723. if (cfqg->nr_cfqq)
  724. return;
  725. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  726. cfqg->on_st = false;
  727. st->total_weight -= cfqg->weight;
  728. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  729. cfq_rb_erase(&cfqg->rb_node, st);
  730. cfqg->saved_workload_slice = 0;
  731. blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  732. }
  733. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  734. {
  735. unsigned int slice_used;
  736. /*
  737. * Queue got expired before even a single request completed or
  738. * got expired immediately after first request completion.
  739. */
  740. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  741. /*
  742. * Also charge the seek time incurred to the group, otherwise
  743. * if there are mutiple queues in the group, each can dispatch
  744. * a single request on seeky media and cause lots of seek time
  745. * and group will never know it.
  746. */
  747. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  748. 1);
  749. } else {
  750. slice_used = jiffies - cfqq->slice_start;
  751. if (slice_used > cfqq->allocated_slice)
  752. slice_used = cfqq->allocated_slice;
  753. }
  754. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u", slice_used);
  755. return slice_used;
  756. }
  757. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  758. struct cfq_queue *cfqq, bool forced)
  759. {
  760. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  761. unsigned int used_sl, charge_sl;
  762. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  763. - cfqg->service_tree_idle.count;
  764. BUG_ON(nr_sync < 0);
  765. used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
  766. if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  767. charge_sl = cfqq->allocated_slice;
  768. /* Can't update vdisktime while group is on service tree */
  769. cfq_rb_erase(&cfqg->rb_node, st);
  770. cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
  771. __cfq_group_service_tree_add(st, cfqg);
  772. /* This group is being expired. Save the context */
  773. if (time_after(cfqd->workload_expires, jiffies)) {
  774. cfqg->saved_workload_slice = cfqd->workload_expires
  775. - jiffies;
  776. cfqg->saved_workload = cfqd->serving_type;
  777. cfqg->saved_serving_prio = cfqd->serving_prio;
  778. } else
  779. cfqg->saved_workload_slice = 0;
  780. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  781. st->min_vdisktime);
  782. blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  783. blkiocg_set_start_empty_time(&cfqg->blkg, forced);
  784. }
  785. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  786. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  787. {
  788. if (blkg)
  789. return container_of(blkg, struct cfq_group, blkg);
  790. return NULL;
  791. }
  792. void
  793. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  794. {
  795. cfqg_of_blkg(blkg)->weight = weight;
  796. }
  797. static struct cfq_group *
  798. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  799. {
  800. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  801. struct cfq_group *cfqg = NULL;
  802. void *key = cfqd;
  803. int i, j;
  804. struct cfq_rb_root *st;
  805. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  806. unsigned int major, minor;
  807. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  808. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  809. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  810. cfqg->blkg.dev = MKDEV(major, minor);
  811. goto done;
  812. }
  813. if (cfqg || !create)
  814. goto done;
  815. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  816. if (!cfqg)
  817. goto done;
  818. for_each_cfqg_st(cfqg, i, j, st)
  819. *st = CFQ_RB_ROOT;
  820. RB_CLEAR_NODE(&cfqg->rb_node);
  821. /*
  822. * Take the initial reference that will be released on destroy
  823. * This can be thought of a joint reference by cgroup and
  824. * elevator which will be dropped by either elevator exit
  825. * or cgroup deletion path depending on who is exiting first.
  826. */
  827. atomic_set(&cfqg->ref, 1);
  828. /* Add group onto cgroup list */
  829. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  830. blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  831. MKDEV(major, minor));
  832. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  833. /* Add group on cfqd list */
  834. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  835. done:
  836. return cfqg;
  837. }
  838. /*
  839. * Search for the cfq group current task belongs to. If create = 1, then also
  840. * create the cfq group if it does not exist. request_queue lock must be held.
  841. */
  842. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  843. {
  844. struct cgroup *cgroup;
  845. struct cfq_group *cfqg = NULL;
  846. rcu_read_lock();
  847. cgroup = task_cgroup(current, blkio_subsys_id);
  848. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  849. if (!cfqg && create)
  850. cfqg = &cfqd->root_group;
  851. rcu_read_unlock();
  852. return cfqg;
  853. }
  854. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  855. {
  856. /* Currently, all async queues are mapped to root group */
  857. if (!cfq_cfqq_sync(cfqq))
  858. cfqg = &cfqq->cfqd->root_group;
  859. cfqq->cfqg = cfqg;
  860. /* cfqq reference on cfqg */
  861. atomic_inc(&cfqq->cfqg->ref);
  862. }
  863. static void cfq_put_cfqg(struct cfq_group *cfqg)
  864. {
  865. struct cfq_rb_root *st;
  866. int i, j;
  867. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  868. if (!atomic_dec_and_test(&cfqg->ref))
  869. return;
  870. for_each_cfqg_st(cfqg, i, j, st)
  871. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  872. kfree(cfqg);
  873. }
  874. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  875. {
  876. /* Something wrong if we are trying to remove same group twice */
  877. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  878. hlist_del_init(&cfqg->cfqd_node);
  879. /*
  880. * Put the reference taken at the time of creation so that when all
  881. * queues are gone, group can be destroyed.
  882. */
  883. cfq_put_cfqg(cfqg);
  884. }
  885. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  886. {
  887. struct hlist_node *pos, *n;
  888. struct cfq_group *cfqg;
  889. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  890. /*
  891. * If cgroup removal path got to blk_group first and removed
  892. * it from cgroup list, then it will take care of destroying
  893. * cfqg also.
  894. */
  895. if (!blkiocg_del_blkio_group(&cfqg->blkg))
  896. cfq_destroy_cfqg(cfqd, cfqg);
  897. }
  898. }
  899. /*
  900. * Blk cgroup controller notification saying that blkio_group object is being
  901. * delinked as associated cgroup object is going away. That also means that
  902. * no new IO will come in this group. So get rid of this group as soon as
  903. * any pending IO in the group is finished.
  904. *
  905. * This function is called under rcu_read_lock(). key is the rcu protected
  906. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  907. * read lock.
  908. *
  909. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  910. * it should not be NULL as even if elevator was exiting, cgroup deltion
  911. * path got to it first.
  912. */
  913. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  914. {
  915. unsigned long flags;
  916. struct cfq_data *cfqd = key;
  917. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  918. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  919. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  920. }
  921. #else /* GROUP_IOSCHED */
  922. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  923. {
  924. return &cfqd->root_group;
  925. }
  926. static inline void
  927. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  928. cfqq->cfqg = cfqg;
  929. }
  930. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  931. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  932. #endif /* GROUP_IOSCHED */
  933. /*
  934. * The cfqd->service_trees holds all pending cfq_queue's that have
  935. * requests waiting to be processed. It is sorted in the order that
  936. * we will service the queues.
  937. */
  938. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  939. bool add_front)
  940. {
  941. struct rb_node **p, *parent;
  942. struct cfq_queue *__cfqq;
  943. unsigned long rb_key;
  944. struct cfq_rb_root *service_tree;
  945. int left;
  946. int new_cfqq = 1;
  947. int group_changed = 0;
  948. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  949. if (!cfqd->cfq_group_isolation
  950. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  951. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  952. /* Move this cfq to root group */
  953. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  954. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  955. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  956. cfqq->orig_cfqg = cfqq->cfqg;
  957. cfqq->cfqg = &cfqd->root_group;
  958. atomic_inc(&cfqd->root_group.ref);
  959. group_changed = 1;
  960. } else if (!cfqd->cfq_group_isolation
  961. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  962. /* cfqq is sequential now needs to go to its original group */
  963. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  964. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  965. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  966. cfq_put_cfqg(cfqq->cfqg);
  967. cfqq->cfqg = cfqq->orig_cfqg;
  968. cfqq->orig_cfqg = NULL;
  969. group_changed = 1;
  970. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  971. }
  972. #endif
  973. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  974. cfqq_type(cfqq));
  975. if (cfq_class_idle(cfqq)) {
  976. rb_key = CFQ_IDLE_DELAY;
  977. parent = rb_last(&service_tree->rb);
  978. if (parent && parent != &cfqq->rb_node) {
  979. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  980. rb_key += __cfqq->rb_key;
  981. } else
  982. rb_key += jiffies;
  983. } else if (!add_front) {
  984. /*
  985. * Get our rb key offset. Subtract any residual slice
  986. * value carried from last service. A negative resid
  987. * count indicates slice overrun, and this should position
  988. * the next service time further away in the tree.
  989. */
  990. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  991. rb_key -= cfqq->slice_resid;
  992. cfqq->slice_resid = 0;
  993. } else {
  994. rb_key = -HZ;
  995. __cfqq = cfq_rb_first(service_tree);
  996. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  997. }
  998. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  999. new_cfqq = 0;
  1000. /*
  1001. * same position, nothing more to do
  1002. */
  1003. if (rb_key == cfqq->rb_key &&
  1004. cfqq->service_tree == service_tree)
  1005. return;
  1006. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1007. cfqq->service_tree = NULL;
  1008. }
  1009. left = 1;
  1010. parent = NULL;
  1011. cfqq->service_tree = service_tree;
  1012. p = &service_tree->rb.rb_node;
  1013. while (*p) {
  1014. struct rb_node **n;
  1015. parent = *p;
  1016. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1017. /*
  1018. * sort by key, that represents service time.
  1019. */
  1020. if (time_before(rb_key, __cfqq->rb_key))
  1021. n = &(*p)->rb_left;
  1022. else {
  1023. n = &(*p)->rb_right;
  1024. left = 0;
  1025. }
  1026. p = n;
  1027. }
  1028. if (left)
  1029. service_tree->left = &cfqq->rb_node;
  1030. cfqq->rb_key = rb_key;
  1031. rb_link_node(&cfqq->rb_node, parent, p);
  1032. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1033. service_tree->count++;
  1034. if ((add_front || !new_cfqq) && !group_changed)
  1035. return;
  1036. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1037. }
  1038. static struct cfq_queue *
  1039. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1040. sector_t sector, struct rb_node **ret_parent,
  1041. struct rb_node ***rb_link)
  1042. {
  1043. struct rb_node **p, *parent;
  1044. struct cfq_queue *cfqq = NULL;
  1045. parent = NULL;
  1046. p = &root->rb_node;
  1047. while (*p) {
  1048. struct rb_node **n;
  1049. parent = *p;
  1050. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1051. /*
  1052. * Sort strictly based on sector. Smallest to the left,
  1053. * largest to the right.
  1054. */
  1055. if (sector > blk_rq_pos(cfqq->next_rq))
  1056. n = &(*p)->rb_right;
  1057. else if (sector < blk_rq_pos(cfqq->next_rq))
  1058. n = &(*p)->rb_left;
  1059. else
  1060. break;
  1061. p = n;
  1062. cfqq = NULL;
  1063. }
  1064. *ret_parent = parent;
  1065. if (rb_link)
  1066. *rb_link = p;
  1067. return cfqq;
  1068. }
  1069. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1070. {
  1071. struct rb_node **p, *parent;
  1072. struct cfq_queue *__cfqq;
  1073. if (cfqq->p_root) {
  1074. rb_erase(&cfqq->p_node, cfqq->p_root);
  1075. cfqq->p_root = NULL;
  1076. }
  1077. if (cfq_class_idle(cfqq))
  1078. return;
  1079. if (!cfqq->next_rq)
  1080. return;
  1081. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1082. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1083. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1084. if (!__cfqq) {
  1085. rb_link_node(&cfqq->p_node, parent, p);
  1086. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1087. } else
  1088. cfqq->p_root = NULL;
  1089. }
  1090. /*
  1091. * Update cfqq's position in the service tree.
  1092. */
  1093. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1094. {
  1095. /*
  1096. * Resorting requires the cfqq to be on the RR list already.
  1097. */
  1098. if (cfq_cfqq_on_rr(cfqq)) {
  1099. cfq_service_tree_add(cfqd, cfqq, 0);
  1100. cfq_prio_tree_add(cfqd, cfqq);
  1101. }
  1102. }
  1103. /*
  1104. * add to busy list of queues for service, trying to be fair in ordering
  1105. * the pending list according to last request service
  1106. */
  1107. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1108. {
  1109. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1110. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1111. cfq_mark_cfqq_on_rr(cfqq);
  1112. cfqd->busy_queues++;
  1113. cfq_resort_rr_list(cfqd, cfqq);
  1114. }
  1115. /*
  1116. * Called when the cfqq no longer has requests pending, remove it from
  1117. * the service tree.
  1118. */
  1119. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1120. {
  1121. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1122. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1123. cfq_clear_cfqq_on_rr(cfqq);
  1124. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1125. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1126. cfqq->service_tree = NULL;
  1127. }
  1128. if (cfqq->p_root) {
  1129. rb_erase(&cfqq->p_node, cfqq->p_root);
  1130. cfqq->p_root = NULL;
  1131. }
  1132. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1133. BUG_ON(!cfqd->busy_queues);
  1134. cfqd->busy_queues--;
  1135. }
  1136. /*
  1137. * rb tree support functions
  1138. */
  1139. static void cfq_del_rq_rb(struct request *rq)
  1140. {
  1141. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1142. const int sync = rq_is_sync(rq);
  1143. BUG_ON(!cfqq->queued[sync]);
  1144. cfqq->queued[sync]--;
  1145. elv_rb_del(&cfqq->sort_list, rq);
  1146. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1147. /*
  1148. * Queue will be deleted from service tree when we actually
  1149. * expire it later. Right now just remove it from prio tree
  1150. * as it is empty.
  1151. */
  1152. if (cfqq->p_root) {
  1153. rb_erase(&cfqq->p_node, cfqq->p_root);
  1154. cfqq->p_root = NULL;
  1155. }
  1156. }
  1157. }
  1158. static void cfq_add_rq_rb(struct request *rq)
  1159. {
  1160. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1161. struct cfq_data *cfqd = cfqq->cfqd;
  1162. struct request *__alias, *prev;
  1163. cfqq->queued[rq_is_sync(rq)]++;
  1164. /*
  1165. * looks a little odd, but the first insert might return an alias.
  1166. * if that happens, put the alias on the dispatch list
  1167. */
  1168. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1169. cfq_dispatch_insert(cfqd->queue, __alias);
  1170. if (!cfq_cfqq_on_rr(cfqq))
  1171. cfq_add_cfqq_rr(cfqd, cfqq);
  1172. /*
  1173. * check if this request is a better next-serve candidate
  1174. */
  1175. prev = cfqq->next_rq;
  1176. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1177. /*
  1178. * adjust priority tree position, if ->next_rq changes
  1179. */
  1180. if (prev != cfqq->next_rq)
  1181. cfq_prio_tree_add(cfqd, cfqq);
  1182. BUG_ON(!cfqq->next_rq);
  1183. }
  1184. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1185. {
  1186. elv_rb_del(&cfqq->sort_list, rq);
  1187. cfqq->queued[rq_is_sync(rq)]--;
  1188. blkiocg_update_io_remove_stats(&cfqq->cfqg->blkg, rq_data_dir(rq),
  1189. rq_is_sync(rq));
  1190. cfq_add_rq_rb(rq);
  1191. blkiocg_update_io_add_stats(
  1192. &cfqq->cfqg->blkg, &cfqq->cfqd->serving_group->blkg,
  1193. rq_data_dir(rq), rq_is_sync(rq));
  1194. }
  1195. static struct request *
  1196. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1197. {
  1198. struct task_struct *tsk = current;
  1199. struct cfq_io_context *cic;
  1200. struct cfq_queue *cfqq;
  1201. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1202. if (!cic)
  1203. return NULL;
  1204. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1205. if (cfqq) {
  1206. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1207. return elv_rb_find(&cfqq->sort_list, sector);
  1208. }
  1209. return NULL;
  1210. }
  1211. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1212. {
  1213. struct cfq_data *cfqd = q->elevator->elevator_data;
  1214. cfqd->rq_in_driver++;
  1215. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1216. cfqd->rq_in_driver);
  1217. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1218. }
  1219. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1220. {
  1221. struct cfq_data *cfqd = q->elevator->elevator_data;
  1222. WARN_ON(!cfqd->rq_in_driver);
  1223. cfqd->rq_in_driver--;
  1224. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1225. cfqd->rq_in_driver);
  1226. }
  1227. static void cfq_remove_request(struct request *rq)
  1228. {
  1229. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1230. if (cfqq->next_rq == rq)
  1231. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1232. list_del_init(&rq->queuelist);
  1233. cfq_del_rq_rb(rq);
  1234. cfqq->cfqd->rq_queued--;
  1235. blkiocg_update_io_remove_stats(&cfqq->cfqg->blkg, rq_data_dir(rq),
  1236. rq_is_sync(rq));
  1237. if (rq_is_meta(rq)) {
  1238. WARN_ON(!cfqq->meta_pending);
  1239. cfqq->meta_pending--;
  1240. }
  1241. }
  1242. static int cfq_merge(struct request_queue *q, struct request **req,
  1243. struct bio *bio)
  1244. {
  1245. struct cfq_data *cfqd = q->elevator->elevator_data;
  1246. struct request *__rq;
  1247. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1248. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1249. *req = __rq;
  1250. return ELEVATOR_FRONT_MERGE;
  1251. }
  1252. return ELEVATOR_NO_MERGE;
  1253. }
  1254. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1255. int type)
  1256. {
  1257. if (type == ELEVATOR_FRONT_MERGE) {
  1258. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1259. cfq_reposition_rq_rb(cfqq, req);
  1260. }
  1261. }
  1262. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1263. struct bio *bio)
  1264. {
  1265. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1266. blkiocg_update_io_merged_stats(&cfqq->cfqg->blkg, bio_data_dir(bio),
  1267. cfq_bio_sync(bio));
  1268. }
  1269. static void
  1270. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1271. struct request *next)
  1272. {
  1273. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1274. /*
  1275. * reposition in fifo if next is older than rq
  1276. */
  1277. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1278. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1279. list_move(&rq->queuelist, &next->queuelist);
  1280. rq_set_fifo_time(rq, rq_fifo_time(next));
  1281. }
  1282. if (cfqq->next_rq == next)
  1283. cfqq->next_rq = rq;
  1284. cfq_remove_request(next);
  1285. blkiocg_update_io_merged_stats(&cfqq->cfqg->blkg, rq_data_dir(next),
  1286. rq_is_sync(next));
  1287. }
  1288. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1289. struct bio *bio)
  1290. {
  1291. struct cfq_data *cfqd = q->elevator->elevator_data;
  1292. struct cfq_io_context *cic;
  1293. struct cfq_queue *cfqq;
  1294. /*
  1295. * Disallow merge of a sync bio into an async request.
  1296. */
  1297. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1298. return false;
  1299. /*
  1300. * Lookup the cfqq that this bio will be queued with. Allow
  1301. * merge only if rq is queued there.
  1302. */
  1303. cic = cfq_cic_lookup(cfqd, current->io_context);
  1304. if (!cic)
  1305. return false;
  1306. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1307. return cfqq == RQ_CFQQ(rq);
  1308. }
  1309. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1310. {
  1311. del_timer(&cfqd->idle_slice_timer);
  1312. blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1313. }
  1314. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1315. struct cfq_queue *cfqq)
  1316. {
  1317. if (cfqq) {
  1318. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1319. cfqd->serving_prio, cfqd->serving_type);
  1320. blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1321. cfqq->slice_start = 0;
  1322. cfqq->dispatch_start = jiffies;
  1323. cfqq->allocated_slice = 0;
  1324. cfqq->slice_end = 0;
  1325. cfqq->slice_dispatch = 0;
  1326. cfq_clear_cfqq_wait_request(cfqq);
  1327. cfq_clear_cfqq_must_dispatch(cfqq);
  1328. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1329. cfq_clear_cfqq_fifo_expire(cfqq);
  1330. cfq_mark_cfqq_slice_new(cfqq);
  1331. cfq_del_timer(cfqd, cfqq);
  1332. }
  1333. cfqd->active_queue = cfqq;
  1334. }
  1335. /*
  1336. * current cfqq expired its slice (or was too idle), select new one
  1337. */
  1338. static void
  1339. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1340. bool timed_out, bool forced)
  1341. {
  1342. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1343. if (cfq_cfqq_wait_request(cfqq))
  1344. cfq_del_timer(cfqd, cfqq);
  1345. cfq_clear_cfqq_wait_request(cfqq);
  1346. cfq_clear_cfqq_wait_busy(cfqq);
  1347. /*
  1348. * If this cfqq is shared between multiple processes, check to
  1349. * make sure that those processes are still issuing I/Os within
  1350. * the mean seek distance. If not, it may be time to break the
  1351. * queues apart again.
  1352. */
  1353. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1354. cfq_mark_cfqq_split_coop(cfqq);
  1355. /*
  1356. * store what was left of this slice, if the queue idled/timed out
  1357. */
  1358. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1359. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1360. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1361. }
  1362. cfq_group_served(cfqd, cfqq->cfqg, cfqq, forced);
  1363. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1364. cfq_del_cfqq_rr(cfqd, cfqq);
  1365. cfq_resort_rr_list(cfqd, cfqq);
  1366. if (cfqq == cfqd->active_queue)
  1367. cfqd->active_queue = NULL;
  1368. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1369. cfqd->grp_service_tree.active = NULL;
  1370. if (cfqd->active_cic) {
  1371. put_io_context(cfqd->active_cic->ioc);
  1372. cfqd->active_cic = NULL;
  1373. }
  1374. }
  1375. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out,
  1376. bool forced)
  1377. {
  1378. struct cfq_queue *cfqq = cfqd->active_queue;
  1379. if (cfqq)
  1380. __cfq_slice_expired(cfqd, cfqq, timed_out, forced);
  1381. }
  1382. /*
  1383. * Get next queue for service. Unless we have a queue preemption,
  1384. * we'll simply select the first cfqq in the service tree.
  1385. */
  1386. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1387. {
  1388. struct cfq_rb_root *service_tree =
  1389. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1390. cfqd->serving_type);
  1391. if (!cfqd->rq_queued)
  1392. return NULL;
  1393. /* There is nothing to dispatch */
  1394. if (!service_tree)
  1395. return NULL;
  1396. if (RB_EMPTY_ROOT(&service_tree->rb))
  1397. return NULL;
  1398. return cfq_rb_first(service_tree);
  1399. }
  1400. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1401. {
  1402. struct cfq_group *cfqg;
  1403. struct cfq_queue *cfqq;
  1404. int i, j;
  1405. struct cfq_rb_root *st;
  1406. if (!cfqd->rq_queued)
  1407. return NULL;
  1408. cfqg = cfq_get_next_cfqg(cfqd);
  1409. if (!cfqg)
  1410. return NULL;
  1411. for_each_cfqg_st(cfqg, i, j, st)
  1412. if ((cfqq = cfq_rb_first(st)) != NULL)
  1413. return cfqq;
  1414. return NULL;
  1415. }
  1416. /*
  1417. * Get and set a new active queue for service.
  1418. */
  1419. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1420. struct cfq_queue *cfqq)
  1421. {
  1422. if (!cfqq)
  1423. cfqq = cfq_get_next_queue(cfqd);
  1424. __cfq_set_active_queue(cfqd, cfqq);
  1425. return cfqq;
  1426. }
  1427. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1428. struct request *rq)
  1429. {
  1430. if (blk_rq_pos(rq) >= cfqd->last_position)
  1431. return blk_rq_pos(rq) - cfqd->last_position;
  1432. else
  1433. return cfqd->last_position - blk_rq_pos(rq);
  1434. }
  1435. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1436. struct request *rq)
  1437. {
  1438. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1439. }
  1440. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1441. struct cfq_queue *cur_cfqq)
  1442. {
  1443. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1444. struct rb_node *parent, *node;
  1445. struct cfq_queue *__cfqq;
  1446. sector_t sector = cfqd->last_position;
  1447. if (RB_EMPTY_ROOT(root))
  1448. return NULL;
  1449. /*
  1450. * First, if we find a request starting at the end of the last
  1451. * request, choose it.
  1452. */
  1453. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1454. if (__cfqq)
  1455. return __cfqq;
  1456. /*
  1457. * If the exact sector wasn't found, the parent of the NULL leaf
  1458. * will contain the closest sector.
  1459. */
  1460. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1461. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1462. return __cfqq;
  1463. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1464. node = rb_next(&__cfqq->p_node);
  1465. else
  1466. node = rb_prev(&__cfqq->p_node);
  1467. if (!node)
  1468. return NULL;
  1469. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1470. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1471. return __cfqq;
  1472. return NULL;
  1473. }
  1474. /*
  1475. * cfqd - obvious
  1476. * cur_cfqq - passed in so that we don't decide that the current queue is
  1477. * closely cooperating with itself.
  1478. *
  1479. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1480. * one request, and that cfqd->last_position reflects a position on the disk
  1481. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1482. * assumption.
  1483. */
  1484. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1485. struct cfq_queue *cur_cfqq)
  1486. {
  1487. struct cfq_queue *cfqq;
  1488. if (cfq_class_idle(cur_cfqq))
  1489. return NULL;
  1490. if (!cfq_cfqq_sync(cur_cfqq))
  1491. return NULL;
  1492. if (CFQQ_SEEKY(cur_cfqq))
  1493. return NULL;
  1494. /*
  1495. * Don't search priority tree if it's the only queue in the group.
  1496. */
  1497. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1498. return NULL;
  1499. /*
  1500. * We should notice if some of the queues are cooperating, eg
  1501. * working closely on the same area of the disk. In that case,
  1502. * we can group them together and don't waste time idling.
  1503. */
  1504. cfqq = cfqq_close(cfqd, cur_cfqq);
  1505. if (!cfqq)
  1506. return NULL;
  1507. /* If new queue belongs to different cfq_group, don't choose it */
  1508. if (cur_cfqq->cfqg != cfqq->cfqg)
  1509. return NULL;
  1510. /*
  1511. * It only makes sense to merge sync queues.
  1512. */
  1513. if (!cfq_cfqq_sync(cfqq))
  1514. return NULL;
  1515. if (CFQQ_SEEKY(cfqq))
  1516. return NULL;
  1517. /*
  1518. * Do not merge queues of different priority classes
  1519. */
  1520. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1521. return NULL;
  1522. return cfqq;
  1523. }
  1524. /*
  1525. * Determine whether we should enforce idle window for this queue.
  1526. */
  1527. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1528. {
  1529. enum wl_prio_t prio = cfqq_prio(cfqq);
  1530. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1531. BUG_ON(!service_tree);
  1532. BUG_ON(!service_tree->count);
  1533. /* We never do for idle class queues. */
  1534. if (prio == IDLE_WORKLOAD)
  1535. return false;
  1536. /* We do for queues that were marked with idle window flag. */
  1537. if (cfq_cfqq_idle_window(cfqq) &&
  1538. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1539. return true;
  1540. /*
  1541. * Otherwise, we do only if they are the last ones
  1542. * in their service tree.
  1543. */
  1544. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1545. return 1;
  1546. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1547. service_tree->count);
  1548. return 0;
  1549. }
  1550. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1551. {
  1552. struct cfq_queue *cfqq = cfqd->active_queue;
  1553. struct cfq_io_context *cic;
  1554. unsigned long sl;
  1555. /*
  1556. * SSD device without seek penalty, disable idling. But only do so
  1557. * for devices that support queuing, otherwise we still have a problem
  1558. * with sync vs async workloads.
  1559. */
  1560. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1561. return;
  1562. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1563. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1564. /*
  1565. * idle is disabled, either manually or by past process history
  1566. */
  1567. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1568. return;
  1569. /*
  1570. * still active requests from this queue, don't idle
  1571. */
  1572. if (cfqq->dispatched)
  1573. return;
  1574. /*
  1575. * task has exited, don't wait
  1576. */
  1577. cic = cfqd->active_cic;
  1578. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1579. return;
  1580. /*
  1581. * If our average think time is larger than the remaining time
  1582. * slice, then don't idle. This avoids overrunning the allotted
  1583. * time slice.
  1584. */
  1585. if (sample_valid(cic->ttime_samples) &&
  1586. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1587. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1588. cic->ttime_mean);
  1589. return;
  1590. }
  1591. cfq_mark_cfqq_wait_request(cfqq);
  1592. sl = cfqd->cfq_slice_idle;
  1593. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1594. blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1595. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1596. }
  1597. /*
  1598. * Move request from internal lists to the request queue dispatch list.
  1599. */
  1600. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1601. {
  1602. struct cfq_data *cfqd = q->elevator->elevator_data;
  1603. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1604. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1605. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1606. cfq_remove_request(rq);
  1607. cfqq->dispatched++;
  1608. elv_dispatch_sort(q, rq);
  1609. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1610. blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1611. rq_data_dir(rq), rq_is_sync(rq));
  1612. }
  1613. /*
  1614. * return expired entry, or NULL to just start from scratch in rbtree
  1615. */
  1616. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1617. {
  1618. struct request *rq = NULL;
  1619. if (cfq_cfqq_fifo_expire(cfqq))
  1620. return NULL;
  1621. cfq_mark_cfqq_fifo_expire(cfqq);
  1622. if (list_empty(&cfqq->fifo))
  1623. return NULL;
  1624. rq = rq_entry_fifo(cfqq->fifo.next);
  1625. if (time_before(jiffies, rq_fifo_time(rq)))
  1626. rq = NULL;
  1627. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1628. return rq;
  1629. }
  1630. static inline int
  1631. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1632. {
  1633. const int base_rq = cfqd->cfq_slice_async_rq;
  1634. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1635. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1636. }
  1637. /*
  1638. * Must be called with the queue_lock held.
  1639. */
  1640. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1641. {
  1642. int process_refs, io_refs;
  1643. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1644. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1645. BUG_ON(process_refs < 0);
  1646. return process_refs;
  1647. }
  1648. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1649. {
  1650. int process_refs, new_process_refs;
  1651. struct cfq_queue *__cfqq;
  1652. /* Avoid a circular list and skip interim queue merges */
  1653. while ((__cfqq = new_cfqq->new_cfqq)) {
  1654. if (__cfqq == cfqq)
  1655. return;
  1656. new_cfqq = __cfqq;
  1657. }
  1658. process_refs = cfqq_process_refs(cfqq);
  1659. /*
  1660. * If the process for the cfqq has gone away, there is no
  1661. * sense in merging the queues.
  1662. */
  1663. if (process_refs == 0)
  1664. return;
  1665. /*
  1666. * Merge in the direction of the lesser amount of work.
  1667. */
  1668. new_process_refs = cfqq_process_refs(new_cfqq);
  1669. if (new_process_refs >= process_refs) {
  1670. cfqq->new_cfqq = new_cfqq;
  1671. atomic_add(process_refs, &new_cfqq->ref);
  1672. } else {
  1673. new_cfqq->new_cfqq = cfqq;
  1674. atomic_add(new_process_refs, &cfqq->ref);
  1675. }
  1676. }
  1677. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1678. struct cfq_group *cfqg, enum wl_prio_t prio)
  1679. {
  1680. struct cfq_queue *queue;
  1681. int i;
  1682. bool key_valid = false;
  1683. unsigned long lowest_key = 0;
  1684. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1685. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1686. /* select the one with lowest rb_key */
  1687. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1688. if (queue &&
  1689. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1690. lowest_key = queue->rb_key;
  1691. cur_best = i;
  1692. key_valid = true;
  1693. }
  1694. }
  1695. return cur_best;
  1696. }
  1697. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1698. {
  1699. unsigned slice;
  1700. unsigned count;
  1701. struct cfq_rb_root *st;
  1702. unsigned group_slice;
  1703. if (!cfqg) {
  1704. cfqd->serving_prio = IDLE_WORKLOAD;
  1705. cfqd->workload_expires = jiffies + 1;
  1706. return;
  1707. }
  1708. /* Choose next priority. RT > BE > IDLE */
  1709. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1710. cfqd->serving_prio = RT_WORKLOAD;
  1711. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1712. cfqd->serving_prio = BE_WORKLOAD;
  1713. else {
  1714. cfqd->serving_prio = IDLE_WORKLOAD;
  1715. cfqd->workload_expires = jiffies + 1;
  1716. return;
  1717. }
  1718. /*
  1719. * For RT and BE, we have to choose also the type
  1720. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1721. * expiration time
  1722. */
  1723. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1724. count = st->count;
  1725. /*
  1726. * check workload expiration, and that we still have other queues ready
  1727. */
  1728. if (count && !time_after(jiffies, cfqd->workload_expires))
  1729. return;
  1730. /* otherwise select new workload type */
  1731. cfqd->serving_type =
  1732. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1733. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1734. count = st->count;
  1735. /*
  1736. * the workload slice is computed as a fraction of target latency
  1737. * proportional to the number of queues in that workload, over
  1738. * all the queues in the same priority class
  1739. */
  1740. group_slice = cfq_group_slice(cfqd, cfqg);
  1741. slice = group_slice * count /
  1742. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1743. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1744. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1745. unsigned int tmp;
  1746. /*
  1747. * Async queues are currently system wide. Just taking
  1748. * proportion of queues with-in same group will lead to higher
  1749. * async ratio system wide as generally root group is going
  1750. * to have higher weight. A more accurate thing would be to
  1751. * calculate system wide asnc/sync ratio.
  1752. */
  1753. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1754. tmp = tmp/cfqd->busy_queues;
  1755. slice = min_t(unsigned, slice, tmp);
  1756. /* async workload slice is scaled down according to
  1757. * the sync/async slice ratio. */
  1758. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1759. } else
  1760. /* sync workload slice is at least 2 * cfq_slice_idle */
  1761. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1762. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1763. cfq_log(cfqd, "workload slice:%d", slice);
  1764. cfqd->workload_expires = jiffies + slice;
  1765. cfqd->noidle_tree_requires_idle = false;
  1766. }
  1767. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1768. {
  1769. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1770. struct cfq_group *cfqg;
  1771. if (RB_EMPTY_ROOT(&st->rb))
  1772. return NULL;
  1773. cfqg = cfq_rb_first_group(st);
  1774. st->active = &cfqg->rb_node;
  1775. update_min_vdisktime(st);
  1776. return cfqg;
  1777. }
  1778. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1779. {
  1780. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1781. cfqd->serving_group = cfqg;
  1782. /* Restore the workload type data */
  1783. if (cfqg->saved_workload_slice) {
  1784. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1785. cfqd->serving_type = cfqg->saved_workload;
  1786. cfqd->serving_prio = cfqg->saved_serving_prio;
  1787. } else
  1788. cfqd->workload_expires = jiffies - 1;
  1789. choose_service_tree(cfqd, cfqg);
  1790. }
  1791. /*
  1792. * Select a queue for service. If we have a current active queue,
  1793. * check whether to continue servicing it, or retrieve and set a new one.
  1794. */
  1795. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1796. {
  1797. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1798. cfqq = cfqd->active_queue;
  1799. if (!cfqq)
  1800. goto new_queue;
  1801. if (!cfqd->rq_queued)
  1802. return NULL;
  1803. /*
  1804. * We were waiting for group to get backlogged. Expire the queue
  1805. */
  1806. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1807. goto expire;
  1808. /*
  1809. * The active queue has run out of time, expire it and select new.
  1810. */
  1811. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1812. /*
  1813. * If slice had not expired at the completion of last request
  1814. * we might not have turned on wait_busy flag. Don't expire
  1815. * the queue yet. Allow the group to get backlogged.
  1816. *
  1817. * The very fact that we have used the slice, that means we
  1818. * have been idling all along on this queue and it should be
  1819. * ok to wait for this request to complete.
  1820. */
  1821. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1822. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1823. cfqq = NULL;
  1824. goto keep_queue;
  1825. } else
  1826. goto expire;
  1827. }
  1828. /*
  1829. * The active queue has requests and isn't expired, allow it to
  1830. * dispatch.
  1831. */
  1832. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1833. goto keep_queue;
  1834. /*
  1835. * If another queue has a request waiting within our mean seek
  1836. * distance, let it run. The expire code will check for close
  1837. * cooperators and put the close queue at the front of the service
  1838. * tree. If possible, merge the expiring queue with the new cfqq.
  1839. */
  1840. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1841. if (new_cfqq) {
  1842. if (!cfqq->new_cfqq)
  1843. cfq_setup_merge(cfqq, new_cfqq);
  1844. goto expire;
  1845. }
  1846. /*
  1847. * No requests pending. If the active queue still has requests in
  1848. * flight or is idling for a new request, allow either of these
  1849. * conditions to happen (or time out) before selecting a new queue.
  1850. */
  1851. if (timer_pending(&cfqd->idle_slice_timer) ||
  1852. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1853. cfqq = NULL;
  1854. goto keep_queue;
  1855. }
  1856. expire:
  1857. cfq_slice_expired(cfqd, 0, false);
  1858. new_queue:
  1859. /*
  1860. * Current queue expired. Check if we have to switch to a new
  1861. * service tree
  1862. */
  1863. if (!new_cfqq)
  1864. cfq_choose_cfqg(cfqd);
  1865. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1866. keep_queue:
  1867. return cfqq;
  1868. }
  1869. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1870. {
  1871. int dispatched = 0;
  1872. while (cfqq->next_rq) {
  1873. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1874. dispatched++;
  1875. }
  1876. BUG_ON(!list_empty(&cfqq->fifo));
  1877. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1878. __cfq_slice_expired(cfqq->cfqd, cfqq, 0, true);
  1879. return dispatched;
  1880. }
  1881. /*
  1882. * Drain our current requests. Used for barriers and when switching
  1883. * io schedulers on-the-fly.
  1884. */
  1885. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1886. {
  1887. struct cfq_queue *cfqq;
  1888. int dispatched = 0;
  1889. /* Expire the timeslice of the current active queue first */
  1890. cfq_slice_expired(cfqd, 0, true);
  1891. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1892. __cfq_set_active_queue(cfqd, cfqq);
  1893. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1894. }
  1895. BUG_ON(cfqd->busy_queues);
  1896. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1897. return dispatched;
  1898. }
  1899. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1900. struct cfq_queue *cfqq)
  1901. {
  1902. /* the queue hasn't finished any request, can't estimate */
  1903. if (cfq_cfqq_slice_new(cfqq))
  1904. return 1;
  1905. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1906. cfqq->slice_end))
  1907. return 1;
  1908. return 0;
  1909. }
  1910. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1911. {
  1912. unsigned int max_dispatch;
  1913. /*
  1914. * Drain async requests before we start sync IO
  1915. */
  1916. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1917. return false;
  1918. /*
  1919. * If this is an async queue and we have sync IO in flight, let it wait
  1920. */
  1921. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1922. return false;
  1923. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  1924. if (cfq_class_idle(cfqq))
  1925. max_dispatch = 1;
  1926. /*
  1927. * Does this cfqq already have too much IO in flight?
  1928. */
  1929. if (cfqq->dispatched >= max_dispatch) {
  1930. /*
  1931. * idle queue must always only have a single IO in flight
  1932. */
  1933. if (cfq_class_idle(cfqq))
  1934. return false;
  1935. /*
  1936. * We have other queues, don't allow more IO from this one
  1937. */
  1938. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  1939. return false;
  1940. /*
  1941. * Sole queue user, no limit
  1942. */
  1943. if (cfqd->busy_queues == 1)
  1944. max_dispatch = -1;
  1945. else
  1946. /*
  1947. * Normally we start throttling cfqq when cfq_quantum/2
  1948. * requests have been dispatched. But we can drive
  1949. * deeper queue depths at the beginning of slice
  1950. * subjected to upper limit of cfq_quantum.
  1951. * */
  1952. max_dispatch = cfqd->cfq_quantum;
  1953. }
  1954. /*
  1955. * Async queues must wait a bit before being allowed dispatch.
  1956. * We also ramp up the dispatch depth gradually for async IO,
  1957. * based on the last sync IO we serviced
  1958. */
  1959. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1960. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  1961. unsigned int depth;
  1962. depth = last_sync / cfqd->cfq_slice[1];
  1963. if (!depth && !cfqq->dispatched)
  1964. depth = 1;
  1965. if (depth < max_dispatch)
  1966. max_dispatch = depth;
  1967. }
  1968. /*
  1969. * If we're below the current max, allow a dispatch
  1970. */
  1971. return cfqq->dispatched < max_dispatch;
  1972. }
  1973. /*
  1974. * Dispatch a request from cfqq, moving them to the request queue
  1975. * dispatch list.
  1976. */
  1977. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1978. {
  1979. struct request *rq;
  1980. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1981. if (!cfq_may_dispatch(cfqd, cfqq))
  1982. return false;
  1983. /*
  1984. * follow expired path, else get first next available
  1985. */
  1986. rq = cfq_check_fifo(cfqq);
  1987. if (!rq)
  1988. rq = cfqq->next_rq;
  1989. /*
  1990. * insert request into driver dispatch list
  1991. */
  1992. cfq_dispatch_insert(cfqd->queue, rq);
  1993. if (!cfqd->active_cic) {
  1994. struct cfq_io_context *cic = RQ_CIC(rq);
  1995. atomic_long_inc(&cic->ioc->refcount);
  1996. cfqd->active_cic = cic;
  1997. }
  1998. return true;
  1999. }
  2000. /*
  2001. * Find the cfqq that we need to service and move a request from that to the
  2002. * dispatch list
  2003. */
  2004. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2005. {
  2006. struct cfq_data *cfqd = q->elevator->elevator_data;
  2007. struct cfq_queue *cfqq;
  2008. if (!cfqd->busy_queues)
  2009. return 0;
  2010. if (unlikely(force))
  2011. return cfq_forced_dispatch(cfqd);
  2012. cfqq = cfq_select_queue(cfqd);
  2013. if (!cfqq)
  2014. return 0;
  2015. /*
  2016. * Dispatch a request from this cfqq, if it is allowed
  2017. */
  2018. if (!cfq_dispatch_request(cfqd, cfqq))
  2019. return 0;
  2020. cfqq->slice_dispatch++;
  2021. cfq_clear_cfqq_must_dispatch(cfqq);
  2022. /*
  2023. * expire an async queue immediately if it has used up its slice. idle
  2024. * queue always expire after 1 dispatch round.
  2025. */
  2026. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2027. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2028. cfq_class_idle(cfqq))) {
  2029. cfqq->slice_end = jiffies + 1;
  2030. cfq_slice_expired(cfqd, 0, false);
  2031. }
  2032. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2033. return 1;
  2034. }
  2035. /*
  2036. * task holds one reference to the queue, dropped when task exits. each rq
  2037. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2038. *
  2039. * Each cfq queue took a reference on the parent group. Drop it now.
  2040. * queue lock must be held here.
  2041. */
  2042. static void cfq_put_queue(struct cfq_queue *cfqq)
  2043. {
  2044. struct cfq_data *cfqd = cfqq->cfqd;
  2045. struct cfq_group *cfqg, *orig_cfqg;
  2046. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2047. if (!atomic_dec_and_test(&cfqq->ref))
  2048. return;
  2049. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2050. BUG_ON(rb_first(&cfqq->sort_list));
  2051. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2052. cfqg = cfqq->cfqg;
  2053. orig_cfqg = cfqq->orig_cfqg;
  2054. if (unlikely(cfqd->active_queue == cfqq)) {
  2055. __cfq_slice_expired(cfqd, cfqq, 0, false);
  2056. cfq_schedule_dispatch(cfqd);
  2057. }
  2058. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2059. kmem_cache_free(cfq_pool, cfqq);
  2060. cfq_put_cfqg(cfqg);
  2061. if (orig_cfqg)
  2062. cfq_put_cfqg(orig_cfqg);
  2063. }
  2064. /*
  2065. * Must always be called with the rcu_read_lock() held
  2066. */
  2067. static void
  2068. __call_for_each_cic(struct io_context *ioc,
  2069. void (*func)(struct io_context *, struct cfq_io_context *))
  2070. {
  2071. struct cfq_io_context *cic;
  2072. struct hlist_node *n;
  2073. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2074. func(ioc, cic);
  2075. }
  2076. /*
  2077. * Call func for each cic attached to this ioc.
  2078. */
  2079. static void
  2080. call_for_each_cic(struct io_context *ioc,
  2081. void (*func)(struct io_context *, struct cfq_io_context *))
  2082. {
  2083. rcu_read_lock();
  2084. __call_for_each_cic(ioc, func);
  2085. rcu_read_unlock();
  2086. }
  2087. static void cfq_cic_free_rcu(struct rcu_head *head)
  2088. {
  2089. struct cfq_io_context *cic;
  2090. cic = container_of(head, struct cfq_io_context, rcu_head);
  2091. kmem_cache_free(cfq_ioc_pool, cic);
  2092. elv_ioc_count_dec(cfq_ioc_count);
  2093. if (ioc_gone) {
  2094. /*
  2095. * CFQ scheduler is exiting, grab exit lock and check
  2096. * the pending io context count. If it hits zero,
  2097. * complete ioc_gone and set it back to NULL
  2098. */
  2099. spin_lock(&ioc_gone_lock);
  2100. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2101. complete(ioc_gone);
  2102. ioc_gone = NULL;
  2103. }
  2104. spin_unlock(&ioc_gone_lock);
  2105. }
  2106. }
  2107. static void cfq_cic_free(struct cfq_io_context *cic)
  2108. {
  2109. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2110. }
  2111. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2112. {
  2113. unsigned long flags;
  2114. BUG_ON(!cic->dead_key);
  2115. spin_lock_irqsave(&ioc->lock, flags);
  2116. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  2117. hlist_del_rcu(&cic->cic_list);
  2118. spin_unlock_irqrestore(&ioc->lock, flags);
  2119. cfq_cic_free(cic);
  2120. }
  2121. /*
  2122. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2123. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2124. * and ->trim() which is called with the task lock held
  2125. */
  2126. static void cfq_free_io_context(struct io_context *ioc)
  2127. {
  2128. /*
  2129. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2130. * so no more cic's are allowed to be linked into this ioc. So it
  2131. * should be ok to iterate over the known list, we will see all cic's
  2132. * since no new ones are added.
  2133. */
  2134. __call_for_each_cic(ioc, cic_free_func);
  2135. }
  2136. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2137. {
  2138. struct cfq_queue *__cfqq, *next;
  2139. if (unlikely(cfqq == cfqd->active_queue)) {
  2140. __cfq_slice_expired(cfqd, cfqq, 0, false);
  2141. cfq_schedule_dispatch(cfqd);
  2142. }
  2143. /*
  2144. * If this queue was scheduled to merge with another queue, be
  2145. * sure to drop the reference taken on that queue (and others in
  2146. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2147. */
  2148. __cfqq = cfqq->new_cfqq;
  2149. while (__cfqq) {
  2150. if (__cfqq == cfqq) {
  2151. WARN(1, "cfqq->new_cfqq loop detected\n");
  2152. break;
  2153. }
  2154. next = __cfqq->new_cfqq;
  2155. cfq_put_queue(__cfqq);
  2156. __cfqq = next;
  2157. }
  2158. cfq_put_queue(cfqq);
  2159. }
  2160. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2161. struct cfq_io_context *cic)
  2162. {
  2163. struct io_context *ioc = cic->ioc;
  2164. list_del_init(&cic->queue_list);
  2165. /*
  2166. * Make sure key == NULL is seen for dead queues
  2167. */
  2168. smp_wmb();
  2169. cic->dead_key = (unsigned long) cic->key;
  2170. cic->key = NULL;
  2171. if (ioc->ioc_data == cic)
  2172. rcu_assign_pointer(ioc->ioc_data, NULL);
  2173. if (cic->cfqq[BLK_RW_ASYNC]) {
  2174. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2175. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2176. }
  2177. if (cic->cfqq[BLK_RW_SYNC]) {
  2178. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2179. cic->cfqq[BLK_RW_SYNC] = NULL;
  2180. }
  2181. }
  2182. static void cfq_exit_single_io_context(struct io_context *ioc,
  2183. struct cfq_io_context *cic)
  2184. {
  2185. struct cfq_data *cfqd = cic->key;
  2186. if (cfqd) {
  2187. struct request_queue *q = cfqd->queue;
  2188. unsigned long flags;
  2189. spin_lock_irqsave(q->queue_lock, flags);
  2190. /*
  2191. * Ensure we get a fresh copy of the ->key to prevent
  2192. * race between exiting task and queue
  2193. */
  2194. smp_read_barrier_depends();
  2195. if (cic->key)
  2196. __cfq_exit_single_io_context(cfqd, cic);
  2197. spin_unlock_irqrestore(q->queue_lock, flags);
  2198. }
  2199. }
  2200. /*
  2201. * The process that ioc belongs to has exited, we need to clean up
  2202. * and put the internal structures we have that belongs to that process.
  2203. */
  2204. static void cfq_exit_io_context(struct io_context *ioc)
  2205. {
  2206. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2207. }
  2208. static struct cfq_io_context *
  2209. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2210. {
  2211. struct cfq_io_context *cic;
  2212. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2213. cfqd->queue->node);
  2214. if (cic) {
  2215. cic->last_end_request = jiffies;
  2216. INIT_LIST_HEAD(&cic->queue_list);
  2217. INIT_HLIST_NODE(&cic->cic_list);
  2218. cic->dtor = cfq_free_io_context;
  2219. cic->exit = cfq_exit_io_context;
  2220. elv_ioc_count_inc(cfq_ioc_count);
  2221. }
  2222. return cic;
  2223. }
  2224. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2225. {
  2226. struct task_struct *tsk = current;
  2227. int ioprio_class;
  2228. if (!cfq_cfqq_prio_changed(cfqq))
  2229. return;
  2230. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2231. switch (ioprio_class) {
  2232. default:
  2233. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2234. case IOPRIO_CLASS_NONE:
  2235. /*
  2236. * no prio set, inherit CPU scheduling settings
  2237. */
  2238. cfqq->ioprio = task_nice_ioprio(tsk);
  2239. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2240. break;
  2241. case IOPRIO_CLASS_RT:
  2242. cfqq->ioprio = task_ioprio(ioc);
  2243. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2244. break;
  2245. case IOPRIO_CLASS_BE:
  2246. cfqq->ioprio = task_ioprio(ioc);
  2247. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2248. break;
  2249. case IOPRIO_CLASS_IDLE:
  2250. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2251. cfqq->ioprio = 7;
  2252. cfq_clear_cfqq_idle_window(cfqq);
  2253. break;
  2254. }
  2255. /*
  2256. * keep track of original prio settings in case we have to temporarily
  2257. * elevate the priority of this queue
  2258. */
  2259. cfqq->org_ioprio = cfqq->ioprio;
  2260. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2261. cfq_clear_cfqq_prio_changed(cfqq);
  2262. }
  2263. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2264. {
  2265. struct cfq_data *cfqd = cic->key;
  2266. struct cfq_queue *cfqq;
  2267. unsigned long flags;
  2268. if (unlikely(!cfqd))
  2269. return;
  2270. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2271. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2272. if (cfqq) {
  2273. struct cfq_queue *new_cfqq;
  2274. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2275. GFP_ATOMIC);
  2276. if (new_cfqq) {
  2277. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2278. cfq_put_queue(cfqq);
  2279. }
  2280. }
  2281. cfqq = cic->cfqq[BLK_RW_SYNC];
  2282. if (cfqq)
  2283. cfq_mark_cfqq_prio_changed(cfqq);
  2284. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2285. }
  2286. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2287. {
  2288. call_for_each_cic(ioc, changed_ioprio);
  2289. ioc->ioprio_changed = 0;
  2290. }
  2291. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2292. pid_t pid, bool is_sync)
  2293. {
  2294. RB_CLEAR_NODE(&cfqq->rb_node);
  2295. RB_CLEAR_NODE(&cfqq->p_node);
  2296. INIT_LIST_HEAD(&cfqq->fifo);
  2297. atomic_set(&cfqq->ref, 0);
  2298. cfqq->cfqd = cfqd;
  2299. cfq_mark_cfqq_prio_changed(cfqq);
  2300. if (is_sync) {
  2301. if (!cfq_class_idle(cfqq))
  2302. cfq_mark_cfqq_idle_window(cfqq);
  2303. cfq_mark_cfqq_sync(cfqq);
  2304. }
  2305. cfqq->pid = pid;
  2306. }
  2307. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2308. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2309. {
  2310. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2311. struct cfq_data *cfqd = cic->key;
  2312. unsigned long flags;
  2313. struct request_queue *q;
  2314. if (unlikely(!cfqd))
  2315. return;
  2316. q = cfqd->queue;
  2317. spin_lock_irqsave(q->queue_lock, flags);
  2318. if (sync_cfqq) {
  2319. /*
  2320. * Drop reference to sync queue. A new sync queue will be
  2321. * assigned in new group upon arrival of a fresh request.
  2322. */
  2323. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2324. cic_set_cfqq(cic, NULL, 1);
  2325. cfq_put_queue(sync_cfqq);
  2326. }
  2327. spin_unlock_irqrestore(q->queue_lock, flags);
  2328. }
  2329. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2330. {
  2331. call_for_each_cic(ioc, changed_cgroup);
  2332. ioc->cgroup_changed = 0;
  2333. }
  2334. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2335. static struct cfq_queue *
  2336. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2337. struct io_context *ioc, gfp_t gfp_mask)
  2338. {
  2339. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2340. struct cfq_io_context *cic;
  2341. struct cfq_group *cfqg;
  2342. retry:
  2343. cfqg = cfq_get_cfqg(cfqd, 1);
  2344. cic = cfq_cic_lookup(cfqd, ioc);
  2345. /* cic always exists here */
  2346. cfqq = cic_to_cfqq(cic, is_sync);
  2347. /*
  2348. * Always try a new alloc if we fell back to the OOM cfqq
  2349. * originally, since it should just be a temporary situation.
  2350. */
  2351. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2352. cfqq = NULL;
  2353. if (new_cfqq) {
  2354. cfqq = new_cfqq;
  2355. new_cfqq = NULL;
  2356. } else if (gfp_mask & __GFP_WAIT) {
  2357. spin_unlock_irq(cfqd->queue->queue_lock);
  2358. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2359. gfp_mask | __GFP_ZERO,
  2360. cfqd->queue->node);
  2361. spin_lock_irq(cfqd->queue->queue_lock);
  2362. if (new_cfqq)
  2363. goto retry;
  2364. } else {
  2365. cfqq = kmem_cache_alloc_node(cfq_pool,
  2366. gfp_mask | __GFP_ZERO,
  2367. cfqd->queue->node);
  2368. }
  2369. if (cfqq) {
  2370. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2371. cfq_init_prio_data(cfqq, ioc);
  2372. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2373. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2374. } else
  2375. cfqq = &cfqd->oom_cfqq;
  2376. }
  2377. if (new_cfqq)
  2378. kmem_cache_free(cfq_pool, new_cfqq);
  2379. return cfqq;
  2380. }
  2381. static struct cfq_queue **
  2382. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2383. {
  2384. switch (ioprio_class) {
  2385. case IOPRIO_CLASS_RT:
  2386. return &cfqd->async_cfqq[0][ioprio];
  2387. case IOPRIO_CLASS_BE:
  2388. return &cfqd->async_cfqq[1][ioprio];
  2389. case IOPRIO_CLASS_IDLE:
  2390. return &cfqd->async_idle_cfqq;
  2391. default:
  2392. BUG();
  2393. }
  2394. }
  2395. static struct cfq_queue *
  2396. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2397. gfp_t gfp_mask)
  2398. {
  2399. const int ioprio = task_ioprio(ioc);
  2400. const int ioprio_class = task_ioprio_class(ioc);
  2401. struct cfq_queue **async_cfqq = NULL;
  2402. struct cfq_queue *cfqq = NULL;
  2403. if (!is_sync) {
  2404. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2405. cfqq = *async_cfqq;
  2406. }
  2407. if (!cfqq)
  2408. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2409. /*
  2410. * pin the queue now that it's allocated, scheduler exit will prune it
  2411. */
  2412. if (!is_sync && !(*async_cfqq)) {
  2413. atomic_inc(&cfqq->ref);
  2414. *async_cfqq = cfqq;
  2415. }
  2416. atomic_inc(&cfqq->ref);
  2417. return cfqq;
  2418. }
  2419. /*
  2420. * We drop cfq io contexts lazily, so we may find a dead one.
  2421. */
  2422. static void
  2423. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2424. struct cfq_io_context *cic)
  2425. {
  2426. unsigned long flags;
  2427. WARN_ON(!list_empty(&cic->queue_list));
  2428. spin_lock_irqsave(&ioc->lock, flags);
  2429. BUG_ON(ioc->ioc_data == cic);
  2430. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  2431. hlist_del_rcu(&cic->cic_list);
  2432. spin_unlock_irqrestore(&ioc->lock, flags);
  2433. cfq_cic_free(cic);
  2434. }
  2435. static struct cfq_io_context *
  2436. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2437. {
  2438. struct cfq_io_context *cic;
  2439. unsigned long flags;
  2440. void *k;
  2441. if (unlikely(!ioc))
  2442. return NULL;
  2443. rcu_read_lock();
  2444. /*
  2445. * we maintain a last-hit cache, to avoid browsing over the tree
  2446. */
  2447. cic = rcu_dereference(ioc->ioc_data);
  2448. if (cic && cic->key == cfqd) {
  2449. rcu_read_unlock();
  2450. return cic;
  2451. }
  2452. do {
  2453. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  2454. rcu_read_unlock();
  2455. if (!cic)
  2456. break;
  2457. /* ->key must be copied to avoid race with cfq_exit_queue() */
  2458. k = cic->key;
  2459. if (unlikely(!k)) {
  2460. cfq_drop_dead_cic(cfqd, ioc, cic);
  2461. rcu_read_lock();
  2462. continue;
  2463. }
  2464. spin_lock_irqsave(&ioc->lock, flags);
  2465. rcu_assign_pointer(ioc->ioc_data, cic);
  2466. spin_unlock_irqrestore(&ioc->lock, flags);
  2467. break;
  2468. } while (1);
  2469. return cic;
  2470. }
  2471. /*
  2472. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2473. * the process specific cfq io context when entered from the block layer.
  2474. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2475. */
  2476. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2477. struct cfq_io_context *cic, gfp_t gfp_mask)
  2478. {
  2479. unsigned long flags;
  2480. int ret;
  2481. ret = radix_tree_preload(gfp_mask);
  2482. if (!ret) {
  2483. cic->ioc = ioc;
  2484. cic->key = cfqd;
  2485. spin_lock_irqsave(&ioc->lock, flags);
  2486. ret = radix_tree_insert(&ioc->radix_root,
  2487. (unsigned long) cfqd, cic);
  2488. if (!ret)
  2489. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2490. spin_unlock_irqrestore(&ioc->lock, flags);
  2491. radix_tree_preload_end();
  2492. if (!ret) {
  2493. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2494. list_add(&cic->queue_list, &cfqd->cic_list);
  2495. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2496. }
  2497. }
  2498. if (ret)
  2499. printk(KERN_ERR "cfq: cic link failed!\n");
  2500. return ret;
  2501. }
  2502. /*
  2503. * Setup general io context and cfq io context. There can be several cfq
  2504. * io contexts per general io context, if this process is doing io to more
  2505. * than one device managed by cfq.
  2506. */
  2507. static struct cfq_io_context *
  2508. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2509. {
  2510. struct io_context *ioc = NULL;
  2511. struct cfq_io_context *cic;
  2512. might_sleep_if(gfp_mask & __GFP_WAIT);
  2513. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2514. if (!ioc)
  2515. return NULL;
  2516. cic = cfq_cic_lookup(cfqd, ioc);
  2517. if (cic)
  2518. goto out;
  2519. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2520. if (cic == NULL)
  2521. goto err;
  2522. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2523. goto err_free;
  2524. out:
  2525. smp_read_barrier_depends();
  2526. if (unlikely(ioc->ioprio_changed))
  2527. cfq_ioc_set_ioprio(ioc);
  2528. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2529. if (unlikely(ioc->cgroup_changed))
  2530. cfq_ioc_set_cgroup(ioc);
  2531. #endif
  2532. return cic;
  2533. err_free:
  2534. cfq_cic_free(cic);
  2535. err:
  2536. put_io_context(ioc);
  2537. return NULL;
  2538. }
  2539. static void
  2540. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2541. {
  2542. unsigned long elapsed = jiffies - cic->last_end_request;
  2543. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2544. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2545. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2546. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2547. }
  2548. static void
  2549. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2550. struct request *rq)
  2551. {
  2552. sector_t sdist = 0;
  2553. sector_t n_sec = blk_rq_sectors(rq);
  2554. if (cfqq->last_request_pos) {
  2555. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2556. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2557. else
  2558. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2559. }
  2560. cfqq->seek_history <<= 1;
  2561. if (blk_queue_nonrot(cfqd->queue))
  2562. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2563. else
  2564. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2565. }
  2566. /*
  2567. * Disable idle window if the process thinks too long or seeks so much that
  2568. * it doesn't matter
  2569. */
  2570. static void
  2571. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2572. struct cfq_io_context *cic)
  2573. {
  2574. int old_idle, enable_idle;
  2575. /*
  2576. * Don't idle for async or idle io prio class
  2577. */
  2578. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2579. return;
  2580. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2581. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2582. cfq_mark_cfqq_deep(cfqq);
  2583. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2584. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2585. enable_idle = 0;
  2586. else if (sample_valid(cic->ttime_samples)) {
  2587. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2588. enable_idle = 0;
  2589. else
  2590. enable_idle = 1;
  2591. }
  2592. if (old_idle != enable_idle) {
  2593. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2594. if (enable_idle)
  2595. cfq_mark_cfqq_idle_window(cfqq);
  2596. else
  2597. cfq_clear_cfqq_idle_window(cfqq);
  2598. }
  2599. }
  2600. /*
  2601. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2602. * no or if we aren't sure, a 1 will cause a preempt.
  2603. */
  2604. static bool
  2605. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2606. struct request *rq)
  2607. {
  2608. struct cfq_queue *cfqq;
  2609. cfqq = cfqd->active_queue;
  2610. if (!cfqq)
  2611. return false;
  2612. if (cfq_class_idle(new_cfqq))
  2613. return false;
  2614. if (cfq_class_idle(cfqq))
  2615. return true;
  2616. /*
  2617. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2618. */
  2619. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2620. return false;
  2621. /*
  2622. * if the new request is sync, but the currently running queue is
  2623. * not, let the sync request have priority.
  2624. */
  2625. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2626. return true;
  2627. if (new_cfqq->cfqg != cfqq->cfqg)
  2628. return false;
  2629. if (cfq_slice_used(cfqq))
  2630. return true;
  2631. /* Allow preemption only if we are idling on sync-noidle tree */
  2632. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2633. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2634. new_cfqq->service_tree->count == 2 &&
  2635. RB_EMPTY_ROOT(&cfqq->sort_list))
  2636. return true;
  2637. /*
  2638. * So both queues are sync. Let the new request get disk time if
  2639. * it's a metadata request and the current queue is doing regular IO.
  2640. */
  2641. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2642. return true;
  2643. /*
  2644. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2645. */
  2646. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2647. return true;
  2648. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2649. return false;
  2650. /*
  2651. * if this request is as-good as one we would expect from the
  2652. * current cfqq, let it preempt
  2653. */
  2654. if (cfq_rq_close(cfqd, cfqq, rq))
  2655. return true;
  2656. return false;
  2657. }
  2658. /*
  2659. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2660. * let it have half of its nominal slice.
  2661. */
  2662. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2663. {
  2664. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2665. cfq_slice_expired(cfqd, 1, false);
  2666. /*
  2667. * Put the new queue at the front of the of the current list,
  2668. * so we know that it will be selected next.
  2669. */
  2670. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2671. cfq_service_tree_add(cfqd, cfqq, 1);
  2672. cfqq->slice_end = 0;
  2673. cfq_mark_cfqq_slice_new(cfqq);
  2674. }
  2675. /*
  2676. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2677. * something we should do about it
  2678. */
  2679. static void
  2680. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2681. struct request *rq)
  2682. {
  2683. struct cfq_io_context *cic = RQ_CIC(rq);
  2684. cfqd->rq_queued++;
  2685. if (rq_is_meta(rq))
  2686. cfqq->meta_pending++;
  2687. cfq_update_io_thinktime(cfqd, cic);
  2688. cfq_update_io_seektime(cfqd, cfqq, rq);
  2689. cfq_update_idle_window(cfqd, cfqq, cic);
  2690. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2691. if (cfqq == cfqd->active_queue) {
  2692. /*
  2693. * Remember that we saw a request from this process, but
  2694. * don't start queuing just yet. Otherwise we risk seeing lots
  2695. * of tiny requests, because we disrupt the normal plugging
  2696. * and merging. If the request is already larger than a single
  2697. * page, let it rip immediately. For that case we assume that
  2698. * merging is already done. Ditto for a busy system that
  2699. * has other work pending, don't risk delaying until the
  2700. * idle timer unplug to continue working.
  2701. */
  2702. if (cfq_cfqq_wait_request(cfqq)) {
  2703. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2704. cfqd->busy_queues > 1) {
  2705. cfq_del_timer(cfqd, cfqq);
  2706. cfq_clear_cfqq_wait_request(cfqq);
  2707. __blk_run_queue(cfqd->queue);
  2708. } else {
  2709. blkiocg_update_idle_time_stats(
  2710. &cfqq->cfqg->blkg);
  2711. cfq_mark_cfqq_must_dispatch(cfqq);
  2712. }
  2713. }
  2714. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2715. /*
  2716. * not the active queue - expire current slice if it is
  2717. * idle and has expired it's mean thinktime or this new queue
  2718. * has some old slice time left and is of higher priority or
  2719. * this new queue is RT and the current one is BE
  2720. */
  2721. cfq_preempt_queue(cfqd, cfqq);
  2722. __blk_run_queue(cfqd->queue);
  2723. }
  2724. }
  2725. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2726. {
  2727. struct cfq_data *cfqd = q->elevator->elevator_data;
  2728. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2729. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2730. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2731. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2732. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2733. cfq_add_rq_rb(rq);
  2734. blkiocg_update_io_add_stats(&cfqq->cfqg->blkg,
  2735. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2736. rq_is_sync(rq));
  2737. cfq_rq_enqueued(cfqd, cfqq, rq);
  2738. }
  2739. /*
  2740. * Update hw_tag based on peak queue depth over 50 samples under
  2741. * sufficient load.
  2742. */
  2743. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2744. {
  2745. struct cfq_queue *cfqq = cfqd->active_queue;
  2746. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2747. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2748. if (cfqd->hw_tag == 1)
  2749. return;
  2750. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2751. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2752. return;
  2753. /*
  2754. * If active queue hasn't enough requests and can idle, cfq might not
  2755. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2756. * case
  2757. */
  2758. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2759. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2760. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2761. return;
  2762. if (cfqd->hw_tag_samples++ < 50)
  2763. return;
  2764. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2765. cfqd->hw_tag = 1;
  2766. else
  2767. cfqd->hw_tag = 0;
  2768. }
  2769. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2770. {
  2771. struct cfq_io_context *cic = cfqd->active_cic;
  2772. /* If there are other queues in the group, don't wait */
  2773. if (cfqq->cfqg->nr_cfqq > 1)
  2774. return false;
  2775. if (cfq_slice_used(cfqq))
  2776. return true;
  2777. /* if slice left is less than think time, wait busy */
  2778. if (cic && sample_valid(cic->ttime_samples)
  2779. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2780. return true;
  2781. /*
  2782. * If think times is less than a jiffy than ttime_mean=0 and above
  2783. * will not be true. It might happen that slice has not expired yet
  2784. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2785. * case where think time is less than a jiffy, mark the queue wait
  2786. * busy if only 1 jiffy is left in the slice.
  2787. */
  2788. if (cfqq->slice_end - jiffies == 1)
  2789. return true;
  2790. return false;
  2791. }
  2792. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2793. {
  2794. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2795. struct cfq_data *cfqd = cfqq->cfqd;
  2796. const int sync = rq_is_sync(rq);
  2797. unsigned long now;
  2798. now = jiffies;
  2799. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
  2800. cfq_update_hw_tag(cfqd);
  2801. WARN_ON(!cfqd->rq_in_driver);
  2802. WARN_ON(!cfqq->dispatched);
  2803. cfqd->rq_in_driver--;
  2804. cfqq->dispatched--;
  2805. blkiocg_update_completion_stats(&cfqq->cfqg->blkg, rq_start_time_ns(rq),
  2806. rq_io_start_time_ns(rq), rq_data_dir(rq),
  2807. rq_is_sync(rq));
  2808. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2809. if (sync) {
  2810. RQ_CIC(rq)->last_end_request = now;
  2811. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2812. cfqd->last_delayed_sync = now;
  2813. }
  2814. /*
  2815. * If this is the active queue, check if it needs to be expired,
  2816. * or if we want to idle in case it has no pending requests.
  2817. */
  2818. if (cfqd->active_queue == cfqq) {
  2819. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2820. if (cfq_cfqq_slice_new(cfqq)) {
  2821. cfq_set_prio_slice(cfqd, cfqq);
  2822. cfq_clear_cfqq_slice_new(cfqq);
  2823. }
  2824. /*
  2825. * Should we wait for next request to come in before we expire
  2826. * the queue.
  2827. */
  2828. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2829. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2830. cfq_mark_cfqq_wait_busy(cfqq);
  2831. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2832. }
  2833. /*
  2834. * Idling is not enabled on:
  2835. * - expired queues
  2836. * - idle-priority queues
  2837. * - async queues
  2838. * - queues with still some requests queued
  2839. * - when there is a close cooperator
  2840. */
  2841. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2842. cfq_slice_expired(cfqd, 1, false);
  2843. else if (sync && cfqq_empty &&
  2844. !cfq_close_cooperator(cfqd, cfqq)) {
  2845. cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
  2846. /*
  2847. * Idling is enabled for SYNC_WORKLOAD.
  2848. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2849. * only if we processed at least one !rq_noidle request
  2850. */
  2851. if (cfqd->serving_type == SYNC_WORKLOAD
  2852. || cfqd->noidle_tree_requires_idle
  2853. || cfqq->cfqg->nr_cfqq == 1)
  2854. cfq_arm_slice_timer(cfqd);
  2855. }
  2856. }
  2857. if (!cfqd->rq_in_driver)
  2858. cfq_schedule_dispatch(cfqd);
  2859. }
  2860. /*
  2861. * we temporarily boost lower priority queues if they are holding fs exclusive
  2862. * resources. they are boosted to normal prio (CLASS_BE/4)
  2863. */
  2864. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2865. {
  2866. if (has_fs_excl()) {
  2867. /*
  2868. * boost idle prio on transactions that would lock out other
  2869. * users of the filesystem
  2870. */
  2871. if (cfq_class_idle(cfqq))
  2872. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2873. if (cfqq->ioprio > IOPRIO_NORM)
  2874. cfqq->ioprio = IOPRIO_NORM;
  2875. } else {
  2876. /*
  2877. * unboost the queue (if needed)
  2878. */
  2879. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2880. cfqq->ioprio = cfqq->org_ioprio;
  2881. }
  2882. }
  2883. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2884. {
  2885. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2886. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2887. return ELV_MQUEUE_MUST;
  2888. }
  2889. return ELV_MQUEUE_MAY;
  2890. }
  2891. static int cfq_may_queue(struct request_queue *q, int rw)
  2892. {
  2893. struct cfq_data *cfqd = q->elevator->elevator_data;
  2894. struct task_struct *tsk = current;
  2895. struct cfq_io_context *cic;
  2896. struct cfq_queue *cfqq;
  2897. /*
  2898. * don't force setup of a queue from here, as a call to may_queue
  2899. * does not necessarily imply that a request actually will be queued.
  2900. * so just lookup a possibly existing queue, or return 'may queue'
  2901. * if that fails
  2902. */
  2903. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2904. if (!cic)
  2905. return ELV_MQUEUE_MAY;
  2906. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2907. if (cfqq) {
  2908. cfq_init_prio_data(cfqq, cic->ioc);
  2909. cfq_prio_boost(cfqq);
  2910. return __cfq_may_queue(cfqq);
  2911. }
  2912. return ELV_MQUEUE_MAY;
  2913. }
  2914. /*
  2915. * queue lock held here
  2916. */
  2917. static void cfq_put_request(struct request *rq)
  2918. {
  2919. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2920. if (cfqq) {
  2921. const int rw = rq_data_dir(rq);
  2922. BUG_ON(!cfqq->allocated[rw]);
  2923. cfqq->allocated[rw]--;
  2924. put_io_context(RQ_CIC(rq)->ioc);
  2925. rq->elevator_private = NULL;
  2926. rq->elevator_private2 = NULL;
  2927. cfq_put_queue(cfqq);
  2928. }
  2929. }
  2930. static struct cfq_queue *
  2931. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2932. struct cfq_queue *cfqq)
  2933. {
  2934. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2935. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2936. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2937. cfq_put_queue(cfqq);
  2938. return cic_to_cfqq(cic, 1);
  2939. }
  2940. /*
  2941. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2942. * was the last process referring to said cfqq.
  2943. */
  2944. static struct cfq_queue *
  2945. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2946. {
  2947. if (cfqq_process_refs(cfqq) == 1) {
  2948. cfqq->pid = current->pid;
  2949. cfq_clear_cfqq_coop(cfqq);
  2950. cfq_clear_cfqq_split_coop(cfqq);
  2951. return cfqq;
  2952. }
  2953. cic_set_cfqq(cic, NULL, 1);
  2954. cfq_put_queue(cfqq);
  2955. return NULL;
  2956. }
  2957. /*
  2958. * Allocate cfq data structures associated with this request.
  2959. */
  2960. static int
  2961. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2962. {
  2963. struct cfq_data *cfqd = q->elevator->elevator_data;
  2964. struct cfq_io_context *cic;
  2965. const int rw = rq_data_dir(rq);
  2966. const bool is_sync = rq_is_sync(rq);
  2967. struct cfq_queue *cfqq;
  2968. unsigned long flags;
  2969. might_sleep_if(gfp_mask & __GFP_WAIT);
  2970. cic = cfq_get_io_context(cfqd, gfp_mask);
  2971. spin_lock_irqsave(q->queue_lock, flags);
  2972. if (!cic)
  2973. goto queue_fail;
  2974. new_queue:
  2975. cfqq = cic_to_cfqq(cic, is_sync);
  2976. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2977. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2978. cic_set_cfqq(cic, cfqq, is_sync);
  2979. } else {
  2980. /*
  2981. * If the queue was seeky for too long, break it apart.
  2982. */
  2983. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2984. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2985. cfqq = split_cfqq(cic, cfqq);
  2986. if (!cfqq)
  2987. goto new_queue;
  2988. }
  2989. /*
  2990. * Check to see if this queue is scheduled to merge with
  2991. * another, closely cooperating queue. The merging of
  2992. * queues happens here as it must be done in process context.
  2993. * The reference on new_cfqq was taken in merge_cfqqs.
  2994. */
  2995. if (cfqq->new_cfqq)
  2996. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2997. }
  2998. cfqq->allocated[rw]++;
  2999. atomic_inc(&cfqq->ref);
  3000. spin_unlock_irqrestore(q->queue_lock, flags);
  3001. rq->elevator_private = cic;
  3002. rq->elevator_private2 = cfqq;
  3003. return 0;
  3004. queue_fail:
  3005. if (cic)
  3006. put_io_context(cic->ioc);
  3007. cfq_schedule_dispatch(cfqd);
  3008. spin_unlock_irqrestore(q->queue_lock, flags);
  3009. cfq_log(cfqd, "set_request fail");
  3010. return 1;
  3011. }
  3012. static void cfq_kick_queue(struct work_struct *work)
  3013. {
  3014. struct cfq_data *cfqd =
  3015. container_of(work, struct cfq_data, unplug_work);
  3016. struct request_queue *q = cfqd->queue;
  3017. spin_lock_irq(q->queue_lock);
  3018. __blk_run_queue(cfqd->queue);
  3019. spin_unlock_irq(q->queue_lock);
  3020. }
  3021. /*
  3022. * Timer running if the active_queue is currently idling inside its time slice
  3023. */
  3024. static void cfq_idle_slice_timer(unsigned long data)
  3025. {
  3026. struct cfq_data *cfqd = (struct cfq_data *) data;
  3027. struct cfq_queue *cfqq;
  3028. unsigned long flags;
  3029. int timed_out = 1;
  3030. cfq_log(cfqd, "idle timer fired");
  3031. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3032. cfqq = cfqd->active_queue;
  3033. if (cfqq) {
  3034. timed_out = 0;
  3035. /*
  3036. * We saw a request before the queue expired, let it through
  3037. */
  3038. if (cfq_cfqq_must_dispatch(cfqq))
  3039. goto out_kick;
  3040. /*
  3041. * expired
  3042. */
  3043. if (cfq_slice_used(cfqq))
  3044. goto expire;
  3045. /*
  3046. * only expire and reinvoke request handler, if there are
  3047. * other queues with pending requests
  3048. */
  3049. if (!cfqd->busy_queues)
  3050. goto out_cont;
  3051. /*
  3052. * not expired and it has a request pending, let it dispatch
  3053. */
  3054. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3055. goto out_kick;
  3056. /*
  3057. * Queue depth flag is reset only when the idle didn't succeed
  3058. */
  3059. cfq_clear_cfqq_deep(cfqq);
  3060. }
  3061. expire:
  3062. cfq_slice_expired(cfqd, timed_out, false);
  3063. out_kick:
  3064. cfq_schedule_dispatch(cfqd);
  3065. out_cont:
  3066. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3067. }
  3068. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3069. {
  3070. del_timer_sync(&cfqd->idle_slice_timer);
  3071. cancel_work_sync(&cfqd->unplug_work);
  3072. }
  3073. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3074. {
  3075. int i;
  3076. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3077. if (cfqd->async_cfqq[0][i])
  3078. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3079. if (cfqd->async_cfqq[1][i])
  3080. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3081. }
  3082. if (cfqd->async_idle_cfqq)
  3083. cfq_put_queue(cfqd->async_idle_cfqq);
  3084. }
  3085. static void cfq_cfqd_free(struct rcu_head *head)
  3086. {
  3087. kfree(container_of(head, struct cfq_data, rcu));
  3088. }
  3089. static void cfq_exit_queue(struct elevator_queue *e)
  3090. {
  3091. struct cfq_data *cfqd = e->elevator_data;
  3092. struct request_queue *q = cfqd->queue;
  3093. cfq_shutdown_timer_wq(cfqd);
  3094. spin_lock_irq(q->queue_lock);
  3095. if (cfqd->active_queue)
  3096. __cfq_slice_expired(cfqd, cfqd->active_queue, 0, false);
  3097. while (!list_empty(&cfqd->cic_list)) {
  3098. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3099. struct cfq_io_context,
  3100. queue_list);
  3101. __cfq_exit_single_io_context(cfqd, cic);
  3102. }
  3103. cfq_put_async_queues(cfqd);
  3104. cfq_release_cfq_groups(cfqd);
  3105. blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3106. spin_unlock_irq(q->queue_lock);
  3107. cfq_shutdown_timer_wq(cfqd);
  3108. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3109. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3110. }
  3111. static void *cfq_init_queue(struct request_queue *q)
  3112. {
  3113. struct cfq_data *cfqd;
  3114. int i, j;
  3115. struct cfq_group *cfqg;
  3116. struct cfq_rb_root *st;
  3117. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3118. if (!cfqd)
  3119. return NULL;
  3120. /* Init root service tree */
  3121. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3122. /* Init root group */
  3123. cfqg = &cfqd->root_group;
  3124. for_each_cfqg_st(cfqg, i, j, st)
  3125. *st = CFQ_RB_ROOT;
  3126. RB_CLEAR_NODE(&cfqg->rb_node);
  3127. /* Give preference to root group over other groups */
  3128. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3129. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3130. /*
  3131. * Take a reference to root group which we never drop. This is just
  3132. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3133. */
  3134. atomic_set(&cfqg->ref, 1);
  3135. blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
  3136. 0);
  3137. #endif
  3138. /*
  3139. * Not strictly needed (since RB_ROOT just clears the node and we
  3140. * zeroed cfqd on alloc), but better be safe in case someone decides
  3141. * to add magic to the rb code
  3142. */
  3143. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3144. cfqd->prio_trees[i] = RB_ROOT;
  3145. /*
  3146. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3147. * Grab a permanent reference to it, so that the normal code flow
  3148. * will not attempt to free it.
  3149. */
  3150. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3151. atomic_inc(&cfqd->oom_cfqq.ref);
  3152. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3153. INIT_LIST_HEAD(&cfqd->cic_list);
  3154. cfqd->queue = q;
  3155. init_timer(&cfqd->idle_slice_timer);
  3156. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3157. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3158. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3159. cfqd->cfq_quantum = cfq_quantum;
  3160. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3161. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3162. cfqd->cfq_back_max = cfq_back_max;
  3163. cfqd->cfq_back_penalty = cfq_back_penalty;
  3164. cfqd->cfq_slice[0] = cfq_slice_async;
  3165. cfqd->cfq_slice[1] = cfq_slice_sync;
  3166. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3167. cfqd->cfq_slice_idle = cfq_slice_idle;
  3168. cfqd->cfq_latency = 1;
  3169. cfqd->cfq_group_isolation = 0;
  3170. cfqd->hw_tag = -1;
  3171. /*
  3172. * we optimistically start assuming sync ops weren't delayed in last
  3173. * second, in order to have larger depth for async operations.
  3174. */
  3175. cfqd->last_delayed_sync = jiffies - HZ;
  3176. INIT_RCU_HEAD(&cfqd->rcu);
  3177. return cfqd;
  3178. }
  3179. static void cfq_slab_kill(void)
  3180. {
  3181. /*
  3182. * Caller already ensured that pending RCU callbacks are completed,
  3183. * so we should have no busy allocations at this point.
  3184. */
  3185. if (cfq_pool)
  3186. kmem_cache_destroy(cfq_pool);
  3187. if (cfq_ioc_pool)
  3188. kmem_cache_destroy(cfq_ioc_pool);
  3189. }
  3190. static int __init cfq_slab_setup(void)
  3191. {
  3192. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3193. if (!cfq_pool)
  3194. goto fail;
  3195. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3196. if (!cfq_ioc_pool)
  3197. goto fail;
  3198. return 0;
  3199. fail:
  3200. cfq_slab_kill();
  3201. return -ENOMEM;
  3202. }
  3203. /*
  3204. * sysfs parts below -->
  3205. */
  3206. static ssize_t
  3207. cfq_var_show(unsigned int var, char *page)
  3208. {
  3209. return sprintf(page, "%d\n", var);
  3210. }
  3211. static ssize_t
  3212. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3213. {
  3214. char *p = (char *) page;
  3215. *var = simple_strtoul(p, &p, 10);
  3216. return count;
  3217. }
  3218. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3219. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3220. { \
  3221. struct cfq_data *cfqd = e->elevator_data; \
  3222. unsigned int __data = __VAR; \
  3223. if (__CONV) \
  3224. __data = jiffies_to_msecs(__data); \
  3225. return cfq_var_show(__data, (page)); \
  3226. }
  3227. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3228. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3229. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3230. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3231. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3232. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3233. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3234. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3235. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3236. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3237. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3238. #undef SHOW_FUNCTION
  3239. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3240. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3241. { \
  3242. struct cfq_data *cfqd = e->elevator_data; \
  3243. unsigned int __data; \
  3244. int ret = cfq_var_store(&__data, (page), count); \
  3245. if (__data < (MIN)) \
  3246. __data = (MIN); \
  3247. else if (__data > (MAX)) \
  3248. __data = (MAX); \
  3249. if (__CONV) \
  3250. *(__PTR) = msecs_to_jiffies(__data); \
  3251. else \
  3252. *(__PTR) = __data; \
  3253. return ret; \
  3254. }
  3255. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3256. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3257. UINT_MAX, 1);
  3258. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3259. UINT_MAX, 1);
  3260. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3261. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3262. UINT_MAX, 0);
  3263. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3264. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3265. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3266. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3267. UINT_MAX, 0);
  3268. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3269. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3270. #undef STORE_FUNCTION
  3271. #define CFQ_ATTR(name) \
  3272. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3273. static struct elv_fs_entry cfq_attrs[] = {
  3274. CFQ_ATTR(quantum),
  3275. CFQ_ATTR(fifo_expire_sync),
  3276. CFQ_ATTR(fifo_expire_async),
  3277. CFQ_ATTR(back_seek_max),
  3278. CFQ_ATTR(back_seek_penalty),
  3279. CFQ_ATTR(slice_sync),
  3280. CFQ_ATTR(slice_async),
  3281. CFQ_ATTR(slice_async_rq),
  3282. CFQ_ATTR(slice_idle),
  3283. CFQ_ATTR(low_latency),
  3284. CFQ_ATTR(group_isolation),
  3285. __ATTR_NULL
  3286. };
  3287. static struct elevator_type iosched_cfq = {
  3288. .ops = {
  3289. .elevator_merge_fn = cfq_merge,
  3290. .elevator_merged_fn = cfq_merged_request,
  3291. .elevator_merge_req_fn = cfq_merged_requests,
  3292. .elevator_allow_merge_fn = cfq_allow_merge,
  3293. .elevator_bio_merged_fn = cfq_bio_merged,
  3294. .elevator_dispatch_fn = cfq_dispatch_requests,
  3295. .elevator_add_req_fn = cfq_insert_request,
  3296. .elevator_activate_req_fn = cfq_activate_request,
  3297. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3298. .elevator_queue_empty_fn = cfq_queue_empty,
  3299. .elevator_completed_req_fn = cfq_completed_request,
  3300. .elevator_former_req_fn = elv_rb_former_request,
  3301. .elevator_latter_req_fn = elv_rb_latter_request,
  3302. .elevator_set_req_fn = cfq_set_request,
  3303. .elevator_put_req_fn = cfq_put_request,
  3304. .elevator_may_queue_fn = cfq_may_queue,
  3305. .elevator_init_fn = cfq_init_queue,
  3306. .elevator_exit_fn = cfq_exit_queue,
  3307. .trim = cfq_free_io_context,
  3308. },
  3309. .elevator_attrs = cfq_attrs,
  3310. .elevator_name = "cfq",
  3311. .elevator_owner = THIS_MODULE,
  3312. };
  3313. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3314. static struct blkio_policy_type blkio_policy_cfq = {
  3315. .ops = {
  3316. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3317. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3318. },
  3319. };
  3320. #else
  3321. static struct blkio_policy_type blkio_policy_cfq;
  3322. #endif
  3323. static int __init cfq_init(void)
  3324. {
  3325. /*
  3326. * could be 0 on HZ < 1000 setups
  3327. */
  3328. if (!cfq_slice_async)
  3329. cfq_slice_async = 1;
  3330. if (!cfq_slice_idle)
  3331. cfq_slice_idle = 1;
  3332. if (cfq_slab_setup())
  3333. return -ENOMEM;
  3334. elv_register(&iosched_cfq);
  3335. blkio_policy_register(&blkio_policy_cfq);
  3336. return 0;
  3337. }
  3338. static void __exit cfq_exit(void)
  3339. {
  3340. DECLARE_COMPLETION_ONSTACK(all_gone);
  3341. blkio_policy_unregister(&blkio_policy_cfq);
  3342. elv_unregister(&iosched_cfq);
  3343. ioc_gone = &all_gone;
  3344. /* ioc_gone's update must be visible before reading ioc_count */
  3345. smp_wmb();
  3346. /*
  3347. * this also protects us from entering cfq_slab_kill() with
  3348. * pending RCU callbacks
  3349. */
  3350. if (elv_ioc_count_read(cfq_ioc_count))
  3351. wait_for_completion(&all_gone);
  3352. cfq_slab_kill();
  3353. }
  3354. module_init(cfq_init);
  3355. module_exit(cfq_exit);
  3356. MODULE_AUTHOR("Jens Axboe");
  3357. MODULE_LICENSE("GPL");
  3358. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");