i915_gem_gtt.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drmP.h>
  25. #include <drm/i915_drm.h>
  26. #include "i915_drv.h"
  27. #include "i915_trace.h"
  28. #include "intel_drv.h"
  29. #define GEN6_PPGTT_PD_ENTRIES 512
  30. #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
  31. typedef uint64_t gen8_gtt_pte_t;
  32. typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
  33. /* PPGTT stuff */
  34. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  35. #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
  36. #define GEN6_PDE_VALID (1 << 0)
  37. /* gen6+ has bit 11-4 for physical addr bit 39-32 */
  38. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  39. #define GEN6_PTE_VALID (1 << 0)
  40. #define GEN6_PTE_UNCACHED (1 << 1)
  41. #define HSW_PTE_UNCACHED (0)
  42. #define GEN6_PTE_CACHE_LLC (2 << 1)
  43. #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
  44. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  45. #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
  46. /* Cacheability Control is a 4-bit value. The low three bits are stored in *
  47. * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  48. */
  49. #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
  50. (((bits) & 0x8) << (11 - 3)))
  51. #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
  52. #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
  53. #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
  54. #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
  55. #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
  56. #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
  57. #define GEN8_LEGACY_PDPS 4
  58. #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
  59. #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
  60. #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
  61. #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
  62. static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
  63. enum i915_cache_level level,
  64. bool valid)
  65. {
  66. gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
  67. pte |= addr;
  68. if (level != I915_CACHE_NONE)
  69. pte |= PPAT_CACHED_INDEX;
  70. else
  71. pte |= PPAT_UNCACHED_INDEX;
  72. return pte;
  73. }
  74. static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
  75. dma_addr_t addr,
  76. enum i915_cache_level level)
  77. {
  78. gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
  79. pde |= addr;
  80. if (level != I915_CACHE_NONE)
  81. pde |= PPAT_CACHED_PDE_INDEX;
  82. else
  83. pde |= PPAT_UNCACHED_INDEX;
  84. return pde;
  85. }
  86. static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
  87. enum i915_cache_level level,
  88. bool valid)
  89. {
  90. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  91. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  92. switch (level) {
  93. case I915_CACHE_L3_LLC:
  94. case I915_CACHE_LLC:
  95. pte |= GEN6_PTE_CACHE_LLC;
  96. break;
  97. case I915_CACHE_NONE:
  98. pte |= GEN6_PTE_UNCACHED;
  99. break;
  100. default:
  101. WARN_ON(1);
  102. }
  103. return pte;
  104. }
  105. static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
  106. enum i915_cache_level level,
  107. bool valid)
  108. {
  109. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  110. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  111. switch (level) {
  112. case I915_CACHE_L3_LLC:
  113. pte |= GEN7_PTE_CACHE_L3_LLC;
  114. break;
  115. case I915_CACHE_LLC:
  116. pte |= GEN6_PTE_CACHE_LLC;
  117. break;
  118. case I915_CACHE_NONE:
  119. pte |= GEN6_PTE_UNCACHED;
  120. break;
  121. default:
  122. WARN_ON(1);
  123. }
  124. return pte;
  125. }
  126. #define BYT_PTE_WRITEABLE (1 << 1)
  127. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  128. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  129. enum i915_cache_level level,
  130. bool valid)
  131. {
  132. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  133. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  134. /* Mark the page as writeable. Other platforms don't have a
  135. * setting for read-only/writable, so this matches that behavior.
  136. */
  137. pte |= BYT_PTE_WRITEABLE;
  138. if (level != I915_CACHE_NONE)
  139. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  140. return pte;
  141. }
  142. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  143. enum i915_cache_level level,
  144. bool valid)
  145. {
  146. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  147. pte |= HSW_PTE_ADDR_ENCODE(addr);
  148. if (level != I915_CACHE_NONE)
  149. pte |= HSW_WB_LLC_AGE3;
  150. return pte;
  151. }
  152. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  153. enum i915_cache_level level,
  154. bool valid)
  155. {
  156. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  157. pte |= HSW_PTE_ADDR_ENCODE(addr);
  158. switch (level) {
  159. case I915_CACHE_NONE:
  160. break;
  161. case I915_CACHE_WT:
  162. pte |= HSW_WT_ELLC_LLC_AGE0;
  163. break;
  164. default:
  165. pte |= HSW_WB_ELLC_LLC_AGE0;
  166. break;
  167. }
  168. return pte;
  169. }
  170. /* Broadwell Page Directory Pointer Descriptors */
  171. static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
  172. uint64_t val)
  173. {
  174. int ret;
  175. BUG_ON(entry >= 4);
  176. ret = intel_ring_begin(ring, 6);
  177. if (ret)
  178. return ret;
  179. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  180. intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
  181. intel_ring_emit(ring, (u32)(val >> 32));
  182. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  183. intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
  184. intel_ring_emit(ring, (u32)(val));
  185. intel_ring_advance(ring);
  186. return 0;
  187. }
  188. static int gen8_ppgtt_enable(struct drm_device *dev)
  189. {
  190. struct drm_i915_private *dev_priv = dev->dev_private;
  191. struct intel_ring_buffer *ring;
  192. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  193. int i, j, ret;
  194. /* bit of a hack to find the actual last used pd */
  195. int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
  196. for_each_ring(ring, dev_priv, j) {
  197. I915_WRITE(RING_MODE_GEN7(ring),
  198. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  199. }
  200. for (i = used_pd - 1; i >= 0; i--) {
  201. dma_addr_t addr = ppgtt->pd_dma_addr[i];
  202. for_each_ring(ring, dev_priv, j) {
  203. ret = gen8_write_pdp(ring, i, addr);
  204. if (ret)
  205. return ret;
  206. }
  207. }
  208. return 0;
  209. }
  210. static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
  211. unsigned first_entry,
  212. unsigned num_entries,
  213. bool use_scratch)
  214. {
  215. struct i915_hw_ppgtt *ppgtt =
  216. container_of(vm, struct i915_hw_ppgtt, base);
  217. gen8_gtt_pte_t *pt_vaddr, scratch_pte;
  218. unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
  219. unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
  220. unsigned last_pte, i;
  221. scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
  222. I915_CACHE_LLC, use_scratch);
  223. while (num_entries) {
  224. struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
  225. last_pte = first_pte + num_entries;
  226. if (last_pte > GEN8_PTES_PER_PAGE)
  227. last_pte = GEN8_PTES_PER_PAGE;
  228. pt_vaddr = kmap_atomic(page_table);
  229. for (i = first_pte; i < last_pte; i++)
  230. pt_vaddr[i] = scratch_pte;
  231. kunmap_atomic(pt_vaddr);
  232. num_entries -= last_pte - first_pte;
  233. first_pte = 0;
  234. act_pt++;
  235. }
  236. }
  237. static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
  238. struct sg_table *pages,
  239. unsigned first_entry,
  240. enum i915_cache_level cache_level)
  241. {
  242. struct i915_hw_ppgtt *ppgtt =
  243. container_of(vm, struct i915_hw_ppgtt, base);
  244. gen8_gtt_pte_t *pt_vaddr;
  245. unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
  246. unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
  247. struct sg_page_iter sg_iter;
  248. pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
  249. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  250. dma_addr_t page_addr;
  251. page_addr = sg_dma_address(sg_iter.sg) +
  252. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  253. pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
  254. true);
  255. if (++act_pte == GEN8_PTES_PER_PAGE) {
  256. kunmap_atomic(pt_vaddr);
  257. act_pt++;
  258. pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
  259. act_pte = 0;
  260. }
  261. }
  262. kunmap_atomic(pt_vaddr);
  263. }
  264. static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
  265. {
  266. struct i915_hw_ppgtt *ppgtt =
  267. container_of(vm, struct i915_hw_ppgtt, base);
  268. int i, j;
  269. for (i = 0; i < ppgtt->num_pd_pages ; i++) {
  270. if (ppgtt->pd_dma_addr[i]) {
  271. pci_unmap_page(ppgtt->base.dev->pdev,
  272. ppgtt->pd_dma_addr[i],
  273. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  274. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  275. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  276. if (addr)
  277. pci_unmap_page(ppgtt->base.dev->pdev,
  278. addr,
  279. PAGE_SIZE,
  280. PCI_DMA_BIDIRECTIONAL);
  281. }
  282. }
  283. kfree(ppgtt->gen8_pt_dma_addr[i]);
  284. }
  285. __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT);
  286. __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT);
  287. }
  288. /**
  289. * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
  290. * net effect resembling a 2-level page table in normal x86 terms. Each PDP
  291. * represents 1GB of memory
  292. * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
  293. *
  294. * TODO: Do something with the size parameter
  295. **/
  296. static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
  297. {
  298. struct page *pt_pages;
  299. int i, j, ret = -ENOMEM;
  300. const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
  301. const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
  302. if (size % (1<<30))
  303. DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
  304. /* FIXME: split allocation into smaller pieces. For now we only ever do
  305. * this once, but with full PPGTT, the multiple contiguous allocations
  306. * will be bad.
  307. */
  308. ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
  309. if (!ppgtt->pd_pages)
  310. return -ENOMEM;
  311. pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
  312. if (!pt_pages) {
  313. __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
  314. return -ENOMEM;
  315. }
  316. ppgtt->gen8_pt_pages = pt_pages;
  317. ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
  318. ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
  319. ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
  320. ppgtt->enable = gen8_ppgtt_enable;
  321. ppgtt->base.clear_range = gen8_ppgtt_clear_range;
  322. ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
  323. ppgtt->base.cleanup = gen8_ppgtt_cleanup;
  324. BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
  325. /*
  326. * - Create a mapping for the page directories.
  327. * - For each page directory:
  328. * allocate space for page table mappings.
  329. * map each page table
  330. */
  331. for (i = 0; i < max_pdp; i++) {
  332. dma_addr_t temp;
  333. temp = pci_map_page(ppgtt->base.dev->pdev,
  334. &ppgtt->pd_pages[i], 0,
  335. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  336. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  337. goto err_out;
  338. ppgtt->pd_dma_addr[i] = temp;
  339. ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
  340. if (!ppgtt->gen8_pt_dma_addr[i])
  341. goto err_out;
  342. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  343. struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
  344. temp = pci_map_page(ppgtt->base.dev->pdev,
  345. p, 0, PAGE_SIZE,
  346. PCI_DMA_BIDIRECTIONAL);
  347. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  348. goto err_out;
  349. ppgtt->gen8_pt_dma_addr[i][j] = temp;
  350. }
  351. }
  352. /* For now, the PPGTT helper functions all require that the PDEs are
  353. * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
  354. * will never need to touch the PDEs again */
  355. for (i = 0; i < max_pdp; i++) {
  356. gen8_ppgtt_pde_t *pd_vaddr;
  357. pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
  358. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  359. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  360. pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
  361. I915_CACHE_LLC);
  362. }
  363. kunmap_atomic(pd_vaddr);
  364. }
  365. ppgtt->base.clear_range(&ppgtt->base, 0,
  366. ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
  367. true);
  368. DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
  369. ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
  370. DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
  371. ppgtt->num_pt_pages,
  372. (ppgtt->num_pt_pages - num_pt_pages) +
  373. size % (1<<30));
  374. return 0;
  375. err_out:
  376. ppgtt->base.cleanup(&ppgtt->base);
  377. return ret;
  378. }
  379. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  380. {
  381. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  382. gen6_gtt_pte_t __iomem *pd_addr;
  383. uint32_t pd_entry;
  384. int i;
  385. WARN_ON(ppgtt->pd_offset & 0x3f);
  386. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  387. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  388. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  389. dma_addr_t pt_addr;
  390. pt_addr = ppgtt->pt_dma_addr[i];
  391. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  392. pd_entry |= GEN6_PDE_VALID;
  393. writel(pd_entry, pd_addr + i);
  394. }
  395. readl(pd_addr);
  396. }
  397. static int gen6_ppgtt_enable(struct drm_device *dev)
  398. {
  399. drm_i915_private_t *dev_priv = dev->dev_private;
  400. uint32_t pd_offset;
  401. struct intel_ring_buffer *ring;
  402. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  403. int i;
  404. BUG_ON(ppgtt->pd_offset & 0x3f);
  405. gen6_write_pdes(ppgtt);
  406. pd_offset = ppgtt->pd_offset;
  407. pd_offset /= 64; /* in cachelines, */
  408. pd_offset <<= 16;
  409. if (INTEL_INFO(dev)->gen == 6) {
  410. uint32_t ecochk, gab_ctl, ecobits;
  411. ecobits = I915_READ(GAC_ECO_BITS);
  412. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  413. ECOBITS_PPGTT_CACHE64B);
  414. gab_ctl = I915_READ(GAB_CTL);
  415. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  416. ecochk = I915_READ(GAM_ECOCHK);
  417. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  418. ECOCHK_PPGTT_CACHE64B);
  419. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  420. } else if (INTEL_INFO(dev)->gen >= 7) {
  421. uint32_t ecochk, ecobits;
  422. ecobits = I915_READ(GAC_ECO_BITS);
  423. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  424. ecochk = I915_READ(GAM_ECOCHK);
  425. if (IS_HASWELL(dev)) {
  426. ecochk |= ECOCHK_PPGTT_WB_HSW;
  427. } else {
  428. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  429. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  430. }
  431. I915_WRITE(GAM_ECOCHK, ecochk);
  432. /* GFX_MODE is per-ring on gen7+ */
  433. }
  434. for_each_ring(ring, dev_priv, i) {
  435. if (INTEL_INFO(dev)->gen >= 7)
  436. I915_WRITE(RING_MODE_GEN7(ring),
  437. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  438. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  439. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  440. }
  441. return 0;
  442. }
  443. /* PPGTT support for Sandybdrige/Gen6 and later */
  444. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  445. unsigned first_entry,
  446. unsigned num_entries,
  447. bool use_scratch)
  448. {
  449. struct i915_hw_ppgtt *ppgtt =
  450. container_of(vm, struct i915_hw_ppgtt, base);
  451. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  452. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  453. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  454. unsigned last_pte, i;
  455. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
  456. while (num_entries) {
  457. last_pte = first_pte + num_entries;
  458. if (last_pte > I915_PPGTT_PT_ENTRIES)
  459. last_pte = I915_PPGTT_PT_ENTRIES;
  460. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  461. for (i = first_pte; i < last_pte; i++)
  462. pt_vaddr[i] = scratch_pte;
  463. kunmap_atomic(pt_vaddr);
  464. num_entries -= last_pte - first_pte;
  465. first_pte = 0;
  466. act_pt++;
  467. }
  468. }
  469. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  470. struct sg_table *pages,
  471. unsigned first_entry,
  472. enum i915_cache_level cache_level)
  473. {
  474. struct i915_hw_ppgtt *ppgtt =
  475. container_of(vm, struct i915_hw_ppgtt, base);
  476. gen6_gtt_pte_t *pt_vaddr;
  477. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  478. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  479. struct sg_page_iter sg_iter;
  480. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  481. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  482. dma_addr_t page_addr;
  483. page_addr = sg_page_iter_dma_address(&sg_iter);
  484. pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
  485. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  486. kunmap_atomic(pt_vaddr);
  487. act_pt++;
  488. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  489. act_pte = 0;
  490. }
  491. }
  492. kunmap_atomic(pt_vaddr);
  493. }
  494. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  495. {
  496. struct i915_hw_ppgtt *ppgtt =
  497. container_of(vm, struct i915_hw_ppgtt, base);
  498. int i;
  499. drm_mm_takedown(&ppgtt->base.mm);
  500. if (ppgtt->pt_dma_addr) {
  501. for (i = 0; i < ppgtt->num_pd_entries; i++)
  502. pci_unmap_page(ppgtt->base.dev->pdev,
  503. ppgtt->pt_dma_addr[i],
  504. 4096, PCI_DMA_BIDIRECTIONAL);
  505. }
  506. kfree(ppgtt->pt_dma_addr);
  507. for (i = 0; i < ppgtt->num_pd_entries; i++)
  508. __free_page(ppgtt->pt_pages[i]);
  509. kfree(ppgtt->pt_pages);
  510. kfree(ppgtt);
  511. }
  512. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  513. {
  514. struct drm_device *dev = ppgtt->base.dev;
  515. struct drm_i915_private *dev_priv = dev->dev_private;
  516. unsigned first_pd_entry_in_global_pt;
  517. int i;
  518. int ret = -ENOMEM;
  519. /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
  520. * entries. For aliasing ppgtt support we just steal them at the end for
  521. * now. */
  522. first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
  523. ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
  524. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  525. ppgtt->enable = gen6_ppgtt_enable;
  526. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  527. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  528. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  529. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  530. ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
  531. GFP_KERNEL);
  532. if (!ppgtt->pt_pages)
  533. return -ENOMEM;
  534. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  535. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  536. if (!ppgtt->pt_pages[i])
  537. goto err_pt_alloc;
  538. }
  539. ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
  540. GFP_KERNEL);
  541. if (!ppgtt->pt_dma_addr)
  542. goto err_pt_alloc;
  543. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  544. dma_addr_t pt_addr;
  545. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  546. PCI_DMA_BIDIRECTIONAL);
  547. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  548. ret = -EIO;
  549. goto err_pd_pin;
  550. }
  551. ppgtt->pt_dma_addr[i] = pt_addr;
  552. }
  553. ppgtt->base.clear_range(&ppgtt->base, 0,
  554. ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
  555. ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
  556. return 0;
  557. err_pd_pin:
  558. if (ppgtt->pt_dma_addr) {
  559. for (i--; i >= 0; i--)
  560. pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
  561. 4096, PCI_DMA_BIDIRECTIONAL);
  562. }
  563. err_pt_alloc:
  564. kfree(ppgtt->pt_dma_addr);
  565. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  566. if (ppgtt->pt_pages[i])
  567. __free_page(ppgtt->pt_pages[i]);
  568. }
  569. kfree(ppgtt->pt_pages);
  570. return ret;
  571. }
  572. static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
  573. {
  574. struct drm_i915_private *dev_priv = dev->dev_private;
  575. struct i915_hw_ppgtt *ppgtt;
  576. int ret;
  577. ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
  578. if (!ppgtt)
  579. return -ENOMEM;
  580. ppgtt->base.dev = dev;
  581. if (INTEL_INFO(dev)->gen < 8)
  582. ret = gen6_ppgtt_init(ppgtt);
  583. else if (IS_GEN8(dev))
  584. ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
  585. else
  586. BUG();
  587. if (ret)
  588. kfree(ppgtt);
  589. else {
  590. dev_priv->mm.aliasing_ppgtt = ppgtt;
  591. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  592. ppgtt->base.total);
  593. }
  594. return ret;
  595. }
  596. void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
  597. {
  598. struct drm_i915_private *dev_priv = dev->dev_private;
  599. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  600. if (!ppgtt)
  601. return;
  602. ppgtt->base.cleanup(&ppgtt->base);
  603. dev_priv->mm.aliasing_ppgtt = NULL;
  604. }
  605. void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
  606. struct drm_i915_gem_object *obj,
  607. enum i915_cache_level cache_level)
  608. {
  609. ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
  610. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  611. cache_level);
  612. }
  613. void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
  614. struct drm_i915_gem_object *obj)
  615. {
  616. ppgtt->base.clear_range(&ppgtt->base,
  617. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  618. obj->base.size >> PAGE_SHIFT,
  619. true);
  620. }
  621. extern int intel_iommu_gfx_mapped;
  622. /* Certain Gen5 chipsets require require idling the GPU before
  623. * unmapping anything from the GTT when VT-d is enabled.
  624. */
  625. static inline bool needs_idle_maps(struct drm_device *dev)
  626. {
  627. #ifdef CONFIG_INTEL_IOMMU
  628. /* Query intel_iommu to see if we need the workaround. Presumably that
  629. * was loaded first.
  630. */
  631. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  632. return true;
  633. #endif
  634. return false;
  635. }
  636. static bool do_idling(struct drm_i915_private *dev_priv)
  637. {
  638. bool ret = dev_priv->mm.interruptible;
  639. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  640. dev_priv->mm.interruptible = false;
  641. if (i915_gpu_idle(dev_priv->dev)) {
  642. DRM_ERROR("Couldn't idle GPU\n");
  643. /* Wait a bit, in hopes it avoids the hang */
  644. udelay(10);
  645. }
  646. }
  647. return ret;
  648. }
  649. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  650. {
  651. if (unlikely(dev_priv->gtt.do_idle_maps))
  652. dev_priv->mm.interruptible = interruptible;
  653. }
  654. void i915_check_and_clear_faults(struct drm_device *dev)
  655. {
  656. struct drm_i915_private *dev_priv = dev->dev_private;
  657. struct intel_ring_buffer *ring;
  658. int i;
  659. if (INTEL_INFO(dev)->gen < 6)
  660. return;
  661. for_each_ring(ring, dev_priv, i) {
  662. u32 fault_reg;
  663. fault_reg = I915_READ(RING_FAULT_REG(ring));
  664. if (fault_reg & RING_FAULT_VALID) {
  665. DRM_DEBUG_DRIVER("Unexpected fault\n"
  666. "\tAddr: 0x%08lx\\n"
  667. "\tAddress space: %s\n"
  668. "\tSource ID: %d\n"
  669. "\tType: %d\n",
  670. fault_reg & PAGE_MASK,
  671. fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
  672. RING_FAULT_SRCID(fault_reg),
  673. RING_FAULT_FAULT_TYPE(fault_reg));
  674. I915_WRITE(RING_FAULT_REG(ring),
  675. fault_reg & ~RING_FAULT_VALID);
  676. }
  677. }
  678. POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
  679. }
  680. void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
  681. {
  682. struct drm_i915_private *dev_priv = dev->dev_private;
  683. /* Don't bother messing with faults pre GEN6 as we have little
  684. * documentation supporting that it's a good idea.
  685. */
  686. if (INTEL_INFO(dev)->gen < 6)
  687. return;
  688. i915_check_and_clear_faults(dev);
  689. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  690. dev_priv->gtt.base.start / PAGE_SIZE,
  691. dev_priv->gtt.base.total / PAGE_SIZE,
  692. false);
  693. }
  694. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  695. {
  696. struct drm_i915_private *dev_priv = dev->dev_private;
  697. struct drm_i915_gem_object *obj;
  698. i915_check_and_clear_faults(dev);
  699. /* First fill our portion of the GTT with scratch pages */
  700. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  701. dev_priv->gtt.base.start / PAGE_SIZE,
  702. dev_priv->gtt.base.total / PAGE_SIZE,
  703. true);
  704. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  705. i915_gem_clflush_object(obj, obj->pin_display);
  706. i915_gem_gtt_bind_object(obj, obj->cache_level);
  707. }
  708. i915_gem_chipset_flush(dev);
  709. }
  710. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  711. {
  712. if (obj->has_dma_mapping)
  713. return 0;
  714. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  715. obj->pages->sgl, obj->pages->nents,
  716. PCI_DMA_BIDIRECTIONAL))
  717. return -ENOSPC;
  718. return 0;
  719. }
  720. static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
  721. {
  722. #ifdef writeq
  723. writeq(pte, addr);
  724. #else
  725. iowrite32((u32)pte, addr);
  726. iowrite32(pte >> 32, addr + 4);
  727. #endif
  728. }
  729. static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
  730. struct sg_table *st,
  731. unsigned int first_entry,
  732. enum i915_cache_level level)
  733. {
  734. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  735. gen8_gtt_pte_t __iomem *gtt_entries =
  736. (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  737. int i = 0;
  738. struct sg_page_iter sg_iter;
  739. dma_addr_t addr;
  740. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  741. addr = sg_dma_address(sg_iter.sg) +
  742. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  743. gen8_set_pte(&gtt_entries[i],
  744. gen8_pte_encode(addr, level, true));
  745. i++;
  746. }
  747. /*
  748. * XXX: This serves as a posting read to make sure that the PTE has
  749. * actually been updated. There is some concern that even though
  750. * registers and PTEs are within the same BAR that they are potentially
  751. * of NUMA access patterns. Therefore, even with the way we assume
  752. * hardware should work, we must keep this posting read for paranoia.
  753. */
  754. if (i != 0)
  755. WARN_ON(readq(&gtt_entries[i-1])
  756. != gen8_pte_encode(addr, level, true));
  757. #if 0 /* TODO: Still needed on GEN8? */
  758. /* This next bit makes the above posting read even more important. We
  759. * want to flush the TLBs only after we're certain all the PTE updates
  760. * have finished.
  761. */
  762. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  763. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  764. #endif
  765. }
  766. /*
  767. * Binds an object into the global gtt with the specified cache level. The object
  768. * will be accessible to the GPU via commands whose operands reference offsets
  769. * within the global GTT as well as accessible by the GPU through the GMADR
  770. * mapped BAR (dev_priv->mm.gtt->gtt).
  771. */
  772. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  773. struct sg_table *st,
  774. unsigned int first_entry,
  775. enum i915_cache_level level)
  776. {
  777. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  778. gen6_gtt_pte_t __iomem *gtt_entries =
  779. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  780. int i = 0;
  781. struct sg_page_iter sg_iter;
  782. dma_addr_t addr;
  783. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  784. addr = sg_page_iter_dma_address(&sg_iter);
  785. iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
  786. i++;
  787. }
  788. /* XXX: This serves as a posting read to make sure that the PTE has
  789. * actually been updated. There is some concern that even though
  790. * registers and PTEs are within the same BAR that they are potentially
  791. * of NUMA access patterns. Therefore, even with the way we assume
  792. * hardware should work, we must keep this posting read for paranoia.
  793. */
  794. if (i != 0)
  795. WARN_ON(readl(&gtt_entries[i-1]) !=
  796. vm->pte_encode(addr, level, true));
  797. /* This next bit makes the above posting read even more important. We
  798. * want to flush the TLBs only after we're certain all the PTE updates
  799. * have finished.
  800. */
  801. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  802. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  803. }
  804. static void gen8_ggtt_clear_range(struct i915_address_space *vm,
  805. unsigned int first_entry,
  806. unsigned int num_entries,
  807. bool use_scratch)
  808. {
  809. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  810. gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
  811. (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  812. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  813. int i;
  814. if (WARN(num_entries > max_entries,
  815. "First entry = %d; Num entries = %d (max=%d)\n",
  816. first_entry, num_entries, max_entries))
  817. num_entries = max_entries;
  818. scratch_pte = gen8_pte_encode(vm->scratch.addr,
  819. I915_CACHE_LLC,
  820. use_scratch);
  821. for (i = 0; i < num_entries; i++)
  822. gen8_set_pte(&gtt_base[i], scratch_pte);
  823. readl(gtt_base);
  824. }
  825. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  826. unsigned int first_entry,
  827. unsigned int num_entries,
  828. bool use_scratch)
  829. {
  830. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  831. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  832. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  833. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  834. int i;
  835. if (WARN(num_entries > max_entries,
  836. "First entry = %d; Num entries = %d (max=%d)\n",
  837. first_entry, num_entries, max_entries))
  838. num_entries = max_entries;
  839. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
  840. for (i = 0; i < num_entries; i++)
  841. iowrite32(scratch_pte, &gtt_base[i]);
  842. readl(gtt_base);
  843. }
  844. static void i915_ggtt_insert_entries(struct i915_address_space *vm,
  845. struct sg_table *st,
  846. unsigned int pg_start,
  847. enum i915_cache_level cache_level)
  848. {
  849. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  850. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  851. intel_gtt_insert_sg_entries(st, pg_start, flags);
  852. }
  853. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  854. unsigned int first_entry,
  855. unsigned int num_entries,
  856. bool unused)
  857. {
  858. intel_gtt_clear_range(first_entry, num_entries);
  859. }
  860. void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
  861. enum i915_cache_level cache_level)
  862. {
  863. struct drm_device *dev = obj->base.dev;
  864. struct drm_i915_private *dev_priv = dev->dev_private;
  865. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  866. dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
  867. entry,
  868. cache_level);
  869. obj->has_global_gtt_mapping = 1;
  870. }
  871. void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
  872. {
  873. struct drm_device *dev = obj->base.dev;
  874. struct drm_i915_private *dev_priv = dev->dev_private;
  875. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  876. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  877. entry,
  878. obj->base.size >> PAGE_SHIFT,
  879. true);
  880. obj->has_global_gtt_mapping = 0;
  881. }
  882. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  883. {
  884. struct drm_device *dev = obj->base.dev;
  885. struct drm_i915_private *dev_priv = dev->dev_private;
  886. bool interruptible;
  887. interruptible = do_idling(dev_priv);
  888. if (!obj->has_dma_mapping)
  889. dma_unmap_sg(&dev->pdev->dev,
  890. obj->pages->sgl, obj->pages->nents,
  891. PCI_DMA_BIDIRECTIONAL);
  892. undo_idling(dev_priv, interruptible);
  893. }
  894. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  895. unsigned long color,
  896. unsigned long *start,
  897. unsigned long *end)
  898. {
  899. if (node->color != color)
  900. *start += 4096;
  901. if (!list_empty(&node->node_list)) {
  902. node = list_entry(node->node_list.next,
  903. struct drm_mm_node,
  904. node_list);
  905. if (node->allocated && node->color != color)
  906. *end -= 4096;
  907. }
  908. }
  909. void i915_gem_setup_global_gtt(struct drm_device *dev,
  910. unsigned long start,
  911. unsigned long mappable_end,
  912. unsigned long end)
  913. {
  914. /* Let GEM Manage all of the aperture.
  915. *
  916. * However, leave one page at the end still bound to the scratch page.
  917. * There are a number of places where the hardware apparently prefetches
  918. * past the end of the object, and we've seen multiple hangs with the
  919. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  920. * aperture. One page should be enough to keep any prefetching inside
  921. * of the aperture.
  922. */
  923. struct drm_i915_private *dev_priv = dev->dev_private;
  924. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  925. struct drm_mm_node *entry;
  926. struct drm_i915_gem_object *obj;
  927. unsigned long hole_start, hole_end;
  928. BUG_ON(mappable_end > end);
  929. /* Subtract the guard page ... */
  930. drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
  931. if (!HAS_LLC(dev))
  932. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  933. /* Mark any preallocated objects as occupied */
  934. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  935. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  936. int ret;
  937. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  938. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  939. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  940. ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
  941. if (ret)
  942. DRM_DEBUG_KMS("Reservation failed\n");
  943. obj->has_global_gtt_mapping = 1;
  944. list_add(&vma->vma_link, &obj->vma_list);
  945. }
  946. dev_priv->gtt.base.start = start;
  947. dev_priv->gtt.base.total = end - start;
  948. /* Clear any non-preallocated blocks */
  949. drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
  950. const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
  951. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  952. hole_start, hole_end);
  953. ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
  954. }
  955. /* And finally clear the reserved guard page */
  956. ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
  957. }
  958. static bool
  959. intel_enable_ppgtt(struct drm_device *dev)
  960. {
  961. if (i915_enable_ppgtt >= 0)
  962. return i915_enable_ppgtt;
  963. #ifdef CONFIG_INTEL_IOMMU
  964. /* Disable ppgtt on SNB if VT-d is on. */
  965. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  966. return false;
  967. #endif
  968. return true;
  969. }
  970. void i915_gem_init_global_gtt(struct drm_device *dev)
  971. {
  972. struct drm_i915_private *dev_priv = dev->dev_private;
  973. unsigned long gtt_size, mappable_size;
  974. gtt_size = dev_priv->gtt.base.total;
  975. mappable_size = dev_priv->gtt.mappable_end;
  976. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  977. int ret;
  978. if (INTEL_INFO(dev)->gen <= 7) {
  979. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  980. * aperture accordingly when using aliasing ppgtt. */
  981. gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  982. }
  983. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  984. ret = i915_gem_init_aliasing_ppgtt(dev);
  985. if (!ret)
  986. return;
  987. DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
  988. drm_mm_takedown(&dev_priv->gtt.base.mm);
  989. if (INTEL_INFO(dev)->gen < 8)
  990. gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
  991. }
  992. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  993. }
  994. static int setup_scratch_page(struct drm_device *dev)
  995. {
  996. struct drm_i915_private *dev_priv = dev->dev_private;
  997. struct page *page;
  998. dma_addr_t dma_addr;
  999. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  1000. if (page == NULL)
  1001. return -ENOMEM;
  1002. get_page(page);
  1003. set_pages_uc(page, 1);
  1004. #ifdef CONFIG_INTEL_IOMMU
  1005. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  1006. PCI_DMA_BIDIRECTIONAL);
  1007. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  1008. return -EINVAL;
  1009. #else
  1010. dma_addr = page_to_phys(page);
  1011. #endif
  1012. dev_priv->gtt.base.scratch.page = page;
  1013. dev_priv->gtt.base.scratch.addr = dma_addr;
  1014. return 0;
  1015. }
  1016. static void teardown_scratch_page(struct drm_device *dev)
  1017. {
  1018. struct drm_i915_private *dev_priv = dev->dev_private;
  1019. struct page *page = dev_priv->gtt.base.scratch.page;
  1020. set_pages_wb(page, 1);
  1021. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  1022. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  1023. put_page(page);
  1024. __free_page(page);
  1025. }
  1026. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  1027. {
  1028. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  1029. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  1030. return snb_gmch_ctl << 20;
  1031. }
  1032. static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
  1033. {
  1034. bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
  1035. bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
  1036. if (bdw_gmch_ctl)
  1037. bdw_gmch_ctl = 1 << bdw_gmch_ctl;
  1038. return bdw_gmch_ctl << 20;
  1039. }
  1040. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  1041. {
  1042. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  1043. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  1044. return snb_gmch_ctl << 25; /* 32 MB units */
  1045. }
  1046. static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
  1047. {
  1048. bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
  1049. bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
  1050. return bdw_gmch_ctl << 25; /* 32 MB units */
  1051. }
  1052. static int ggtt_probe_common(struct drm_device *dev,
  1053. size_t gtt_size)
  1054. {
  1055. struct drm_i915_private *dev_priv = dev->dev_private;
  1056. phys_addr_t gtt_bus_addr;
  1057. int ret;
  1058. /* For Modern GENs the PTEs and register space are split in the BAR */
  1059. gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
  1060. (pci_resource_len(dev->pdev, 0) / 2);
  1061. dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
  1062. if (!dev_priv->gtt.gsm) {
  1063. DRM_ERROR("Failed to map the gtt page table\n");
  1064. return -ENOMEM;
  1065. }
  1066. ret = setup_scratch_page(dev);
  1067. if (ret) {
  1068. DRM_ERROR("Scratch setup failed\n");
  1069. /* iounmap will also get called at remove, but meh */
  1070. iounmap(dev_priv->gtt.gsm);
  1071. }
  1072. return ret;
  1073. }
  1074. /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
  1075. * bits. When using advanced contexts each context stores its own PAT, but
  1076. * writing this data shouldn't be harmful even in those cases. */
  1077. static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
  1078. {
  1079. #define GEN8_PPAT_UC (0<<0)
  1080. #define GEN8_PPAT_WC (1<<0)
  1081. #define GEN8_PPAT_WT (2<<0)
  1082. #define GEN8_PPAT_WB (3<<0)
  1083. #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
  1084. /* FIXME(BDW): Bspec is completely confused about cache control bits. */
  1085. #define GEN8_PPAT_LLC (1<<2)
  1086. #define GEN8_PPAT_LLCELLC (2<<2)
  1087. #define GEN8_PPAT_LLCeLLC (3<<2)
  1088. #define GEN8_PPAT_AGE(x) (x<<4)
  1089. #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
  1090. uint64_t pat;
  1091. pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
  1092. GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
  1093. GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
  1094. GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
  1095. GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
  1096. GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
  1097. GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
  1098. GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
  1099. /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
  1100. * write would work. */
  1101. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  1102. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  1103. }
  1104. static int gen8_gmch_probe(struct drm_device *dev,
  1105. size_t *gtt_total,
  1106. size_t *stolen,
  1107. phys_addr_t *mappable_base,
  1108. unsigned long *mappable_end)
  1109. {
  1110. struct drm_i915_private *dev_priv = dev->dev_private;
  1111. unsigned int gtt_size;
  1112. u16 snb_gmch_ctl;
  1113. int ret;
  1114. /* TODO: We're not aware of mappable constraints on gen8 yet */
  1115. *mappable_base = pci_resource_start(dev->pdev, 2);
  1116. *mappable_end = pci_resource_len(dev->pdev, 2);
  1117. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
  1118. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
  1119. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1120. *stolen = gen8_get_stolen_size(snb_gmch_ctl);
  1121. gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
  1122. *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
  1123. gen8_setup_private_ppat(dev_priv);
  1124. ret = ggtt_probe_common(dev, gtt_size);
  1125. dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
  1126. dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
  1127. return ret;
  1128. }
  1129. static int gen6_gmch_probe(struct drm_device *dev,
  1130. size_t *gtt_total,
  1131. size_t *stolen,
  1132. phys_addr_t *mappable_base,
  1133. unsigned long *mappable_end)
  1134. {
  1135. struct drm_i915_private *dev_priv = dev->dev_private;
  1136. unsigned int gtt_size;
  1137. u16 snb_gmch_ctl;
  1138. int ret;
  1139. *mappable_base = pci_resource_start(dev->pdev, 2);
  1140. *mappable_end = pci_resource_len(dev->pdev, 2);
  1141. /* 64/512MB is the current min/max we actually know of, but this is just
  1142. * a coarse sanity check.
  1143. */
  1144. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  1145. DRM_ERROR("Unknown GMADR size (%lx)\n",
  1146. dev_priv->gtt.mappable_end);
  1147. return -ENXIO;
  1148. }
  1149. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  1150. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  1151. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1152. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  1153. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  1154. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  1155. ret = ggtt_probe_common(dev, gtt_size);
  1156. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  1157. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  1158. return ret;
  1159. }
  1160. static void gen6_gmch_remove(struct i915_address_space *vm)
  1161. {
  1162. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  1163. iounmap(gtt->gsm);
  1164. teardown_scratch_page(vm->dev);
  1165. }
  1166. static int i915_gmch_probe(struct drm_device *dev,
  1167. size_t *gtt_total,
  1168. size_t *stolen,
  1169. phys_addr_t *mappable_base,
  1170. unsigned long *mappable_end)
  1171. {
  1172. struct drm_i915_private *dev_priv = dev->dev_private;
  1173. int ret;
  1174. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  1175. if (!ret) {
  1176. DRM_ERROR("failed to set up gmch\n");
  1177. return -EIO;
  1178. }
  1179. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  1180. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  1181. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  1182. dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
  1183. return 0;
  1184. }
  1185. static void i915_gmch_remove(struct i915_address_space *vm)
  1186. {
  1187. intel_gmch_remove();
  1188. }
  1189. int i915_gem_gtt_init(struct drm_device *dev)
  1190. {
  1191. struct drm_i915_private *dev_priv = dev->dev_private;
  1192. struct i915_gtt *gtt = &dev_priv->gtt;
  1193. int ret;
  1194. if (INTEL_INFO(dev)->gen <= 5) {
  1195. gtt->gtt_probe = i915_gmch_probe;
  1196. gtt->base.cleanup = i915_gmch_remove;
  1197. } else if (INTEL_INFO(dev)->gen < 8) {
  1198. gtt->gtt_probe = gen6_gmch_probe;
  1199. gtt->base.cleanup = gen6_gmch_remove;
  1200. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  1201. gtt->base.pte_encode = iris_pte_encode;
  1202. else if (IS_HASWELL(dev))
  1203. gtt->base.pte_encode = hsw_pte_encode;
  1204. else if (IS_VALLEYVIEW(dev))
  1205. gtt->base.pte_encode = byt_pte_encode;
  1206. else if (INTEL_INFO(dev)->gen >= 7)
  1207. gtt->base.pte_encode = ivb_pte_encode;
  1208. else
  1209. gtt->base.pte_encode = snb_pte_encode;
  1210. } else {
  1211. dev_priv->gtt.gtt_probe = gen8_gmch_probe;
  1212. dev_priv->gtt.base.cleanup = gen6_gmch_remove;
  1213. }
  1214. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  1215. &gtt->mappable_base, &gtt->mappable_end);
  1216. if (ret)
  1217. return ret;
  1218. gtt->base.dev = dev;
  1219. /* GMADR is the PCI mmio aperture into the global GTT. */
  1220. DRM_INFO("Memory usable by graphics device = %zdM\n",
  1221. gtt->base.total >> 20);
  1222. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  1223. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  1224. return 0;
  1225. }