ttm_tt.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635
  1. /**************************************************************************
  2. *
  3. * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
  4. * All Rights Reserved.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the
  8. * "Software"), to deal in the Software without restriction, including
  9. * without limitation the rights to use, copy, modify, merge, publish,
  10. * distribute, sub license, and/or sell copies of the Software, and to
  11. * permit persons to whom the Software is furnished to do so, subject to
  12. * the following conditions:
  13. *
  14. * The above copyright notice and this permission notice (including the
  15. * next paragraph) shall be included in all copies or substantial portions
  16. * of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21. * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22. * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23. * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24. * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25. *
  26. **************************************************************************/
  27. /*
  28. * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29. */
  30. #include <linux/version.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/sched.h>
  33. #include <linux/highmem.h>
  34. #include <linux/pagemap.h>
  35. #include <linux/file.h>
  36. #include <linux/swap.h>
  37. #include "ttm/ttm_module.h"
  38. #include "ttm/ttm_bo_driver.h"
  39. #include "ttm/ttm_placement.h"
  40. static int ttm_tt_swapin(struct ttm_tt *ttm);
  41. #if defined(CONFIG_X86)
  42. static void ttm_tt_clflush_page(struct page *page)
  43. {
  44. uint8_t *page_virtual;
  45. unsigned int i;
  46. if (unlikely(page == NULL))
  47. return;
  48. page_virtual = kmap_atomic(page, KM_USER0);
  49. for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
  50. clflush(page_virtual + i);
  51. kunmap_atomic(page_virtual, KM_USER0);
  52. }
  53. static void ttm_tt_cache_flush_clflush(struct page *pages[],
  54. unsigned long num_pages)
  55. {
  56. unsigned long i;
  57. mb();
  58. for (i = 0; i < num_pages; ++i)
  59. ttm_tt_clflush_page(*pages++);
  60. mb();
  61. }
  62. #else
  63. static void ttm_tt_ipi_handler(void *null)
  64. {
  65. ;
  66. }
  67. #endif
  68. void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
  69. {
  70. #if defined(CONFIG_X86)
  71. if (cpu_has_clflush) {
  72. ttm_tt_cache_flush_clflush(pages, num_pages);
  73. return;
  74. }
  75. #else
  76. if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
  77. printk(KERN_ERR TTM_PFX
  78. "Timed out waiting for drm cache flush.\n");
  79. #endif
  80. }
  81. /**
  82. * Allocates storage for pointers to the pages that back the ttm.
  83. *
  84. * Uses kmalloc if possible. Otherwise falls back to vmalloc.
  85. */
  86. static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
  87. {
  88. unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
  89. ttm->pages = NULL;
  90. if (size <= PAGE_SIZE)
  91. ttm->pages = kzalloc(size, GFP_KERNEL);
  92. if (!ttm->pages) {
  93. ttm->pages = vmalloc_user(size);
  94. if (ttm->pages)
  95. ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
  96. }
  97. }
  98. static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
  99. {
  100. if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
  101. vfree(ttm->pages);
  102. ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
  103. } else {
  104. kfree(ttm->pages);
  105. }
  106. ttm->pages = NULL;
  107. }
  108. static struct page *ttm_tt_alloc_page(unsigned page_flags)
  109. {
  110. if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
  111. return alloc_page(GFP_HIGHUSER | __GFP_ZERO);
  112. return alloc_page(GFP_HIGHUSER);
  113. }
  114. static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
  115. {
  116. int write;
  117. int dirty;
  118. struct page *page;
  119. int i;
  120. struct ttm_backend *be = ttm->be;
  121. BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
  122. write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
  123. dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
  124. if (be)
  125. be->func->clear(be);
  126. for (i = 0; i < ttm->num_pages; ++i) {
  127. page = ttm->pages[i];
  128. if (page == NULL)
  129. continue;
  130. if (page == ttm->dummy_read_page) {
  131. BUG_ON(write);
  132. continue;
  133. }
  134. if (write && dirty && !PageReserved(page))
  135. set_page_dirty_lock(page);
  136. ttm->pages[i] = NULL;
  137. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
  138. put_page(page);
  139. }
  140. ttm->state = tt_unpopulated;
  141. ttm->first_himem_page = ttm->num_pages;
  142. ttm->last_lomem_page = -1;
  143. }
  144. static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
  145. {
  146. struct page *p;
  147. struct ttm_bo_device *bdev = ttm->bdev;
  148. struct ttm_mem_global *mem_glob = bdev->mem_glob;
  149. int ret;
  150. while (NULL == (p = ttm->pages[index])) {
  151. p = ttm_tt_alloc_page(ttm->page_flags);
  152. if (!p)
  153. return NULL;
  154. if (PageHighMem(p)) {
  155. ret =
  156. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  157. false, false, true);
  158. if (unlikely(ret != 0))
  159. goto out_err;
  160. ttm->pages[--ttm->first_himem_page] = p;
  161. } else {
  162. ret =
  163. ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
  164. false, false, false);
  165. if (unlikely(ret != 0))
  166. goto out_err;
  167. ttm->pages[++ttm->last_lomem_page] = p;
  168. }
  169. }
  170. return p;
  171. out_err:
  172. put_page(p);
  173. return NULL;
  174. }
  175. struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
  176. {
  177. int ret;
  178. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  179. ret = ttm_tt_swapin(ttm);
  180. if (unlikely(ret != 0))
  181. return NULL;
  182. }
  183. return __ttm_tt_get_page(ttm, index);
  184. }
  185. int ttm_tt_populate(struct ttm_tt *ttm)
  186. {
  187. struct page *page;
  188. unsigned long i;
  189. struct ttm_backend *be;
  190. int ret;
  191. if (ttm->state != tt_unpopulated)
  192. return 0;
  193. if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
  194. ret = ttm_tt_swapin(ttm);
  195. if (unlikely(ret != 0))
  196. return ret;
  197. }
  198. be = ttm->be;
  199. for (i = 0; i < ttm->num_pages; ++i) {
  200. page = __ttm_tt_get_page(ttm, i);
  201. if (!page)
  202. return -ENOMEM;
  203. }
  204. be->func->populate(be, ttm->num_pages, ttm->pages,
  205. ttm->dummy_read_page);
  206. ttm->state = tt_unbound;
  207. return 0;
  208. }
  209. #ifdef CONFIG_X86
  210. static inline int ttm_tt_set_page_caching(struct page *p,
  211. enum ttm_caching_state c_state)
  212. {
  213. if (PageHighMem(p))
  214. return 0;
  215. switch (c_state) {
  216. case tt_cached:
  217. return set_pages_wb(p, 1);
  218. case tt_wc:
  219. return set_memory_wc((unsigned long) page_address(p), 1);
  220. default:
  221. return set_pages_uc(p, 1);
  222. }
  223. }
  224. #else /* CONFIG_X86 */
  225. static inline int ttm_tt_set_page_caching(struct page *p,
  226. enum ttm_caching_state c_state)
  227. {
  228. return 0;
  229. }
  230. #endif /* CONFIG_X86 */
  231. /*
  232. * Change caching policy for the linear kernel map
  233. * for range of pages in a ttm.
  234. */
  235. static int ttm_tt_set_caching(struct ttm_tt *ttm,
  236. enum ttm_caching_state c_state)
  237. {
  238. int i, j;
  239. struct page *cur_page;
  240. int ret;
  241. if (ttm->caching_state == c_state)
  242. return 0;
  243. if (c_state != tt_cached) {
  244. ret = ttm_tt_populate(ttm);
  245. if (unlikely(ret != 0))
  246. return ret;
  247. }
  248. if (ttm->caching_state == tt_cached)
  249. ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
  250. for (i = 0; i < ttm->num_pages; ++i) {
  251. cur_page = ttm->pages[i];
  252. if (likely(cur_page != NULL)) {
  253. ret = ttm_tt_set_page_caching(cur_page, c_state);
  254. if (unlikely(ret != 0))
  255. goto out_err;
  256. }
  257. }
  258. ttm->caching_state = c_state;
  259. return 0;
  260. out_err:
  261. for (j = 0; j < i; ++j) {
  262. cur_page = ttm->pages[j];
  263. if (likely(cur_page != NULL)) {
  264. (void)ttm_tt_set_page_caching(cur_page,
  265. ttm->caching_state);
  266. }
  267. }
  268. return ret;
  269. }
  270. int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
  271. {
  272. enum ttm_caching_state state;
  273. if (placement & TTM_PL_FLAG_WC)
  274. state = tt_wc;
  275. else if (placement & TTM_PL_FLAG_UNCACHED)
  276. state = tt_uncached;
  277. else
  278. state = tt_cached;
  279. return ttm_tt_set_caching(ttm, state);
  280. }
  281. static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
  282. {
  283. int i;
  284. struct page *cur_page;
  285. struct ttm_backend *be = ttm->be;
  286. if (be)
  287. be->func->clear(be);
  288. (void)ttm_tt_set_caching(ttm, tt_cached);
  289. for (i = 0; i < ttm->num_pages; ++i) {
  290. cur_page = ttm->pages[i];
  291. ttm->pages[i] = NULL;
  292. if (cur_page) {
  293. if (page_count(cur_page) != 1)
  294. printk(KERN_ERR TTM_PFX
  295. "Erroneous page count. "
  296. "Leaking pages.\n");
  297. ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
  298. PageHighMem(cur_page));
  299. __free_page(cur_page);
  300. }
  301. }
  302. ttm->state = tt_unpopulated;
  303. ttm->first_himem_page = ttm->num_pages;
  304. ttm->last_lomem_page = -1;
  305. }
  306. void ttm_tt_destroy(struct ttm_tt *ttm)
  307. {
  308. struct ttm_backend *be;
  309. if (unlikely(ttm == NULL))
  310. return;
  311. be = ttm->be;
  312. if (likely(be != NULL)) {
  313. be->func->destroy(be);
  314. ttm->be = NULL;
  315. }
  316. if (likely(ttm->pages != NULL)) {
  317. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  318. ttm_tt_free_user_pages(ttm);
  319. else
  320. ttm_tt_free_alloced_pages(ttm);
  321. ttm_tt_free_page_directory(ttm);
  322. }
  323. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
  324. ttm->swap_storage)
  325. fput(ttm->swap_storage);
  326. kfree(ttm);
  327. }
  328. int ttm_tt_set_user(struct ttm_tt *ttm,
  329. struct task_struct *tsk,
  330. unsigned long start, unsigned long num_pages)
  331. {
  332. struct mm_struct *mm = tsk->mm;
  333. int ret;
  334. int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
  335. struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
  336. BUG_ON(num_pages != ttm->num_pages);
  337. BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
  338. /**
  339. * Account user pages as lowmem pages for now.
  340. */
  341. ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
  342. false, false, false);
  343. if (unlikely(ret != 0))
  344. return ret;
  345. down_read(&mm->mmap_sem);
  346. ret = get_user_pages(tsk, mm, start, num_pages,
  347. write, 0, ttm->pages, NULL);
  348. up_read(&mm->mmap_sem);
  349. if (ret != num_pages && write) {
  350. ttm_tt_free_user_pages(ttm);
  351. ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
  352. return -ENOMEM;
  353. }
  354. ttm->tsk = tsk;
  355. ttm->start = start;
  356. ttm->state = tt_unbound;
  357. return 0;
  358. }
  359. struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
  360. uint32_t page_flags, struct page *dummy_read_page)
  361. {
  362. struct ttm_bo_driver *bo_driver = bdev->driver;
  363. struct ttm_tt *ttm;
  364. if (!bo_driver)
  365. return NULL;
  366. ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
  367. if (!ttm)
  368. return NULL;
  369. ttm->bdev = bdev;
  370. ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  371. ttm->first_himem_page = ttm->num_pages;
  372. ttm->last_lomem_page = -1;
  373. ttm->caching_state = tt_cached;
  374. ttm->page_flags = page_flags;
  375. ttm->dummy_read_page = dummy_read_page;
  376. ttm_tt_alloc_page_directory(ttm);
  377. if (!ttm->pages) {
  378. ttm_tt_destroy(ttm);
  379. printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
  380. return NULL;
  381. }
  382. ttm->be = bo_driver->create_ttm_backend_entry(bdev);
  383. if (!ttm->be) {
  384. ttm_tt_destroy(ttm);
  385. printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
  386. return NULL;
  387. }
  388. ttm->state = tt_unpopulated;
  389. return ttm;
  390. }
  391. void ttm_tt_unbind(struct ttm_tt *ttm)
  392. {
  393. int ret;
  394. struct ttm_backend *be = ttm->be;
  395. if (ttm->state == tt_bound) {
  396. ret = be->func->unbind(be);
  397. BUG_ON(ret);
  398. ttm->state = tt_unbound;
  399. }
  400. }
  401. int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
  402. {
  403. int ret = 0;
  404. struct ttm_backend *be;
  405. if (!ttm)
  406. return -EINVAL;
  407. if (ttm->state == tt_bound)
  408. return 0;
  409. be = ttm->be;
  410. ret = ttm_tt_populate(ttm);
  411. if (ret)
  412. return ret;
  413. ret = be->func->bind(be, bo_mem);
  414. if (ret) {
  415. printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
  416. return ret;
  417. }
  418. ttm->state = tt_bound;
  419. if (ttm->page_flags & TTM_PAGE_FLAG_USER)
  420. ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
  421. return 0;
  422. }
  423. EXPORT_SYMBOL(ttm_tt_bind);
  424. static int ttm_tt_swapin(struct ttm_tt *ttm)
  425. {
  426. struct address_space *swap_space;
  427. struct file *swap_storage;
  428. struct page *from_page;
  429. struct page *to_page;
  430. void *from_virtual;
  431. void *to_virtual;
  432. int i;
  433. int ret;
  434. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  435. ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
  436. ttm->num_pages);
  437. if (unlikely(ret != 0))
  438. return ret;
  439. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  440. return 0;
  441. }
  442. swap_storage = ttm->swap_storage;
  443. BUG_ON(swap_storage == NULL);
  444. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  445. for (i = 0; i < ttm->num_pages; ++i) {
  446. from_page = read_mapping_page(swap_space, i, NULL);
  447. if (IS_ERR(from_page))
  448. goto out_err;
  449. to_page = __ttm_tt_get_page(ttm, i);
  450. if (unlikely(to_page == NULL))
  451. goto out_err;
  452. preempt_disable();
  453. from_virtual = kmap_atomic(from_page, KM_USER0);
  454. to_virtual = kmap_atomic(to_page, KM_USER1);
  455. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  456. kunmap_atomic(to_virtual, KM_USER1);
  457. kunmap_atomic(from_virtual, KM_USER0);
  458. preempt_enable();
  459. page_cache_release(from_page);
  460. }
  461. if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
  462. fput(swap_storage);
  463. ttm->swap_storage = NULL;
  464. ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
  465. return 0;
  466. out_err:
  467. ttm_tt_free_alloced_pages(ttm);
  468. return -ENOMEM;
  469. }
  470. int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
  471. {
  472. struct address_space *swap_space;
  473. struct file *swap_storage;
  474. struct page *from_page;
  475. struct page *to_page;
  476. void *from_virtual;
  477. void *to_virtual;
  478. int i;
  479. BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
  480. BUG_ON(ttm->caching_state != tt_cached);
  481. /*
  482. * For user buffers, just unpin the pages, as there should be
  483. * vma references.
  484. */
  485. if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
  486. ttm_tt_free_user_pages(ttm);
  487. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  488. ttm->swap_storage = NULL;
  489. return 0;
  490. }
  491. if (!persistant_swap_storage) {
  492. swap_storage = shmem_file_setup("ttm swap",
  493. ttm->num_pages << PAGE_SHIFT,
  494. 0);
  495. if (unlikely(IS_ERR(swap_storage))) {
  496. printk(KERN_ERR "Failed allocating swap storage.\n");
  497. return -ENOMEM;
  498. }
  499. } else
  500. swap_storage = persistant_swap_storage;
  501. swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
  502. for (i = 0; i < ttm->num_pages; ++i) {
  503. from_page = ttm->pages[i];
  504. if (unlikely(from_page == NULL))
  505. continue;
  506. to_page = read_mapping_page(swap_space, i, NULL);
  507. if (unlikely(to_page == NULL))
  508. goto out_err;
  509. preempt_disable();
  510. from_virtual = kmap_atomic(from_page, KM_USER0);
  511. to_virtual = kmap_atomic(to_page, KM_USER1);
  512. memcpy(to_virtual, from_virtual, PAGE_SIZE);
  513. kunmap_atomic(to_virtual, KM_USER1);
  514. kunmap_atomic(from_virtual, KM_USER0);
  515. preempt_enable();
  516. set_page_dirty(to_page);
  517. mark_page_accessed(to_page);
  518. page_cache_release(to_page);
  519. }
  520. ttm_tt_free_alloced_pages(ttm);
  521. ttm->swap_storage = swap_storage;
  522. ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
  523. if (persistant_swap_storage)
  524. ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
  525. return 0;
  526. out_err:
  527. if (!persistant_swap_storage)
  528. fput(swap_storage);
  529. return -ENOMEM;
  530. }